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Abstract. Brain tumor segmentation through MRI images analysis is
one of the most challenging issues in medical field. Among these issues,
Glioblastomas (GBM) invade the surrounding tissue rather than displac-
ing it, causing unclear boundaries, furthermore, GBM in MRI scans have
the same appearance as Gliosis, stroke, inflammation and blood spots.
Also, fully automatic brain tumor segmentation methods face other is-
sues such as false positive and false negative regions. In this paper, we
present new pipelines to boost the prediction of GBM tumoral regions.
These pipelines are based on 3 stages, first stage, we developed Deep
Convolutional Neural Networks (DCNNs), then in second stage we ex-
tract multi-dimentional features from higher-resolution representation of
DCNNs, in third stage we developed machine learning algorithms, where
we feed the extracted features from DCNNs into different algorithms
such as Random forest (RF) and Logistic regression (LR), and principal
component analysis with support vector machine (PCA-SVM). Our ex-
periment results are reported on BRATS-2019 dataset where we achieved
through our proposed pipelines the state-of-the-art performance. The av-
erage Dice score of our best proposed brain tumor segmentation pipeline
is 0.85, 0.76, 0.74 for whole tumor, tumor core, and enhancing tumor,
respectively. Finally, our proposed pipeline provides an accurate segmen-
tation performance in addition to the computational efficiency in terms
of inference time makes it practical for day-to-day use in clinical centers
and for research.

Keywords: Brain Tumor Segmentation· Convolutional Neural Networks·
Support Vector Machine· Glioblastomas · Transfer Learning · Principal
Component Analysis.
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1 Introduction

Brain tumor is a growing abnormal cell in the brain or central spin canal [1].
Usually, a radiologist uses MRI scans as the most effective [2] technique to
generate Multi-modal images and to identify different tumor regions in the soft
tissues of the brain. In general, a radiologist generates four standard MRI images
modalities for Gliomas tumors diagnosis [3]: T2-weighted fluid attenuated inver-
sion recovery (Flair), T1-weighted (T1), T1-weighted contrast-enhanced (T1c),
and T2-weighted (T2) for each patient. Furthermore, what makes the diagnosis
hard for radiologist is that each patient has a different health condition, age,
gender, in addition to Glioblastima tumors is unexpected, in other words, these
tumors could appear anywhere in the brain.
Current state-of-the-art methods in the field of computer vision are based on
a deep learning, especially Convolutional Neural Networks (CNNs). Where in
CNNs [4], we find a feature extractor with a bank of convolution layers, then
pooling layers to make the images less sensitive and invariant to small transla-
tions, then the last step in CNNs is a classifier (in general Softmax layer) that
classifies each pixel into one of a set of classes. After the breakthrough in 2012 of
AlexNet [5] model that outperformed the state-of-the-art methods in the field of
object recognition, many methods obtained high results in many fields especially
in medical field such as [6], [7], [8], [11], [9], [10]. In general, these methods are
trained on 4 types of MRI images: Flair, T1, T1c, and T2.
Our ongoing work is based on our previous work [9], [15]. In this paper, we
are focusing on two major issues: (1) false positive regions – where the model
predicts non-tumor regions as tumor regions but in fact they are not-, (2) false
negative regions – where the model classifies some regions as non-tumor regions
but in fact they are. In [9], [15] we addressed the problem of false positive re-
gions by two steps: we used a global threshold for each slice to remove small
non-tumoral regions based on connected-components, then in second step, to
enhance the post-processing step more we used a morphological opening op-
erator. Despite the success of these two post-processing steps, further steps are
required to improve the segmentation results. The main reason of these two issues
(i.e. false positive regions and false negative regions) is the classifier of DCNNs,
where in our case the classifier is the Softmax function. Softmax function gives
an estimated vector at the end after each forward propagation of DCNNs, by
normalizing the outputs to stay between 0 and 1, i.e., the outputs become as
probabilities. Then, we pick the result of the forward pass based on the maximum
probability among all probabilities, and this maximum probability represent a
class, in our case, one class out of the 4 predefined classes (i.e., Necrotic and
Non-Enhancing tumor, Peritumoral Edema, Enhancing tumor and healthy tis-
sue). The Softmax function is a simple and an accurate function for training
phase, but it is not adequate for the prediction or test phase for the problem of
instance segmentation. The extracted features from MRI scans are complicated
and in this case of DCNNs are hierarchical, so, classifying these features among
a set of classes is not simple and intuitive for Softmax function. To overcome this
issue, we developed two brain tumor segmentation pipelines, firstly, we extract
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feature maps from DCNNs, secondly, these features maps become the dataset of
training and testing for another machine learning algorithms. The first pipeline
is based on two algorithms: RF and LR, where the second pipeline is based on
PCA-SVM.

The aim of this paper is to propose and develop new pipelines for brain tumor
segmentation. Where we use the technique of transfer learning to extract features
from DCNNs architecture then we feed these features into another machine
learning algorithms (i.e., RF, LR and PCA-SVM), then for the first pipeline
we combine the results of DCNNs, RF and LR into one 3D image, while for
the second pipeline we train PCA-SVM on the extracted features maps. The
proposed pipelines are used to segment the brain tumors of GBM with both
high- and low-grade.

2 Proposed Method

In this paper, we proposed two pipelines to boost the segmentation performance
of GBM brain tumor. One of the main issues for segmentation performance
degradation is false positive and false negative regions, and the main reason of
these issues is Softmax function, where this simple function does not provide an
accurate results at the prediction phase (testing phase). Thus, to improve the
accuracy of Softmax in the first proposed pipeline , we combine the results of
Softmax with the results of two algorithms (.i.e., RF, LR), while for the second
pipeline, we feed the feature maps of the last layer of DCNNs to PCA-SVM. So
for both pipelines, the first step, we extract the higher-resolution feature maps of
the last layer before output layer (Softmax layer). The second step, we prepare
these feature maps to become in a better representation for machine learning
algorithms.

2.1 Features visualization

In this paper, we trained a DCNNs model from scratch where this model is
trained for brain tumor segmentation of GBM. DCNNs work by learning to
extract hierarchical features from images. The algorithm of CNNs [4] is originally
inspired by the visual system. In 1962, Hubel and Wiesel [16] discovered that each
type of neurons in the visual system, responds to one specific feature: vertical
lines, horizontal lines, shapes, etc. From this discovery, the algorithm of CNNs
was developed. Thus, CNNs detect low-level features such as lines, edges, etc.
and high-level features such as shapes and objects. These hierarchical features
help CNNs algorithm to better locate the boundaries of the tumor regions (see
Fig.1). The figure 1 shows different features of a subject from our training set,
as you can see, we can clearly distinguish the boundaries of each region.
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Fig. 1: Features visualization of the layer 16 of the CNNs model. Layer 16 of
CNNs has 32 features maps, each has a filter to search for a specific feature the
most representative in a MRI image

2.2 Fusion solution-based predictions aggregation

The flowchart for detecting GBM brain tumors (see Fig.2) is composed of two
parts: the first part is composed of the DCNNs model and the second part is
composed of machine learning algorithms such as RF and LR. To integrate the
LR and RF in DCNNs, we first extracted the feature maps of the last layer
before the output, then we replaced the Softmax layer with the aforementioned
algorithms (i.e., LR and RF). Then we fused the results of these three algorithms
(LR, RF and Softmax) into one result to diagnose the presence of tumor in each
extracted feature maps and to diagnose the class of this tumor in each pixel.

To develop a DCNNs architecture, we have either pixel-wise approach or
patch-wise approach. The first approach deals with pixels, while second approach
deals with patches. In this paper, we used patch-wise classification, car it provides
a good segmentation results [19], [20], [21] compared to pixel-wise classification,
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Fig. 2: Flowchart fusion solution for predicting GBM brain tumors. This
flowchart has two parts: the first part (two green boxes) represent the DCNNs
model, the second part (three blue boxes) represent the aggregation results of
Sofmtax, LR and RF in a single prediction result

in addition it is less prone to overfitting, and these advantages are due to the
parameters sharing between neurons in the network. Patch-wise approach takes
as an input patches with limited size, and after extensive experiments to get the
best patch’s size (e.g., 32 x 32 x 4, 64 x 64 x 4) for our approach, we observed that
patches with size (64 x 64 x 4) provide an accurate segmentation performance
in terms of the evaluation metrics (see section 2.6). The optimization of DCNNs
is done using stochastic gradient descent with mini-batch size equals to 8 and
learning rate computed as follows:

LERi = 10−3 × 0.99LERi−1 (1)

Where the initial learning rate (LER) was LER0 = 0.001, LERi (i ∈ N+)
is the new learning rate, LERi−1 is the learning rate of the last epoch, 0.99 is
a decreasing factor. The DCNNs model was implemented on Keras which is a
high-level open source Deep Learning library, and Theano as a Back-end, where
Theano exploits GPUs to optimize Deep Learning architectures (i.e., to minimize
the error). In this work, all our results are obtained using Python environment
on windows 64-bit, Intel Xeon processor 2.10 GHz with 24 GB RAM, and the
training is done on Nvidia Quadro GPU K1200 with 4 GB RAM.
After training DCNNs model, we extracted feature maps of the last layer before
applying the Softmax classifier to train two other classifiers: LR, RF. These
two classifiers are powerful to avoid the overfitting problem, in addition, RF is
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Fig. 3: Flowchart of PCA-SVM solution for predicting GBM brain tumors. This
flowchart starts by a DCNNs model (two green boxes), then the extracted feature
maps from DCNNs will be reduced by applying cumulative explained variance
(CEV), and the reduced selected components are fed into SVM to predict the
class of each pixel in GBM brain tumor.

considered as an ensemble learning, where it is used to improve the system’s
performance in many applications.

2.3 Semi automatic-based Support vector machine

In the flowchart in Fig.3, we used an SVM method to segment the MRI images
of patients with GBM. In this flowchart, we first trained DCNNs as we did in
the first step (see section 2.1). To improve the segmentation performance, we
extracted and collected the feature maps of the last layer before the classifier
(Softmax) into one dataset for training and testing (60% and 40 %, respec-
tively). Secondly, to reduce the huge dimensionality of the features maps, we
computed the cumulative explained variance (CEV) in order to obtain the num-
ber of components that cover all variance (most useful information). By using
these techniques, we can reduce the number of redundant features in addition to
noise, because noise do not have a high variance allow it to be extracted among
the first components. After applying CEV method on the extracted features,
we observed that 99% of variances are concentrated on only 139 components
out of 3200 components; which means that 3061 of components hold redundant
features and noise (see Fig.4).

As you can see from Fig.4, the first figure (4.a) represents the dimension of
all features, where (4.b) represents only 139 dimensions among 3200 dimensions,
thus from these two figures we can conclude that 139 componenents represent
99% of variances (information). After computing CEV, we applied principal
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(a) all components (all dimensions) (b) 139 components (139 dimensions)

Fig. 4: Cumulative explained variance curve for (a) all components and for (b) 139 components. It
can be seen that we only need 139 components out of 3200 components to represent 99% of the
features. The remaining components (i.e., 3061) represent redundant features and noise.

components analysis (PCA) to reduce the dimensionality of features until 139
components; for each patch, we use only 139 components instead of 3200 com-
ponents. Reducing the dimensionality using PCA helps to get new features more
representative, without getting redundant features and noise which need a lot of
preprocessing to remove them.
The last step in this flowchart (see Fig.3) consists of applying SVM which is
one of the most powerful methods for classification as it can deal with many
forms of data and classification problems (binary, multi, linear, non-linear). To
develop a SVM method: firstly, we need a lot of data, here we use the computed
components by using PCA. Secondly, we need to specify the type of problem, in
our case, it is a multi-classification issue (4 classes). Usually, multi-classification
problem is a non linearly separable issue, so to verify the type of problem (linear,
non-linear), we draw the first three components in 3D space (see Fig.5):

As you can see in figure (5.a and 5.b), we drew only 3 components from 139
components, and as expected the issue of multi-classification in our case is non
linearly separable. From figure 5, we conclude that the issue that we are dealing
with, is multi-classification and non linearly separable issue, thus this conclusion
helps us to determine the hyperparameters of SVM especially the kernel. In
general, in SVM, there are three types of kernels: linear, polynomial and radial
basis function (RBF). Firstly we can eliminate linear kernel because it is used for
linearly separable issues, secondly polynomial kernel is computionally expensive
and needs a lot of memory, thus, in this paper we use the RBF kernel. Moreover,
for the other hyperparameters: coefficient gamma γ and C slack-penalty: because
SVM is sensitive to outliers and feature scaling and as we mentioned earlier
the problem of multi-classification of brain tumor segmentation is non linearly
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Fig. 5: Scatter plot for the first three components in 3D space in (a) training and
(b) testing datasets. It can be seen that in the training and testing dataset, the
issue of brain tumor segmentation is a nonlinear multi classification issue. Best
viewed in color.

seperable issue which means in this case C slack-penelity is great than zero
(soft-margin classification); some instances could be on the street of the decision
boundary (margin violations). Furthermore, the value of gamma γ controls the
influence of each feature in its search space, thus in this case and because of
outliers, gamma γ should be a little bit high. Because there is no straightforward
method to select gamma γ and C, we used cross-validation with random search
and grid search techniques on a small dataset of 30 brain images from the training
set. The result of cross-validation as the following: gamma γ=0.001 and C=5.
Moreover, SVM is sensitive to feature scaling because the kernel RBF is used to
compute the objective function of SVM, thus, RBF assumes that all features are
centered around zero and the variance’s magnitude for all features is the same,
so, we standardized the computed components of PCA, to be centered with 0
mean and a standard deviation of 1 as the following (see equation 2):

Standardization(X) =
X − U

σ
(2)

Where X is a sample, U is the Mean of the training set and σ is the Standard
Deviation.

Brain tumor segmentation is primarily used for diagnosis, treatment, and
follow-up. The developed pipeline in this paper is applied to GBM which are
brain tumors and life-threating deseases. These tumors have four classes: Necrotic
and Non-Enhancing tumor, Peritumoral Edema, Enhancing tumor and healthy
tissue. To interpret MRI images, a radiologist employs a manual segmentation.
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Furthermore, it is known that the manual segmentation in MRI images is a
time-consuming and a tedious procedure. In general, there are three methods
to obtain a brain tumor segmentation image: manual, semi-automatic and fully
automatic. In this paper, we investigate the segmentation performance using
extracted features from DCNNs architecture and a SVM method which is a su-
pervised learning method. Our approach is semi-automatic, where this approach
needs a user interaction to reduce the misclassified regions by the SVM method,
that are in most cases false positives.

2.4 Dataset

We have used a publicly available dataset called BraTS 2019 dataset [12], [13],
[14], [17], [18], where the training set has 259 patient’s brain images with high-
grade (HGG) and 76 patient’s brain images with low-grade (LGG). Each pa-
tient’s brain image comes with 4 MRI sequences (i.e., Flair, T1, T1c and T2)
and the ground truth of 4 segmentation labels which are obtained manually by
radiologists: Healthy tissue, Necrotic and Non-Enhancing tumor, Peritumoral
Edema, Enhancing core. BRATS 2019 validation and testing sets contain 125
and 166 images respectively of patients with unknown grade, i.e. the validation
and testing sets do not have the Ground Truth labels. Our DCNNs model is
built upon 2D image patches (Slice), where this model predicts the pixel’s class
which is the center of the 2D patch.

2.5 Pre-processing

To enhance the quality of the MRI scans and to remove some noise, we applied
3 steps:

1. Removing 1% highest and lowest intensities: this technique helps to remove
some noise at the tail of the histogram, where this step has provided good
results in many research [11].

2. Subtracting the mean and dividing by the standard deviation of non-zero
values in all channels: this technique is used to center and to put the data
in the same scale, i.e. bringing the mean intensity value and the variance
between one and minus one.

3. In this step, we try to isolate the background from the tumoral regions by
assigning the minimum values to -9, where it has been observed that using
integer numbers between -5 to -15, fit our DCNNs model. The application
of the second pre-processing step, led to bringing the mean value in the
range [-1, 1], in other words, the intensities of all regions in addition to
healthy and background became between -1 and 1. As we know, the intensity
of background pixels of MRI images in BRATS data equals to 0, thus to
isolate the zero pixels (background) from the other regions, we normalized
the histogram of the MRI images by shifting the zero pixels to another bin
outside the range [-1, 1]. We found that the bin -9 in many experiments,
gives good results in the training and testing phases.
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2.6 Evaluation

To evaluate the performance of the proposed flowchart (see Fig.2), we used
BRATS online evaluation system 3. This system evaluates the uploaded images
using four metrics: Dice score, Sensitivity, Specificity, and Hausdorff distance:

Dice (P,T) = |P1 ∧ T1|
(|P1| + |T1|)/2 , Sensitivity (P,T) = |P1 ∧ T1|

|T1| , Specificity (P,T)

= |P0 ∧ T0|
|T0| ,

Hausdorff (P,T) = max { sup
p∈∂P1

inf
t∈∂T1

d(p , t) , sup
t∈∂T1

inf
p∈∂P1

d(t , p) }

3 Results

In this section, we evaluate our proposed brain tumor segmentation pipelines on
a public BRATS 2019 dataset using the online evaluation system.

Table 1: Evaluation results of fusion solution-based predictions aggregation
pipeline on BRATS 2019 validation set. WT, TC, ET denote whole tumor, tumor
core, enhancing tumor, respectively.

Dice score Sensitivity Specificity Hausdorff
WT TC ET WT TC ET WT TC ET WT TC ET

Mean 0.84 0.70 0.61 0.84 0.71 0.69 0.99 0.99 1.0 22.64 20.40 13.76
Standard deviation 0.13 0.23 0.33 0.16 0.26 0.28 0.01 0.01 0.01 26.10 24.63 24.90
Median 0.88 0.77 0.77 0.89 0.80 0.81 0.99 1.0 1.0 8.37 10.68 3.16
25 quantile 0.84 0.58 0.43 0.82 0.61 0.60 0.99 0.99 1.0 3.61 6.40 2.0
75 quantile 0.91 0.87 0.86 0.94 0.92 0.89 1.0 1.0 1.0 37.29 22.20 11.0

Table 2: Evaluation results of fusion solution-based predictions aggregation
pipeline on BRATS 2019 testing set. WT, TC, ET denote whole tumor, tumor
core, enhancing tumor, respectively.

Dice score Hausdorff
WT TC ET WT TC ET

Mean 0.84709 0.75889 0.73703 12.99701 15.4957 6.03933
Standard deviation 0.15312 0.25993 0.23841 23.97851 25.62727 16.45033
Median 0.89588 0.85913 0.8148 4.30077 8.09315 2.23607
25 quantile 0.83621 0.74323 0.70943 3 4 1.41421
75 quantile 0.92368 0.9143 0.87902 7.95064 14.65374 3.74166

3 https://ipp.cbica.upenn.edu/
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Table 1 and Table 2 show the segmentation results of our proposed pipeline
(see Fig.2) for fully automatic brain tumor segmentation. The prediction of tu-
moral regions is performed using 2D patches with size equals to 64 x 64 x 4 (4
corresponds to using different modalities such as T1, post-contrast T1, T2 and
FLAIR). Then, we extract the feature maps of the last layer before Softmax
function, then we feed these features into different machine learning algorithms
such as RF and LR. Last step, we combine the results of DCNNs, RF and LR into
one 3D image using voting technique; where the most predicted label among the
predictions (e.g., 1, 1 and 0) of these classifiers (algorithms) become the result
(in this case the label becomes 1). Table 1 and Table 2 shows the validation and
testing scores, and as you can see, we are able to achieve segmentation results
comparable to the top performing methods in state-of-the-art such as the work
of [10]. Moreover, the achieved median score is high: 0.88, 0.89 for whole tumor
on dice score (validation and testing, respectively), this high values is due to
achieving a good segmentation performance for most MRI images.

Table 3: Evaluation results of semi-automatic-based support vector machine
pipeline on some subjects of BRATS 2019 training set. WT, TC, ET denote
whole tumor, tumor core, enhancing tumor, respectively.

Dice score Sensitivity Specificity Hausdorff
WT TC ET WT TC ET WT TC ET WT TC ET

”BraTS19 2013 10 1” 1 0.58996 0.24228 1 0.74294 0.19889 1 0.96818 0.99043 0 29.03446 26.41969

”BraTS19 2013 11 1” 1 0.60334 0.14959 1 0.80945 0.25156 1 0.96026 0.97204 0 13 13

”BraTS19 2013 12 1” 1 0.46689 0.18173 1 0.79719 0.28464 1 0.89892 0.93791 0 27.09243 30.09983

Table 3 shows the segmentation results of our semi-automatic method that
is based on PCA and SVM. In this table, we show differents metrics (see section
2.6). As you can see our method provides good segmentation results especially
on tumor core and enhancing tumor regions and that is due to the extracted
features from the layer 16 of the DCNNs model and the selected components
of PCA. Please note that this method is semi automatic, where it needs a user
interaction to select the tumoral regions, that’s why the whole tumor is 1 for
Dice score, Sensitivity and Specificity, and 0 for Hausdorff distance. Please note
also that the validation and testing sets do not have the ground truth labels
for the four regions. In the future, we will study the impact of each layer in
the DCNNs model in addition to the standardized components of PCA on the
segmentation results.

4 Discussion and Conclusions

In this paper, we developed two brain tumor segmentation pipelines for GBM
brain tumors, these pipelines are based on DCNNs and learned features maps.
The proposed DCNNs model model uses skip connections and up-sampling filters
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to maximize the features representation inside the model. Also, using short skip
connections helps to complete the missing information during the pooling layers
and convolution striding, and long skip connections encourage the feature reuse
which assists the model to combine the low-level and the high-level features and
to better locate the tumor regions. Moreover, to overcome the issues of false pos-
itive and false negative regions, we extracted the feature maps to train another
two machine learning algorithms: random forest, logistic regression, and SVM.
These algorithms showed a high impact on the segmentation performance.
Our experimental results show that our proposed brain tumor segmentation
pipelines improved the evaluation metrics (.i.e., Dice score, Sensitivity, Speci-
ficity, Hausdorff). The Mean Dice score of our best proposed fully automatic
brain tumor segmentation pipeline (see Fig.2) is 0.85, 0.76, 0.74 for whole tu-
mor, tumor core, and enhancing tumor, respectively. The second pipeline (see
Fig.3) is a semi automatic method based on PCA, SVM and learned feature maps
of DCNNs. In this study, we used cumulative explained variance with PCA to
reduce the dimension of features to 139 components that are enough to provide
99% of variances for each patient image. Then, we applied a SVM method to
predict the class of each pixel. The showing segmentation results are promising
and give a high segmentation performance, in which we can enhance it in the
future with more investigation in the different phases from feature extraction to
prediction using machine learning algorithms. Moreover, the proposed pipeline
is suitable for adopting in research and as a part of different clinical settings.
As a perspective of this research, we intend to investigate principal component
analysis (PCA) to explore and reduce the features dimensionality, where with
this technique we can improve the results by using only the features that have a
huge impact on the segmentation results. After this study, we intend to integrate
support vector machine (SVM), PCA and DCNNs into an end-to-end supervised
learning algorithm.
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