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Abstract—Coronavirus disease 2019 (COVID-19) is an infec-
tious disease with first symptoms similar to the flu. COVID-19
appeared first in China and very quickly spreads to the rest of the
world, causing then the 2019-20 coronavirus pandemic. In many
cases, this disease causes pneumonia. Since pulmonary infections
can be observed through radiography images, this paper inves-
tigates deep learning methods for automatically analyzing query
chest X-ray images with the hope to bring precision tools to health
professionals towards screening the COVID-19 and diagnosing
confirmed patients. In this context, training datasets, deep learn-
ing architectures and analysis strategies have been experimented
from publicly open sets of chest X-ray images. Tailored deep
learning models are proposed to detect pneumonia infection cases,
notably viral cases. It is assumed that viral pneumonia cases
detected during an epidemic COVID-19 context have a high
probability to presume COVID-19 infections. Moreover, easy-
to-apply health indicators are proposed for estimating infection
status and predicting patient status from the detected pneumonia
cases. Experimental results show possibilities of training deep
learning models over publicly open sets of chest X-ray images
towards screening viral pneumonia. Chest X-ray test images of
COVID-19 infected patients are successfully diagnosed through
detection models retained for their performances. The efficiency
of proposed health indicators is highlighted through simulated
scenarios of patients presenting infections and health problems
by combining real and synthetic health data.

Index Terms—image detection, radiology, X-ray, COVID-19.

I. INTRODUCTION

COVID-19, initially named 2019-nCoV, appeared first in
China and very quickly spreads to the rest of the world causing
then the 2019-20 coronavirus pandemic. To date (April 5th
2020), there have been 82,602 highly controversial confirmed
cases in China, more than 500,000 confirmed cases in Europe
and 1,226,644 confirmed cases all around the world1.

1Online map of COVID-19 Global Cases by the CSSE center at Johns
Hopkins University: https://coronavirus.jhu.edu/map.html

In many cases, this disease causes pneumonia. Character-
istics of such an infection can be observed by radiologists.
Also, deep learning methods can be helpful for operating deep
analysis on query radiography images. Thanks to artificial
intelligence, early stage and precision diagnosis can be done.

In this pandemic, the effective screening of COVID-19 is
an arduous task in practice. Standard screening test kits called
Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
are often unavailable. Moreover, the RT-PCR test is highly
sensitive. It was found that deep-based Computed Tomography
(CT) images analysis could be more reliable than RT-PCR test
in early-stage diagnostic [1]–[3]. Notably, where RT-PCR test
can turn out negative, deep CT image analysis can already
predict true positives in certain cases. False negatives to RT-
PCR test can lead to non-negligible propagation of this disease.

At this time, American College of Radiology recommenda-
tions for the use of chest radiography and CT for Suspected
COVID-19 infection [4] point that generally, the findings on
chest imaging in COVID-19 are not specific, and overlap with
other infections, including influenza, H1N1, SARS and MERS.
Notably, being in the midst of the current flu season with a
much higher prevalence of influenza in the U.S. than COVID-
19, further limits the specificity of CT. Besides, the use of
radiography equipment requires high disinfection needs after
each use which can make massive tests laborious and time-
consuming. In practice, for hygienic reasons, chest X-rays are
often frontally taken with patients on a stretcher or bed, lying
down or at best sitting. Such constraints often conduct to chest
X-rays with poor quality and real issues in term of analysis.
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Nevertheless, CT images of lung and chest X-ray images
offer additional data for screening COVID-19. Notably, AI
technology is already deployed in China for radiography
examination and radiomics-like analysis from CT images [5].
AI technology can also facilitate remote operations and help
to face the lack of expert radiologists. At this date, many AI
tools and radiography image datasets are private resources.
The access to publicly open COVID-19-related sets of lung
CT images towards conducting deep learning experiments is
relatively limited. Some open access X-ray image sets of chest
are publicly available.

The goal of this paper is twofold: i) to present deep
learning models tailored for detecting pneumonia infection
cases such as viral cases towards screening COVID-19, ii) to
propose easy-to-apply health indicators for evaluating detected
pneumonia infection cases with an estimator of infection and
predictions of patient status. This case study is presented with
the aim of supporting radiologists and other clinicians. In no
case this preliminary study could be substituted to a medical
advice.

The remaining of the paper is organized as follows. The
next section gives an overview of related works. Section 3
presents some investigated deep learning based image detec-
tion architectures and analysis strategies. Section 4 shows a set
of experiments to evaluate the performance of the considered
architectures and section 5 concludes the paper.

II. RELATED WORK

Image analysis and machine learning techniques already
have extensive applications in precision health. Currently, mul-
tiple and varied COVID-19-related studies are conducted in
order to highlight proof of concepts and scientific truths about
this misunderstood disease. Some image detection, evaluation
and making-decision techniques related to COVID-19 and
radiography examinations are described hereafter.

In [2], Xu et al. present a case study that deals with the
COVID-19 screening from CT images. They mention that
the COVID-19 manifests its own characteristics that differ
from other types of viral pneumonia, such as Influenza-
A viral pneumonia. The study aims to establish an early
screening model for COVID-19 by automatically analyzing
collected pulmonary CT images of COVID-19, Influenza-A
viral pneumonia and healthy cases (618 transverse-section CT
samples before data augmentation). The overall accuracy of
the deep learning models were 86.7% for these three groups.
First CT images were preprocessed for extracting effective pul-
monary regions. Second, a 3D Convolutional Neural Network
(CNN) model was used to segment multiple candidate regions
(patches). In particular, the VNET [6] based segmentation
model VNET-IR-RPN [7] trained for pulmonary tuberculosis
purpose was used to separate candidate patches from viral
pneumonia. Third, a classification model (e.g. based on ResNet
[8]) categorizes each patch amongst three types: COVID-19,
Influenza-A-viral-pneumonia, and irrelevant-to-infection; and
assign an infection probability. The overall analysis report for

one CT sample was calculated using the Noisy-or Bayesian
function.

In [9], Shan et al. present a method to automatically segment
and quantify infection in CT scans of COVID-19 patients.
The collected dataset was composed of 549 CT images. To
accelerate the manual delineation of CT images for training,
a Human-In-The-Loop (HITL) strategy is adopted. A manual
delineation step is operated by a medical staff for delimiting
infected regions on original COVID-19 chest CT images.
This permits to generate and to enrich a training set that
is given as input to an artificial intelligence engine which
operates to an automatic segmentation step over the COVID-19
infected region. The process loops these steps from this auto-
contoured regions to assist radiologists for their annotation
refinements. The proposed system yielded Dice similarity
coefficients of approximately 91.6% between automatic and
manual segmentations, and a mean Percentage Of Infection
(POI) estimation error of 0.3% for the whole lung on the
validation dataset. Moreover, compared with the cases of fully
manual delineation that often requires 1 to 5 hours, the HITL
strategy drastically reduces the delineation time to 4 minutes
after 3 iterations of model updating.

The pulmonary infections can be more directly visible in
CT images than in chest X-Ray images [10]. Nevertheless,
detection of COVID-19 from chest X-ray images is also
investigated since they represent widespread resources that are
often analyzed upstream of CT scans.

In [11], a deep learning architecture named COVID-Net is
proposed for the detection of COVID-19 cases from chest
radiography images. The authors notably exploits the Chest
X-Ray Images (Pneumonia) open dataset1 and the COVID-19
Image Data Collection open dataset [12]. Their derived chest
radiography dataset named COVIDx is composed of 5941
posteroanterior chest radiography across 2839 patient cases.
Their study targets the prediction of 4 image classes, namely
normal, bacterial infection, non-COVID viral infection, and
COVID-19 viral infection. In this sense, their dataset contains
1203 patient cases as normal, 931 patient cases with bacte-
rial pneumonia, 660 patient cases with non-COVID-19 viral
pneumonia and only 68 radiography images collected from
45 COVID-19 patient cases. The distribution of inter-class
images amongst their training sets and amongst their test sets
are highly unbalanced in view of the quantity of collected
COVID-19 images. The authors exploit residual architecture
design principles [13] pointing that they show time and again
to enable reliable neural network architectures that are easier to
train to high performance. They leverage generative synthesis
[14] as the machine-driven design exploration strategy for gen-
erating the final COVID-Net network architecture that obtains
a global test accuracy of 83.5%. However, this accuracy has
been obtained including a small data sample corresponding to
only 10 COVID-19 cases.

1Chest X-Ray Images (Pneumonia) dataset:
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
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Fig. 1: Global workflow using deep learning for automatic detection of infection towards supporting COVID-19 screening
from chest X-ray images. In a COVID-19 epidemic context, a detected viral pneumonia can particularly presume a COVID-19
infection.

III. PROPOSED APPROACH FOR PNEUMONIA ANALYSIS

A. CNN-based detection and evaluation of infected patients

In [15] [16], authors emphasized that the COVID-19 is
a viral disease and not a bacterial one. Respectively, an
efficient classifier is designed to automatically detect if a query
chest X-ray image is Normal, Bacterial or Viral by assuming
that a COVID-19 infected patient, tested during an epidemic
period, has a high probability to be a true positive when the
classification output is Virus (see Fig. 1). Nethertheless, it is
worth mentioning that a severe viral respiratory infection can
lead to a secondary pneumonia of bacterial nature [17]. For
this reason, our classifier aims to be useful at early stage of
COVID-19 pulmonary symptoms.

1) Tailored CNN models: A set of tailored models based on
CNNs have been designed to take three set of image categories
(e.g.; normal case, viral pneumonia case and bacterial case)
as input and output the predicted probability for each of the
categories. The trained models exploit the CNN backbones
ResNet34, ResNet50 and DenseNet169 through the fastai
library and a fully connected head, with a single hidden layer,
as a classifier.

Besides, a trained model exploits the CNN reference back-
bone VGG-19. In addition, a dual use model (Inception
ResNetV2 - RNN) is prepared for i) characterizing categories
of input split images by getting a hidden layer output of a
fin-tuned Inception ResNetV2 architecture, ii) predicting final
categories of split images (image blocks) using a bidirectional
Long Short-Term Memory (RNN-LSTM) architecture. For
these last ones, a Keras and TensorFlow workflow is used.

Specifically, the prediction stage of the dual-use model
operates at a second level analysis of the data. A sequence
of sub-images is first generated while entirely covering the
images by directly positioning a regular grid onto the original
query chest X-ray images. Precisely, the image is split into
a set of image blocks that correspond to grid cells (see
Fig. 2). This operation enhances the size of the training

set while limiting the loss of image details. This loss often
occurs when the original images are resized for fitting inputs
of standard deep learning architectures. Then, each image
block is given as input to the RNN for providing a set of
local predictions (matrix of contamination) towards estimating
health indicators such as a CNN-based infection ratio (a use
is described in section III-B). The grid discretization should
be tuned according to the obtained predictive performance of
the considered architecture.

(a) Normal. (b) Bacteria. (c) Virus. (d) COVID-19.

Fig. 3: Chest X-ray samples from the test datasets.

2) Data preparation and model inputs: For our experi-
ments, we exploited Chest X-ray images from the Chest X-
Ray Images (Pneumonia) dataset1. This dataset is related to
the paper [18] on the identification of medical diagnoses
and treatable diseases by image-based deep learning. This
dataset contains 5,863 children X-Ray images divided in two
categories, namely Normal and Pneumonia. The Pneumonia
category is composed of pneumonia images that are labeled
either bacterial or viral (see illustrations in Fig. 6 of [18]).

The Chest X-Ray Images (Pneumonia) dataset is reorganized
into three classes; into normal, bacterial pneumonia and viral
pneumonia (see samples in Fig 3a, Fig. 3b and Fig. 3c,
respectively). Each training set contains 1345 images and each
test set contains 148 images. Since this dataset was composed
of pulmonary images having heterogeneous and large sizes;
and to deal with reasonable computational times during the
CNN training experiments, all the images were resized to a
unique dimension and rescaled into smaller images (e.g.; size

3



Fig. 2: Global workflow using deep learning based for automatic estimation of a CNN-based infection rate indicator from
chest X-ray images.

310×310) to fit with standard inputs of tailored architectures.
For the last tailored model using RNN, a preliminary split of
the original image precedes the resizing step.

Regarding the tests, we added a test set (blind test) that is
composed of a single class containing 145 chest X-ray images
of COVID-19 infected patients (see sample in Fig. 3d). This
test set has been constituted by filtering the heterogeneous
COVID-19 Image Data Collection dataset [12]; folder contain-
ing a mix of CT and X-ray images with a variety of infection
types. At this time, we consider that this quantity of available
COVID-19 is still too limited for building a reliable detector
that can discern between Non-COVID-19 viral pneumonia
and COVID-19 viral pneumonia. The 145 chest X-ray images
are specifically used as a test set towards ideally detecting
them as viral pneumonia. As previously mentioned, we assume
that a COVID-19 infected patient, tested during an epidemic
period, has a high probability to be a true positive when the
classification output is viral pneumonia (Fig. 1).

B. Estimation of CNN-based health indicators

Based on statistical tools (logistic regression and statistical
tests) and realistic data, studies on COVID-19-related death
risk factor have been proposed in [19], [20]. In this paper,
we sketch a simple measure to provide to health professionals
an estimator for evaluating the chance of a patient to survive
COVID-19 considering risk factors; namely age, comorbidity
and the infection rate indicator (Fig.2). For each risk factor,
we associate a score which represents a penalty (a large value
decreases the chance of a patient to escape fatality). The
proposed measure F is the addition of scores divided by a
critical threshold T . Beyond T , there is no chance to be
recovered. Formally, F is expressed as follows:

F = (S1 + S2 + S3)/T

where S1 measures the risk due to the patient’s age, S2 measures
the risk related to the CNN-derived infection rate measured from the
X-ray chest image of a patient, S3 measures the risk associated with
comorbidities (additional diseases) of a patient that can lead to the
development of complications.

TABLE I: Scores related to age. The source of the “Fatality
risk ratio” is [21].

Age Fatality risk ratio (Hubei, China) Associated score (S1)
≥ 80 18% 100
70-79 9.8% 54.4
60-69 4.6% 25.5
50-59 1.3% 7.2
40-49 0.4% 2.2
30-39 0.18% 1
20-29 0.09% 0.5
10-19 0.02% 0.1
0-9 0.01 0.05

More precisely, let us give an example to concretely com-
pute the measure F . First, we point out that the scoring system
used hereafter must be adjusted by health professionals to
match with reality.

In this example, we use the values of fatality risk-ratio dur-
ing COVID-19 epidemic in Hubei, China [21]. Proportionally
to these values, we define penalty scores (S1), see Table I.

Then, we define the scores (S2) related to the infection rate
of X-ray image. S2 can be the probability of the concerned
class that is directly provided by the used CNN. A more
refined formulation of S2 is proposed to scrutinize the X-
ray image. Each image is divided in n sub-images where
n = 9 (value for which our RNN effectively performs). After
analysis, each sub-image will be in status virus, bacteria or
normal (see Fig.2). A score equal to 100 is assigned to the
X-ray image when the n sub-images are infected by a virus.
Proportionally, the infection rate of the image is:
S2 = (100/n) × N , where N is the number of the virus

infected sub-images.
The third risk factor (S3) is related to diseases of a patient in

addition to COVID-19. We associate a penalty 100 to serious
diseases, as complicated hypertension, coronary artery disease,
heart surgery, chronic renal failure on dialysis, cancer on treat-
ment. The health professional can define a list of moderated
diseases which may complicate the patient’s recovering. He
may assign to a moderated disease score a penalty value
proportional to the score of serious diseases. In this article,
we attribute the value 10 to one moderated disease. In this
example, we set the critical threshold T to 200, then beyond

4



this limit, one cannot escape fatality. The measure F can be
used as follows. If F ≥ 1 then the hope to escape fatality is
null. Varying F from 0 to 1, the patient gradually moves away
from the hope of recovering.

The value 200 assigned to T is obtained by taking reference
a patient having a serious additional disease and aged over
80 years. We assume that such a patient cannot fight against
COVID-19. Therefore, a person having COVID-19 which
reaches the score 200 cumulates too many factors to overcome
the illness.

Finally, we point out that the measure F can also be
extended by slightly modifying the term S2 for taking into
account time factor. Indeed, a serie of X-ray images is ob-
served for each COVID-19 inpatient pointed in [10] [22] [23].
Accordingly, S2 can be measure at two timely spaced X-rays
t1 and t2 to take into account the time kinetics of symptom
onset and disease progression for the infected patient. For this
latter case, the infection rate can be redefined as follows:

S2 =


f(t2) +malus, if f(t2) > f(t1) + δ (aggravation)

f(t2), if |f(t2)− f(t1)| ≤ δ (stability)

f(t2) + bonus, otherwise (remission)

where f(t) = (100/n)×N(t) is the infection rate of the chest X-ray
image captured at a moment t, N(t) is the number of detected viral
sub-images at a moment t, t1 is inferior to t2, δ is threshold fixed
to 20, bonus and malus are a gain and a penalty fixed to (−20 ×
f(t2))/100 and (20× f(t2))/100, respectively.

IV. EXPERIMENTAL STUDY

A. Performance of tailored CNN models

TABLE IV: Confusion matrix.
hhhhhhhhhhActual

Predicted Bacteria Normal Virus
Bacteria 145 1 2
Normal 0 137 11
Virus 4 1 143

Table II presents performance for classification of normal
and infection cases by using tailored CNN-based architectures.
The DenseNet169 architecture has reached best performance
with an average classification accuracy of 95.72% from the
Chest X-Ray Images (Pneumonia) dataset1. The classification
accuracies are 97.97%, 96.62% and 92.57% for the class
bacterial, virus and normal, respectively (see Table III). The
associated confusion matrix is shown in Table IV. The per-
formance of our DenseNet model is competitive with perfor-
mances obtained by [18] in average classification accuracy of
bacterial and viral cases 90.7%.

However, our RNN-based architecture is particularly sensi-
tive to pneumonia cases with the blind COVID-19 test set since
it detects pneumonia for 99.3% using default setting. Also,
it promisingly detects viral infection for 60.64% considering
majority voting in sequences. We stress the fact that the 145
COVID-19 images which have been extracted from [12] are
highly heterogeneous. Notably, these extracted images come
from at least 24 different hospitals over the world. The RNN

output results show a particularly robust pneumonia detection
of COVID-infected patients and satisfying viral detection in
view of the diversity of exploited radiography sources.

In [12], a histogram shows that significant image quantity
has been acquired during the first week of the start of symp-
toms or hospitalization. Since the quasi-totality of pneumonia
are detected, our models should be able to operate at an early
detection stage.

Also, a histogram shows a significant image distribution in
term of age in between 20 and 80 years old. Since the Chest
X-Ray Images (Pneumonia) dataset1 is principally collected
from children (5,232 chest X-ray images) and since the quasi-
totality of pneumonia are detected, models trained on children
chest X-ray image database may be relevant for detecting
pneumonia from adult chest X-ray images.

B. Projection with the CNN-based health indicators

Table V shows the RNN-derived infection rates S2 estimated
from real pairs of successive X-ray images for 5 COVID-19
infected patients. Table VI details examples of F calculated
for 9 patients from synthetic data.

V. CONCLUSION

A bench of deep learning tailored models have shown
promising performances. Indeed, they have all exceeded 84%
of average accuracy on pneumonia detection cases for the
Pneumonia reorganized dataset1. Hence, a patient that has a
pneumonia during the epidemic context has a high probability
to be detected by these models. In particular, the Inception-
ResNetV2 model has detected the minimum of false negatives
to the pneumonia on the blind test set (0.7%). Moreover, we
have shown in our experiments that the transfer of knowledge
from pediatric chest X-ray training towards infection screening
of adults can be efficient. Additionally, an attempt based on
realistic scenarios is done to provide easy-to-apply health
indicators for evaluating infection rate and aggravation risk
to the COVID-19 pneumonia. Future works may exploit our
models to discern between COVID-19 viral and non-COVID-
19 viral pneumonia once chest X-ray images of COVID-19
will be accessible in sufficient quantity. This should permit
to specifically identify COVID-19 infected patients even in
a non-epidemic context. Furthermore, reliability of proposed
models must be cross-checked by RT-PCR tests and clinical
tests before deployment.
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TABLE II: Comparison of average accuracies obtained on classification using some tailored CNN-based architectures.
Average accuracy (%)```````̀Data

Network ResNet34 ResNet50 DenseNet169 VGG-19 Inception ResNetV2 & RNN

Image size (310x310),(310x273) (310x310),(310x273) (310x310),(310x273) (224x224) (300x300)
Raw resizing 93.69 93.47 91.89 82.66 -
Original ratio with padding 90.54 93.92 95.72 - -
Split in 9 & raw resizing - - - 80.40

TABLE III: Classification performance obtained by testing our best trained architectures with two query image sets. The first
row reflects classification results of [18].

Accuracy (%)hhhhhhhhhhhhQuery test set
Class ouput

Bacteria Virus Normal Pneumonia

Dataset Chest X-Ray Images (Pneumonia)1 by [18] (2-stage binary training outputs) 90.7 (Bact. vs Vir.) 92.8 (Norm. vs Pneu.)
3-class dataset Chest X-Ray Images (Pneumonia)1 by DenseNet169 97.97 96.62 92.57 -
3-class dataset Chest X-Ray Images (Pneumonia)1 by VGG-19 87.84 81.08 79.05 -
3-class dataset Chest X-Ray Images (Pneumonia)1 by Inception ResNetV2 & RNN (majority voting) 86.49 84.46 63.52 -
3-class dataset Chest X-Ray Images (Pneumonia)1 by Inception ResNetV2 & RNN (by default) 90.54 83.78 66.89 -

Sensitivity (%)hhhhhhhhhhhhQuery test set
Class ouput

Virus Pneumonia

1-class blind set of varied COVID-19 images by DenseNet169 45.51 88.27
1-class blind set of varied COVID-19 images by Inception ResNetV2 & RNN (majority voting) 60.64 95.12
1-class blind set of varied COVID-19 images by Inception ResNetV2 & RNN (by default) 51.72 99.3

TABLE V: CNN-derived infection rates S2 estimated from
real pairs of successive X-ray images for 5 COVID-19 infected
patients.

Image pairs f(t1) Elapsed days f(t2) Observations S2
(t2 − t1)

(1,3), Fig. 5 of [10] 9/9 7 9/9 elderly man f(t2)
“improvements”

(1,2), Fig. 1 of [22] 1/9 5 2/9 67-y-old woman f(t2)
“wires,
attenuation”

(1,3), Fig. 2 of [22] 5/9 8 5/9 36-y-old man f(t2)
“death”

(1,2), case 1, Fig. 5
of [23]

6/9 1 9/9 “worse status” f(t2)+malus

(1,2), case 2, Fig. 5
of [23]

7/9 4 8/9 “worse status” f(t2)
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