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Abstract

For many studies, knowledge of continuous evolutidnhydrodynamic characteristics is
useful but generally measurement techniques prowicly discrete information. In the case of
complex flows, usual numerical interpolating methaappear to be not adapted, as for the free
decaying swirling flow presented in this study. Tieee-dimensional motion involved induces a
spatial dependent velocity-field. Thus, the intéaging method has to be three-dimensional and to
take into account possible flow non-linearity, mmakicommon methods unsuitable. A different
interpolation method is thus proposed, based orewrah network algorithm with Radial Basis

Functions.
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1 - Introduction

Except for simple cases having analytical repregiemts, a flow-field is often described as a
discrete distribution of hydrodynamical specific achcteristics. For example, experimental
measurements provide only local information. Inbdion schemes, like linear or cubic interpolation
are thus usually employed in fluids engineeringlétermine unknown values at desired positions, as
for pathlines determination for instance. The samblem arises if special hydrodynamical features
have to be determined, like stress-fields or viytfields, that imply the use of derivative
approximation with finite difference methods. Reésare then biased by the systematic error induced
by the method. A way to improve the determinatibsuch results is to employ a fitting function of
the hydrodynamical features evolutions. This soluprovides a continuous mathematical expression,
which can be then employed to calculate valueslbawn locations. If the mathematical function is
chosen derivable, special hydrodynamical featuiks,stress-fields or vorticity-fields, can then be
easily deduced without adding approximation of vigive schemes. For example, Marshall and Grant
[1] have developed a Lagrangian vorticity colloocatimethod where a polynomial fitting is used to
determine a continuous vorticity-field using lowalues defined on a non-uniform grid, allowing the
exact differentiation of the vorticity-field whicis needed to calculate a viscous diffusion term [1]
But, naturally, the accuracy of such a method ddpem the ability of the retained function to fiet
local values distribution.

When the flow becomes complex and three-dimensidmarodynamical features can be
characterized by non-linear evolutions. If the flexhibits a great spatial dependency, polynomial
fitting or common interpolation schemes are then amapted, because a large amount of data is
requested to represent with accuracy the flow & eéhtire geometry. Another method based on a
neural network representation is proposed in thudys By considering non-linear evolutions, such
technique appears interesting to reconstruct comfidsvs, such as the three-dimensional swirling
flows investigated here. The neural network methwitl provide a continuous mathematical
expression of the flow-field, by representing itaasum of Gaussian functions, each function being

derivable, that allows further calculation of sfiednydrodynamical features involving differentiarti.
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Swirling flows are often used in chemical enginegtior the design of new hydrocyclones or
heat exchangers for example [2]. By involving ae#hdimensional motion and increasing turbulent
intensities, such flows appear as an efficient veagnhance transport phenomena, like mass or heat
transfer [3-5]. But the generated hydrodynamicsaiemdifficult to be fully characterized, owing to
the spatial dependency of the flow-field [6-9]. &ngential inlet can be used to induce a stationary
swirling flow in tubes or annular geometries witlagher simple design [2-10]. The swirl motion is
achieved at the inlet of the device and then defragdy along the flow path (Fig. 1). Hydrodynamic
characteristics are not only a function of the abdbsition, but also depend on the axial locatthre
to the free decay of the swirl intensity, and oe #ingular position, the flow generated not being
axisymmetric. Thus, a full characterization of flev requests a high amount of experimental data,
especially when local measurement techniques apgogad, like laser Doppler anemometry or hot-
wires techniques [11]. A previous study has shdweniterest of spatial measurement techniques, like
the Particle Image Velocimetry (PIV) which allowssfer investigation by measuring the
instantaneous velocity-field in a designed ared. [But two problems remain : (i) the obtained
velocity-field is not continuous, (ii) the acquisit area remains limited and a complete investgati
of the flow-field would request numerous measureraeeas.

Thus, an experimental investigation can requirerg long time to obtain a sufficient amount
of data. Because neural networks can express nearlties, they seem an efficient tool for the
reconstruction of data linked to multiple paramgtemd thus an interesting alternative solution to
common interpolation schemes. Neural networks ®aldial Basis Functions are especially designed
for this particular kind of application [12-14]. iBhmethod can thus be employed to determine a
mathematical expression of the flow-field definedtbe entire geometry, using only a small amount
of experimental local measurements. To evaluatetieeracy of this interpolating technique, a large
set of data has first been measured using PIV tgebnNext, the set has been divided into two parts
the first being used by the neural network in otdereconstruct the velocity-field during the leam
step, and the second to estimate the reconstruetfmiency by comparing values obtained with the
neural method to experimental measurements. Théauof data requested to achieve an accurate

calculation of the continuous flow-field has be&tedmined.
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2 - Experimental PIV investigation

In a previous work, we have shown that a usual et¥inique can be used to characterize the
main characteristics of a swirling decaying flowuiced by a tangential inlet in an annular geometry.
The three components of the velocity and turbul@ensity have been investigated. The main features
of the experimental investigation are describedédtails by Pruvost et al. [10].

It has been shown that, by allowing spatial ingggion, PIV measurements appear to be well-
adapted to this particular flow which was found®very complex and space dependent. But, to fully
characterize hydrodynamics in the geometry undedysta large set of data is needed. Furthermore,
because the employed PIV system allows the simeias acquisition of only two velocity
components, two series of measurements are requmstietermine the complete velocity-field : the
first allows acquisition of axial and radial compeots of the velocity vector and the second, the
circumferential one. For the last series, the messeants cannot be done for several radial positions
simultaneously, contrary to axial and radial valpcomponents acquisitions. The measurement time
is thus greatly increased to obtain an accuratéaspznaracterization of each velocity component,
especially for the circumferential one.

The hydraulic test rig used for experimental inigggion is described by Pruvost et al. [10]. It
consists of an annular test section (Fig. 1) mdde@ concentric Plexiglas tubes having a totablhn
of 1.5 m. The internal radius of the outer cylind®y; is 50 mm, the outer radius of the inner tube, R
being 20 mm. The diameter of the tangential inget30 mm, equal to the annular gap width, e,
corresponding to pure swirling flow according togeatilhomme and Legrand [4]. The outlet of the

annulus is of axial type, so as not to disturbftoe. For all experimental measurements, the water
flow rate is Q = 1.27 Ath corresponding to a mean axial velocity in theLms,U, of 5cm/s and a
Reynolds number, Re, equal to 3000, where Re csileded by :

_ 2eU
V

Re 1)

The PIV Dantec system used consists of a Spectysid®hModel 2020 laser source with an

emission wavelength of 488 nm for a maximum emisgiower of 5 Watt. The laser beam is shutter
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gated to induce laser light pulses and a thin Igjtget is generated by means of an optical lens. Th
electro-optical shutter is synchronized with a C€C&mera Double Image 700, the camera sensor
includes 768 x 484 light-sensitive pixels. Tracertles are of Ti@type. A representation of the
experimental test rig set with the PIV measuremitchnique is shown in Fig. 2. Additional
parameters of the PIV set-up can be found in Piwtosl. [10].

To investigate the neural network reconstructigoacity, a large set of experimental data has
been collected. The reconstruction accuracy isyaedl from the influence of two parameters : the
number of values requested along the axial dirediorepresent the decrease of the swirl intensity
and the number of needed angular positions to cteaize the asymmetric behavior of the flow.
Measurements positions for mean components araedkin Table 1-a and 1-b, and in Table 1-c for
turbulent intensities. The measurement of the nifevential velocity component and the evaluation
of turbulent intensities requesting longer timeimfestigation, measurements were made for only
three angular positions. This particular point Vel discussed further. The various investigatedl axi
positions show a non uniform distribution of thdoeity-field. Thus, the number of axial locationash
to be increased near the inlet where the flowisiébto be very spatial dependent, and then spaded o

for locations further in the annulus where inlettdrbances vanish.

3- Neural network reconstruction method
3-1 Global method

Neural networks are used in various research awrss,of them being data interpolation.
Because of their efficiency in this field, a spé&iad of neural network is devoted to this apptioa :
neural network with Radial Basis Functions (RBF}p][1The use of functions with local spatial
influence like RBF instead of the common sigmoifiadctions improves their spatial representation
capacity, thereby enabling this makes this kindnefworks to interpolate any kind af priori
unknown function depending on n-parameters [16}hla study, each hydrodynamical characteristic
to be approximated, named V, is spatial-dependat thus a function of the three spatial coordmate

X, r andg.
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RBF are directly linked to the function approxinaatitheory [17]. In fact, with mathematical
formulation, the goal of RBF is to find the bespeagximation F(E,P) of a function f(P) which depends
on a set of N - parameters Psfp,ps,...,/n), E being a set of fitting parameters to determBecause
f(P) can be of any type, the exact solution carahatys be provided, but an approximated solution
can always be found, when F(E,P) is expressedvasighted-sum of elementary functions of a base

®={@}%. If weights are named W={W"1, F(E,P) can be expressed by the following equation
FEP)=) WP 2)
i=1

This expression can be represented using a neetabrk architecture. This kind of net has

three layers:

- an input layer, where the set of function paranse®eare given to the net, with one
unit per parameter. In this study, the goal funci®V(x,r§) and the net is thus defined with
three input units (x.£),

- an output layer, with one unit, corresponding te fhinction to reconstruct f(P),
which is in this case V(x§),

- a hidden layer, of m-unit with activation functi@gx,r.§)i=1,m, Where the parameter

m has to be found.

The neural network principle is rather simple: §iven values in input, corresponding to a
location (x,r§) in the geometry, the net has to provide the ddsiesponse, V(x{). Neural networks
are interconnected as shown in Fig. 3. The inpyitadiis directly given to each unit of the hidden
layer activated by a function chosemineach unit calculateg(x,r.§)i-1,m Results are next transferred
using weight-links to the output units, where tlaag finally summed. Thus, this kind of structure is

the exact representation of Eq. (2).

With the right set of function®, the objective function namedypfx,r,¢), can be interpolated.

Local functions, as one of gaussian type, have betamed because they can approximate any kind of
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function [18], and they remain derivable for funthievestigation of hydrodynamical feature deduced
from differentiation. For the three-dimensional aestruction, this kind of functions is defined as

follows :

(_ (X_Cx)2+ (r-Cr)Z_'_(rE-CE)Z
T,°2 T2 T, 2

o(x,r,&) =exp ) (3)

X

where C and are respectively centers and radii associatecath €lirection of the reconstruction

problem. To obtain a homogeneous formulation, theumferential coordinaté has been expressed

as the product of the radial position by the cirtenential one in Eq. (3).

Thus, the objective is to find the best approxio@aWapdx,r.&) of V(x,rg) :

V(X, 1,&) = Vapp(X, I, ) = iWi ex;{—[(x “Ca), (rmCa), (¢ )ZD (4)

2 2 2
i=1 Ty Ty Tii

where G andT; are respectively centers and radii of thenéuron in the hidden layer of size m in
direction j.

A solution of Eq. (4) is obtained by minimizing thellowing function, called the cost

function :

Ei= zp:[v (61,8 =V, (RO (5)

where p is the size of the subset of a given hygranhical characteristic V used for the net learning

step.

But, minimizing only the function Hs an ill-posed solution because, when interpotatata,
the objective function has to represent both abkEland unknown data. Accurate results are not
necessarily obtained if only Eq. (5) is employeal] &specially if original data are noisy, as fov Pl
measurements. This is the so-called “representapi@mblem”. This shortcoming is solved by
estimating the neural net capacity to find accuvataes where no experimental data are availatde an

by introducing an additional regularization terntag. (5) [19,20] :
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C=E+Ap(W) (6)
where) is the regularization parameter ahé function to define.

In this study, the estimator employed is the Chdalsdation or CV described in Wahba [21].
To determine the CV-value, experimental data emgaoyuring the learning step are divided into two
parts. Each part is used in turn to determine theal net parameters, while the remaining amount of
data is employed to calculate the error betweenremilts and experimental values using Eq. (6).
Next, the mean of reconstruction errors gives déimasion of the neural net accuracy, CV, which has

to be minimized.

To allow CV calculation, functio has to be defined in Eq. (6). An overall reviewsath
functions can be found in Poggio et al. [22]. Thesen function is related to experimental data by

assuming noise to be equally shared between all[d&]. The final cost function to be minimized is

thus :

C=Y VOrE -V xx 8] +13 ( )

Dedicated algorithms are available to solve this-limear problem of finding the best solution
VapdX,1,&). Each net parameter is determined during theniegrstep. This step can be divided into
two successive parts : the neural net architectesgyn, and the weight-values determination. Bogh a
well-known and a complete description can be fomn@rr [23]. In this application, weight-values are
calculated following the “standard ridge regressiigorithm and the neural net is designed usirg th
“forward selection” scheme [23], which presentsimeremental construction of the neural network
structure: each unit of the hidden layer is addeg by step, until the net can provide the requeste
response. After the learning step, when a new valpeesented to the net, its response is clofigeto

desired one: the net is thus able to reconstrutirdarpolate data.

In this study, experimental values are obtainediftferent locations (185 mm< x <1500 mm,

20 mm<r <50 mm, 0€ <2m). Learning values are first transformed in orderfdllow a normal
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statistical distribution (zero mean and variance)otd prevent numerical approximation problem

during the learning step due to the use of datingadifferent order of magnitude.

3 — 2 Learning the neural network

Algorithms of “standard ridge regression” and “famng selection” are implemented using
Matlab software on a personal computer Pentium3B 31Hz. To initialize the neural network
method, only radii of activation functionp have to be previously defined. They are arbityaril
initialized to give an a priori good representatmithe desired evolution. Though this step is not
essential because these values will be next omomiduring the neural network learning step,

computation-time can be decreased in this wayalniilues of radii are given in Table 2.

3 — 3 Evaluations criteria of the neural network acuracy

The initial set of experimental data is dividedoiritvo parts. The first is used during the
learning step and the second, containing remairdatp, is next employed to evaluate the
reconstruction accuracy. For each experimentaleyahe three coordinates are given as input to the
net, and the result is next calculated and comptreétie experimental data. To evaluate the neural
network reconstruction accuracy, two parameterscateulated: a mean error criterion ffrand a
more sensitive parameter giving an evaluation ef eéfror distribution around its mean value, the

associated root mean squase defined by:

1 n
Erfass = Zl: Ve = Vi| 8)
1 %
T, = (HZ(‘VW - Vi‘ - Errabs)ZJ 9)
i=1

where n is the total number of experimental valwesilable for a given hydrodynamical
characteristic V.
Although error of reconstruction is fully determihaising these two parameters, neural

network accuracy is not well represented. Errdndkeed evaluated by comparing the neural network
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result to the experimental one, which presents raxgatal uncertainty. Thus, having null values of
error does not mean a perfect reconstruction, biytthat experimental uncertainty is fully integrdt

to the neural network reconstruction, making reshlased too. Values calculated following Eqg. (8)
and Eq. (9) are thus not fully representative efidaconstruction accuracy and, because the measured
velocity-field cannot be experimentally noise friresy can be considered only as estimators.

Finally, three kinds of data sets are defined th@) total set of size n, called the generalization
set, used to estimate the reconstruction accuradhieentire geometry, (ii) the learning set obgiz
composed of values used during the learning stdpduich is a part of the generalization set anyl (ii
the test set of size n-p, composed of values nplarad in the learning set. By changing the size o
the learning and of the test sets, the minimum rerrobrequested values can be deduced. The test set

will be used to evaluate the neural network intkfon accuracy for unknown locations.

4 — Results and discussion
4 — 1 Validation of the neural method

Neural network method efficiency depends on datpleyed during the learning step. As it
often appears, increasing the size of the lears@tgvill improve the resulting accuracy. But anothe
parameter is the distribution of data employed. &mmple, in the particular case of the swirling
decaying flow, the velocity-field has been found/rametric and not established along the axial
coordinate. Thus, before using the neural networkthod to reconstruct hydrodynamical
characteristics, interpolation accuracy has beest &valuated following two parameters : (i) the
number of experimental values needed to represériing flow evolution along the axial coordinate,
and (ii) the number of angular positions requestedepresent the flow asymmetry following the
circumferential coordinate. Axial mean velocity regentation has been chosen for this preliminary
evaluation because of its important dependenceatias coordinates. The mean distribution of axial
velocity deduced from the average of PIV measurésnems thus employed during the learning step

(see section 4-2 for the averaging procedure appdi€’lV acquisitions).
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4-1-1 Axial coordinate influence

The effect of the number of axial positions hasnbsteidied in order to determine the size of
the learning set to interpolate the flow-field wahcuracy. The learning step was performed on five
sets containing different numbers of data représgrthe distribution of the mean axial velocity.
Efficiency was next estimated using the generatinadet and the test set. Results are given indrig.

Figure 4 shows that a minimal error of 0.46 cm/eh&ined, but as indicated in section 3-3,
error free values cannot be reached, because animental uncertainty about 10% of the mean axial
velocity is included in reference data. This valuwdhich corresponds to the experimental error
represents the limit of the method efficiency. Tehessults reveal the number of experimental data
necessary to reach an accurate reconstructioreaixial velocity component. An experimental set of
19096values has been measured, but as shown in Fignlyt2000 values are needed. Increasing the

size of the learning set does not provide any iwgmeent in neural reconstruction.

4-1 -2 Influence of the number of angular pasbns

Because the swirling flow induced by a tangentméti is not axisymmetric, experimental
measurements have to be repeated for several angustions. The influence of the number of
angular positions given for the neural networkéay step has been studied in order to show ifaleur
method was able to represent the flow asymmetrytandetermine the number of circumferential
positions requested to obtain accurate results.

Reconstruction efficiency as a function of the nembf angular positions is shown in Fig. 5.
The number of angular positions experimentally gtigmated appears to be sufficient to give a good
representation of the flow asymmetry. Valuestgfcan be considered as minimal using only three
angular positions. These results show the effigiesfcthe neural method, which is able to represent
non-linear evolutions of the swirling flow asymmetiVith this method, only little information is

needed to allow an efficient reconstruction ofdlaéa evolution.

PRUVOST J 12



4-2 Hydrodynamical parameters reconstruction

As shown by previous results, the number of measdata is sufficient to obtain an efficient
reconstruction of the spatial evolution of hydrodgmcal parameters. The neural network will be used
in this section to reconstruct mean velocities amdulent intensities of the flow-field. Mean
velocities and turbulent intensities employed i@ ldarning step are obtained with PIV technidque

averaging procedure of instantaneous PIV acquisitie described as follows:

13 13 13
— — , U, =— 10
x N;u r N;u g N;uzi ( )
1 N 2 1 N 2 1 s _U 2
NZ(uxi_Ux) NZ(uri_Ur) ﬁz(uéi Z)
o=t ST T (12)
u u U

To achieve a statistically stable mean spatialriigion of experimental hydrodynamical
guantities, N=200 instantaneous acquisitions weed for mean values, and N=1000 for turbulent
intensities, for each of the investigated positisted in Table 1.

The neural network method has next been appliegdoh flow characteristic. Fig. 6 shows
the reconstruction obtained f§r= 0 for the three mean components of the velowitereas Fig. 7 is
dedicated to turbulent intensities characterisflé®e neural network is able to represent theirigpat
evolution efficiently and to give a good represéntaof the main features of the swirling flow &s i
three-dimensional behavior and the free decayebtirling motion along the axial coordinate. Thus,
this method appears as a universal approximatiok) which is able to reconstruct any kind of data
and hydrodynamical feature. This is confirmed mafierrors Eris obtained for each component of
the velocity-field (see Table 3).

Following Eq. (4), the neural network results #ine exact representation of a sum of
elementary continuous functions. After the learrstep, when neural network is defined, a continuous
expression of each hydrodynamical parameter isirddda Any location in the investigated geometry
can be provided to the net input, a solution waldetermined in output. Two examples of velocity-
field deduced from initial PIV measurements are parad to the neural network results. These

examples are given in Fig. 8 for two plane proewii in the axial-radial (Fig. 8-a) and radial-
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circumferential one (Fig. 8-b). Neural network réstnave been obtained by providing a set of some
locations corresponding to a finest mesh than tleeused for PIV measurements. These results show
the neural method interest which transforms therdis velocity-field experimentally measured into a
mathematical expression defined on the whole dondéspite the very complex behavior of the
swirling decaying flow. Thanks to the neural netkvorethod, hydrodynamical characteristics are now

determined at any location in the studied geometry.

5- Conclusion

A neural network method using RBF has been useskpoess hydrodynamical parameters
obtained using PIV on the entire geometry of anu&mest-cell involving a swirling decaying flow
induced by a tangential inlet. The neural methdddable to express non-linear evolutions of aghre
dimensional flow, this kind of technique appears&an efficient tool to accurately represent any
hydrodynamical characteristics of this complex flag well for the three components of the mean
velocity as for turbulent intensity. This universglproximation behavior is very interesting wherano
priori idea of what kind of evolution has to be abed. Results show that this method can be used
where hydrodynamical conditions are found to beywdisturbed and three-dimensional. But, the
neural network is not restricted to this particuflow and the algorithm remains adaptive. For
example, it can be simplified either for two-dimiemsl flows, giving the net only two inputs, or
adapted to complex non stationary flows. In theetatase, the neural network has four inputs (three
for the spatial coordinates, and one for the tinepesdency). Assuming that the number of
experimental data is sufficient, the neural netwwilk give accurate results, this method being dble
reconstruct any function depending on n-paramefBnss, this technique is thus interesting when
complex data bases have to be interpolated, andciedly experimental data which present
measurements uncertainty, neural networks with RBEtions being found to be robust interpolating
methods when data are noisy. But the comparisosepted in this study between experimental
measurements and neural network results does loot & conclude about noise influence on the
reconstruction efficiency, because the exact fl@ldfis unknown. This could be achieved by a

further study where, for instance, results of &Gkmulation would be used instead of experimental
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PIV measurements. Reconstruction accuracy could ligedetermined as a function of an artificial
noise added to CFD results.

The second main advantage of such neural netwotlk govide a derivable mathematical
expression of each hydrodynamical feature validtfierwhole domain. This is helpful, for example,
for the determination of boundary conditions in CHFbdmulations using local experimental
measurements, or for the calculation of additidryarodynamical information of the flow, like stress
fields, vorticity-fields or pathlines. When valuaiee locally defined, derivative methods are reqebst
which implies the use of numerical approximatiohesoe (finite difference technigues). Defining the
flow-field on the whole domain by means of a ddmleamathematical function will prevent the
employment of such methods. Therefore, the uséisfrieural method seems an interesting tool for
flow-field data post-processing, especially forewdimensional flows, where common numerical
methods are difficult to apply. In conclusion, sughtechnique provides two main advantages: it
reduces the investigation time by decreasing tmetran of requested experimental measurements, and
it leads to a better understanding of the flowefidly allowing the numerical determination of

pertinent hydrodynamical characteristics.
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List of symbols

Capital letters

Cin : center of the n-gaussian activation functionoesded to the i-direction of the reconstruction
problem

Errans: error criterion for neural reconstruction eféncy evaluation (m/s)

Q : flow rate in the annulus &)

Ri: externaradius of the inner cylinder (m)

Re=2dJ /v: Reynolds number (eq. 1)

R.: internal radius of the outer cylinder (m)

T : turbulent intensity (eq. 11)

U= Q/ (M (RA-R?)) : average velocity in the annulus (m/s)
U : mean velocity (m/s)

V : generic hydrodynamical characteristic to beorestructed
Vapp: Neural approximation of V

W: set of weights in the neural network

Lowercase letters

e : thickness of the annular gap (m)

-

: radial position with respect to the annulussgxn)

c

: instantaneous velocity (m/s)
x : axial position with respect to the tangentidét (m)

Wy -weight ofthe n-radial basis function
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Greek symbols

& : circumferential position with respect to the tangarinlet axis (radians)

@ : base of elementary functions

¢ : elementary function of activation from the n-neunothe hidden layer

A : regularization parameter

v : kinematic viscosity of water (m?/s)

Terr : rOOt mean square of error provided by the newsdlork (m/s)

Tin : radius of the n-gaussian activation functionoaigted to the i-direction of the reconstruction

problem

Subscripts

x : axial component of mean velocity, velocity tiuation or turbulent intensity

r : radial component of mean velocity, velocityctiuation or turbulent intensity

¢ . circumferential component of mean velocity, eitp fluctuation or turbulent intensity
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