
HAL Id: hal-02533970
https://hal.science/hal-02533970

Submitted on 6 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Modal Logic of Copy and Remove
Carlos Areces, Hans van Ditmarsch, Raul Fervari, François Schwarzentruber

To cite this version:
Carlos Areces, Hans van Ditmarsch, Raul Fervari, François Schwarzentruber. The Modal Logic of
Copy and Remove. Information and Computation, 2017, 255, pp.243-261. �10.1016/j.ic.2017.01.004�.
�hal-02533970�

https://hal.science/hal-02533970
https://hal.archives-ouvertes.fr

The Modal Logic of Copy and Remove

Carlos Arecesa, Hans van Ditmarschb, Raul Fervaria, François
Schwarzentruberc

aFaMAF, Universidad Nacional de Córdoba & CONICET, Argentina
bLORIA, CNRS - Université de Lorraine, France & IMSc, Chennai, India

cENS Rennes, France

Abstract

We propose a logic with the dynamic modal operators copy and remove. The
copy operator replicates a given model, and the remove operator removes paths
in a given model. We show that the product update by an action model in
dynamic epistemic logic decomposes in copy and remove operations, when we
consider action models with Boolean pre-conditions and no post-condition. We
also show that copy and remove operators with paths of length 1 can be ex-
pressed by action models with post-conditions. We investigate the expressive
power of the logic with copy and remove operations, together with the complex-
ity of the satisfiability problem of some of its syntactic fragments.

Keywords: modal logic, dynamic epistemic logic, complexity, expressivity.

1. Introduction

In modal logics we usually interpret a modal operator by way of an accessi-
bility relation in a given Kripke model. Over the past decades logics have been
proposed in which the modality is, instead, interpreted by a transformation of
the model. In such logics the modality can be seen as interpreted by a binary
relation between pointed models, where the first argument is the initial pointed
model and the second argument of the relation is the transformed model. We
could mention sabotage logic here [1], wherein states or arrows are deleted from
a model. Or we could mention dynamic epistemic logics [2] that proposes model-
changing operators to model change of knowledge or belief. In [3, 4, 5, 6] a new
line of contributions to model-transforming logics, motivated by Van Benthem’s
sabotage logic is developed. In this article we advance that last line of work,
while linking it to dynamic epistemic logics.

Action model logic (AML) [7] is a well-known dynamic epistemic logic to
model information change. AML is an extension of basic epistemic logic with

Email addresses: areces@famaf.unc.edu.ar (Carlos Areces),
hans.van-ditmarsch@loria.fr (Hans van Ditmarsch), fervari@famaf.unc.edu.ar (Raul
Fervari), francois.schwarzentruber@ens-rennes.fr (François Schwarzentruber)

Preprint submitted to Information and Computation June 10, 2015

p ¬pa, b

a, ba, b

w v pre: p

pre: >

b

a, b

a

e1

e2

p

p ¬p

b

a, b

a

b

a, b

a, b

(w, e1)

(w, e2) (v, e2)

Epistemic Model Action Model Updated Model

Figure 1: Agent a privately learns that p.

a dynamic modal operator for the execution of so-called epistemic actions. This
operator is parameterized by an action model, a semantic object which typically
models a multi-agent information changing scenario. Action models are treated
as syntactic objects in modal operators. Action models are complex structures,
and the logic has high computational complexity: deciding model checking is
PSpace-complete, while deciding satisfiability is NExpTime-complete [8].

In this article we propose modal logics with primitive actions called copy
and remove. We investigate some of their model theoretic properties and their
complexity, and, as an example of what one can do with such logics, we give
an embedding of action model logic into our logic: we show that every action
model with propositional pre-conditions can be simulated by a combination of
the copy and remove operators. The remove operator we propose is akin to the
generalized arrow updates introduced in [9, 10].

In Figure 1 we show an epistemic model, an action model, and the result
of executing that action model in that epistemic model. The epistemic model
represents that agents a and b are uncertain whether an atomic proposition p is
true (and that they have common knowledge of that uncertainty). The actual
world, or designated state, of the model is where p is true (shown with a thick
circle in the figure). The action model represents that agent a learns that p is
true, whereas agent b (incorrectly) believes that nothing happens—of which a
is aware. In short: a privately learns that p. In action models, there are no
valuations of propositional variables; they are replaced by pre-conditions, in this
case p and > (the formula that is always true). Action models update epistemic
models by mean an operation called a restricted modal product: the domain is
limited to the state-action pairs where the pre-conditions of the actions hold.
Therefore in our example there are only three (and not four) pairs in the updated
model: the pair (v, e1) is missing as the pre-condition of e1 (the formula p) is
not true in v. The accessibility relation in the restricted product is updated
according to the following rule: there is a (labeled) arrow between two state-
action pairs if there was such an arrow linking both the first arguments in the
epistemic model and the second arguments in the action model. One can now
verify that in the resulting model a knows that p (there is only an a-arrow from

2

p ¬pa, b

a, ba, b

w v

pe1 , p

pe2 , p pe2 ,¬p

a, b

a, b

a, b

a, b

a, b

a, b

pe1 ,¬p

a, b

a, b

a, ba, b

pe1 , p

pe2 , p pe2 ,¬p

a, b

a, b

a, b

a, b

a, b

a, b

pe1 ,¬p

a, ba, b

a, b

pe1 , p

pe2 , p pe2 ,¬p

b

a, b

a

b

a, b

a, b

pe1 ,¬p

Initial Model

Updated Model

copy the initial model as many
times as the number of action
points in the action model

remove edges toward worlds
that do not respect pre-
conditions

remove edges that do not cor-
respond to edges in the action
model

Figure 2: The result of one copy and two remove operations on the epistemic model
of Figure 1, again resulting in the same (bisimilar) updated model.

3

w to itself), whereas b still believes that both a and b are ignorant about p.
By means of the copy and remove actions of the logics that we propose, we

can alternatively describe this scenario. This is depicted in Figure 2. First,
we replicate the original epistemic model as many times as there are actions
in the action model (twice in this case). We identify each copy with a (fresh)
propositional variable corresponding to an action in the action model (e.g., pe1
corresponds to e1). Thus we obtain the second model in Figure 2. Then, we
first remove all arrows that point to state-action alternatives wherein the action
cannot be executed in the state. Finally, between the remaining state-action
pairs we remove all arrows that are ruled out according to the accessibility
relation in the action model. Thus we obtain the updated model at the bottom
of the Figure 2.

The copy and remove operators were first introduced in [11]. In this article,
we extend the results introduced in that article: we discuss in detail the expres-
sive power of the logic with copy and remove operators; we introduce examples
which motivate our work; and we provide proofs of all results.

The article is organized as follows. In Section 2 we start by introducing
the formal definition of action model logic to make the article self-contained,
together with an example which motivates the use of the fragment with only
Boolean pre-conditions. We introduce the action models without post-conditions,
and its extension with also post-conditions (which will be useful to encode copy
and remove operations). We will actually work with action models without
post-conditions, and we will explicitly indicate when we move to the setting
with post-conditions. In Section 3 we introduce ML(cp, rm), the logic with
the two dynamic primitives copy and remove which captures the behaviour of
action models. In Section 4 we introduce bisimulations to investigate its expres-
sive power, and we show that the logic with copy and remove has the tree model
property. In Section 5 we define an equivalence preserving translation from ac-
tion model logic to a fragment of ML(cp, rm). We also show that it is possible
to find action models with post-conditions that encode copy and remove actions
with paths of length 1, which give us a method to decompose action models
with Boolean pre-conditions. Finally, we show complexity results of the satis-
fiability problem for different fragments of ML(cp, rm) in Section 6. We prove
that the logic with copy and without remove is PSpace-complete; the same
result is proved for the logic with removes of length 1 and without copy. When
we consider unrestricted removes, we show that the logic is decidable. For the
logic with copy and remove of length 1 we prove NExpTime-completeness. The
problem of determining the complexity of the full logic ML(cp, rm) is open.

2. Action Model Logic with Boolean Pre-conditions

One of the main results in this paper is to show that we can capture the
action model logic AML with simpler primitives. Let us start by introducing
formally the logic AML. First, we introduce action models.

In what follows let PROP be an infinite countable set of propositional sym-
bols, and AGT a finite set of agents symbols disjoint from PROP.

4

Definition 2.1 (Action Models). Let B be the classical propositional lan-
guage over PROP. An action model E is a structure E = 〈E,→, pre, post〉,
where E is a non-empty finite set whose elements are called action points. For
each a ∈ AGT, →a⊆ E×E is a relation; pre : E → B is a pre-condition func-
tion; and post : E → (PROP → B) is a post-condition function. Let e be an
action point in E, the pair (E , e) is a pointed action model. We usually drop
parentheses and write E , e instead of (E , e).

Action models in action model logic appear as modalities. We will call
AML+ to the full language, in which action models have post-conditions. The
fragment where action models have no post-conditions is AML, that is, action
models such that post(e)(p) = p for all action points e ∈ E. We introduce the
syntax.

Definition 2.2 (Syntax). The set FORM of formulas of AML+ over PROP
and AGT is defined as:

FORM ::= > | p | ¬ϕ | ϕ ∧ ϕ′ | �aϕ | [E , e]ϕ,

where p ∈ PROP, a ∈ AGT, ϕ,ϕ′ ∈ FORM, and E , e is a pointed action model.

ML is the fragment without the dynamic operator [α]. Formally, in AML
post-conditions functions post : E → (PROP → B) of action models appearing
in formulas are of the form post(e)(p) = p for all action points e ∈ E. Once
we define formally the semantics of the language, it will be obvious that this
corresponds to the language where action models have no post-condition and
we may remove the post-conditions from the definition, i.e., we consider only
action models of the shape 〈E,→, pre〉. 〈α〉ϕ is a shorthand for ¬[α]¬ϕ, ♦aϕ for
¬�a¬ϕ, and other Boolean operators are defined as usual. Notice that action
models are restricted to Boolean pre- and post-conditions.

Formulas of action model logic are interpreted in pointed models.

Definition 2.3 (Models). A modelM is a tripleM = 〈W,R, V 〉, where W is
a non-empty set; R ⊆ AGT×W 2 is an accessibility relation; and V : PROP→
2W is a valuation. A pair M, w where w is a state in M is called a pointed
model.

We will often write Ra to refer to the set {(w, v) ∈W 2 | (a,w, v) ∈ R}. Now
we can introduce the semantics of action model logic.

Definition 2.4 (Semantics). Given a pointed modelM, w withM=〈W,R, V 〉,
an action pointed model E , e with E = 〈E,→, pre, post〉, we say that

M, w |= > always
M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= �aϕ iff for all v ∈W s.t. (w, v) ∈ Ra, M, v |= ϕ
M, w |= [E , e]ϕ iff M, w |= pre(e) implies (M⊗E), (w, e) |= ϕ,

5

where the restricted product (M⊗E) is defined as 〈W⊗, R⊗, V ⊗〉, with:

W⊗ = {(v, d) ∈W × E | M, v |= pre(d)}
((v, d), (u, f)) ∈ R⊗a iff (v, u) ∈ Ra and d→a f
V ⊗(p) = {(v, d) | M, v |= post(d)(p)}.

We present the language including both pre- and post-conditions because
post-conditions will simplify the encoding of the copy and remove operators in
the following sections. But both languages are equally expressive (both have
the same expressive power thanML) as post-conditions can be also eliminated
via reduction axioms. More details on the use of pre- and post-conditions can
be found in [12], in a slightly different setting.

Notice that we have not introduced the full action model logic as in [7]: we
only consider Boolean pre and post-conditions in action models. The logic with
copy and remove that we will introduce in the next section, only captures this
fragment. However, even under this restriction, the expressive power of the logic
is sufficient to capture interesting epistemic scenarios.

Example 2.5. Consider the following classical example in epistemic logics lit-
erature. There are three agents: Anne (a), Bill (b) and Cath (c); each of them
holds one of three possible cards: zero, one or two. Propositional symbols such
as zi, oi and ti state that the agent i is holding the card (z)ero, (o)ne and (t)wo,
respectively. The following model shows all the possible situations. Each agent
is uncertain about any other agent’s card, which is also modeled in the figure.
For instance, Anne cannot distinguish the two states at the top of the figure (in
both states za holds, i.e., Anne has card zero but she does not know if Bob has
card one and Cath has card two or the other way round). But she can obviously
distinguish these states of any other (in which she has a different card).

za, ob, tc za, tb, oc

ta, zb, oc ta, ob, zc

oa, zb, tc oa, tb, zc

a

a

c

b

c

b

b

c

a

a, b, c a, b, c

a, b, c a, b, c

a, b, c a, b, c

6

Let us consider the scenario in which Anne shows card zero to Bill. This
is represented by the leftmost action model below. Cath cannot see the face of
the shown card, but notices that a card is being shown. The action model shown
on the right codifies the situation where Anne tells Bill a card that she does not
have. Anne whispers in Bill’s ear “I do not have card two”. Cath notices that
Anne reveals she does not have some card, but cannot hear which card.

pre : oa

pre : za

pre : ta

c

c

cc c

c c

show

sh0

pre : ¬oa

pre : ¬ta

pre : ¬za

c

c

cc c

c c

whisper

wh0

3. Copy and Remove

In this section we introduce ML(cp, rm), a language which can create a
finite number of copies of a model and remove edges. We start by introducing
its formal syntax.

Definition 3.1 (Syntax). Define the set FORM of ML(cp, rm)-formulas, to-
gether with a set PATH of path expressions.

FORM ::= > | p | ¬ϕ | ϕ ∧ ϕ′ | �aϕ | rm(π)ϕ | cp(Q, q)ϕ,

where Q is any finite non-empty set of propositional symbols, q ∈ Q, a ∈ AGT,
ϕ,ϕ′ ∈ FORM, and π ∈ PATH.

PATH ::= a | π;π′ | ϕ?,

where a ∈ AGT, π, π′ ∈ PATH and ϕ is a Boolean formula.

The operation rm(π)ϕ is related to the sabotage operator introduced by van
Benthem in [1] (investigated also in [13, 14, 3, 5, 6]), and its intuitive meaning
is that ϕ holds after having deleted all edges that appear in paths that match
π. The intuitive meaning of the operator cp(Q, q)ϕ is that after replicating the
initial model as many times as propositional symbols in Q, ϕ is true in the copy
labeled by q.

We also define the following syntactic fragments: ML(cp), the fragment
with only the cp operator; ML(rm), the fragment with only rm; ML(rm1), the
fragment with only rm restricted to path expressions of the form π = ϕ?; a;ψ?
andML(cp, rm1), the fragment with rm with path expressions only of the form
π = ϕ?; a;ψ? and with cp.

Formulas ofML(cp, rm) are interpreted over models such as those introduced
in Definition 2.3. We now define the satisfaction relation. We represent a path
as a sequence w0a0w1a1 . . . wn−1an−1wn where wi are states and ai are agents.

7

Definition 3.2 (Paths). Let M = 〈W,R, V 〉 be a model, π, π′ ∈ PATH. We
define the set of π-paths PM(π) of M by induction on π as follows:

PM(a) = {wau | (w, u) ∈ Ra}
PM(π;π′) = {SwS′ | Sw ∈ PM(π) and wS′ ∈ PM(π′)}
PM(ϕ?) = {w | M, w |= ϕ}.

Let a ∈ AGT and P a path, we define edgesa(P) as the set of a-edges in P .
Formally, edgesa(P) = {(a,w, u) | wau is a subsequence of P}.

Definition 3.3 (Updated Models). Given a model M = 〈W,R, V 〉, a path
expression π, and Q is any finite non-empty set of propositional symbols, we
define the updated models

Mrm(π) = 〈W,Rrm(π), V 〉, where
Rrm(π) = R \

⋃
a∈AGT,P∈PM(π) edgesa(P).

Mcp(Q) = 〈Wcp(Q), Rcp(Q), Vcp(Q)〉, where
Wcp(Q) = {(w, q) | w ∈W and q ∈ Q}
Rcp(Q) = {(a, (w, q), (w′, q′)) | (a,w,w′) ∈ R}
Vcp(Q)(p) = {(w, q) | w ∈ V (p)} for p ∈ PROP \Q
Vcp(Q)(q) = {(w, q) | w ∈W} for q ∈ Q.

We will discuss some examples of updated models.

Example 3.4. Let us consider the following model M:

p q q qa a b
w

The updated model Mcp({p1,p2}) is shown below. We replicate the original model
in two copies: one satisfying p1 and another satisfying p2.

p, p1 q, p1 q, p1 q, p1
a a b

p, p2 q, p2 q, p2 q, p2
a a b

(w, p1)

(w, p2)

a a ba a b

Notice that Mcp({p1,p2}) does not contain new information about successors:
each copy of a successor in the original model is also a successor in the new
model.

Example 3.5. Let us consider the following model M:

a b c
w

The updated model (Mrm(b;c))rm(a;b) is:

8

a
w

The removal of a; b-paths from Mrm(b;c) results in Mrm(b;c) itself, because there
are no a; b-paths in the model.

On the other hand, the model (Mrm(a;b))rm(b;c) is:

c
w

We are ready to define the semantics of ML(cp, rm).

Definition 3.6 (Semantics). Given a pointed model M, w and a formula ϕ
we say that M, w satisfies ϕ, and write M, w |= ϕ, when

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= �aϕ iff for all v ∈W s.t. (w, v) ∈ Ra, M, v |= ϕ
M, w |= rm(π)ϕ iff Mrm(π), w |= ϕ
M, w |= cp(Q, q)ϕ iff Mcp(Q), (w, q) |= ϕ.

The formula ϕ is satisfiable if for some pointed modelM, w we haveM, w |=
ϕ. We further define cp(Q)ϕ as an abbreviation for

∧
q∈Q cp(Q, q)ϕ. We usually

write cp(p1, . . . , pn) instead of cp({p1, . . . , pn}).

Let us see an example of how rm can be useful to make announcements.

Example 3.7. Suppose we are modeling a card game scenario, and we have the
model M shown on the left, where agents a and b are holding either a red (r)
or a yellow (y) card and where both are uncertain about the other agent’s card.

ra, rbw

ya, rbt

ra, yb v

ya, yb u

a, b a, b

a, ba, b

bb

a

a

M

ra, rbw

ya, rbt

ra, yb v

ya, yb u

a, b a, b

bb

a

M′

Now consider that agent a reveals to agent b that she has a red card. Modeling
this with a public announcement [15], we remove the access to all the states
where agent a does not have a red card. The formula rm(b;¬ra?)> captures
exactly this epistemic update, obtaining the modelM′ shown on the right. After
executing rm(b;¬ra?)rm(a;¬ra?), agent b knows that agent a has a red card, i.e.,
M′, w |= rm(b;¬ra?)rm(a;¬ra?)�bra.

9

4. Expressive Power

Bisimulation is a classical notion introduced to investigate the expressive
power of modal languages. For example, for AML it is known that the notion of
bisimulation needed coincides with the one forML. The conditions required for
a notion of bisimulation that captures the expressive power of ML(cp, rm) are
very natural: paths deleted via rm traversing a particular state are characterized
by the information in successors and predecessors of such point. Let us see an
example.

Example 4.1. Consider the formula rm(a; a)♦a> and the following model M:

w

a a

The formula does not hold at M, w because we delete all the paths matching
two consecutive occurrences of an a-edge. On the other hand, the formula holds
in the following model:

w′

a

As we can see, path expressions can describe edges that arrive to the evalua-
tion point. It turns out thatML(cp, rm)-bisimulations are defined by the same
conditions that define bisimulations for ML(�−1) (see [16]). ML(�−1) is the
basic modal logic ML extended with the converse (past) modality �−1. Let
M = 〈W,R, V 〉 be a model, the semantics of �−1 is defined as:

M, w |= �−1
a ϕ iff for all v ∈W such that (v, w) ∈ Ra, M, v |= ϕ.

The formula ♦−1
a ϕ is a shorthand for ¬�−1

a ¬ϕ.

Definition 4.2 (Bisimulations). Let M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉
be two models. A non empty relation Z ⊆W×W ′ is anML(cp, rm)-bisimulation
if it satisfies the following conditions. If wZw′ then

(atomic harmony) for all p ∈ PROP, w ∈ V (p) iff w′ ∈ V ′(p);

(zig) if (w, v) ∈ Ra then for some v′, (w′, v′) ∈ R′a and vZv′;

(zag) if (w′, v′) ∈ R′a then for some v, (w, v) ∈ Ra and vZv′.

(zig−1) if (v, w) ∈ Ra then for some v′, (v′, w′) ∈ R′a and vZv′;

(zag−1) if (v′, w′) ∈ R′a then for some v, (v, w) ∈ Ra and vZv′.

10

We say that two pointed models M, w and M′, w′ are ML(cp, rm)-bisimilar
(and write M, w -ML(cp,rm) M′, w′) if there is an ML(cp, rm)-bisimulation Z
such that wZw′.

Let P ⊆ PROP, we say that two pointed models M, w and M′, w′ are P -
bisimilar for the logic L (and write M, w -P

L M′, w′) if there is a relation
Z with wZw′ satisfying the conditions for L-bisimulations except that (atomic
harmony) is restricted to propositional symbols occurring in P .

We can prove that ML(cp, rm)-bisimilar models satisfy the same formulas.
Without loss of generality we assume that all remove operators have the form
rm(ϕ1?; a1;ϕ2?; a2; . . . ; an−1;ϕn?)ψ, where ϕi? are Boolean formulas, and ai ∈
AGT.

Proposition 4.3. For all ϕ ∈ML(cp, rm), there exists ϕ′ ∈ML(cp, rm) equiv-
alent to ϕ, where the path expressions have the form ϕ1?; a1;ϕ2?; . . . ; an−1;ϕn?,
where ϕi? are Boolean formulas, and ai ∈ AGT.

Proof. The proposition is a consequence of the following equivalences which
can be easily checked.

1. rm(π;ϕ1?;ϕ2?;π′) ↔ rm(π; (ϕ1 ∧ ϕ2)?;π′).

2. rm(π; a1; a2;π′) ↔ rm(π; a1;>?; a2;π′). �

We introduce three lemmas that will be helpful in the proof of Theorem 4.7:
invariance under bisimulation.

Lemma 4.4. LetM=〈W,R, V 〉 andM′=〈W ′, R′, V ′〉 be models, w ∈W , w′ ∈
W ′, be such that M, w -ML(cp,rm) M′, w′, and π=ϕ1?; a1;ϕ2?; . . . ; an−1;ϕn?.
Then, for all P ∈ PM(π) such that P = w0a0 . . . wai . . . wn, there is some
P ′ ∈ PM′(π), with P ′ = w′0a0 . . . w

′ai . . . w
′
n and for all j ∈ {1, . . . , n} we have

M, wj -ML(cp,rm) M′, w′j.

Proof. Given some P ∈ PM(π), we need to find P ′ ∈ PM′(π) satisfying
the lemma. Suppose P = w0a0 . . . wai . . . wn. As waiwi+1 is a subpath of
P , (w,wi+1) ∈ Rai . Because M, w -ML(cp,rm) M′, w′, by (zig) there is w′i+1

such that (w′, w′i+1) ∈ R′ai and M, wi+1 -ML(cp,rm) M′, w′i+1. For this reason,
M, wi+1 |= ψ if and only if M′, w′i+1 |= ψ, for all ψ Boolean. Then, wi+1 is a
good choice in order to construct P ′. We can repeat this process to build the
subpath w′aiw

′
i+1 . . . w

′
n. In order to choose wi−1, we can proceed in the same

way but using (zig−1), and repeating the process until we reach w′1. Putting all
together, we have constructed the right P ′. �

Lemma 4.5. Let M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 be models, w ∈ W ,
w′ ∈ W ′ and π a path expression. Then M, w -ML(cp,rm) M′, w′ implies
Mrm(π), w -ML(cp,rm) M′rm(π), w

′.

11

Proof. We have to define a bisimulation Z ⊆ Wrm(π) ×W ′rm(π). Define Z =

{(v, v′) | M, v -ML(cp,rm) M′, v′}. As M, w -ML(cp,rm) M′, w′, by Lemma 4.4
we know that each time we remove a path inM, we also remove a path inM′.
Then immediately follows that Z is a bisimulation. �

Lemma 4.6. Let M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 be models, w ∈ W
and w′ ∈W ′. Then:

M, w -ML(cp,rm) M′, w′ implies Mcp(Q), (w, q) -ML(cp,rm) M′cp(Q), (w
′, q).

Proof. We have to define a bisimulation Z ⊆Wcp(Q) ×W ′cp(Q). Define:

Z = {((v, q), (v′, q)) | (v, q), (v′, q) ∈Wcp(Q), such that M, v -ML(cp,rm) M′, v′}.

(atomic harmony) holds because (v, q)Z(v′, q) iff v and v′ satisfy (atomic
harmony) in the original models, and (v, q) and (v′, q) are both labeled by the
symbol q. The required (zig) and (zag) conditions follow from the bisimulation
between M and M′ and the definition of Mcp(Q) and M′cp(Q). �

Then we can state:

Theorem 4.7 (Invariance under bisimulation.). For all ϕ ∈ ML(cp, rm),
M, w -ML(cp,rm) M′, w′ implies (M, w |= ϕ iff M′, w′ |= ϕ).

Proof. The proof is by structural induction. Let M = 〈W,R, V 〉 and M′ =
〈W ′, R′, V ′〉 be such thatM, w -ML(cp,rm) M′, w′. We only prove the inductive
cases for rm and cp.

rm(π)ϕ: Suppose M, w |= rm(π)ϕ, then Mrm(π), w |= ϕ. By hypothesis
M, w -ML(cp,rm) M′, w′, then (by Lemma 4.6) Mrm(π), w -ML(cp,rm)

M′rm(π), w
′, and by inductive hypothesis. M′rm(π), w

′ |= ϕ. As a result,

M′, w′ |= rm(π)ϕ.

cp(Q, q)ϕ: SupposeM, w |= cp(Q, q)ϕ. Then we haveMcp(Q), (w, q) |= ϕ. By
M, w-ML(cp,rm)M′, w′ and Lemma 4.6, we haveMcp(Q), (w, q) -ML(cp,rm)

M′cp(Q), (w
′, q). By inductive hypothesisM′cp(Q), (w

′, q) |= ϕ. Therefore,
M′, w′ |= cp(Q, q)ϕ. �

Definition 4.8 (Tree model property.). A language L has the tree model
property if for all formula ϕ ∈ L satisfiable, ϕ is satisfied in the root of a tree.

As a consequence of the tree model property for ML(�−1) it immediately
follows:

Corollary 4.9. The language ML(cp, rm) has the tree model property.

Notice that for ML(cp, rm1) bisimulations need only satisfy the (zig) and
(zag) conditions, as was the case for ML, because removals are restricted to
paths of length one.

We already mentioned that AML has the same expressive power thatML,
and it is clear that both are not more expressive thanML(cp, rm) (asML(cp, rm)
is a conservative extension of ML). The models shown in Example 4.1 prove
that ML(cp, rm) is actually more expressive than AML.

12

5. Relation between action models and logics with copy and remove

In this section we investigate the relation between ML(cp, rm1) and action
models. First, we introduce an equivalence preserving translation from AML
to ML(cp, rm1). Then we show that action models with post-conditions can
encode cp and rm operations.

5.1. Embedding action models into ML(cp, rm1)

We introduce the translation that formally defines the operations shown in
Figure 2.

Definition 5.1. We define the shorthand rm(π1||π2)ϕ for rm(π1)rm(π2)ϕ, for
all paths π1, π2 of length 1. Notice that as π1 and π2 are paths of length 1, and
given that we are only considering Boolean tests, then || is commutative. Let ϕ ∈
AML such that the domain of action models in ϕ are disjoint. The translation
Tr from AML-formulas to ML(cp, rm1)-formulas is defined as follows:

Tr(p) = p
Tr(¬ϕ) = ¬Tr(ϕ)
Tr(♦aϕ) = ♦aTr(ϕ)
Tr(ϕ ∧ ψ) = Tr(ϕ) ∧ Tr(ψ)
Tr([E , e1]ϕ) = pre(e1)→ cp({pe1 , . . . , pen}, pe1)rm(ρ)rm(σ)Tr(ϕ),

where E = 〈E,→, pre〉 is an action model with E = {e1, . . . , en} and pe1 , . . . , pen
are fresh distinct atomic propositions that do not appear in ϕ and

ρ ≡
ei∈E,a∈AGT

>?; a; (pei ∧ ¬pre(ei))?

σ ≡
ei,ej∈E,a∈AGT

pei?; a; pej? if ei 6→a ej.

Cases that do not involve dynamic operations are trivial. Let us analyze the
translation of a modality with action models. The translation follows the steps
we describe in Figure 2. The antecedent pre(e1) is exactly the same clause as
for model updates (considering the pointed action model E , e1 as the desired
update). For each action point ei ∈ E, we consider a propositional symbol pei .
The cp({pe1 , . . . , pen}, pe1) operation replicates the original model as many times
as action points in E. This operation generates the cartesian product W×E and
it corresponds to the first copy operation in Figure 2. However, the modelM⊗E
might not result in the whole cartesian product. To cut access to the unwanted
part of the model we introduce rm(ρ). The path expression ρ characterizes all
the edges we introduced by the previous cp({pe1 , . . . , pen}, pe1) pointing to pei -
states which do not satisfy the corresponding pre(ei). This operation correspond
to the second remove operation in Figure 2. It remains to restrict the obtained
accessibility relation as specified by the action model. This is done by rm(σ).
Remember that ((v, d), (u, f)) ∈ R′a in M⊗ E if and only if (v, u) ∈ Ra and
d→a f . This operation correspond to the third remove operation in Figure 2.
rm(σ) deletes all a-edges ((w, pei), (w, pej)) such that in the action model there
is no a-edge from ei to ej , for all a ∈ AGT.

13

We obtain a model which is AML-bisimilar to M⊗E .
Now we can prove:

Theorem 5.2. Let ϕ be an AML-formula and M, w a pointed model, we have

M, w |= ϕ iff M, w |= Tr(ϕ).

Proof. The next claim will be useful in the proof.

Claim 1. LetM = 〈W,R, V 〉 be a model, w ∈W , E = 〈E,→, pre〉 be an action
model with E = {e1, . . . , en}, and let M′ = ((Mcp(pe1 ,...,pen))rm(ρ))rm(σ), with

ρ, σ as in Definition 5.1. Then (M ⊗ E), (w, e1) -P
AML M′, (w, pe1), where

P = {pe1 , . . . , pen}.

Proof (of the Claim). Let us denote by M⊗ E = 〈W⊗, R⊗, V ⊗〉, be the
restricted product of M and E . Define the relation Z = {(w, ei), (w, pei)) |
(w, ei) ∈ W⊗ and (w, pei) ∈ W ′}. We verify the conditions (atomic harmony)
with respect to P , (zig) and (zag), in order to prove that Z is a P -bisimulation
for AML.

• (atomic harmony). By definition of ⊗, we have (w, ei) ∈ V ⊗(p) if and
only if w ∈ V (p), if and only if (by |= for cp) (w, pei) ∈ Vcp({pe1 ,...,pen}).

• (zig). Suppose there is (v, ej) such that ((w, ei), (v, ej)) ∈ R⊗a . By defi-
nition of ⊗, we have that (w, v) ∈ Ra and ei →a ej . By the cp part, we
know that if (w, v) ∈ Ra then ((w, pei), (v, pej)) ∈ (Rcp({pe1 ,...,pen}))a. We
need to check that after the two removes, this edge has not been removed.

ρ removes the edges pointing to states such that pek and ¬pre(ek) hold, for
all ek. Because we assume ((w, ei), (v, ej)) ∈ R⊗a we know that (v, ej) ∈
W⊗, then M, v |= pre(ej) (by product update definition). Hence ρ does
not remove the edge between (w, pei) and (v, pej). On the other hand, σ
does not remove it because we assume ei →a ej . By inductive hypothesis,
we have (v, ej)Z(v, pej).

• (zag). This condition can be easily checked by applying the same steps
as for (zig), but in the other direction. can be easily checked by applying
the same steps as for (zig), but in the other direction. �

The proof of the theorem is by structural induction. Let M = 〈W,R, V 〉
be a model, E = 〈E,→, pre〉 an action model, w ∈ W and e1 ∈ E. We
will discuss the case involving dynamic operations. We need to prove that
M, w |= [E , e1]ϕ iff M, w |= Tr([E , e1]ϕ). Assume M, w |= [E , e1]ϕ, then by
definition of |= we have M, w |= pre(e1) → (M⊗ E), (w, e1) |= ϕ. Let M′ =
((Mcp(pe1 ,...pen))rm(ρ))rm(σ).

By Claim 1 (M⊗E), (w, e1) -M′, (w, pe1), then (by the invariance theorem
for AML) (M⊗ E), (w, e1) |= ϕ if and only if M′, (w, pe1) |= ϕ. Then, by
inductive hypothesis M′, (w, pe1) |= Tr(ϕ). Hence (by definition of Tr) we have
that M, w |= Tr([E , e1]ϕ). �

We see the encoding above applied to a concrete update in Figure 2, obtain-
ing a model which is bisimilar to the updated model of Figure 1.

14

5.2. Decomposing ML(cp, rm1) into action models

We show now that copy and remove can be seen as action models in AML+.
This is valuable, as it demonstrates that action models without post-conditions
can be decompose in simpler action models, but with post-conditions. This
decomposition can be obtained by translating first into ML(cp, rm1) and then
considering copy and remove again as basic action models.

Consider the copy action cp(Q). The copy operator can be modeled as
an action model E(cp(Q)) = 〈Q,→, pre, post〉 such that →a= Q × Q (for all
a ∈ AGT), and for all q ∈ Q:

pre(q) = > post(q)(p) = p for p ∈ Q \ {q}
post(q)(q) = > post(q)(p) = p for p ∈ PROP \Q.

We note that for all r ∈ PROP \Q the value is not affected at the execution
of this action, as the finite subset of propositional symbols that is assigned a
post-condition is the set Q.

Example 5.3. The action model E(cp(q1, q2, q3)) for two agents a and b is de-
picted below:

pre: >
post: q1 := >; q2 := ⊥; q3 := ⊥

pre: >
post: q1 := ⊥; q2 := >; q3 := ⊥

pre: >
post: q1 := ⊥; q2 := ⊥; q3 := >

a, b

a, b

a, ba, b a, b
a, b a, b

Consider the translation ′ :ML(cp)→ AML+ such that

(cp(Q, q)ϕ)′ = [E(cp(Q)), q]ϕ′,

and commutes with all other operators.

Proposition 5.4. LetM, w be a pointed model, and let ϕ be aML(cp)-formula.
Then M, w |= ϕ iff M, w |= ϕ′.

The action model E(rm(ϕ?; a;ψ?)) = 〈E,→, pre〉 is defined as

E = {00, 10, 01, 11} pre(00) = ¬ϕ ∧ ¬ψ,
→a = (E × E) \ {(10, 01), (10, 11), (11, 01), (11, 11)} pre(10) = ϕ ∧ ¬ψ,
→b = (E × E) for all b 6= a pre(01) = ¬ϕ ∧ ψ,

pre(11) = ϕ ∧ ψ.

This action model corresponds to the operation of removing all a-edges (w, v)
such that ϕ holds in w and ψ holds in v.

15

Example 5.5. Suppose we have two agents a and b. Then E(rm(ϕ?; a;ψ?)) is
depicted below:

pre: ¬ϕ ∧ ¬ψ

pre: ¬ϕ ∧ ψ

pre: ϕ ∧ ¬ψ

pre: ϕ ∧ ψ

b

b

b b

b

b

b

b

b

b

a

a

a

a

a

a

a

a

a

a

Consider the translation ′′ :ML(rm1)→ AML such that

(rm(ϕ?; a;ψ?)θ)′′ = [R, 00 ∪R, 01 ∪R, 10 ∪R, 11]θ′′,

where R = E(rm(ϕ?; a;ψ?)) and where [α∪α′]ϕ is a shorthand for [α]ϕ∧ [α′]ϕ,
and commutes with all other operators.

Proposition 5.6. Let M, w be a pointed model, and let ϕ be a ML(rm1)-
formula. Then M, w |= ϕ iff M, w |= ϕ′′.

Combining the previous results we obtain that every finite action model
has the same update effect as the composition of a copy action model and two
remove action models, where we use the translation Tr from Definition 5.1 but
replace the copy and remove actions there by their correspondent action model.

6. Complexity of deciding satisfiability

In this section, we will focus on the satisfiability problem restricted to frag-
ments, adapting results obtained in [5].

6.1. Complexity of the fragment ML(cp)

Let Σ be an arbitrary set of pairs (Q, q) where Q is any finite non-empty set
of propositional symbols and q ∈ Q. We define the translation TrΣ that maps
formulas ϕ ∈ML(cp) to formulas of ML as follows:

TrΣ(p) = p
TrΣ(¬ϕ) = ¬TrΣ(ϕ)
TrΣ(ϕ ∧ ψ) = TrΣ(ϕ) ∧ TrΣ(ψ)
TrΣ(�aϕ) = �a(

∧
(Qi,pi)∈Σ pi → TrΣ(ϕ))

TrΣ(cp(Q, q)ϕ) = TrΣ\{(Q,q)}(ϕ).

16

We define by induction:

Mcp({(Q,q)}∪Σ) :=
(
Mcp(Σ)

)
cp(Q)

Mcp(∅) := M.

For our purposes, the definition of Mcp(Σ) does not depend on the order in
Σ.

Proposition 6.1. For all ϕ ∈ ML(cp), let Σ(ϕ) be the set of all pairs (Q, q)
appearing in copy operators in ϕ. Then

M, w |= ϕ iff Mcp(Σ(ϕ)), wΣ(ϕ) |= TrΣ(ϕ)(ϕ),

where wΣ(ϕ) is the corresponding evaluation point after |Σ(ϕ) | consecutive cp
operations are applied from the point w.

Proof. The proof is by induction on the structure of ϕ ∈ML(cp).

ϕ = p : M, w |= p if and only if Mcp(∅), w |= Tr∅(p) (by definition of Mcp(∅)
and Tr) if and only if (by definition of Σ(ϕ)) Mcp(Σ(p)), w |= TrΣ(p)(p).

ϕ = ¬ψ and ϕ = ψ ∧ χ : Are trivial by inductive hypothesis.

ϕ = �aψ : By definition of |=, M, w |= �aψ iff for all v such that (w, v) ∈
Ra, M, v |= ψ. Σ(�aψ) = Σ(ψ). By inductive hypothesis, we have
Mcp(Σ(ψ)), vΣ(ψ) |= TrΣ(ψ)(ψ). This is the same asMcp(Σ(�aψ)), vΣ(�aψ) |=
TrΣ(�aψ)(ψ). But (because vΣ(�aψ) is an arbitrary copy of the successors
of w) Mcp(Σ(�aψ)), wΣ(�aψ) |= �a(

∧
(Qi,pi)∈Σ(�aψ) pi → TrΣ(ψ)), if and

only if Mcp(Σ), wΣ(�aψ) |= TrΣ(�aψ)(�aψ).

ϕ = cp(Q, p)ψ : M, w |= cp(Q, p)ψ iff Mcp(Q), (w, p) |= ψ. By induc-
tive hypothesis, (Mcp(Q))Σ(ψ), wΣ(ϕ) |= TrΣ(ψ)(ψ). Given the definition of
Mcp(Σ) (which does not depend on the order of Σ), and the fact that for
all q, (Q, q) /∈ Σ(ψ) (because in each occurrence of cp(Q, q), Q is fresh), we
have that Mcp(Σ(ψ)∪{(Q,p)}), wΣ(ϕ) |= TrΣ(ψ)\{(Q,p)}(ψ). Hence, by defini-
tion we have Mcp(Σ(ψ)∪{(Q,p)}), wΣ(ϕ) |= TrΣ(ψ)∪{(Q,p)}(cp(Q, p)ψ), which
is the same that Mcp(Σ(cp(Q,p)ψ)), wΣ(ϕ) |= TrΣ(cp(Q,p)ψ)(cp(Q, p)ψ). �

We will show the upper bound for the class PSpace, by providing a tableau-
based algorithm which uses polynomial space. Notice that the algorithm takes
as argument anML-formula, a set of sequences of propositional symbols and a
set of formulas. At the end, we use the previous result to complete the proof.

Proposition 6.2. The following problem is in PSpace:

• input: a formula ϕ ∈ML; Σ a set of pairs (Qi, qi), such that Qi ⊆ PROP
and qi ∈ Qi;

• output: yes iff there exists a model M such that Mcp(Σ), wΣ |= ϕ.

17

Proof. For this proof we take ♦a as the fundamental operator and consider �a
as being defined as �aϕ↔ ¬♦a¬ϕ. We adapt the standard tableau method for
ML (see [17]) in order to obtain a PSpace procedure for our problem, shown
in Algorithm 1. The set ν is called a modal valuation over a set of formulas Γ
if and only if ν ⊆ PROP∪{ψ | ψ ∈ Diam(Γ)}, where Diam(Γ) =

⋃
ϕ∈Γ Diam(ϕ),

and Diam(ϕ) is defined inductively as follows:

Diam(p) = ∅
Diam(ϕ ∧ ϕ′) = Diam(ϕ) ∪ Diam(ϕ′)
Diam(♦aϕ) = {♦aϕ}
Diam(¬♦aϕ) = {♦aϕ}.

We define the relation |= to say that a valuation satisfies a formula as follows:

ν |= p iff p ∈ ν
ν |= ♦aϕ iff ♦aϕ ∈ ν
ν |= ¬ϕ iff ν 6|= ϕ
ν |= ϕ ∧ ϕ′ iff ν |= ϕ and ν |= ϕ′.

A valuation c is called a copy valuation for a set Σ of pairs (Qi, qi), if and
only if c contains exactly one propositional symbol in each Qi. Notice that,
given a modal valuation ν and a copy valuation c, ν ∪ c is a modal valuation.

Algorithm 1 Satisfiability for the fragment ML(cp)

procedure SAT(ϕ,Γ,Σ)
choose some modal valuation ν over Γ ∪ {ϕ}
for all copy valuation c over Σ do

if ν ∪ c 6|=
∧
γi∈Γ γi then

return unsat
end if

end for
if for no copy valuation c we have ν ∪ c |= ϕ ∧

∧
γi∈Γ γi then

return unsat
end if
for all ♦aψ ∈ ν do

if SAT(ψ, {¬χ | ¬♦aχ ∈ ν},Σ) =unsat then
return unsat

end if
end for
return sat

end procedure

The procedure takes three arguments: a formula ϕ, a set of formulas Γ and a
set Σ which contains pairs (Qi, qi) ∈ 2PROP×PROP. The set Γ is used to abstract
subformulas of ϕ. Modal valuations treat formulas as propositional symbols.
The algorithm is the standard tableau algorithm used to check satisfiability for

18

ML, adapted to manage a set Σ, which represents possible copies of a model.
As for ML, the algorithm takes only polynomial space.

Theorem 6.3. The satisfiability problem of ML(cp) is PSpace-complete.

Proof. PSpace-hardness follows from PSpace-completeness of the satisfia-
bility problem for ML. In order to prove completeness, we can use Proposi-
tion 6.2, and test whether there exists a modelM such thatMcp(Σ(ϕ)), wΣ(ϕ) |=
TrΣ(ϕ)(ϕ). This can be done (by Proposition 6.1) by invoking

SAT(TrΣ(ϕ)(ϕ) ∧
∧

(Qi,pi)∈Σ(ϕ) pi, ∅,Σ(ϕ)).

6.2. Complexity of the fragment ML(rm)

We will show that ML(rm) can be translated into ML(�−1), the basic
modal logic ML extended with �−1. As we have mentioned, all remove oper-
ations can be transformed in the normal form rm(ϕ1?; a1; . . . ; an−1;ϕn?)ψ. We
introduce reduction axioms to get an ML(�−1)-formula, and prove that any
ML(rm)-formula, is equivalent to an ML(�−1)-formula.

First, define the abbreviations ♦i,j , ♦
−1
i,j , for a fix path expression π =

ϕ1?; a1; . . . ; an−1;ϕn?:

♦i,j =

> j < i

♦aiϕi+1 i = j

♦ai(ϕi+1 ∧ ♦i+1,j) i < j

♦−1
i,j =

> j < i

♦−1
ai ϕi i = j

♦−1
aj (♦−1

i,j−1 ∧ ϕj) i < j

Now define rmπ
i = ♦−1

1,i−1 ∧ ϕi ∧ ♦i,n−1. Informally rmπ
i means “the current

state is at position i in a path that matches π = ϕ1?; a1;ϕ2?; a2; . . . ; an−1;ϕn?
which is going to be deleted”. For instance, rmπ

i , 1 ≤ i ≤ n are defined as:

rmπ
1 = ϕ1 ∧ (♦a1ϕ2 ∧ (♦a2ϕ3 . . . ∧ ♦an−2

(ϕn−1 ∧ ♦an−1
ϕn) . . .))

rmπ
2 = ♦−1

a1 ϕ1 ∧ ϕ2 ∧ (♦a2ϕ3 . . . ∧ ♦an−2
(ϕn−1 ∧ ♦an−1

ϕn) . . .)
. . .

rmπ
n−1 = ♦−1

an−2
(♦−1
an−3

(. . . (♦−1
a1 ϕ1 ∧ ϕ2) ∧ ϕ3) . . .) ∧ ϕn−1 ∧ ♦an−1ϕn

rmπ
n = ♦−1

an−1
(♦−1
an−2

(. . . (♦−1
a1 ϕ1 ∧ ϕ2) ∧ ϕ3 . . .) ∧ ϕn−1) ∧ ϕn.

Lemma 6.4. LetM=〈W,R, V 〉 be a model, w ∈W and π=ϕ1?; a1;ϕ2?; . . . ;ϕn?
a path expression. Let i be such that 0 ≤ i ≤ n, then

M, w |= rmπ
i iff there is some P ∈ PMπ such that P = w1a1w2 . . . wn, wi = w

and for all wj ∈ P we have M, wj |= ϕj.

Proof. The proof is by induction on the length of π:

π = ϕ1?: M, w |= rmπ
1 if and only if M, w |= ϕ1 (by definition of rmπ

i). But
PMϕ1? = {v | M, v |= ϕ1} (all the paths are singletons satisfying ϕ1), then

w ∈ PMϕ1?.

19

π = ϕ1?; a1;ϕ2?; . . . ;ϕn?: Suppose M, w |= rmπ
i . By definition of rmπ,

we have M, w |= ♦−1
1,i−1 ∧ ϕi ∧ ♦i,n−1. Now, we know:

1. M, w |= ϕi.
2. M, w |= ♦−1

1,i−1, then by definition of ♦−1
i,j we haveM, w |= ♦−1

ai−1
(♦−1

1,i−2

∧ϕi−1). By definition of |=, there is some v ∈W such that (v, w) ∈ Rai−1

and M, v |= ♦−1
1,i−2 ∧ ϕi−1. Let us define π1 = ϕ1?; a1;ϕ2?; . . . ;ϕi−1?.

Then, by definition of rmπ
i , we have M, v |= rmπ1

i−1, and by inductive

hypothesis, there is a path P1 ∈ PMπ1
such that P1 = w1a1 . . . wi−1, with

wi−1 = v and for all wj ∈ P1, M, wj |= ϕj (0 ≤ j ≤ i− 1).
3. M, w |= ♦i,n−1, then by definition of ♦i,j we have M, w |= ♦ai(ϕi+1 ∧
♦i+1,n−1). By definition of |=, there is some t ∈W such that (w, t) ∈ Rai
and M, t |= ϕi+1 ∧ ♦i+1,n−1. Let us define π2 = ϕi+1?; ai+1; . . . ;ϕn?.
Then, by definition of rmπ

i , we have M, t |= rmπ2
i+1, and by inductive

hypothesis, there is a path P2 ∈ PMπ2
such that P2 = wi+1ai+1 . . . wn, with

wi+1 = t and for all wj ∈ P2, M, wj |= ϕj (i+ 1 ≤ j ≤ n).

Notice that π = π1; ai−1;ϕi?; ai;π2. It remains to choose P=P1ai−1wiaiP2

and we have what we wanted. �

We introduce reduction axioms which transform ML(rm,�−1)-formulas1

into ML(�−1)-formulas. We need to define axioms for ML(rm,�−1) in order
to manage intermediate steps.

Proposition 6.5. Let π=ϕ1?; a1;ϕ2?; . . . ;ϕn?, and let ϕ = rm(π)θ be a for-
mula ofML(rm,�−1), then the following reduction axioms are valid (we assume
that ♦aψ is written as ¬�a¬ψ, and similarly for ♦−1).

(1) rm(π)p ↔ p, p ∈ PROP
(2) rm(π)¬ψ ↔ ¬rm(π)ψ
(3) rm(π)(ψ ∧ ψ′) ↔ (rm(π)ψ ∧ rm(π)ψ′)
(4) rm(π)�aψ ↔ �arm(π)ψ, if a /∈ π
(5) rm(π)�−1

a ψ ↔ �−1
a rm(π)ψ, if a /∈ π

(6) rm(π)�aψ ↔ (
∧
i∈{1,...,n−1 | ai=a} ¬rm

π
i → �airm(π)ψ)∧

(
∧
i∈{1,...,n−1 | ai=a}(rm

π
i → �ai(rmπ

i+1 ∨ rm(π)ψ)))

(7) rm(π)�−1
a ψ ↔ (

∧
i∈{1,...,n−1 | ai=a} ¬rm

π
i → �−1

ai rm(π)ψ)∧
(
∧
i∈{1,...,n−1 | ai=a}(rm

π
i → �−1

ai (rmπ
i−1 ∨ rm(π)ψ))).

Proof. We prove each of them separately:

1. Suppose M, w |= rm(π)p. By definition of |=, we have Mrm(π), w |= p.
Because rm(π) keeps the same valuation in the updated model, w ∈ V (p). Then
(by definition of |=), M, w |= p.

2. Follows from the self-duality of rm, which is trivial given that it is a global
operator, i.e., an operator which affects an arbitrary part of the model.

1Let ML(rm,�−1) be the fragment ML(rm) extended with the past operator �−1.

20

3. Suppose M, w |= rm(π)(ψ ∧ ψ′). Then, by definition of |=, Mrm(π), w |=
(ψ ∧ ψ′), which means Mrm(π), w |= ψ and Mrm(π), w |= ψ′. Applying again
definition of |=, we have M, w |= rm(π)ψ and M, w |= rm(π)ψ′, iff M, w |=
rm(π)ψ ∧ rm(π)ψ′.

4. (Proof of 5 is a straightforward variation). Suppose M, w |= rm(π)�aiψ.
Applying definition of |= twice, we have that for all v such that (w, v) ∈
(Rrm(π))ai ,Mrm(π), v |= ψ. We assume ai /∈ π, then (w, v) ∈ (Rrm(π))ai iff (w, v) ∈
Rai , then we have for all v such that (w, v) ∈ Rai , Mrm(π), v |= ψ, iff for
all v such that (w, v) ∈ Rai , M, v |= rm(π)ψ. Hence by definition of |=,
M, w |= �airm(π)ψ.

6. (Proof of 7 is a straightforward variation). Let M = 〈W,R, V 〉 be a
model, w ∈ W , and let rm(π)�aiψ be an ML(rm,�−1)-formula with π =
ϕ1?; a1;ϕ2?; . . . ;ϕn?, such that ai ∈ π. We want to prove

M, w |= rm(π)�aiψ iff M, w |= δ ∧ δ′

where
δ =

∧
k∈{1,...,n−1 | ak=ai} ¬rm

π
k → �ak rm(π)ψ

δ′ =
∧
k∈{1,...,n−1 | ak=ai}(rm

π
k → �ak(rmπ

k+1 ∨ rm(π)ψ)).

Let us suppose thatM, w |= rm(π)�aiψ. Then, by definition of |=, we have
that for all v ∈ W such that (w, v) ∈ (Rrm(π))ai , Mrm(π), v |= ψ. We will check
the two conjuncts δ and δ′ separately (for the other direction of the iff, we can
assume the two conjuncts together and use the same steps):
1. Suppose M, w |=

∧
k∈{1,...,n−1 | ak=ai} ¬rm

π
k . By definition of |=, we have

M, w 6|=
∨
k∈{1,...,n−1 | ak=ai} rm

π
k . It means that there is no P∈PMπ satisfying

Lemma 6.4, such that w ∈ P , hence no deletions have been done traversing w.
Then for all v ∈W , (w, v) ∈ Rai iff (w, v) ∈ (Rrm(π))ai . Because we have for all
v ∈ W such that (w, v) ∈ (Rrm(π))ai , Mrm(π), v |= ψ, then for all v ∈ W such
that (w, v) ∈ Rai , Mrm(π), v |= ψ. Therefore, we have for all v ∈ W such that
(w, v) ∈ Rai , M, v |= rm(π)ψ, then (by definition of |=) M, w |= �airm(π)ψ.
2. Suppose now for some arbitrary k, M, w |= rmπ

k , where k ∈ {1, . . . , n −
1 | ak = ai}. By Lemma 6.4 it means that there is a path traversing w that
has been deleted. We also know Mrm(π), w |= �akψ by assumption and k = i,
then for all v ∈ W such that (w, v) ∈ (Rrm(π))ak , Mrm(π), v |= ψ. Then, for all
u ∈ W such that (w, u) ∈ Rak , either Mrm(π), u |= ψ or u ∈ P , with P ∈ PMπ ,
and u is at position k + 1 (because w is at position k = i), i.e., M, u |= rmπ

k+1

(by Lemma 6.4). Therefore, M, w |= �ak(rmπ
k+1 ∨ rm(π)ψ). �

Proposition 6.5 provides a way to eliminate all the rm operators in a formula.
We can design an algorithm to transform any ML(rm,�−1)-formula into a
ML(�−1)-formula, which applies exhaustively the reduction axioms. Notice
that each reduction axiom reduces the formula on the left to anML(rm,�−1)-
formula on the right, where the rm operation is moved inwards till it can finally
be eliminated.

Proposition 6.6. Let M, w be a pointed model. For all ϕ ∈ ML(rm,�−1),
there exists ϕ′ ∈ML(�−1) such that M, w |= ϕ iff M, w |= ϕ′.

21

The next theorem now follows.

Theorem 6.7. The satisfiability problem for ML(rm) is decidable.

The reduction axioms that eliminate rm(π) produce an exponential blow up
in the size of the formula. If we consider only formulas in ML(rm1), we can
avoid the exponential blow up.

Proposition 6.8. Let M = 〈W,R, V 〉 be a model, θ, ϕ and ψ be ML(rm1)-
formulas and a ∈ AGT. Then

M, w |= rm(ϕ?; a;ψ?)�aθ iff M, w |= �a((ψ ∧ ♦−1ϕ) ∨ rm(ϕ?; a;ψ?)θ).

Proof. Let us suppose that M, w |= rm(ϕ?; a;ψ?)�aθ. Then, we have that
for all v ∈ W such that (w, v) ∈ (Rrm(ϕ?;a;ψ?))a, Mrm(ϕ?;a;ψ?), w |= θ ⊗. Let u
be such that (w, u) ∈ Ra, and let suppose M, u |= ¬(ψ ∧ ♦−1ϕ). This means
that (w, u) ∈ Ra iff (w, u) ∈ (Rrm(ϕ?;a;ψ?))a. Then (by ⊗) Mrm(ϕ?;a;ψ?), u |= θ
iff (by definition of |=) M, u |= rm(ϕ?; a;ψ?)θ, iff M, w |= �a(¬(ψ ∧ ♦−1

a ϕ) →
rm(ϕ?; a;ψ?)θ). �

Then, next theorem immediately follows:

Theorem 6.9. The satisfiability problem for ML(rm1) is PSpace-complete.

6.3. Complexity of the fragment ML(cp, rm1)

We showed that there is a polynomial translation from ML(cp, rm1) into
a dynamic epistemic modal logic with action models with both pre-conditions
and post-conditions, that preserves satisfiability. In [8], it is proved that the
satisfiability problem for dynamic epistemic modal logic with action models with
pre-conditions and without post-conditions is in NExpTime. We can handle
post-conditions in NExpTime adapting the tableau method of [8]2.

Theorem 6.10. The satisfiability problem for AML+ is in NExpTime.

Proof. We will provide a tableau method adapted from the case without post-
conditions [8]. Let LAB be a countable set of labels designed to represent states
of the model (M, w) we are trying to construct. Our tableau method manipu-
lates terms that we call tableau terms and they are of the following kind:

• (σ E1, e1; . . . ; Ei, ei ϕ) where σ ∈ LAB is a symbol (that represents a
state in the initial model) and for all j ∈ {1, . . . , i}, Ej , ej is an action
model. This term means that ϕ is true in the state denoted by σ after
the execution of the sequence E1, e1, . . . , Ei, ei and that the sequence is
executable in the state denoted by σ;

2A similar result was shown in [12] for public announcement enriched with public assign-
ments which are similar to post-conditions.

22

• (σ E1, e1; . . . ; Ei, ei X) means that the sequence E1, e1, . . . , Ei, ei is exe-
cutable in the state denoted by σ. The symbol X means that the state
survives a sequence of pointed action models;

• (σ E1, e1; . . . ; Ei, ei ⊗) means that the sequence E1, e1, . . . , Ei, ei is not
executable in the state denoted by σ. The symbol ⊗ means that the state
does not survive the sequence of pointed action models.

• (σRaσ1) means that the state denoted by σ is linked by Ra to the state
denoted by σ1;

• ⊥ denotes an inconsistency.

A tableau rule is represented by a numerator N above a line and a finite list
of denominators D1, . . . ,Dk below this line, separated by vertical bars. In the
following σ denotes a symbol for states. Σ, Σ′, etc., denote sequences of pointed
action models. ε denotes the empty sequence of pointed action models.

A tableau tree is a finite tree with a set of tableau terms at each node. A
rule with numerator N is applicable to a node carrying a set Γ if Γ contains an
instance of N . If no rule is applicable, Γ is said to be saturated. We call a node
σ an end node if the set of formulas Γ carried by σ is saturated, or if ⊥ ∈ Γ.
The tableau tree is extended as follows:

1. Choose a leaf node n carrying Γ where n is not an end node, and choose
a rule ρ applicable to n.

2. (a) If ρ has one denominator, add the appropriate instantiation to Γ.
(b) If ρ has k denominators with k > 1, create k successor nodes for n,

where each successor i carries the union of Γ with an appropriate
instantiation of denominator Di.

A branch in a tableau tree is a path from the root to an end node. A branch
is closed if its end node contains ⊥, otherwise it is open. A tableau tree is closed
if all its branches are closed, otherwise it is open.

For action models without post-conditions, we can use the following two
rules:

(σ Σ p)

(σ ε p)

(σ Σ ¬p)
(σ ε ¬p)

These rules are no longer sound in the presence of post-conditions, because
the valuation may change after the application of an action model. We propose
to replace them by the following rule:

(σ Σ ; E , e X)

(σ Σ post(e)(p))
(σ Σ ; E p)

(σ Σ ¬post(e)(p))
(σ Σ ; E ¬p)

(post)

The complete set of tableau rules is given in Figure 3.

23

The tableau method contains the classical Boolean rules (∧), (¬¬), (←p) and
(←¬p). It also contains the non-deterministic rule (¬∧) handling disjunction.
The rule (⊥) makes the current execution fail. The rule for (�a) is applied for
all j ∈ {1, . . . i} and all u′j such that w′jR

′
au
′
j . Similarly, the rule for (¬�a) is

applied by choosing non-deterministically for all j ∈ {1, . . . i} some u′j such that
w′jR

′
au
′
j and creating a new fresh label σnew. The rules (X), (⊗), (clashX,⊗)

and (ε⊗) handle the pre-conditions. Rule (X) says that if a state survives, then
the pre-condition should be true. Rule (⊗) involves non-determinism: either a
state does not survive because the current pre-condition is false or because it
did not survive because of a previous pre-condition. Rule (clashX,⊗) says that
it is not possible that a state survives and does not survive at the same time.
Rule (ε⊗) says that a state always survives the empty sequence of pointed action
models. The last two rules ([π ∪ π′]) and (¬[π ∪ π′]) handle the union operator.

The rule (post) is non-deterministic and says that either the post condition
was true and p is true now or the post condition was false and p is false now.

The proof of soundness and completeness of the tableau is similar to the proof
available in [8]. To test whether ϕ is AML+-satisfiable, start the tableaux with
Γ := {(σ ε ϕ)}. Given a branch Γ, consider the following tree TΓ:

• Nodes are labels σ ∈ LAB appearing in Γ;

• Two nodes σ, σ′ are linked when a term of the form (σ Ra σ′) appears
in Γ.

At any step of the algorithm, the depth of TΓ is linear in the size of ϕ. The
arity of TΓ is bounded by an exponential in ϕ since the set of terms of the form
(σ Σ ¬�aψ) is exponential for a given σ. Thus, the set Γ is bounded by an
exponential in ϕ. At any step of the algorithm, we add a new term in Γ. Thus,
as Γ requires an exponential amount of space, it takes an exponential amount of
time to fill Γ until Γ is saturated or until we reach a contradiction. The resulting
tableau method can still be turned into a non-deterministic algorithm running
in exponential time. �

Then we can state:

Corollary 6.11. The satisfiability problem for ML(cp, rm1) is in NExpTime.

As there is a polynomial translation from dynamic epistemic modal logic
without post-conditions AML into ML(cp, rm1) that preserves satisfiability
(see Definition 5.1 and Theorem 5.2), and the satisfiability problem in AML is
NExpTime-hard [8], the satisfiability problem of a formula in ML(cp, rm1) is
NExpTime-hard.

Theorem 6.12. The satisfiability problem forML(cp, rm1) is NExpTime-com-
plete.

24

(σ Σ ϕ ∧ ψ)

(σ Σ ϕ)
(σ Σ ψ)

(∧) (σ Σ ¬¬ϕ)

(σ Σ ϕ)
(¬¬)

(σ Σ ¬(ϕ ∧ ψ))

(σ Σ ¬ϕ) | (σ Σ ¬ψ)
(¬∧)

(σ Σ p)(σ Σ ¬p)
⊥ (⊥)

(σ Σ ¬[E , e]ϕ)

(σ Σ ; E , e X)
(σ Σ ; E , e ¬ϕ)

(¬[E , e])
(σ Σ [E , e]ϕ)

(σ Σ ; E , e ⊗) (σ Σ ; E , e X)
(σ Σ ; E , e ¬ϕ)

([E , e])

(σ Σ ; E , e X)

(σ Σ pre(e))
(σ Σ X)

(X)
(σ Σ ; E , e ⊗)

(σ Σ X)
(σ Σ ¬pre(e)) (σ Σ ⊗)

(⊗)

(σ Σ ; E , e X)

(σ Σ post(e)(p))
(σ Σ ; E p)

(σ Σ ¬post(e)(p))
(σ Σ ; E ¬p)

(post)

(σ E1, e1; . . . ; Ei, ei �aϕ)
(σ Ra σ1) (�a)

(σ1 E1, e′1; . . . ; Ei, e′i X)
(σ1 E1, e′1; . . . ; Ei, e′i ϕ)

(σ1 E1, e′1; . . . ; Ei, e′i ⊗)

(σ E1, e1; . . . ; Ei, ei ¬�aϕ)

(σ Ra σnew)
(σnew E1, e′1; . . . ; Ei, e′i X)
(σnew E1, e′1; . . . ; Ei, e′i ¬ϕ)

(¬�a)

(σ Σ ⊗)(σ Σ X)

⊥ (clashX,⊗)
(σ ε ⊗)

⊥ (ε⊗)

(σ Σ [π ∪ π′]ϕ)

(σ Σ [π]ϕ)
(σ Σ [π′]ϕ)

([π ∪ π′])
(σ Σ ¬[π ∪ π′]ϕ)

(σ Σ ¬[π]ϕ) |
(σ Σ ¬[π′]ϕ)

(¬[π ∪ π′])

Figure 3: Tableau rules for AML+

7. Related Work

In [10], a dynamic epistemic logic is presented with model changing modal-
ities called ‘arrow updates’. Consider an arrow for agent a, i.e., a pair (w, v)
in the accessibility relation for agent a, that satisfies a logical condition ϕ in
w (at the start of the arrow) and a condition ψ in v (at the end of the ar-

25

row). Then, given a model M, an ‘arrow update’ for this model preserves
all pairs (w, v) ∈ Ra such that M, w |= ϕ and M, v |= ψ; thus it deletes
all other arrows (including for all other agents b 6= a). Using our notation,
one arrow update (such as in [10]) with (ϕ?; a;ψ?), preserving all such ar-
rows, clearly corresponds to three simultaneous rm1 actions (length-one path
removals) (¬ϕ?; a;¬ψ?), (¬ϕ?; a;ψ?), and (ϕ?; a;¬ψ?). Now we do not contem-
plate parallel rm actions, but, as we are only considering Boolean formulas ϕ
and ψ in this submission, the three parallel rm actions correspond to three con-
secutive rm actions (¬ϕ?; a;¬ψ?), (¬ϕ?; a;ψ?), and (ϕ?; a;¬ψ?). Dually, each
rm(ϕ?; a;ψ?) (equally) corresponds to three (simultaneous or consecutive) ar-
row updates (¬ϕ?; a;¬ψ?), (¬ϕ?; a;ψ?), and (ϕ?; a;¬ψ?); in [10], the semantic
primitive is a finite set of arrows to preserve, simultaneity is here the norm.

Unlike us, [10] does not give complexity results but focus on expressivity
and succinctness. [10] does not restrict the updates to those with Boolean pre-
conditions but have a fully inductively defined logical language: the ϕ and ψ
tests on the preserved arrows can be on any formula. The language focuses on
preservation instead of removal as it is done by other dynamic epistemic log-
ics. For example, the public announcement of !ϕ preserves all (ϕ?; a;ϕ?) for
all agents a simultaneously. In a further generalization of their work [9] they
consider epistemic actions consisting of Kripke frames and where each point in
the frame carries a preservation condition (or conditions) (ϕ?; a;ψ?): this then
models partial observability. We achieve a similar effect by the interaction of cp
and rm. They also demonstrate that arrow updates do not change the expres-
sivity of the language. We can copy that result (however, with the restriction
to Boolean tests). However, we have also shown that the expressivity increases
once one allows path removal, see Example 4.1. It may be interesting to observe
that our result that an action model with Boolean pre-conditions can be sim-
ulated by copy and remove (Theorem 5.2) is a result of the kind called update
equivalence in [9] (there is an obvious relation to action emulation [18]).

In [19] global and local graph modifiers are proposed, where the modifications
can concern both the valuations of propositional variables (also known as ontic
change, assignment, or substitution) as the accessibility relations. A global
graph modification a − (ϕ,ψ) [19, page 295] corresponds to our rm1 action
(ϕ?; a;ψ?), whereas a local graph modification of that kind would amount to a
sabotage operator à la Van Benthem and as presented in [13, 14, 1, 3, 5, 6], with
>? as the test on beginning and end of the arrow. However, in [19] the only
local graph modifiers considered are of the ontic change kind3. They consider
expressivity of the global version of their logic to other dynamic epistemic logics,
in the presence of the universal modality.

Finally, as discussed before, this work should be seen as a continuation of
the research developed in [3, 4, 5] on model-changing operations. We recall that
one of the model changing operations is the sabotage operator that removes a

3“In this paper we investigate state label modifiers, leaving edge label modifiers to future
work” [19, page 300].

26

pair (w, v) from the accessibility relation, without logical conditions in w or v
(and sometimes bound by other constraints, such as that w should be the actual
world, or that simultaneously to removing (w, v), the actual world shifts from w
to v). Now, clearly, ‘sabotaging’ (w, v) is the same as removing/deleting (w, v).
However, there is a very important difference. In the underlying investigation,
all (w, v) are removed in the rm action (ϕ?; a;ψ?). But in the sabotage action,
a (arbitrary) (w, v) is removed (without conditions). That makes the latter far
more expressive than the former, as this allows one to select (and in that way, so
to speak, ‘name’) an individual arrow, hybrid logic like (as also observed in [19]).
Therefore such logics tend to be undecidable and much more expressive, unlike
the underlying proposal—we recall thatML(cp, rm1) is equally expressive than
multi-agent modal logic. It is unclear how to bridge the wide gap that jumps
straight to undecidability.

8. Conclusion

We proposed the dynamic modal logicML(cp, rm) which contains copy and
remove operators. We investigated model theoretic properties of ML(cp, rm)
such as bisimulations and expressive power. In order to give an appropriate
notion of bisimulation, we need the same conditions as for the �−1 operator,
because we need to differentiate states with respect to the paths that traverse
them.

We showed that the action model logic AML, one of the best-known dy-
namic epistemic logics, can be polynomially embedded in ML(cp, rm1) (the
fragment with length-one path removals) when we consider action models with
only Boolean pre-conditions. This is in line with the previously known result
that, when AML is evaluated on the class of finite models, action model exe-
cution corresponds to model restriction (‘remove’) on a bisimilar copy (‘copy’)
of the initial model [20]. The restriction to Boolean pre-conditions is certainly
a limitation, but we discussed examples that show that its expressive power is
sufficient to model interesting epistemic scenarios. The embedding simulates
every finite action model with a combination of copy and remove operators.
As we mentioned, the embedding can be done within ML(cp, rm1) as it only
requires single step removals. We showed that the copy and one-step removal
themselves correspond to particular action models. As a result we obtain a
decomposition method for action models. By decomposing product updates in
sequences of copy and remove operators, it would be possible to characterize
syntactic fragments of AML with interesting complexities for the satisfiability
problem.

We demonstrated that the complexity of the satisfiability problem of the full
languageML(cp, rm) is NExpTime-hard. Its upper bound is still open, but we
conjecture it is decidable. We proved that satisfiability for the fragmentML(rm)
is decidable, that it is PSpace-complete for ML(cp) and ML(rm1), and that
it is NExpTime-complete for ML(cp, rm1). These results are summarized in
Figure 4.

27

ML(cp, rm) NExpTime-hard
ML(rm) Decidable
ML(cp) PSpace-complete
ML(rm1) PSpace-complete
ML(cp, rm1) NExpTime-complete

Figure 4: Complexity of the satisfiability problem for ML(cp, rm) and some of its syntactic
fragments.

As future work, we plan to extend the analysis of AML via its embedding
in ML(cp, rm). In particular, we will address the general case in which action
model pre-conditions can be arbitrary formulas of lower complexity. The main
challenge when considering the full language is that when pre-conditions are not
Boolean, successive applications of the rm operator are no longer independent
of each other, and a more involved mapping into ML(cp, rm) is required.

Acknowledgments

We acknowledge support from ANPCyT-PICT-2008-306, ANPCyT-PICT-2010-

688, ANPCyT-PICT-2013-2011, STIC-AmSud “MISMT”, ERC project EPS 313360,

EU 7th Framework Programme under grant agreement n. 295261 (MEALS), and the

Laboratoire Internationale Associé “INFINIS”.

References

[1] J. van Benthem, An essay on sabotage and obstruction, in: D. Hutter,
W. Stephan (Eds.), Mechanizing Mathematical Reasoning, Vol. 2605 of
Lecture Notes in Computer Science, Springer, 2005, pp. 268–276.

[2] H. van Ditmarsch, W. van der Hoek, B. Kooi, Dynamic Epistemic Logic,
Kluwer, 2007.

[3] C. Areces, R. Fervari, G. Hoffmann, Moving arrows and four model checking
results, in: L. Ong, R. de Queiroz (Eds.), Logic, Language, Information and
Computation, Vol. 7456 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2012, pp. 142–153.

[4] C. Areces, R. Fervari, G. Hoffmann, Swap logic, Logic Journal of the IGPL
22 (2) (2014) 309–332.

[5] R. Fervari, Relation-changing modal logics, Ph.D. thesis, Facultad de
Matemática Astronomı́a y F́ısica, Universidad Nacional de Córdoba,
Córdoba, Argentina (March 2014).

[6] C. Areces, R. Fervari, G. Hoffmann, Relation-changing modal operators,
Logic Journal of the IGPL.

28

[7] A. Baltag, L. Moss, S. Solecki, The logic of public announcements, common
knowledge and private suspicions, in: I. Gilboa (Ed.), TARK, 1998, pp. 43–
56.

[8] G. Aucher, F. Schwarzentruber, On the complexity of dynamic epistemic
logic, in: B. Schipper (Ed.), TARK, 2013, pp. 19–28.

[9] B. Kooi, B. Renne, Generalized arrow update logic, in: K. Apt (Ed.),
TARK, 2011, pp. 205–211.

[10] B. Kooi, B. Renne, Arrow update logic, Review of Symbolic Logic 4 (4)
(2011) 536–559.

[11] C. Areces, H. van Ditmarsch, R. Fervari, F. Schwarzentruber, Logics with
copy and remove, in: U. Kohlenbach, P. Barceló, R. de Queiroz (Eds.),
WoLLIC 2014, Vol. 8652 of Lecture Notes in Computer Science, Springer,
2014, pp. 51–65.

[12] H. van Ditmarsch, A. Herzig, T. De Lima, Public announcements, public
assignments and the complexity of their logic, Journal of Applied Non-
Classical Logics 22 (3) (2012) 249–273.

[13] C. Löding, P. Rohde, Solving the sabotage game is PSPACE-hard, in:
Mathematical Foundations of Computer Science 2003, Vol. 2747 of Lec-
ture Notes in Computer Science, Springer, Berlin, 2003, pp. 531–540.

[14] C. Löding, P. Rohde, Model checking and satisfiability for sabotage modal
logic, in: P. Pandya, J. Radhakrishnan (Eds.), Proceedings of Foundations
of Software Technology and Theoretical Computer Science, 23rd Confer-
ence, Vol. 2914 of Lecture Notes in Computer Science, Springer, 2003, pp.
302–313.

[15] J. Plaza, Logics of public communications, Synthese 158 (2) (2007) 165–
179.

[16] P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, Vol. 53 of Cambridge
Tracts in Theoretical Computer Science, Cambridge University Press, Cam-
bridge, 2001.

[17] R. Goré, Tableau methods for modal and temporal logics, in:
M. D’Agostino, D. Gabbay, R. Hähnle, J. Possega (Eds.), Handbook of
tableau methods, 1999, pp. 297–396.

[18] J. van Eijck, J. Ruan, T. Sadzik, Action emulation, Synthese 185(1) (2012)
131–151.

[19] G. Aucher, P. Balbiani, L. Fariñas Del Cerro, A. Herzig, Global and lo-
cal graph modifiers, Electronic Notes in Theoretical Computer Science
(ENTCS), Special issue Proceedings of M4M 2007 231 (2009) 293–307.

29

[20] H. van Ditmarsch, T. French, Simulation and information, in: J. Broersen,
J.-J. Meyer (Eds.), Knowledge Representation for Agents and Multi-Agent
Systems, Vol. 5605 of Lectures Notes on Artificial Intelligence, Springer,
2009, pp. 51–65.

30

	Introduction
	Action Model Logic with Boolean Pre-conditions
	Copy and Remove
	Expressive Power
	Relation between action models and logics with copy and remove
	Embedding action models into ML (cp,rm1)
	Decomposing ML (cp,rm1) into action models

	Complexity of deciding satisfiability
	Complexity of the fragment ML (cp)
	Complexity of the fragment ML (rm)
	Complexity of the fragment ML (cp,rm1)

	Related Work
	Conclusion

