Carlos Areces
email: areces@famaf.unc.edu.ar

Hans Van Ditmarsch
email: hans.van-ditmarsch@loria.fr

Raul Fervari
email: fervari@famaf.unc.edu.ar

François Schwarzentruber
email: francois.schwarzentruber@ens-rennes.fr

The Modal Logic of Copy and Remove

Keywords: modal logic, dynamic epistemic logic, complexity, expressivity

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

In modal logics we usually interpret a modal operator by way of an accessibility relation in a given Kripke model. Over the past decades logics have been proposed in which the modality is, instead, interpreted by a transformation of the model. In such logics the modality can be seen as interpreted by a binary relation between pointed models, where the first argument is the initial pointed model and the second argument of the relation is the transformed model. We could mention sabotage logic here [START_REF] Van Benthem | An essay on sabotage and obstruction[END_REF], wherein states or arrows are deleted from a model. Or we could mention dynamic epistemic logics [START_REF] Van Ditmarsch | Dynamic Epistemic Logic[END_REF] that proposes modelchanging operators to model change of knowledge or belief. In [START_REF] Areces | Moving arrows and four model checking results[END_REF][START_REF] Areces | Swap logic[END_REF][START_REF] Fervari | Relation-changing modal logics[END_REF][START_REF] Areces | Relation-changing modal operators[END_REF] a new line of contributions to model-transforming logics, motivated by Van Benthem's sabotage logic is developed. In this article we advance that last line of work, while linking it to dynamic epistemic logics.

Action model logic (AML) [START_REF] Baltag | The logic of public announcements, common knowledge and private suspicions[END_REF] is a well-known dynamic epistemic logic to model information change. AML is an extension of basic epistemic logic with a dynamic modal operator for the execution of so-called epistemic actions. This operator is parameterized by an action model, a semantic object which typically models a multi-agent information changing scenario. Action models are treated as syntactic objects in modal operators. Action models are complex structures, and the logic has high computational complexity: deciding model checking is PSpace-complete, while deciding satisfiability is NExpTime-complete [START_REF] Aucher | On the complexity of dynamic epistemic logic[END_REF].

In this article we propose modal logics with primitive actions called copy and remove. We investigate some of their model theoretic properties and their complexity, and, as an example of what one can do with such logics, we give an embedding of action model logic into our logic: we show that every action model with propositional pre-conditions can be simulated by a combination of the copy and remove operators. The remove operator we propose is akin to the generalized arrow updates introduced in [START_REF] Kooi | Generalized arrow update logic[END_REF][START_REF] Kooi | Arrow update logic[END_REF].

In Figure 1 we show an epistemic model, an action model, and the result of executing that action model in that epistemic model. The epistemic model represents that agents a and b are uncertain whether an atomic proposition p is true (and that they have common knowledge of that uncertainty). The actual world, or designated state, of the model is where p is true (shown with a thick circle in the figure). The action model represents that agent a learns that p is true, whereas agent b (incorrectly) believes that nothing happens-of which a is aware. In short: a privately learns that p. In action models, there are no valuations of propositional variables; they are replaced by pre-conditions, in this case p and (the formula that is always true). Action models update epistemic models by mean an operation called a restricted modal product: the domain is limited to the state-action pairs where the pre-conditions of the actions hold. Therefore in our example there are only three (and not four) pairs in the updated model: the pair (v, e 1) is missing as the pre-condition of e 1 (the formula p) is not true in v. The accessibility relation in the restricted product is updated according to the following rule: there is a (labeled) arrow between two stateaction pairs if there was such an arrow linking both the first arguments in the epistemic model and the second arguments in the action model. One can now verify that in the resulting model a knows that p (there is only an a-arrow from w to itself), whereas b still believes that both a and b are ignorant about p. By means of the copy and remove actions of the logics that we propose, we can alternatively describe this scenario. This is depicted in Figure 2. First, we replicate the original epistemic model as many times as there are actions in the action model (twice in this case). We identify each copy with a (fresh) propositional variable corresponding to an action in the action model (e.g., p e1 corresponds to e 1). Thus we obtain the second model in Figure 2. Then, we first remove all arrows that point to state-action alternatives wherein the action cannot be executed in the state. Finally, between the remaining state-action pairs we remove all arrows that are ruled out according to the accessibility relation in the action model. Thus we obtain the updated model at the bottom of the Figure 2.

The copy and remove operators were first introduced in [START_REF] Areces | Logics with copy and remove[END_REF]. In this article, we extend the results introduced in that article: we discuss in detail the expressive power of the logic with copy and remove operators; we introduce examples which motivate our work; and we provide proofs of all results.

The article is organized as follows. In Section 2 we start by introducing the formal definition of action model logic to make the article self-contained, together with an example which motivates the use of the fragment with only Boolean pre-conditions. We introduce the action models without post-conditions, and its extension with also post-conditions (which will be useful to encode copy and remove operations). We will actually work with action models without post-conditions, and we will explicitly indicate when we move to the setting with post-conditions. In Section 3 we introduce ML(cp, rm), the logic with the two dynamic primitives copy and remove which captures the behaviour of action models. In Section 4 we introduce bisimulations to investigate its expressive power, and we show that the logic with copy and remove has the tree model property. In Section 5 we define an equivalence preserving translation from action model logic to a fragment of ML(cp, rm). We also show that it is possible to find action models with post-conditions that encode copy and remove actions with paths of length 1, which give us a method to decompose action models with Boolean pre-conditions. Finally, we show complexity results of the satisfiability problem for different fragments of ML(cp, rm) in Section 6. We prove that the logic with copy and without remove is PSpace-complete; the same result is proved for the logic with removes of length 1 and without copy. When we consider unrestricted removes, we show that the logic is decidable. For the logic with copy and remove of length 1 we prove NExpTime-completeness. The problem of determining the complexity of the full logic ML(cp, rm) is open.

Action Model Logic with Boolean Pre-conditions

One of the main results in this paper is to show that we can capture the action model logic AML with simpler primitives. Let us start by introducing formally the logic AML. First, we introduce action models.

In what follows let PROP be an infinite countable set of propositional symbols, and AGT a finite set of agents symbols disjoint from PROP. Definition 2.1 (Action Models). Let B be the classical propositional language over PROP. An action model E is a structure E = E, →, pre, post , where E is a non-empty finite set whose elements are called action points. For each a ∈ AGT, → a ⊆ E×E is a relation; pre : E → B is a pre-condition function; and post : E → (PROP → B) is a post-condition function. Let e be an action point in E, the pair (E, e) is a pointed action model. We usually drop parentheses and write E, e instead of (E, e).

Action models in action model logic appear as modalities. We will call AML + to the full language, in which action models have post-conditions. The fragment where action models have no post-conditions is AML, that is, action models such that post(e)(p) = p for all action points e ∈ E. We introduce the syntax.

Definition 2.2 (Syntax). The set FORM of formulas of AML + over PROP and AGT is defined as:

FORM ::= | p | ¬ϕ | ϕ ∧ ϕ | a ϕ | [E, e]ϕ,
where p ∈ PROP, a ∈ AGT, ϕ, ϕ ∈ FORM, and E, e is a pointed action model.

ML is the fragment without the dynamic operator [α]. Formally, in AML post-conditions functions post : E → (PROP → B) of action models appearing in formulas are of the form post(e)(p) = p for all action points e ∈ E. Once we define formally the semantics of the language, it will be obvious that this corresponds to the language where action models have no post-condition and we may remove the post-conditions from the definition, i.e., we consider only action models of the shape E, →, pre . α ϕ is a shorthand for ¬[α]¬ϕ, ♦ a ϕ for ¬ a ¬ϕ, and other Boolean operators are defined as usual. Notice that action models are restricted to Boolean pre-and post-conditions.

Formulas of action model logic are interpreted in pointed models.

Definition 2.3 (Models).

A model M is a triple M = W, R, V , where W is a non-empty set; R ⊆ AGT × W 2 is an accessibility relation; and V : PROP → 2 W is a valuation. A pair M, w where w is a state in M is called a pointed model.

We will often write R a to refer to the set {(w, v) ∈ W 2 | (a, w, v) ∈ R}. Now we can introduce the semantics of action model logic.

Definition 2.4 (Semantics)

. Given a pointed model M, w with M= W, R, V , an action pointed model E, e with E = E, →, pre, post , we say that

M, w |= always M, w |= p iff w ∈ V (p) M, w |= ¬ϕ iff M, w |= ϕ M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ M, w |= a ϕ iff for all v ∈ W s.t. (w, v) ∈ R a , M, v |= ϕ M, w |= [E, e]ϕ iff M, w |= pre(e) implies (M ⊗ E), (w, e) |= ϕ,
where the restricted product (M ⊗ E) is defined as W ⊗ , R ⊗ , V ⊗ , with:

W ⊗ = {(v, d) ∈ W × E | M, v |= pre(d)} ((v, d), (u, f)) ∈ R ⊗ a iff (v, u) ∈ R a and d → a f V ⊗ (p) = {(v, d) | M, v |= post(d)(p)}.
We present the language including both pre-and post-conditions because post-conditions will simplify the encoding of the copy and remove operators in the following sections. But both languages are equally expressive (both have the same expressive power than ML) as post-conditions can be also eliminated via reduction axioms. More details on the use of pre-and post-conditions can be found in [START_REF] Van Ditmarsch | Public announcements, public assignments and the complexity of their logic[END_REF], in a slightly different setting.

Notice that we have not introduced the full action model logic as in [START_REF] Baltag | The logic of public announcements, common knowledge and private suspicions[END_REF]: we only consider Boolean pre and post-conditions in action models. The logic with copy and remove that we will introduce in the next section, only captures this fragment. However, even under this restriction, the expressive power of the logic is sufficient to capture interesting epistemic scenarios.

Example 2.5. Consider the following classical example in epistemic logics literature. There are three agents: Anne (a), Bill (b) and Cath (c); each of them holds one of three possible cards: zero, one or two. Propositional symbols such as z i , o i and t i state that the agent i is holding the card (z)ero, (o)ne and (t)wo, respectively. The following model shows all the possible situations. Each agent is uncertain about any other agent's card, which is also modeled in the figure. For instance, Anne cannot distinguish the two states at the top of the figure (in both states z a holds, i.e., Anne has card zero but she does not know if Bob has card one and Cath has card two or the other way round). But she can obviously distinguish these states of any other (in which she has a different card). Let us consider the scenario in which Anne shows card zero to Bill. This is represented by the leftmost action model below. Cath cannot see the face of the shown card, but notices that a card is being shown. The action model shown on the right codifies the situation where Anne tells Bill a card that she does not have. Anne whispers in Bill's ear "I do not have card two". Cath notices that Anne reveals she does not have some card, but cannot hear which card.

z a , o b , t c z a , t b , o c t a , z b , o c t a , o b , z c o a , z b , t c o a , t b , z c

Copy and Remove

In this section we introduce ML(cp, rm), a language which can create a finite number of copies of a model and remove edges. We start by introducing its formal syntax. Definition 3.1 (Syntax). Define the set FORM of ML(cp, rm)-formulas, together with a set PATH of path expressions.

FORM ::= | p | ¬ϕ | ϕ ∧ ϕ | a ϕ | rm(π)ϕ | cp(Q, q)ϕ,
where Q is any finite non-empty set of propositional symbols, q ∈ Q, a ∈ AGT, ϕ, ϕ ∈ FORM, and π ∈ PATH.

PATH ::= a | π; π | ϕ?,
where a ∈ AGT, π, π ∈ PATH and ϕ is a Boolean formula.

The operation rm(π)ϕ is related to the sabotage operator introduced by van Benthem in [START_REF] Van Benthem | An essay on sabotage and obstruction[END_REF] (investigated also in [START_REF] Löding | Solving the sabotage game is PSPACE-hard[END_REF][START_REF] Löding | Model checking and satisfiability for sabotage modal logic[END_REF][START_REF] Areces | Moving arrows and four model checking results[END_REF][START_REF] Fervari | Relation-changing modal logics[END_REF][START_REF] Areces | Relation-changing modal operators[END_REF]), and its intuitive meaning is that ϕ holds after having deleted all edges that appear in paths that match π. The intuitive meaning of the operator cp(Q, q)ϕ is that after replicating the initial model as many times as propositional symbols in Q, ϕ is true in the copy labeled by q.

We also define the following syntactic fragments: ML(cp), the fragment with only the cp operator; ML(rm), the fragment with only rm; ML(rm 1), the fragment with only rm restricted to path expressions of the form π = ϕ?; a; ψ? and ML(cp, rm 1), the fragment with rm with path expressions only of the form π = ϕ?; a; ψ? and with cp.

Formulas of ML(cp, rm) are interpreted over models such as those introduced in Definition 2.3. We now define the satisfaction relation. We represent a path as a sequence w 0 a 0 w 1 a 1 . . . w n-1 a n-1 w n where w i are states and a i are agents. Definition 3.2 (Paths). Let M = W, R, V be a model, π, π ∈ PATH. We define the set of π-paths P M (π) of M by induction on π as follows:

P M (a) = {wau | (w, u) ∈ R a } P M (π; π) = {SwS | Sw ∈ P M (π) and wS ∈ P M (π)} P M (ϕ?) = {w | M, w |= ϕ}.
Let a ∈ AGT and P a path, we define edges a (P) as the set of a-edges in P . Formally, edges a (P) = {(a, w, u) | wau is a subsequence of P }.

Definition 3.3 (Updated Models

). Given a model M = W, R, V , a path expression π, and Q is any finite non-empty set of propositional symbols, we define the updated models

M rm(π) = W, R rm(π) , V , where R rm(π) = R \ a∈AGT,P ∈P M (π) edges a (P). M cp(Q) = W cp(Q) , R cp(Q) , V cp(Q) , where W cp(Q) = {(w, q) | w ∈ W and q ∈ Q} R cp(Q) = {(a, (w, q), (w , q)) | (a, w, w) ∈ R} V cp(Q) (p) = {(w, q) | w ∈ V (p)} for p ∈ PROP \ Q V cp(Q) (q) = {(w, q) | w ∈ W } for q ∈ Q.
We will discuss some examples of updated models.

Example 3.4. Let us consider the following model M:

p q q q a a b w
The updated model M cp({p1,p2}) is shown below. We replicate the original model in two copies: one satisfying p 1 and another satisfying p 2 .

p, p 1 q, p 1 q, p 1 q, p 1 a a b p, p 2 q, p 2 q, p 2 q, p 2 a a b (w, p 1) (w, p 2) a a b a a b
Notice that M cp({p1,p2}) does not contain new information about successors: each copy of a successor in the original model is also a successor in the new model. We are ready to define the semantics of ML(cp, rm). Definition 3.6 (Semantics). Given a pointed model M, w and a formula ϕ we say that M, w satisfies ϕ, and write M, w |= ϕ, when

M, w |= p iff w ∈ V (p) M, w |= ¬ϕ iff M, w |= ϕ M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ M, w |= a ϕ iff for all v ∈ W s.t. (w, v) ∈ R a , M, v |= ϕ M, w |= rm(π)ϕ iff M rm(π) , w |= ϕ M, w |= cp(Q, q)ϕ iff M cp(Q) , (w, q) |= ϕ.
The formula ϕ is satisfiable if for some pointed model M, w we have M, w |= ϕ. We further define cp(Q)ϕ as an abbreviation for q∈Q cp(Q, q)ϕ. We usually write cp(p 1 , . . . , p n) instead of cp({p 1 , . . . , p n }). Let us see an example of how rm can be useful to make announcements. Now consider that agent a reveals to agent b that she has a red card. Modeling this with a public announcement [START_REF] Plaza | Logics of public communications[END_REF], we remove the access to all the states where agent a does not have a red card. The formula rm(b; ¬r a ?) captures exactly this epistemic update, obtaining the model M shown on the right. After executing rm(b; ¬r a ?)rm(a; ¬r a ?), agent b knows that agent a has a red card, i.e., M , w |= rm(b; ¬r a ?)rm(a; ¬r a ?) b r a .

Expressive Power

Bisimulation is a classical notion introduced to investigate the expressive power of modal languages. For example, for AML it is known that the notion of bisimulation needed coincides with the one for ML. The conditions required for a notion of bisimulation that captures the expressive power of ML(cp, rm) are very natural: paths deleted via rm traversing a particular state are characterized by the information in successors and predecessors of such point. Let us see an example. The formula does not hold at M, w because we delete all the paths matching two consecutive occurrences of an a-edge. On the other hand, the formula holds in the following model: w a As we can see, path expressions can describe edges that arrive to the evaluation point. It turns out that ML(cp, rm)-bisimulations are defined by the same conditions that define bisimulations for ML(-1) (see [START_REF] Blackburn | Modal Logic[END_REF]). ML(-1) is the basic modal logic ML extended with the converse (past) modality -1 . Let M = W, R, V be a model, the semantics of -1 is defined as:

M, w |= -1 a ϕ iff for all v ∈ W such that (v, w) ∈ R a , M, v |= ϕ.
The formula ♦ -1 a ϕ is a shorthand for ¬ -1 a ¬ϕ. (zig) if (w, v) ∈ R a then for some v , (w , v) ∈ R a and vZv ;

(zag) if (w , v) ∈ R a then for some v, (w, v) ∈ R a and vZv .

(zig -1) if (v, w) ∈ R a then for some v , (v , w) ∈ R a and vZv ;

(zag -1) if (v , w) ∈ R a then for some v, (v, w) ∈ R a and vZv .

We say that two pointed models M, w and M , w are ML(cp, rm)-bisimilar (and write M, w ML(cp,rm) M , w) if there is an ML(cp, rm)-bisimulation Z such that wZw .

Let P ⊆ PROP, we say that two pointed models M, w and M , w are Pbisimilar for the logic L (and write M, w P L M , w) if there is a relation Z with wZw satisfying the conditions for L-bisimulations except that (atomic harmony) is restricted to propositional symbols occurring in P .

We can prove that ML(cp, rm)-bisimilar models satisfy the same formulas. Without loss of generality we assume that all remove operators have the form rm(ϕ 1 ?; a 1 ; ϕ 2 ?; a 2 ; . . . ; a n-1 ; ϕ n ?)ψ, where ϕ i ? are Boolean formulas, and a i ∈ AGT.

Proposition 4.3. For all ϕ ∈ ML(cp, rm), there exists ϕ ∈ ML(cp, rm) equivalent to ϕ, where the path expressions have the form ϕ 1 ?; a 1 ; ϕ 2 ?; . . . ; a n-1 ; ϕ n ?, where ϕ i ? are Boolean formulas, and a i ∈ AGT.

Proof. The proposition is a consequence of the following equivalences which can be easily checked.

1. rm(π; ϕ 1 ?; ϕ 2 ?; π) ↔ rm(π; (ϕ 1 ∧ ϕ 2)?; π). 2. rm(π; a 1 ; a 2 ; π) ↔ rm(π; a 1 ; ?; a 2 ; π).

We introduce three lemmas that will be helpful in the proof of Theorem 4.7: invariance under bisimulation. Lemma 4.4. Let M= W, R, V and M = W , R , V be models, w ∈ W , w ∈ W , be such that M, w ML(cp,rm) M , w , and π=ϕ 1 ?; a 1 ; ϕ 2 ?; . . . ; a n-1 ; ϕ n ?.

Then, for all P ∈ P M (π) such that P = w 0 a 0 . . . wa i . . . w n , there is some P ∈ P M (π), with P = w 0 a 0 . . . w a i . . . w n and for all j ∈ {1, . . . , n} we have M, w j ML(cp,rm) M , w j .

Proof. Given some P ∈ P M (π), we need to find P ∈ P M (π) satisfying the lemma. Suppose P = w 0 a 0 . . . wa i . . . w n . As wa i w i+1 is a subpath of P , (w, w i+1) ∈ R ai . Because M, w ML(cp,rm) M , w , by (zig) there is w i+1 such that (w , w i+1) ∈ R ai and M, w i+1 ML(cp,rm) M , w i+1 . For this reason, M, w i+1 |= ψ if and only if M , w i+1 |= ψ, for all ψ Boolean. Then, w i+1 is a good choice in order to construct P . We can repeat this process to build the subpath w a i w i+1 . . . w n . In order to choose w i-1 , we can proceed in the same way but using (zig -1), and repeating the process until we reach w 1 . Putting all together, we have constructed the right P . Lemma 4.5. Let M = W, R, V and M = W , R , V be models, w ∈ W , w ∈ W and π a path expression. Then M, w ML(cp,rm) M , w implies M rm(π) , w ML(cp,rm) M rm(π) , w .

Proof. We have to define a bisimulation

Z ⊆ W rm(π) × W rm(π) . Define Z = {(v, v) | M, v ML(cp,rm) M , v }.
As M, w ML(cp,rm) M , w , by Lemma 4.4 we know that each time we remove a path in M, we also remove a path in M . Then immediately follows that Z is a bisimulation. Lemma 4.6. Let M = W, R, V and M = W , R , V be models, w ∈ W and w ∈ W . Then:

M, w ML(cp,rm) M , w implies M cp(Q) , (w, q) ML(cp,rm) M cp(Q) , (w , q).
Proof. We have to define a bisimulation Z ⊆ W cp(Q) × W cp(Q) . Define:

Z = {((v, q), (v , q)) | (v, q), (v , q) ∈ W cp(Q) , such that M, v ML(cp,rm) M , v }.
(atomic harmony) holds because (v, q)Z(v , q) iff v and v satisfy (atomic harmony) in the original models, and (v, q) and (v , q) are both labeled by the symbol q. The required (zig) and (zag) conditions follow from the bisimulation between M and M and the definition of M cp(Q) and M cp(Q) .

Then we can state: Theorem 4.7 (Invariance under bisimulation.). For all ϕ ∈ ML(cp, rm),

M, w ML(cp,rm) M , w implies (M, w |= ϕ iff M , w |= ϕ).
Proof. The proof is by structural induction. Let M = W, R, V and M = W , R , V be such that M, w ML(cp,rm) M , w . We only prove the inductive cases for rm and cp. cp(Q, q)ϕ: Suppose M, w |= cp(Q, q)ϕ. Then we have M cp(Q) , (w, q) |= ϕ. By M, w ML(cp,rm) M , w and Lemma 4.6, we have M cp(Q) , (w, q) ML(cp,rm) M cp(Q) , (w , q). By inductive hypothesis M cp(Q) , (w , q) |= ϕ. Therefore, M , w |= cp(Q, q)ϕ.

Definition 4.8 (Tree model property.).

A language L has the tree model property if for all formula ϕ ∈ L satisfiable, ϕ is satisfied in the root of a tree.

As a consequence of the tree model property for ML(-1) it immediately follows:

Corollary 4.9. The language ML(cp, rm) has the tree model property.

Notice that for ML(cp, rm 1) bisimulations need only satisfy the (zig) and (zag) conditions, as was the case for ML, because removals are restricted to paths of length one.

We already mentioned that AML has the same expressive power that ML, and it is clear that both are not more expressive than ML(cp, rm) (as ML(cp, rm) is a conservative extension of ML). The models shown in Example 4.1 prove that ML(cp, rm) is actually more expressive than AML.

Relation between action models and logics with copy and remove

In this section we investigate the relation between ML(cp, rm 1) and action models. First, we introduce an equivalence preserving translation from AML to ML(cp, rm 1). Then we show that action models with post-conditions can encode cp and rm operations.

Embedding action models into ML(cp, rm 1)

We introduce the translation that formally defines the operations shown in Figure 2.

Definition 5.1. We define the shorthand rm(π 1 ||π 2)ϕ for rm(π 1)rm(π 2)ϕ, for all paths π 1 , π 2 of length 1. Notice that as π 1 and π 2 are paths of length 1, and given that we are only considering Boolean tests, then || is commutative. Let ϕ ∈ AML such that the domain of action models in ϕ are disjoint. The translation Tr from AML-formulas to ML(cp, rm 1)-formulas is defined as follows: if e i → a e j .

Tr(p) = p Tr(¬ϕ) = ¬Tr(ϕ) Tr(♦ a ϕ) = ♦ a Tr(ϕ) Tr(ϕ ∧ ψ) = Tr(ϕ) ∧ Tr(ψ) Tr([E,
Cases that do not involve dynamic operations are trivial. Let us analyze the translation of a modality with action models. The translation follows the steps we describe in Figure 2. The antecedent pre(e 1) is exactly the same clause as for model updates (considering the pointed action model E, e 1 as the desired update). For each action point e i ∈ E, we consider a propositional symbol p ei . The cp({p e1 , . . . , p en }, p e1) operation replicates the original model as many times as action points in E. This operation generates the cartesian product W ×E and it corresponds to the first copy operation in Figure 2. However, the model M⊗E might not result in the whole cartesian product. To cut access to the unwanted part of the model we introduce rm(ρ). The path expression ρ characterizes all the edges we introduced by the previous cp({p e1 , . . . , p en }, p e1) pointing to p eistates which do not satisfy the corresponding pre(e i). This operation correspond to the second remove operation in Figure 2. It remains to restrict the obtained accessibility relation as specified by the action model. This is done by rm(σ). Remember that ((v, d), (u, f)) ∈ R a in M ⊗ E if and only if (v, u) ∈ R a and d → a f . This operation correspond to the third remove operation in Figure 2. rm(σ) deletes all a-edges ((w, p ei), (w, p ej)) such that in the action model there is no a-edge from e i to e j , for all a ∈ AGT.

We obtain a model which is AML-bisimilar to M ⊗ E. Now we can prove: Theorem 5.2. Let ϕ be an AML-formula and M, w a pointed model, we have

M, w |= ϕ iff M, w |= Tr(ϕ).
Proof. The next claim will be useful in the proof.

Claim 1. Let M = W, R, V be a model, w ∈ W , E = E, →, pre be an action model with E = {e 1 , . . . , e n }, and let M = ((M cp(pe 1 ,...,pe n)) rm(ρ)) rm(σ) , with ρ, σ as in Definition 5.1. Then (M ⊗ E), (w, e 1) P AML M , (w, p e1), where P = {p e1 , . . . , p en }.

Proof (of the Claim). Let us denote by M ⊗ E = W ⊗ , R ⊗ , V ⊗ , be the restricted product of M and E. Define the relation Z = {(w, e i), (w, p ei)) | (w, e i) ∈ W ⊗ and (w, p ei) ∈ W }. We verify the conditions (atomic harmony) with respect to P , (zig) and (zag), in order to prove that Z is a P -bisimulation for AML.

• (atomic harmony). By definition of ⊗, we have (w, e i) ∈ V ⊗ (p) if and only if w ∈ V (p), if and only if (by |= for cp) (w, p ei) ∈ V cp({pe 1 ,...,pe n }) .

• (zig). Suppose there is (v, e j) such that ((w, e i), (v, e j)) ∈ R ⊗ a . By definition of ⊗, we have that (w, v) ∈ R a and e i → a e j . By the cp part, we know that if (w, v) ∈ R a then ((w, p ei), (v, p ej)) ∈ (R cp({pe 1 ,...,pe n })) a . We need to check that after the two removes, this edge has not been removed. ρ removes the edges pointing to states such that p e k and ¬pre(e k) hold, for all e k . Because we assume ((w, e i), (v, e j)) ∈ R ⊗ a we know that (v, e j) ∈ W ⊗ , then M, v |= pre(e j) (by product update definition). Hence ρ does not remove the edge between (w, p ei) and (v, p ej). On the other hand, σ does not remove it because we assume e i → a e j . By inductive hypothesis, we have (v, e j)Z(v, p ej).

• (zag). This condition can be easily checked by applying the same steps as for (zig), but in the other direction. can be easily checked by applying the same steps as for (zig), but in the other direction.

The proof of the theorem is by structural induction. Let M = W, R, V be a model, E = E, →, pre an action model, w ∈ W and e 1 ∈ E. We will discuss the case involving dynamic operations. We need to prove that We see the encoding above applied to a concrete update in Figure 2, obtaining a model which is bisimilar to the updated model of Figure 1.

M, w |= [E, e 1]ϕ iff M, w |= Tr([E, e 1]ϕ). Assume M, w |= [E,

Decomposing ML(cp, rm 1) into action models

We show now that copy and remove can be seen as action models in AML + . This is valuable, as it demonstrates that action models without post-conditions can be decompose in simpler action models, but with post-conditions. This decomposition can be obtained by translating first into ML(cp, rm 1) and then considering copy and remove again as basic action models.

Consider the copy action cp(Q). The copy operator can be modeled as an action model E(cp(Q)) = Q, →, pre, post such that → a = Q × Q (for all a ∈ AGT), and for all q ∈ Q:

pre(q) = post(q)(p) = p for p ∈ Q \ {q} post(q)(q) = post(q)(p) = p for p ∈ PROP \ Q.
We note that for all r ∈ PROP \ Q the value is not affected at the execution of this action, as the finite subset of propositional symbols that is assigned a post-condition is the set Q.

Example 5.3. The action model E(cp(q 1 , q 2 , q 3)) for two agents a and b is depicted below: pre: post: q 1 := ; q 2 := ⊥; q 3 := ⊥ pre: post: q 1 := ⊥; q 2 := ; q 3 := ⊥ pre: post: q 1 := ⊥; q 2 := ⊥; q 3 := Consider the translation : ML(cp) → AML + such that

(cp(Q, q)ϕ) = [E(cp(Q)), q]ϕ ,
and commutes with all other operators.

Proposition 5.4. Let M, w be a pointed model, and let ϕ be a ML(cp)-formula.

Then M, w |= ϕ iff M, w |= ϕ .
The action model E(rm(ϕ?; a; ψ?)) = E, →, pre is defined as [START_REF] Kooi | Arrow update logic[END_REF][START_REF] Areces | Logics with copy and remove[END_REF], [START_REF] Areces | Logics with copy and remove[END_REF]01), [START_REF] Areces | Logics with copy and remove[END_REF][START_REF] Areces | Logics with copy and remove[END_REF]

E = {00, 10, 01, 11} pre(00) = ¬ϕ ∧ ¬ψ, → a = (E × E) \ {(10, 01),
} pre(10) = ϕ ∧ ¬ψ, → b = (E × E) for all b = a pre(01) = ¬ϕ ∧ ψ, pre(11) = ϕ ∧ ψ.
This action model corresponds to the operation of removing all a-edges (w, v) such that ϕ holds in w and ψ holds in v. Combining the previous results we obtain that every finite action model has the same update effect as the composition of a copy action model and two remove action models, where we use the translation Tr from Definition 5.1 but replace the copy and remove actions there by their correspondent action model.

Complexity of deciding satisfiability

In this section, we will focus on the satisfiability problem restricted to fragments, adapting results obtained in [START_REF] Fervari | Relation-changing modal logics[END_REF].

Complexity of the fragment ML(cp)

Let Σ be an arbitrary set of pairs (Q, q) where Q is any finite non-empty set of propositional symbols and q ∈ Q. We define the translation Tr Σ that maps formulas ϕ ∈ ML(cp) to formulas of ML as follows:

Tr Σ (p) = p Tr Σ (¬ϕ) = ¬Tr Σ (ϕ) Tr Σ (ϕ ∧ ψ) = Tr Σ (ϕ) ∧ Tr Σ (ψ) Tr Σ (a ϕ) = a ((Qi,pi)∈Σ p i → Tr Σ (ϕ)) Tr Σ (cp(Q, q)ϕ) = Tr Σ\{(Q,q)} (ϕ).
ML, adapted to manage a set Σ, which represents possible copies of a model. As for ML, the algorithm takes only polynomial space. Theorem 6.3. The satisfiability problem of ML(cp) is PSpace-complete.

Proof. PSpace-hardness follows from PSpace-completeness of the satisfiability problem for ML. In order to prove completeness, we can use Proposition 6.2, and test whether there exists a model M such that M cp(Σ(ϕ)) , w Σ(ϕ) |= Tr Σ(ϕ) (ϕ). This can be done (by Proposition 6.1) by invoking

SAT(Tr Σ(ϕ) (ϕ) ∧ (Qi,pi)∈Σ(ϕ) p i , ∅, Σ(ϕ)).

Complexity of the fragment ML(rm)

We will show that ML(rm) can be translated into ML(-1), the basic modal logic ML extended with -1 . As we have mentioned, all remove operations can be transformed in the normal form rm(ϕ 1 ?; a 1 ; . . . ; a n-1 ; ϕ n ?)ψ. We introduce reduction axioms to get an ML(-1)-formula, and prove that any ML(rm)-formula, is equivalent to an ML(-1)-formula.

First, define the abbreviations ♦ i,j , ♦ -1 i,j , for a fix path expression π = ϕ 1 ?; a 1 ; . . . ; a n-1 ; ϕ n ?:

♦ i,j =      j < i ♦ ai ϕ i+1 i = j ♦ ai (ϕ i+1 ∧ ♦ i+1,j) i < j ♦ -1 i,j =      j < i ♦ -1 ai ϕ i i = j ♦ -1 aj (♦ -1 i,j-1 ∧ ϕ j) i < j Now define rm π i = ♦ -1 1,i-1 ∧ ϕ i ∧ ♦ i,n-1 .
Informally rm π i means "the current state is at position i in a path that matches π = ϕ 1 ?; a 1 ; ϕ 2 ?; a 2 ; . . . ; a n-1 ; ϕ n ? which is going to be deleted". For instance, rm π i , 1 ≤ i ≤ n are defined as:

rm π 1 = ϕ 1 ∧ (♦ a1 ϕ 2 ∧ (♦ a2 ϕ 3 . . . ∧ ♦ an-2 (ϕ n-1 ∧ ♦ an-1 ϕ n) . . .)) rm π 2 = ♦ -1 a1 ϕ 1 ∧ ϕ 2 ∧ (♦ a2 ϕ 3 . . . ∧ ♦ an-2 (ϕ n-1 ∧ ♦ an-1 ϕ n) . . .) . . . rm π n-1 = ♦ -1 an-2 (♦ -1 an-3 (. . . (♦ -1 a1 ϕ 1 ∧ ϕ 2) ∧ ϕ 3) . . .) ∧ ϕ n-1 ∧ ♦ an-1 ϕ n rm π n = ♦ -1 an-1 (♦ -1 an-2 (. . . (♦ -1 a1 ϕ 1 ∧ ϕ 2) ∧ ϕ 3 . . .) ∧ ϕ n-1) ∧ ϕ n .
Lemma 6.4. Let M= W, R, V be a model, w ∈ W and π=ϕ 1 ?; a 1 ; ϕ 2 ?; . . . ; ϕ n ? a path expression. Let i be such that 0 ≤ i ≤ n, then M, w |= rm π i iff there is some P ∈ P M π such that P = w 1 a 1 w 2 . . . w n , w i = w and for all w j ∈ P we have M, w j |= ϕ j .

Proof. The proof is by induction on the length of π:

π = ϕ 1 ?: M, w |= rm π 1 if
M, w |= ♦ -1 1,i-1 ∧ ϕ i ∧ ♦ i,n-1 . Now, we know: 1. M, w |= ϕ i . 2. M, w |= ♦ -1 1,i-1 , then by definition of ♦ -1 i,j we have M, w |= ♦ -1 ai-1 (♦ -1 1,i-2 ∧ ϕ i-1). By definition of |=, there is some v ∈ W such that (v, w) ∈ R ai-1 and M, v |= ♦ -1 1,i-2 ∧ ϕ i-1 .
Let us define π 1 = ϕ 1 ?; a 1 ; ϕ 2 ?; . . . ; ϕ i-1 ?. Then, by definition of rm π i , we have M, v |= rm π1 i-1 , and by inductive hypothesis, there is a path P 1 ∈ P M π1 such that P 1 = w 1 a 1 . . . w i-1 , with w i-1 = v and for all w j ∈ P 1 , M,

w j |= ϕ j (0 ≤ j ≤ i -1). 3. M, w |= ♦ i,n-1 , then by definition of ♦ i,j we have M, w |= ♦ ai (ϕ i+1 ∧ ♦ i+1,n-1)
. By definition of |=, there is some t ∈ W such that (w, t) ∈ R ai and M, t |= ϕ i+1 ∧ ♦ i+1,n-1 . Let us define π 2 = ϕ i+1 ?; a i+1 ; . . . ; ϕ n ?. Then, by definition of rm π i , we have M, t |= rm π2 i+1 , and by inductive hypothesis, there is a path P 2 ∈ P M π2 such that P 2 = w i+1 a i+1 . . . w n , with w i+1 = t and for all w j ∈ P 2 , M,

w j |= ϕ j (i + 1 ≤ j ≤ n).
Notice that π = π 1 ; a i-1 ; ϕ i ?; a i ; π 2 . It remains to choose P =P 1 a i-1 w i a i P 2 and we have what we wanted.

We introduce reduction axioms which transform ML(rm, -1)-formulas 1 into ML(-1)-formulas. We need to define axioms for ML(rm, -1) in order to manage intermediate steps.

Proposition 6.5. Let π=ϕ 1 ?; a 1 ; ϕ 2 ?; . . . ; ϕ n ?, and let ϕ = rm(π)θ be a formula of ML(rm, -1), then the following reduction axioms are valid (we assume that ♦ a ψ is written as ¬ a ¬ψ, and similarly for ♦ -1).

(1) rm(π)p ↔ p, p ∈ PROP (2) rm(π)¬ψ ↔ ¬rm(π)ψ (3) rm(π)(ψ ∧ ψ) ↔ (rm(π)ψ ∧ rm(π)ψ) (4) rm(π) a ψ ↔ a rm(π)ψ, if a / ∈ π (5) rm(π) -1 a ψ ↔ -1 a rm(π)ψ, if a / ∈ π (6) rm(π) a ψ ↔ (i∈{1,...,n-1 | ai=a} ¬rm π i → ai rm(π)ψ)∧ (i∈{1,...,n-1 | ai=a} (rm π i → ai (rm π i+1 ∨ rm(π)ψ))) (7) rm(π) -1 a ψ ↔ (i∈{1,...,n-1 | ai=a} ¬rm π i → -1 ai rm(π)ψ)∧ (i∈{1,...,n-1 | ai=a} (rm π i → -1 ai (rm π i-1 ∨ rm(π)ψ))).
Proof. We prove each of them separately:

1. Suppose M, w |= rm(π)p. By definition of |=, we have M rm(π) , w |= p. Because rm(π) keeps the same valuation in the updated model, w ∈ V (p). Then (by definition of |=), M, w |= p.

2. Follows from the self-duality of rm, which is trivial given that it is a global operator, i.e., an operator which affects an arbitrary part of the model.

The next theorem now follows.

Theorem 6.7. The satisfiability problem for ML(rm) is decidable.

The reduction axioms that eliminate rm(π) produce an exponential blow up in the size of the formula. If we consider only formulas in ML(rm 1), we can avoid the exponential blow up. Proposition 6.8. Let M = W, R, V be a model, θ, ϕ and ψ be ML(rm 1)formulas and a ∈ AGT. Then M, w |= rm(ϕ?; a; ψ?) a θ iff M, w |= a ((ψ ∧ ♦ -1 ϕ) ∨ rm(ϕ?; a; ψ?)θ).

Proof. Let us suppose that M, w |= rm(ϕ?; a; ψ?) a θ. Then, we have that for all v ∈ W such that (w, v) ∈ (R rm(ϕ?;a;ψ?)) a , M rm(ϕ?;a;ψ?) , w |= θ ⊗. Let u be such that (w, u) ∈ R a , and let suppose M, u |= ¬(ψ ∧ ♦ -1 ϕ). This means that (w, u) ∈ R a iff (w, u) ∈ (R rm(ϕ?;a;ψ?)) a . Then (by ⊗) M rm(ϕ?;a;ψ?) , u |= θ iff (by definition of |=) M, u |= rm(ϕ?; a; ψ?)θ, iff M, w |= a (¬(ψ ∧ ♦ -1 a ϕ) → rm(ϕ?; a; ψ?)θ).

Then, next theorem immediately follows: Theorem 6.9. The satisfiability problem for ML(rm 1) is PSpace-complete.

Complexity of the fragment ML(cp, rm 1)

We showed that there is a polynomial translation from ML(cp, rm 1) into a dynamic epistemic modal logic with action models with both pre-conditions and post-conditions, that preserves satisfiability. In [START_REF] Aucher | On the complexity of dynamic epistemic logic[END_REF], it is proved that the satisfiability problem for dynamic epistemic modal logic with action models with pre-conditions and without post-conditions is in NExpTime. We can handle post-conditions in NExpTime adapting the tableau method of [8]2 . Theorem 6.10. The satisfiability problem for AML + is in NExpTime.

Proof. We will provide a tableau method adapted from the case without postconditions [START_REF] Aucher | On the complexity of dynamic epistemic logic[END_REF]. Let LAB be a countable set of labels designed to represent states of the model (M, w) we are trying to construct. Our tableau method manipulates terms that we call tableau terms and they are of the following kind:

• (σ E 1 , e 1 ; . . . ; E i , e i ϕ)
where σ ∈ LAB is a symbol (that represents a state in the initial model) and for all j ∈ {1, . . . , i}, E j , e j is an action model. This term means that ϕ is true in the state denoted by σ after the execution of the sequence E 1 , e 1 , . . . , E i , e i and that the sequence is executable in the state denoted by σ;

• (σ E 1 , e 1 ; . . . ; E i , e i

) means that the sequence E 1 , e 1 , . . . , E i , e i is executable in the state denoted by σ. The symbol means that the state survives a sequence of pointed action models;

• (σ E 1 , e 1 ; . . . ; E i , e i ⊗) means that the sequence E 1 , e 1 , . . . , E i , e i is not executable in the state denoted by σ. The symbol ⊗ means that the state does not survive the sequence of pointed action models.

• (σR a σ 1) means that the state denoted by σ is linked by R a to the state denoted by σ 1 ;

• ⊥ denotes an inconsistency.

A tableau rule is represented by a numerator N above a line and a finite list of denominators D 1 , . . . , D k below this line, separated by vertical bars. In the following σ denotes a symbol for states. Σ, Σ , etc., denote sequences of pointed action models. denotes the empty sequence of pointed action models.

A tableau tree is a finite tree with a set of tableau terms at each node. A rule with numerator N is applicable to a node carrying a set Γ if Γ contains an instance of N . If no rule is applicable, Γ is said to be saturated. We call a node σ an end node if the set of formulas Γ carried by σ is saturated, or if ⊥ ∈ Γ. The tableau tree is extended as follows:

1. Choose a leaf node n carrying Γ where n is not an end node, and choose a rule ρ applicable to n. A branch in a tableau tree is a path from the root to an end node. A branch is closed if its end node contains ⊥, otherwise it is open. A tableau tree is closed if all its branches are closed, otherwise it is open.

For action models without post-conditions, we can use the following two rules:

(σ Σ p) (σ p) (σ Σ ¬p) (σ ¬p)
These rules are no longer sound in the presence of post-conditions, because the valuation may change after the application of an action model. We propose to replace them by the following rule:

(σ Σ ; E, e) (σ Σ post(e)(p)) (σ Σ ; E p) (σ Σ ¬post(e)(p)) (σ Σ ; E ¬p) (post)
The complete set of tableau rules is given in Figure 3.

The tableau method contains the classical Boolean rules (∧), (¬¬), (← p) and (← ¬p). It also contains the non-deterministic rule (¬∧) handling disjunction. The rule (⊥) makes the current execution fail. The rule for (a) is applied for all j ∈ {1, . . . i} and all u j such that w j R a u j . Similarly, the rule for (¬ a) is applied by choosing non-deterministically for all j ∈ {1, . . . i} some u j such that w j R a u j and creating a new fresh label σ new . The rules (), (⊗), (clash ,⊗) and (⊗) handle the pre-conditions. Rule () says that if a state survives, then the pre-condition should be true. Rule (⊗) involves non-determinism: either a state does not survive because the current pre-condition is false or because it did not survive because of a previous pre-condition. Rule (clash ,⊗) says that it is not possible that a state survives and does not survive at the same time. Rule (⊗) says that a state always survives the empty sequence of pointed action models. The last two rules ([π ∪ π]) and (¬[π ∪ π]) handle the union operator.

The rule (post) is non-deterministic and says that either the post condition was true and p is true now or the post condition was false and p is false now.

The proof of soundness and completeness of the tableau is similar to the proof available in [START_REF] Aucher | On the complexity of dynamic epistemic logic[END_REF]. To test whether ϕ is AML + -satisfiable, start the tableaux with Γ := {(σ ϕ)}. Given a branch Γ, consider the following tree T Γ :

• Nodes are labels σ ∈ LAB appearing in Γ;

• Two nodes σ, σ are linked when a term of the form (σ R a σ) appears in Γ.

At any step of the algorithm, the depth of T Γ is linear in the size of ϕ. The arity of T Γ is bounded by an exponential in ϕ since the set of terms of the form (σ Σ ¬ a ψ) is exponential for a given σ. Thus, the set Γ is bounded by an exponential in ϕ. At any step of the algorithm, we add a new term in Γ. Thus, as Γ requires an exponential amount of space, it takes an exponential amount of time to fill Γ until Γ is saturated or until we reach a contradiction. The resulting tableau method can still be turned into a non-deterministic algorithm running in exponential time.

Then we can state: Corollary 6.11. The satisfiability problem for ML(cp, rm 1) is in NExpTime.

As there is a polynomial translation from dynamic epistemic modal logic without post-conditions AML into ML(cp, rm 1) that preserves satisfiability (see Definition 5.1 and Theorem 5.2), and the satisfiability problem in AML is NExpTime-hard [START_REF] Aucher | On the complexity of dynamic epistemic logic[END_REF], the satisfiability problem of a formula in ML(cp, rm 1) is NExpTime-hard. Theorem 6.12. The satisfiability problem for ML(cp, rm 1) is NExpTime-complete.

(σ Σ ϕ ∧ ψ) (σ Σ ϕ) (σ Σ ψ) (∧) (σ Σ ¬¬ϕ) (σ Σ ϕ) (¬¬) (σ Σ ¬(ϕ ∧ ψ)) (σ Σ ¬ϕ) | (σ Σ ¬ψ) (¬∧) (σ Σ p)(σ Σ ¬p) ⊥ (⊥) (σ Σ ¬[E, e]ϕ) (σ Σ ; E, e) (σ Σ ; E, e ¬ϕ) (¬[E, e]) (σ Σ [E, e]ϕ) (σ Σ ; E, e ⊗) (σ Σ ; E, e) (σ Σ ; E, e ¬ϕ) ([E, e]) (σ Σ ; E, e) (σ Σ pre(e)) (σ Σ) () (σ Σ ; E, e ⊗) (σ Σ) (σ Σ ¬pre(e)) (σ Σ ⊗) (⊗) (σ Σ ; E, e) (σ Σ post(e)(p)) (σ Σ ; E p) (σ Σ ¬post(e)(p)) (σ Σ ; E ¬p) (post) (σ E 1 , e 1 ; . . . ; E i , e i a ϕ) (σ R a σ 1) (a) (σ 1 E 1 ,
(¬ a) (σ Σ ⊗)(σ Σ) ⊥ (clash ,⊗) (σ ⊗) ⊥ (⊗) (σ Σ [π ∪ π]ϕ) (σ Σ [π]ϕ) (σ Σ [π]ϕ) ([π ∪ π]) (σ Σ ¬[π ∪ π]ϕ) (σ Σ ¬[π]ϕ) | (σ Σ ¬[π]ϕ) (¬[π ∪ π])

Related Work

In [START_REF] Kooi | Arrow update logic[END_REF], a dynamic epistemic logic is presented with model changing modalities called 'arrow updates'. Consider an arrow for agent a, i.e., a pair (w, v) in the accessibility relation for agent a, that satisfies a logical condition ϕ in w (at the start of the arrow) and a condition ψ in v (at the end of the ar-row). Then, given a model M, an 'arrow update' for this model preserves all pairs (w, v) ∈ R a such that M, w |= ϕ and M, v |= ψ; thus it deletes all other arrows (including for all other agents b = a). Using our notation, one arrow update (such as in [START_REF] Kooi | Arrow update logic[END_REF]) with (ϕ?; a; ψ?), preserving all such arrows, clearly corresponds to three simultaneous rm 1 actions (length-one path removals) (¬ϕ?; a; ¬ψ?), (¬ϕ?; a; ψ?), and (ϕ?; a; ¬ψ?). Now we do not contemplate parallel rm actions, but, as we are only considering Boolean formulas ϕ and ψ in this submission, the three parallel rm actions correspond to three consecutive rm actions (¬ϕ?; a; ¬ψ?), (¬ϕ?; a; ψ?), and (ϕ?; a; ¬ψ?). Dually, each rm(ϕ?; a; ψ?) (equally) corresponds to three (simultaneous or consecutive) arrow updates (¬ϕ?; a; ¬ψ?), (¬ϕ?; a; ψ?), and (ϕ?; a; ¬ψ?); in [START_REF] Kooi | Arrow update logic[END_REF], the semantic primitive is a finite set of arrows to preserve, simultaneity is here the norm.

Unlike us, [START_REF] Kooi | Arrow update logic[END_REF] does not give complexity results but focus on expressivity and succinctness. [START_REF] Kooi | Arrow update logic[END_REF] does not restrict the updates to those with Boolean preconditions but have a fully inductively defined logical language: the ϕ and ψ tests on the preserved arrows can be on any formula. The language focuses on preservation instead of removal as it is done by other dynamic epistemic logics. For example, the public announcement of !ϕ preserves all (ϕ?; a; ϕ?) for all agents a simultaneously. In a further generalization of their work [START_REF] Kooi | Generalized arrow update logic[END_REF] they consider epistemic actions consisting of Kripke frames and where each point in the frame carries a preservation condition (or conditions) (ϕ?; a; ψ?): this then models partial observability. We achieve a similar effect by the interaction of cp and rm. They also demonstrate that arrow updates do not change the expressivity of the language. We can copy that result (however, with the restriction to Boolean tests). However, we have also shown that the expressivity increases once one allows path removal, see Example 4.1. It may be interesting to observe that our result that an action model with Boolean pre-conditions can be simulated by copy and remove (Theorem 5.2) is a result of the kind called update equivalence in [START_REF] Kooi | Generalized arrow update logic[END_REF] (there is an obvious relation to action emulation [START_REF] Van Eijck | Action emulation[END_REF]).

In [START_REF] Aucher | Global and local graph modifiers[END_REF] global and local graph modifiers are proposed, where the modifications can concern both the valuations of propositional variables (also known as ontic change, assignment, or substitution) as the accessibility relations. A global graph modification a -(ϕ, ψ) [19, page 295] corresponds to our rm 1 action (ϕ?; a; ψ?), whereas a local graph modification of that kind would amount to a sabotage operator à la Van Benthem and as presented in [START_REF] Löding | Solving the sabotage game is PSPACE-hard[END_REF][START_REF] Löding | Model checking and satisfiability for sabotage modal logic[END_REF][START_REF] Van Benthem | An essay on sabotage and obstruction[END_REF][START_REF] Areces | Moving arrows and four model checking results[END_REF][START_REF] Fervari | Relation-changing modal logics[END_REF][START_REF] Areces | Relation-changing modal operators[END_REF], with ? as the test on beginning and end of the arrow. However, in [START_REF] Aucher | Global and local graph modifiers[END_REF] the only local graph modifiers considered are of the ontic change kind3 . They consider expressivity of the global version of their logic to other dynamic epistemic logics, in the presence of the universal modality.

Finally, as discussed before, this work should be seen as a continuation of the research developed in [START_REF] Areces | Moving arrows and four model checking results[END_REF][START_REF] Areces | Swap logic[END_REF][START_REF] Fervari | Relation-changing modal logics[END_REF] on model-changing operations. We recall that one of the model changing operations is the sabotage operator that removes a pair (w, v) from the accessibility relation, without logical conditions in w or v (and sometimes bound by other constraints, such as that w should be the actual world, or that simultaneously to removing (w, v), the actual world shifts from w to v). Now, clearly, 'sabotaging' (w, v) is the same as removing/deleting (w, v). However, there is a very important difference. In the underlying investigation, all (w, v) are removed in the rm action (ϕ?; a; ψ?). But in the sabotage action, a (arbitrary) (w, v) is removed (without conditions). That makes the latter far more expressive than the former, as this allows one to select (and in that way, so to speak, 'name') an individual arrow, hybrid logic like (as also observed in [START_REF] Aucher | Global and local graph modifiers[END_REF]). Therefore such logics tend to be undecidable and much more expressive, unlike the underlying proposal-we recall that ML(cp, rm 1) is equally expressive than multi-agent modal logic. It is unclear how to bridge the wide gap that jumps straight to undecidability.

Conclusion

We proposed the dynamic modal logic ML(cp, rm) which contains copy and remove operators. We investigated model theoretic properties of ML(cp, rm) such as bisimulations and expressive power. In order to give an appropriate notion of bisimulation, we need the same conditions as for the -1 operator, because we need to differentiate states with respect to the paths that traverse them.

We showed that the action model logic AML, one of the best-known dynamic epistemic logics, can be polynomially embedded in ML(cp, rm 1) (the fragment with length-one path removals) when we consider action models with only Boolean pre-conditions. This is in line with the previously known result that, when AML is evaluated on the class of finite models, action model execution corresponds to model restriction ('remove') on a bisimilar copy ('copy') of the initial model [START_REF] Van Ditmarsch | Simulation and information[END_REF]. The restriction to Boolean pre-conditions is certainly a limitation, but we discussed examples that show that its expressive power is sufficient to model interesting epistemic scenarios. The embedding simulates every finite action model with a combination of copy and remove operators. As we mentioned, the embedding can be done within ML(cp, rm 1) as it only requires single step removals. We showed that the copy and one-step removal themselves correspond to particular action models. As a result we obtain a decomposition method for action models. By decomposing product updates in sequences of copy and remove operators, it would be possible to characterize syntactic fragments of AML with interesting complexities for the satisfiability problem.

We demonstrated that the complexity of the satisfiability problem of the full language ML(cp, rm) is NExpTime-hard. Its upper bound is still open, but we conjecture it is decidable. We proved that satisfiability for the fragment ML(rm) is decidable, that it is PSpace-complete for ML(cp) and ML(rm 1), and that it is NExpTime-complete for ML(cp, rm 1). These results are summarized in Figure 4.

ML(cp, rm)

NExpTime-hard ML(rm) Decidable ML(cp) PSpace-complete ML(rm 1) PSpace-complete ML(cp, rm 1) NExpTime-complete As future work, we plan to extend the analysis of AML via its embedding in ML(cp, rm). In particular, we will address the general case in which action model pre-conditions can be arbitrary formulas of lower complexity. The main challenge when considering the full language is that when pre-conditions are not Boolean, successive applications of the rm operator are no longer independent of each other, and a more involved mapping into ML(cp, rm) is required.

Figure 1 :

 1 Figure 1: Agent a privately learns that p.

 the initial model as many times as the number of action points in the action model remove edges toward worlds that do not respect preconditions remove edges that do not correspond to edges in the action model

Figure 2 :

 2 Figure 2: The result of one copy and two remove operations on the epistemic model of Figure 1, again resulting in the same (bisimilar) updated model.

Example 3 . 5 .

 35 Let us consider the following model M: The updated model (M rm(b;c)) rm(a;b) is: a w The removal of a; b-paths from M rm(b;c) results in M rm(b;c) itself, because there are no a; b-paths in the model. On the other hand, the model (M rm(a;b)) rm(b;c) is: c w

Example 3 . 7 .

 37 Suppose we are modeling a card game scenario, and we have the model M shown on the left, where agents a and b are holding either a red (r) or a yellow (y) card and where both are uncertain about the other agent's card. r a , r b w y a , r b t r a , y b v y a , y b u r b w y a , r b t r a , y b v y a , y b u

Example 4 . 1 .

 41 Consider the formula rm(a; a)♦ a and the following model M: w a a

Definition 4 . 2 (

 42 Bisimulations). Let M = W, R, V and M = W , R , V be two models. A non empty relation Z ⊆ W ×W is an ML(cp, rm)-bisimulation if it satisfies the following conditions. If wZw then (atomic harmony) for all p ∈ PROP, w ∈ V (p) iff w ∈ V (p);

 rm(π)ϕ: Suppose M, w |= rm(π)ϕ, then M rm(π) , w |= ϕ. By hypothesis M, w ML(cp,rm) M , w , then (by Lemma 4.6) M rm(π) , w ML(cp,rm) M rm(π) , w , and by inductive hypothesis. M rm(π) , w |= ϕ. As a result, M , w |= rm(π)ϕ.

 e 1]ϕ) = pre(e 1) → cp({p e1 , . . . , p en }, p e1)rm(ρ)rm(σ)Tr(ϕ), where E = E, →, pre is an action model with E = {e 1 , . . . , e n } and p e1 , . . . , p en are fresh distinct atomic propositions that do not appear in ϕ and ρ ≡ ei∈E,a∈AGT ?; a; (p ei ∧ ¬pre(e i))? σ ≡ ei,ej ∈E,a∈AGT p ei ?; a; p ej ?

 e 1]ϕ, then by definition of |= we have M, w |= pre(e 1) → (M ⊗ E), (w, e 1) |= ϕ. Let M = ((M cp(pe 1 ,...pe n)) rm(ρ)) rm(σ) . By Claim 1 (M ⊗ E), (w, e 1) M , (w, p e1), then (by the invariance theorem for AML) (M ⊗ E), (w, e 1) |= ϕ if and only if M , (w, p e1) |= ϕ. Then, by inductive hypothesis M , (w, p e1) |= Tr(ϕ). Hence (by definition of Tr) we have that M, w |= Tr([E, e 1]ϕ).

Example 5 . 5 .

 55 Suppose we have two agents a and b. Then E(rm(ϕ?; a; ψ?)) is depicted below: pre: ¬ϕ ∧ ¬ψ pre: ¬ϕ ∧ ψ pre: ϕ ∧ ¬ψ pre: Consider the translation : ML(rm 1) → AML such that (rm(ϕ?; a; ψ?)θ) = [R, 00 ∪ R, 01 ∪ R, 10 ∪ R, 11]θ , where R = E(rm(ϕ?; a; ψ?)) and where [α ∪ α]ϕ is a shorthand for [α]ϕ ∧ [α]ϕ, and commutes with all other operators. Proposition 5.6. Let M, w be a pointed model, and let ϕ be a ML(rm 1)formula. Then M, w |= ϕ iff M, w |= ϕ .

2 .

 2 (a) If ρ has one denominator, add the appropriate instantiation to Γ. (b) If ρ has k denominators with k > 1, create k successor nodes for n,where each successor i carries the union of Γ with an appropriate instantiation of denominator D i .

Figure 3 :

 3 Figure 3: Tableau rules for AML +

Figure 4 :

 4 Figure 4: Complexity of the satisfiability problem for ML(cp, rm) and some of its syntactic fragments.

 and only if M, w |= ϕ 1 (by definition of rm π Suppose M, w |= rm π i . By definition of rm π , we have

	i). But ϕ1? = {v | M, v |= ϕ 1 } (all the paths are singletons satisfying ϕ 1), then P M
	w ∈ P M ϕ1? .

π = ϕ 1 ?; a 1 ; ϕ 2 ?; . . . ; ϕ n ?:

Let ML(rm, -1) be the fragment ML(rm) extended with the past operator -1 .

A similar result was shown in[START_REF] Van Ditmarsch | Public announcements, public assignments and the complexity of their logic[END_REF] for public announcement enriched with public assignments which are similar to post-conditions.

"In this paper we investigate state label modifiers, leaving edge label modifiers to future work" [19, page 300].

Acknowledgments

We acknowledge support from ANPCyT-PICT-2008-306, ANPCyT-PICT-2010-688, ANPCyT-PICT-2013-2011, STIC-AmSud "MISMT", ERC project EPS 313360, EU 7th Framework Programme under grant agreement n. 295261 (MEALS), and the Laboratoire Internationale Associé "INFINIS".

We define by induction:

For our purposes, the definition of M cp(Σ) does not depend on the order in Σ. Proposition 6.1. For all ϕ ∈ ML(cp), let Σ(ϕ) be the set of all pairs (Q, q) appearing in copy operators in ϕ. Then

where w Σ(ϕ) is the corresponding evaluation point after | Σ(ϕ) | consecutive cp operations are applied from the point w.

Proof. The proof is by induction on the structure of ϕ ∈ ML(cp).

. By inductive hypothesis, we have

. This is the same as

Given the definition of M cp(Σ) (which does not depend on the order of Σ), and the fact that for all q, (Q, q) / ∈ Σ(ψ) (because in each occurrence of cp(Q, q), Q is fresh), we have that M cp(Σ(ψ)∪{(Q,p)}) , w Σ(ϕ) |= Tr Σ(ψ)\{(Q,p)} (ψ). Hence, by definition we have

We will show the upper bound for the class PSpace, by providing a tableaubased algorithm which uses polynomial space. Notice that the algorithm takes as argument an ML-formula, a set of sequences of propositional symbols and a set of formulas. At the end, we use the previous result to complete the proof. Proposition 6.2. The following problem is in PSpace:

• output: yes iff there exists a model M such that M cp(Σ) , w Σ |= ϕ.

Proof. For this proof we take ♦ a as the fundamental operator and consider a as being defined as a ϕ ↔ ¬♦ a ¬ϕ. We adapt the standard tableau method for ML (see [START_REF] Goré | Tableau methods for modal and temporal logics[END_REF]) in order to obtain a PSpace procedure for our problem, shown in Algorithm 1. The set ν is called a modal valuation over a set of formulas Γ if and only if ν ⊆ PROP ∪ {ψ | ψ ∈ Diam(Γ)}, where Diam(Γ) = ϕ∈Γ Diam(ϕ), and Diam(ϕ) is defined inductively as follows:

We define the relation |= to say that a valuation satisfies a formula as follows:

A valuation c is called a copy valuation for a set Σ of pairs (Q i , q i), if and only if c contains exactly one propositional symbol in each Q i . Notice that, given a modal valuation ν and a copy valuation c, ν ∪ c is a modal valuation. The procedure takes three arguments: a formula ϕ, a set of formulas Γ and a set Σ which contains pairs (Q i , q i) ∈ 2 PROP ×PROP. The set Γ is used to abstract subformulas of ϕ. Modal valuations treat formulas as propositional symbols. The algorithm is the standard tableau algorithm used to check satisfiability for

Hence by definition of |=, M, w |= ai rm(π)ψ.

6. (Proof of 7 is a straightforward variation). Let M = W, R, V be a model, w ∈ W , and let rm(π) ai ψ be an ML(rm, -1)-formula with π = ϕ 1 ?; a 1 ; ϕ 2 ?; . . . ; ϕ n ?, such that a i ∈ π. We want to prove

Then, by definition of |=, we have that for all v ∈ W such that (w, v) ∈ (R rm(π)) ai , M rm(π) , v |= ψ. We will check the two conjuncts δ and δ separately (for the other direction of the iff, we can assume the two conjuncts together and use the same steps): 1. Suppose M, w |= k∈{1,...,n-1 | a k =ai} ¬rm π k . By definition of |=, we have M, w |= k∈{1,...,n-1 | a k =ai} rm π k . It means that there is no P ∈P M π satisfying Lemma 6.4, such that w ∈ P , hence no deletions have been done traversing w. Then for all v ∈ W , (w, v) ∈ R ai iff (w, v) ∈ (R rm(π)) ai . Because we have for all v ∈ W such that (w, v) ∈ (R rm(π)) ai , M rm(π) , v |= ψ, then for all v ∈ W such that (w, v) ∈ R ai , M rm(π) , v |= ψ. Therefore, we have for all v ∈ W such that (w, v) ∈ R ai , M, v |= rm(π)ψ, then (by definition of |=) M, w |= ai rm(π)ψ. 2. Suppose now for some arbitrary k, M, w |= rm π k , where k ∈ {1, . . . , n -1 | a k = a i }. By Lemma 6.4 it means that there is a path traversing w that has been deleted. We also know M rm(π) , w |= a k ψ by assumption and k = i, then for all v ∈ W such that (w, v) ∈ (R rm(π)) a k , M rm(π) , v |= ψ. Then, for all u ∈ W such that (w, u) ∈ R a k , either M rm(π) , u |= ψ or u ∈ P , with P ∈ P M π , and u is at position k + 1 (because w is at position k = i), i.e., M, u |= rm π k+1 (by Lemma 6.4). Therefore, M, w |= a k (rm π k+1 ∨ rm(π)ψ). Proposition 6.5 provides a way to eliminate all the rm operators in a formula. We can design an algorithm to transform any ML(rm, -1)-formula into a ML(-1)-formula, which applies exhaustively the reduction axioms. Notice that each reduction axiom reduces the formula on the left to an ML(rm, -1)formula on the right, where the rm operation is moved inwards till it can finally be eliminated. Proposition 6.6. Let M, w be a pointed model. For all ϕ ∈ ML(rm, -1), there exists ϕ ∈ ML(-1) such that M, w |= ϕ iff M, w |= ϕ .