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LEAST-VIOLATING SYMBOLIC CONTROLLER SYNTHESIS FOR

SAFETY, REACHABILITY AND ATTRACTIVITY SPECIFICATIONS

A. GIRARD AND A. EQTAMI

Abstract. Specifications considered in symbolic control are often interpreted qualitatively and controllers

are usually classified as correct if they enforce the specification or as incorrect if they do not. In practice, a

given ideal specification might be impossible to meet. In that case, it is interesting for the system designer
to be able to quantify the distance between achievable behaviors and the specification, and to synthesize

the least-violating controller enforcing the closed-loop behavior that is the closest to a correct one. In this

paper, we develop such an approach for three types of specifications: safety, uniform reachability and uniform
attractivity. We define controllability measures associated to these properties. For finite transition systems,

we present dynamic programming algorithms for the computation of these measures and of the associated
least-violating controllers. We discuss how these results can be used to synthesize controllers for infinite

transition systems via symbolic control techniques. To demonstrate the relevance of our approach, we show

an application to adaptive cruise control.

1. Introduction

Symbolic or abstraction-based control is a computational approach to controller synthesis for general nonlinear
systems with state and input constraints, where the continuous dynamics of the system is approximated using
a finite-state dynamical system called finite or symbolic abstraction (see e.g. [36, 4]). The main advantage
of using symbolic abstractions is that it makes it possible to use algorithmic techniques for the automatic
synthesis of controllers to enforce various types of specifications such as safety and reachability [14], specifi-
cations described by other dynamical systems [36], by finite-state automata [26], or by linear temporal logic
formulas [4]. When the dynamics of the system and of its abstraction are related by some formal behavioral
relationship such as alternating simulation relations [36] or feedback refinement relations [31], then a controller
for the original system can be obtained from that synthesized for the abstraction. In this case, this controller
is said to be “correct by design” since the specification is guaranteed to hold for the original system.

The specifications considered in symbolic control are often interpreted qualitatively in the sense that a con-
troller is classified as correct if it enforces the specification or as incorrect if it does not. However, in practice,
a given ideal specification might be impossible to enforce. In that case, the system designer would be inter-
ested in quantifying the distance between achievable behaviors and the specification, and in synthesizing the
least-violating controller enforcing the closed-loop behavior that is the closest to a correct one. Indeed, the
system designer may decide that the distance to the ideal specification is after all acceptable. For specifications
given under the form of a dynamical system or of a linear temporal logic formula, this could be formulated as
finding the controller that minimizes the behavioral distance between the system and the specification [15], or
that maximizes the robustness of the satisfaction of the temporal logic formula as measured by a quantitative
semantics (see e.g. [13, 11]).

In this paper, we develop such an approach for three common types of specifications: safety, uniform reach-
ability and uniform attractivity. The main contributions of the paper are as follows. Firstly, we first define
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as part of the program ”Investissement d’Avenir” Idex Paris-Saclay (ANR-11-IDEX-0003-02). This project has received funding
from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 725144).
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controllability measures associated to these properties: evaluated at a given initial state, these measures quan-
tify how close to correct behaviors the system can be controlled. Secondly, we show for finite-state systems
that these controllability measures can be computed using dynamic programming and we provide explicit con-
struction of associated least-violating controllers. Thirdly, we discuss how to lift these results to infinite-state
systems using abstraction-based techniques relying on alternating simulation relations or feedback refinement
relations. Finally, we show the relevance of the studied problem by applying it to a numerical case study
inspired by adaptive cruise control in autonomous vehicles.

The notion of least-violating controller has been introduced in [38] for safety properties where the synthesized
controller seeks to minimize the time spent outside the safe set. In comparison, in the current work, the
least-violating controller aims at minimizing over all time the distance to a correct trajectory, similar to the
approach presented in [33] where such objectives are considered for temporal logic specifications, though only
on bounded time-horizons and for linear systems. Quantitative approaches to controller synthesis can also be
related to robustness, see e.g. [37, 8, 24]. In [37], the synthesis of robust controllers is considered where one
of the robustness requirement is that the deviation from the correct behavior should be proportional to the
amplitude of disturbances. The problem considered in the current paper for safety specifications can actually
be recasted in the framework of [37]. However, the proposed solutions for controller synthesis follow slightly
different approaches. Synthesis of robust controllers is also considered in [8, 24] for safety and general omega-
regular specifications where the robustness requirement is to maximize the number of disturbance introductions
required to violate the specification. While also based on quantitative synthesis and dynamic programming,
this work appears to address objectives and to use formulations that are different from ours.

While classical dynamic programming theory [6, 5] often deals with cumulative costs, discounted or not, on
bounded or unbounded time-horizons, the problems formulated in this paper have non-cumulative costs and
aim at minimizing minimum or maximum costs over unbounded time-horizons. However, such costs have
already been considered in the literature, e.g. in [3, 10, 29, 18, 1], sometimes in relations with safety [20]
or reachability [19, 23] specifications. These works deal with systems described by differential equations
and mostly focus on the bounded time-horizon case, since the work on unbounded horizons [10] is based on
bounded horizon relaxations. In comparison, in the current work, we consider unbounded horizon problems
and dynamic programming is applied to discrete-time, finite-state transition systems, which make it possible to
consider potentially blocking, non-deterministic and discontinuous infinite-state behaviors, through symbolic
control techniques. Symbolic control has been used to tackle a number of optimal control problems involving
either cumulative costs such as minimal-time [21, 14], entry-time problems [9], finite [22] or infinite [17] horizon
problems, or average costs [32]. The research that is the most closely related to the present work are [7] and [30,
39]. In [7], the authors study dynamic programming formulations that are similar to those characterizing safety
and uniform reachability controllability measures. However, in this work, the characterization of the level sets
of the value function in terms of controllability measures is not established, and the synthesis of controllers is
not discussed. In [30] and [39], the authors study a large class of optimal control problems, which can capture
our dynamic programming formulation to synthesize least-violating controllers for uniform reachability, but
not for safety. Finally, uniform attractivity specifications are not covered by these papers.

Some of the results on safety specifications have been presented in preliminary form in the conference paper [12].
The present paper gives a deeply reworked presentation of these results and provides characterization of the
value function in terms of the controllability measure, which was not introduced in this work. Moreover,
the results related to uniform reachability and uniform attractivity, and the application to adaptive cruise
control are new. Finally, while the focus of the paper is on the synthesis of least-violating controllers, it
is straightforward to adapt the approach to synthesize maximally satisfying controllers, which aim, when a
specification can be met, at maximizing over all time the distance to incorrect trajectories.

The remainder of the paper is organized as follows. Section 2 introduces preliminary definitions and defines
controllability measures for safety, uniform reachability and uniform attractivity specifications. Section 3 pro-
vides algorithms based on dynamic programming for the computation of these measures and for the synthesis
of the associated least-violating controllers, for finite transition systems. In Section 4, we lift these results to
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infinite transition systems using symbolic control techniques. Finally, Section 5 shows an application of our
framework to adaptive cruise control.

2. Preliminaries

In this section, after defining some notations, we introduce the classes of systems and of controllers considered
in the paper. Then, we present the three types of specifications under study (safety, uniform reachability and
uniform attractivity) and define the associated controllability measures.

Notations: R, R+
0 and N denote the sets of real, nonnegative real and natural numbers, respectively. For

K ∈ N ∪ {+∞}, we define the following sets of integers N<K = {k ∈ N| k < K} and N≤K = {k ∈ N| k ≤ K}.
The lexicographic order over R2 is defined by (v1, v2) ≤lex (w1, w2) if and only if v1 < w1, or v1 = w1 and
v2 ≤ w2. If (v1, v2) ≤lex (w1, w2) and (v1, v2) 6= (w1, w2), then we denote (v1, v2) <lex (w1, w2). R denotes
the set of extended real numbers, i.e. R = [−∞,+∞]. For an extended real-valued function V : X → R, the
lower level sets of function V are defined as Lδ(V ) = {x ∈ X| V (x) ≤ δ} where δ ∈ R. A relation R ⊆ X × Y
is identified with the set-valued map R : X ⇒ Y where R(x) = {y ∈ Y | (x, y) ∈ R}. The domain of R is
dom(R) = {x ∈ X| R(x) 6= ∅}. The inverse relation of R is R−1 = {(y, x) ∈ Y × X| (x, y) ∈ R}. Given
X ′ ⊆ X, we have R(X ′) =

⋃
x∈X′ R(x). Given two set-valued maps R1 : X ⇒ Y and R2 : Y ⇒ Z, the set

valued-map R2 ◦R1 : X ⇒ Z is given for all x ∈ X, by R2 ◦R1(x) = R2(R1(x)). Given a metric space (X, d),
we define the ball centered at x ∈ X of radius δ ∈ R+

0 as B(x, δ) = {x′ ∈ X| d(x, x′) ≤ δ}. Given a finite set
X, |X| denotes the number of elements of X.

2.1. Transition systems. In this paper, we focus on the following class of transition systems [36]:

Definition 2.1. A transition system Σ is a tuple Σ = (X,U, Y, F,H), consisting of a set of states X; a set of
inputs U ; a set of outputs Y ; a transition relation F : X × U ⇒ X; and an output map H : X → Y . Σ is
finite if X and U are finite.

An input u ∈ U is called enabled at x ∈ X if F (x, u) 6= ∅. Let enabF (x) ⊆ U denote the set of all inputs
enabled at x. If enabF (x) = ∅, then the state x is called blocking, otherwise it is non-blocking. The set of
non-blocking states is denoted nbsF . Σ is said to be deterministic, if for all x ∈ X, for all u ∈ enabF (x),
F (x, u) is a singleton.

Within the framework of transition systems, we can define (memoryless state-feedback) controllers as follows:

Definition 2.2. A controller for system Σ is a set-valued map C : X ⇒ U such that C(x) ⊆ enabF (x), for
all x ∈ X.

Closed-loop trajectories are then defined as follows:

Definition 2.3. A sequence (xt)
T
t=0, where T ∈ N ∪ {+∞}, xt ∈ X, for t ∈ N≤T , is called a closed-loop

trajectory of system Σ with controller C if and only if

∀t ∈ N<T , xt+1 ∈ F (xt, C(xt)).

A trajectory is called maximal if either T = +∞ or C(xT ) = ∅, it is complete if T = +∞. The set of maximal
closed-loop trajectories starting from a given initial state x0 ∈ X is denoted by Tmax(Σ, C, x0).

2.2. Specifications. Consider a system Σ = (X,U, Y, F,H) and a subset of states X∗ ⊆ X. In the following,
we define three basic types of specifications: safety, uniform reachability and uniform attractivity.

Definition 2.4. A state x0 ∈ X is safety controllable to X∗, if there exists a controller C such that all
maximal trajectories (xt)

T
t=0 ∈ Tmax(Σ, C, x0) are complete and satisfy xt ∈ X∗, for all t ∈ N. The set of

safety controllable states is denoted by S-cont(Σ, X∗).
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Intuitively, a state is safety controllable if all maximal closed-loop trajectories initiating from that state stay
in X∗ forever.

Definition 2.5. A state x0 ∈ X is uniform reachability controllable to X∗, if there exist a controller C and
T0 ∈ N, such that for all maximal trajectories (xt)

T
t=0 ∈ Tmax(Σ, C, x0), there exists t ∈ N≤min(T,T0), such that

xt ∈ X∗. The set of uniform reachability controllable states is denoted by R-cont(Σ, X∗).

Essentially, a state is reachability controllable if all maximal closed-loop trajectories initiating from that state
reach X∗ in finite time. The term “uniform” refers to the fact that the time to reach X∗ is uniformly bounded
by T0, which depends on the initial state x0 but not on the trajectory. It is easy to show that reachability
and uniform reachability coincides for deterministic systems and for finite systems. The following example
illustrates this notion of uniformity.

Example 2.6. Consider a transition system Σ = (X,U, Y, F,H) where X = N, U = {0} and F is given by
F (0, 0) = {x ∈ N| x ≥ 1} and F (x, 0) = {x − 1} for all x ≥ 1. The value of Y and H is not relevant for
the subsequent discussion. A pictural representation of Σ is shown in Figure 1. Let us remark that Σ is not
deterministic nor finite. Let us consider the controller C given by C(x) = {0}, for all x ∈ N. Finally, let
X∗ = {1} and x0 = 0. For all (xt)

T
t=0 ∈ Tmax(Σ, C, x0), it is clear that xt ∈ X∗ for the first time at time

t = x1 so all closed-loop trajectories initiating in x0 reach X∗ in finite time. However, this time cannot be
uniformly bounded since x1 ∈ {x ∈ N| x ≥ 1}, which is an unbounded set. �

0 1 2 . . . . . .x

Figure 1. Illustration of Example 2.6: all trajectories starting in 0 reach 1 at some finite
time. However this time cannot be uniformly bounded.

Definition 2.7. A state x0 ∈ X is uniform attractivity controllable to X∗, if there exist a controller C and
T0 ∈ N, such that all maximal trajectories (xt)

T
t=0 ∈ Tmax(Σ, C, x0) are complete and satisfy xt ∈ X∗, for all

t ≥ T0. The set of uniform attractivity controllable states is denoted by A-cont(Σ, X∗).

Essentially, a state is attractivity controllable if all maximal closed-loop trajectories initiating from that state
eventually reach X∗ and stay therein forever. Again, the term “uniform” refers to the fact that the time after
which trajectories do not leave X∗ is uniformly bounded by T0, which depends on the initial state x0 but
not on the trajectory. It is straightforward to show that attractivity and uniform attractivity coincides for
deterministic systems. We provide the following example to illustrate the notion of uniform attractivity.

Example 2.8. Consider a transition system Σ = (X,U, Y, F,H) where X = {0, 1, 2}, U = {0} and F is given
by F (0, 0) = {0}, F (1, 0) = {1, 2}, F (2, 0) = {0}. The value of Y and H is not relevant for the subsequent
discussion. A pictural representation of Σ is shown in Figure 2. Let us remark that Σ is not deterministic.
Let us consider the controller C given by C(x) = {0}, for all x ∈ {1, 2, 3}. Finally, let X∗ = {0, 1} and x0 = 1.
Let (xt)

T
t=0 ∈ Tmax(Σ, C, x0), we have either xt = 1, for all t ∈ N or there exists T0 ∈ N, T0 ≥ 2 such that

xt = 1 for all t ∈ N≤T0−2, xT0−1 = 2 and xt = 0, for all t ≥ T0. So, all maximal closed-loop trajectories
initiating from 1 do not leave X∗ after some finite time T0. However, this time cannot be uniformly bounded
and depends on the trajectory. More precisely, it depends on the instant when the non-deterministic transition
from state 1 to state 2 occurs, if such transition occurs. Let us remark, that this example shows that, unlike
for reachability, even for finite transition systems there is a fundamental difference between attractivity and
uniform attractivity. �



LEAST-VIOLATING SYMBOLIC CONTROLLER FOR SAFETY, REACHABILITY AND ATTRACTIVITY 5

0 1 2

Figure 2. Illustration of Example 2.8: all trajectories starting in 1 stay in {0, 1} after some
finite time. However this time cannot be uniformly bounded.

Remark 2.9. A comparison with some specifications written in Linear Temporal Logic [2] (LTL) is in order.
The notion of safety provided in Definition 2.4 corresponds to the LTL formula �X∗. However, the uniformity
requirement for reachability and attractivity in Definitions 2.5 and 2.7 make them semantically different from,
and actually stronger than the LTL formulas ♦X∗ and ♦�X∗. In fact, the uniformity requirement cannot be
expressed in LTL, since LTL formulas are evaluated on single trajectories while the uniformity requirement
refers to the set of trajectories Tmax(Σ, C, x0).

We now show the following relation between the three notions defined above:

Proposition 2.10. The following equality holds: A-cont(Σ, X∗) = R-cont(Σ,S-cont(Σ, X∗)).

Proof. Let x0 ∈ A-cont(Σ, X∗), then there exist a controller C and T0 ∈ N, such that all maximal trajectories
(xt)

T
t=0 ∈ Tmax(Σ, C, x0) are complete and satisfy xT0

∈ S-cont(Σ, X∗). Hence, x0 ∈ R-cont(Σ,S-cont(Σ, X∗)).
Now, let x0 ∈ R-cont(Σ,S-cont(Σ, X∗)), there exist a controller CR and T0 ∈ N, such that for all maximal
trajectories (xt)

T
t=0 ∈ Tmax(Σ, CR, x0), there exists t ∈ N≤min(T,T0), such that xt ∈ S-cont(Σ, X∗). For all

x ∈ S-cont(Σ, X∗), there exists a controller CxS such that all trajectories in Tmax(Σ, CxS , x) are complete and
stay in X∗ forever. Let us consider the controller C defined as follows

C(x) =

{
CR(x) if x /∈ S-cont(Σ, X∗);
CxS (x) if x ∈ S-cont(Σ, X∗)

Then, all maximal trajectories (xt)
T
t=0 ∈ Tmax(Σ, C, x0) are complete and satisfy xt ∈ X∗ for all t ≥ T0. Hence,

x0 ∈ A-cont(Σ, X∗). � �

2.3. Controllability measures. From now on, let us assume that the output set Y = R and H : X → Y is
given by

(2.1) H(x) = inf{δ ∈ R+
0 | B(x, δ) ∩X∗ 6= ∅}

where (X, d) is a metric space. Essentially, H(x) represents the distance of state x to the set X∗. Then,
for δ ∈ R, let us consider the lower level-sets X∗δ = Lδ(H). We can then define quantitative measures of
controllability for a state x ∈ X as follows:

Definition 2.11. The safety, uniform reachability, uniform attractivity controllability measures of a state
x ∈ X are respectively defined as

VS(x) = inf{δ ∈ R| x ∈ S-cont(Σ, X∗δ )}(2.2)

VR(x) = inf{δ ∈ R| x ∈ R-cont(Σ, X∗δ )}(2.3)

VA(x) = inf{δ ∈ R| x ∈ A-cont(Σ, X∗δ )}(2.4)

A simple intuitive explanation of the controllability measures can be given for finite transition systems as
follows. For safety specifications, if VS(x) = 0 then x ∈ S-cont(Σ, X∗). If VS(x) > 0 then x /∈ S-cont(Σ, X∗),
nonetheless there exists a least-violating controller which keeps the closed loop-trajectories initiating from x
less than VS(x) away from X∗. Similarly, for reachability specifications, if VR(x) = 0 then x ∈ R-cont(Σ, X∗), if
VR(x) > 0 then x /∈ R-cont(Σ, X∗), nonetheless there exists a least-violating controller which drives the closed
loop-trajectories initiating from x less than VR(x) away from X∗. Finally, for attractivity specifications, if
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VA(x) = 0 then x ∈ A-cont(Σ, X∗), if VA(x) > 0 then x /∈ A-cont(Σ, X∗), nonetheless there exists a least-
violating controller which eventually keeps the closed loop-trajectories initiating from x less than VA(x) away
from X∗.

In the following, we consider the problem of computing these controllability measures and of synthesizing
least-violating controllers achieving these fundamental limits. These are of particular interest to the system
designer when a given “ideal” specification cannot be met. Indeed, in that case the controllability measure
provides the information on how close we can get to the specification. The designer may then decide that
this deviation is acceptable and use the associated least-violating controller. Such a situation will be shown in
Section 5 on a numerical example inspired by adaptive cruise control in autonomous vehicles. Before that, we
develop approaches in Section 3, to compute these controllability measures for finite transition systems based
on dynamic programming. In Section 4, we lift these methods to compute approximate solutions for infinite
transition systems, using finite state abstractions.

Remark 2.12. The paper focuses on the synthesis of least-violating controllers that correspond to H given by
(2.1). However, all the results can be adapted to other choices for H. In particular, by considering the signed
distance to the set X∗, given by

H(x) =

{
− sup{δ ∈ R+

0 | B(x, δ) ⊆ X∗} if x ∈ X∗;
inf{δ ∈ R+

0 | B(x, δ) ∩X∗ 6= ∅} otherwise

the synthesized controller is at the same time least-violating at uncontrollable states and maximally satisfying
at controllable states, in the sense that it maximizes the distance to incorrect behaviors.

3. A dynamic programming approach for finite systems

In this section, we consider a finite transition system Σ and provide fixed-point characterizations of the safety,
uniform reachability and uniform attractivity controllability measures. We also give explicit constructions of
the least-violating controllers.

3.1. Safety specifications. Let us consider the following dynamic programming fixed-point iteration:

W 0
S (x) = H(x)(3.1)

W k+1
S (x) =


max

(
H(x), min

u∈enabF (x)
max

x+∈F (x,u)
W k

S (x+)
)

if x ∈ nbsF ;
+∞ if x /∈ nbsF

(3.2)

for x ∈ X, k ∈ N.

Proposition 3.1. For a finite transition system Σ, there exists K ∈ N<|X|×(|H(X)|+1) such that for all k ≥ K,

W k
S (x) = WK

S (x), for all x ∈ X.

Proof. First, we are going to prove that for all x ∈ X, the sequence (W k
S (x))k∈N is nondecreasing. This is

obviously the case if x /∈ nbsF . When x ∈ nbsF , we have the following

W 1
S (x) = max

(
H(x), min

u∈enabF (x)
max

x+∈F (x,u)
W 0

S (x+)
)

≥ H(x) = W 0
S (x)
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Assume now, that for some k ≥ 1, W k
S (x) ≥W k−1

S (x) for all x ∈ X. Then, for all x ∈ nbsF ,

W k+1
S (x) = max

(
H(x), min

u∈enabF (x)
max

x+∈F (x,u)
W k

S (x+)
)

≥ max
(
H(x), min

u∈enabF (x)
max

x+∈F (x,u)
W k−1

S (x+)
)

= W k
S (x)

Note that for all x /∈ nbsF , we also have W k+1
S (x) ≥W k

S (x). Thus, by induction, it follows that for all k ∈ N,

for all x ∈ X, we have W k+1
S (x) ≥W k

S (x), i.e. the sequence (W k
S (x))k∈N is nondecreasing.

To show that the fixed point is reached in a finite number of steps, let us remark that for all x ∈ X, for all
k ∈ N, W k

S (x) ∈ H(X) ∪ {+∞}, which is finite from the finiteness of X. Together with the fact that for all
x ∈ X, the sequence (W k

S (x))k∈N is nondecreasing, this shows that there exists K ∈ N<|X|×(|H(X)|+1) , such

that for all k ≥ K, for all x ∈ X, W k
S (x) = WK

S (x). � �

We denote the fixed-point of (3.1), (3.2) by W ?
S . It follows from Proposition 3.1 and (3.2) that for all x ∈ nbsF ,

(3.3) W ?
S (x) = max

(
H(x), min

u∈enabF (x)
max

x+∈F (x,u)
W ?

S (x+)
)
.

We define the following controller for Σ:

(3.4) C?S(x) =


arg min

u∈enabF (x)

(
max

x+∈F (x,u)
W ?

S (x+)
)

if x ∈ nbsF ;
∅ if x /∈ nbsF

Theorem 3.2. Let Σ be a finite transition system, let W ?
S be the fixed-point of (3.1), (3.2) and let C?S be

given by (3.4). Then, for all δ ∈ R, for all x0 ∈ Lδ(W ?
S ), all maximal trajectories (xt)

T
t=0 ∈ Tmax(Σ, C?S , x0)

are complete and satisfy xt ∈ X∗δ , for all t ∈ N. Moreover, for all δ ∈ R, Lδ(W
?
S ) = S-cont(Σ, X∗δ ).

Proof. Let δ ∈ R, x0 ∈ Lδ(W ?
S ) and (xt)

T
t=0 ∈ Tmax(Σ, C?S , x0). By (3.3), we get W ?

S (x) ≥ H(x) for all x ∈ X,
then Lδ(W

?
S ) ⊆ Lδ(H) = X∗δ . By (3.3) and (3.4), we get for all t ∈ N<T , W ?

S (xt+1) ≤ W ?
S (xt). Hence,

since x0 ∈ Lδ(W
?
S ), we get for all t ∈ N≤T , xt ∈ Lδ(W

?
S ) ⊆ X∗δ . Let us assume that T < +∞, then by

maximality C?S(xT ) = ∅, which from (3.4) means that xT /∈ nbsF . From (3.2), we get that W ?
S (xT ) = +∞,

which contradicts the fact that xT ∈ Lδ(W
?
S ) with δ ∈ R. Hence, T = +∞, and the trajectory (xt)

T
t=0 is

complete.

From above, it follows directly that Lδ(W
?
S ) ⊆ S-cont(Σ, X∗δ ). We now prove the reverse inclusion. Let δ ∈ R,

from Definition 2.4, S-cont(Σ, X∗δ ) ⊆ X∗δ and therefore, for all x ∈ S-cont(Σ, X∗δ ), H(x) ≤ δ. Let us assume
that for some k ∈ N, we have for all x ∈ S-cont(Σ, X∗δ ), W k

S (x) ≤ δ. Note that this is true for k = 0. Let
x ∈ S-cont(Σ, X∗δ ), from Definition 2.4, it follows that x ∈ nbsF and that there exists ũ ∈ enabF (x) such that
F (x, ũ) ⊆ S-cont(Σ, X∗δ ). Hence, for all x+ ∈ F (x, ũ), W k

S (x+) ≤ δ. It follows that

min
u∈enabF (x)

max
x+∈F (x,u)

W k
S (x+) ≤ max

x+∈F (x,ũ)
W k

S (x+) ≤ δ.

This, together with H(x) ≤ δ and (3.2), implies that W k+1
S (x) ≤ δ. Hence, by induction, we get that for all

k ∈ N, for all x ∈ S-cont(Σ, X∗δ ), W k
S (x) ≤ δ. Thus by Proposition 3.1, it follows that for all x ∈ S-cont(Σ, X∗δ ),

W ?
S (x) ≤ δ. Then, S-cont(Σ, X∗δ ) ⊆ Lδ(W ?

S ). � �

We would like to highlight some features of our approach. Let us point out that by computing the fixed-
point of (3.1), (3.2), one can compute the sets of safety controllable states for a family of specification sets X∗δ
parameterized by δ ∈ R. Moreover, it is interesting to remark that the proposed controller (3.4) is independent
of the parameter δ and will automatically enforce the safety specification for the smallest possible value of the
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parameter. For H given by (2.1), the distance to a safe set X∗, controller (3.4) is the least-violating controller,
which keeps trajectories as close as possible to the safe set.

Corollary 3.3. Let Σ be a finite transition system, let VS be given by (2.2), and let W ?
S be the fixed-point of

(3.1), (3.2). Then, VS = W ?
S .

Proof. If W ?
S (x) = +∞, then from Theorem 3.2, for all δ ∈ R, x /∈ S-cont(Σ, X∗δ ) and VS(x) = +∞. If

W ?
S (x) < +∞, then let δ = W ?

S (x). From Theorem 3.2, it follows that x ∈ S-cont(Σ, X∗δ ). Therefore,
VS(x) ≤W ?

S (x).

If VS(x) = +∞, then for all δ ∈ R, x /∈ S-cont(Σ, X∗δ ) and from Theorem 3.2, W ?
S (x) > δ. Hence W ?

S (x) =
+∞. If VS(x) < +∞, then let δ > VS(x). Then, x ∈ S-cont(Σ, X∗δ ), which implies from Theorem 3.2 that
x ∈ Lδ(W ?

S ). Hence, W ?
S (x) ≤ δ for all δ > VS(x). It follows that W ?

S (x) ≤ VS(x). � �

3.2. Reachability specifications. Similar to safety, we consider the following dynamic programming fixed-
point iteration:

W 0
R(x) = H(x)(3.5)

W k+1
R (x) =


min

(
H(x), min

u∈enabF (x)
max

x+∈F (x,u)
W k

R(x+)
)

if x ∈ nbsF ;
H(x) if x /∈ nbsF

(3.6)

for x ∈ X, k ∈ N.

Remark 3.4. It is important to mention that the dynamic programming fixed point (3.5), (3.6) can be seen
as a special case of the one considered in the work [30, 39]. Some of the results below can be obtained using
results of [30]. However, we decided to include the proofs for self-containment of the paper and because these
are instrumental for the case of uniform attractivity specifications considered in the next section. Interestingly,
in [30, 39], efficient algorithms a la Dijkstra are presented for computing the fixed-point of (3.5), (3.6).

Proposition 3.5. For a finite transition system Σ, there exists K ∈ N<|X|×|H(X)| such that for all k ≥ K,

W k
R(x) = WK

R (x), for all x ∈ X.

Proof. The proof follows the same lines as that of Proposition 3.1 with, in the present case the sequence
(W k

R(x))k∈N being non-increasing for all x ∈ X with values in H(X). � �

We denote the fixed-point of (3.5), (3.6) by W ?
R. It follows from Proposition 3.5 and (3.6) that for all x ∈ nbsF ,

(3.7) W ?
R(x) = min

(
H(x), min

u∈enabF (x)
max

x+∈F (x,u)
W ?

R(x+)
)
.

Let the function k? : X → N be defined as follows for all x ∈ X
(3.8) k?(x) = min{k ∈ N|W k

R(x) = W ?
R(x)}.

From Proposition 3.5, it follows that k? is well-defined and that for all x ∈ X, 0 ≤ k?(x) ≤ K. Moreover, it
is clear that if k?(x) 6= 0, then x ∈ nbsF . From this observation, and by (3.6) and (3.8), we have that the
following equation holds for all x ∈ X, such that k?(x) 6= 0:

(3.9) W ?
R(x) = min

(
H(x), min

u∈enabF (x)
max

x+∈F (x,u)
W

k?(x)−1
R (x+)

)
.

We define the following controller for Σ:

(3.10) C?R(x) =


arg min

u∈enabF (x)

(
max

x+∈F (x,u)
W

k?(x)−1
R (x+)

)
if k?(x) ≥ 1;

∅ if k?(x) = 0
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We start with some preliminary result before stating the main results of the section.

Lemma 3.6. For all x0 ∈ X, for all maximal trajectories (xt)
T
t=0 ∈ Tmax(Σ, C?R, x0), for all t ∈ N<T it holds

that k?(xt) 6= 0 and (W ?
R(xt+1), k?(xt+1)) <lex (W ?

R(xt), k
?(xt)).

Proof. Let t ∈ N<T , then C?R(xt) 6= ∅, which from (3.10) implies that k?(xt) 6= 0. Then, by (3.8), W ?
R(xt) 6=

H(xt), and from (3.9), it follows that

W ?
R(xt) = min

u∈enabF (xt)
max

x+∈F (xt,u)
W

k?(xt)−1
R (x+)

Then by (3.10), we have W ?
R(xt) ≥ W

k?(xt)−1
R (xt+1). Since the sequence (W k

R(xt+1))k∈N is non-increasing

with its infimum given by W ?
R(xt+1). We get that W

k?(xt)−1
R (xt+1) ≥ W ?

R(xt+1) and therefore W ?
R(xt) ≥

W ?
R(xt+1). Moreover, if W ?

R(xt) = W ?
R(xt+1), then we get W

k?(xt)−1
R (xt+1) = W ?

R(xt+1). Then by (3.8), we
have k?(xt+1) ≤ k?(xt)−1. Hence, either W ?

R(xt+1) < W ?
R(xt), or W ?

R(xt+1) = W ?
R(xt) and k?(xt+1) < k?(xt).

Therefore, (W ?
R(xt+1), k?(xt+1)) <lex (W ?

R(xt), k
?(xt)). � �

Theorem 3.7. Let Σ be a finite transition system, let W ?
R be the fixed-point of (3.5), (3.6), let C?R be given by

(3.10), and let T0 = |H(X)|×(K+1)−1. Then, for all δ ∈ R, for all x0 ∈ Lδ(W ?
R), for all maximal trajectories

(xt)
T
t=0 ∈ Tmax(Σ, C?R, x0), T ≤ T0 and xT ∈ X∗δ . Moreover, for all δ ∈ R, Lδ(W

?
R) = R-cont(Σ, X∗δ ).

Proof. Let δ ∈ R, x0 ∈ Lδ(W
?
R) and (xt)

T
t=0 ∈ Tmax(Σ, C?R, x0). From Lemma 3.6, we get that the se-

quence (W ?
R(xt), k

?(xt))t∈N≤T
is strictly decreasing for the lexicographic order. Moreover, for all t ∈ N≤T ,

(W ?
R(xt), k

?(xt)) ∈ H(X) × N≤K . It follows that T is bounded by T0. By maximality of (xt)
T
t=0, we have

C?R(xT ) = ∅. From (3.10), this implies that k?(xT ) = 0 and (3.8) gives W ?
R(xT ) = H(xT ). From Lemma 3.6,

we also get that W ?
R(xT ) ≤W ?

R(x0) ≤ δ. Hence, xT ∈ X∗δ .

From above, it follows directly that Lδ(W
?
R) ⊆ R-cont(Σ, X∗δ ). We now prove the reverse inclusion. We

proceed by contradiction, let us assume that there exists x0 ∈ R-cont(Σ, X∗δ ) such that x0 /∈ Lδ(W ?
R). Then,

W ?
R(x0) > δ. Let C : X ⇒ U be a controller as in Definition 2.5. Let us assume that for some T ∈ N, there

exists (xt)
T
t=0, a closed-loop trajectory of system Σ with controller C, such that for all t ∈ N≤T , W ?

R(xt) > δ.
Note that this is true for T = 0. If C(xT ) = ∅, then the trajectory is maximal and from (3.9) we have for all
t ∈ N≤T , H(xt) ≥ W ?

R(xt) > δ, which contradicts the fact that x0 ∈ R-cont(Σ, X∗δ ). If C(xT ) 6= ∅, then let
uT ∈ C(XT ) and let

xT+1 = arg max
x+∈F (xT ,uT )

W ?
R(x+).

Then by (3.7), we get

W ?
R(xT+1) ≥ min

u∈enabF (xT )
max

x+∈F (xT ,u)
W ?

R(x+)

≥W ?
R(xT ) > δ.

Hence, we get by induction that there exists a closed-loop trajectory of system Σ with controller C, (xt)
T
t=0

with T = +∞ such that for all t ∈ N, W ?
R(xt) > δ. Then from (3.9), we get for all t ∈ N, H(xt) ≥W ?

R(xt) > δ
which contradicts the fact that x0 ∈ R-cont(Σ, X∗δ ). � �

Similar to the case of safety specifications, computing the fixed-point of (3.5), (3.6) allows one to compute
the sets of uniform reachability controllable states for the family of specification sets X∗δ parameterized by
δ ∈ R. Similarly, the proposed controller (3.10) is independent of the parameter δ and automatically enforces
the reachability specification for the smallest possible value of the parameter. If H is the distance to a target
set X∗, given by (2.1), controller (3.10) is the least-violating controller, which drives trajectories as close as
possible to the target set. However, a significant difference with the case of safety specifications is that the
controller (3.10) is not obtained from the fixed-point W ?

R only, but from the iterates (W k
R)k∈N. Actually, there

are cases where the fixed-point W ?
R carries no information on the way to reach the target as shown in the

following example:
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Example 3.8. Consider a transition system Σ = (X,U, Y, F,H) where X = {0, 1, 2}, U = {0, 1} and F is
given by F (0, 0) = {0}, F (1, 0) = {0}, F (1, 1) = {2}, F (2, 0) = {1}, Y = X and H(x) = x for all x ∈ X. A
pictural representation of Σ is shown in Figure 3. The fixed-point of (3.5), (3.6) in this case is flat and given
by W ?

R(x) = 0, for all x ∈ X. In particular, it does not allow to decide that input u = 0 should be taken in
x = 1 since the value of W ?

R at the successor for all inputs is identical. �

0 1 2

0

0

1

Figure 3. Illustration of Example 3.8: for H(x) = x for all x ∈ X, the fixed-point of (3.5),
(3.6) is flat, W ?

R(x) = 0, for all x ∈ X .

We can then state the following corollary whose proof is along the same lines as that of Corollary 3.3.

Corollary 3.9. Let Σ be a finite transition system, let VR be given by (2.3), and let W ?
R be the fixed-point of

(3.5), (3.6). Then, VR = W ?
R.

3.3. Attractivity specifications. Let W ?
S be the fixed-point of (3.1), (3.2) associated to safety specifications

and consider the following dynamic programming fixed-point iteration:

W 0
A(x) = W ?

S (x)(3.11)

W k+1
A (x) =


min

(
W ?

S (x), min
u∈enabF (x)

max
x+∈F (x,u)

W k
A(x+)

)
if x ∈ nbsF ;

W ?
S (x) if x /∈ nbsF

(3.12)

for x ∈ X, k ∈ N. Let us remark that (3.11) and (3.12) are similar to (3.5), (3.6) where H is replaced by W ?
S .

Then, from Proposition 3.5, for finite transition systems, there exists K ∈ N<|X|×(|H(X)|+1), such that for all

k ≥ K, W k
A(x) = WK

A (x), for all x ∈ X. We denote the fixed-point of (3.11), (3.12) by W ?
A.

Proposition 3.10. Let Σ be a finite transition system, let W ?
A be the fixed-point of (3.11), (3.12), then, for

all δ ∈ R, Lδ(W
?
A) = A-cont(Σ, X∗δ ). Moreover, let VA be given by (2.4), then VA = W ?

A.

Proof. From Theorems 3.7 and 3.2, it follows that Lδ(W
?
A) = R-cont(Σ, Lδ(W

?
S )) = R-cont(Σ,S-cont(Σ, X∗δ )).

Then, from Proposition 2.10, we get Lδ(W
?
A) = A-cont(Σ, X∗δ ). The second part of the proposition is proved

along the same lines as Corollary 3.3. � �

Similar to the case of safety and reachability specifications, computing the fixed-point of (3.11), (3.12) allows
one to compute the sets of uniform attractivity controllable states for the parameterized family of specification
sets X∗δ .

We now focus on the synthesis of controllers enforcing the attractivity specification. Let the function k? :
X → N be defined as follows for all x ∈ X

(3.13) k?(x) = min{k ∈ N|W k
A(x) = W ?

A(x)}.

Let us remark that k? is well-defined and for all x ∈ X, 0 ≤ k?(x) ≤ K.
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For δ ∈ R, let us define the controller CδA as follows:

(3.14) CδA(x) =



arg min
u∈enabF (x)

(
max

x+∈F (x,u)
W

k?(x)−1
A (x+)

)
if W ?

A(x) ≤ δ < W ?
S (x);

arg min
u∈enabF (x)

(
max

x+∈F (x,u)
W ?

S (x+)
)

if W ?
S (x) ≤ δ;

∅ if δ < W ?
A(x)

From (3.12), we have for all x ∈ X, W ?
A(x) ≤ W ?

S (x). Hence, the three cases in (3.14) cover all possible
position of δ relatively to W ?

A(x) and W ?
S (x). If W ?

A(x) ≤ δ < W ?
S (x), then from (3.11) and (3.13), we get that

k?(x) ≥ 1, which also implies that x ∈ nbsF and therefore the first case in (3.14) is well-defined. If W ?
S (x) ≤ δ,

then x ∈ nbsF (otherwise we would have W ?
S (x) = +∞) and the second case in (3.14) is also well-defined.

Theorem 3.11. Let Σ be a finite transition system, let W ?
S and W ?

A be the fixed-points of (3.1), (3.2) and
(3.11), (3.12), respectively, let T0 = |H(X)| × (K + 1) − 1. Let δ ∈ R and let CδA be given by (3.14). Then,
for all x0 ∈ Lδ(W ?

A), all maximal trajectories (xt)
T
t=0 ∈ Tmax(Σ, CδA, x0) are complete and satisfy xt ∈ X∗δ , for

all t ≥ T0.

Proof. Let δ ∈ R, x0 ∈ Lδ(W ?
A) and (xt)

T
t=0 ∈ Tmax(Σ, CδA, x0).

For all t ∈ N<T , such that W ?
A(xt) ≤ δ < W ?

S (xt), then k?(xt) ≥ 1 and similar to the proof of Lemma 3.6 we
can show that (W ?

A(xt+1), k?(xt+1)) <lex (W ?
A(xt), k

?(xt)). Then, if W ?
A(x0) ≤ δ < W ?

S (x0), it follows that
either there exists t ∈ N≤min(T,T0) such that W ?

S (xt) ≤ δ, or T ≤ T0 and W ?
A(xT ) ≤ δ < W ?

S (xT ). In the

second case, we have from (3.14) that CδA(xT ) 6= ∅, which contradicts the maximality of (xt)
T
t=0.

Moreover, for all t ∈ N<T , such that W ?
S (xt) ≤ δ it follows similar to the proof of Theorem 3.2 that W ?

S (xt+1) ≤
W ?

S (xt). Hence, it follows that for all t ∈ N≤T , such that t ≥ min(T, T0), W ?
S (xt) ≤ δ. If T < +∞, then

W ?
S (xT ) ≤ δ implies that CδA(xT ) 6= ∅, which contradicts the maximality of (xt)

T
t=0. Therefore, (xt)

T
t=0 is

complete and for all t ≥ T0, W ?
S (xt) ≤ δ. Since H(x) ≤ W ?

S (x) for all x ∈ X, we get the statement of the
theorem. � �

We would like to highlight here an important difference with safety and reachability specifications. Indeed, the
proposed controller (3.14) depends on the value of the parameter δ when safety and reachability controllers
(3.4) and (3.10) are independent from the value of δ. Actually, it is in general impossible to find a controller
of the class introduced in Definition 2.2 that enforces uniform attractivity of X∗δ from all initial states in
A-cont(Σ, X∗δ ), for all possible value of δ at the same time. This is shown by the following example:

Example 3.12. Consider a transition system Σ = (X,U, Y, F,H) where X = {0, 1, 2, 3}, U = {0, 1} and F is
given by F (0, 0) = {0}, F (1, 0) = {3}, F (1, 1) = {2}, F (2, 0) = {1, 2}, F (3, 0) = {0}, Y = X and H(x) = x
for all x ∈ X. A pictural representation of Σ is shown in Figure 4. For this system, we have X∗0 = {0},
X∗2 = {0, 1, 2}, A-cont(Σ, X∗0 ) = {0, 1, 3} and A-cont(Σ, X∗2 ) = X. Let us show that there is no controller
of the class introduced in Definition 2.2 that enforces at the same time uniform attractivity of X∗0 from all
initial states in A-cont(Σ, X∗0 ), and of X∗2 from all initial states in A-cont(Σ, X∗2 ). Indeed, to enforce uniform
attractivity of X∗0 from state x0 = 1 it is necessary to choose C(1) = {0}. From other states, only input 0 is
enabled and therefore we have to choose C(x) = {0}, for all x ∈ X. Let us emphasize that this is the unique
controller enforcing uniform attractivity of X∗0 from all states in A-cont(Σ, X∗0 ). However, this controller does
not enforce uniform attractivity of X∗2 from state x0 = 2 that belongs to A-cont(Σ, X∗2 ). Indeed, for x0 = 2,
for any τ ∈ N, τ ≥ 2, there exists (xt)

T
t=0 ∈ Tmax(Σ, C, x0), such that xτ = 3. Hence, for x0 = 2, it is not

possible to find T0 ∈ N, such that for all (xt)
T
t=0 ∈ Tmax(Σ, C, x0), xt ∈ X∗2 , for all t ≥ T0. Hence, C does not

enforce uniform attractivity of X∗2 from all initial states in A-cont(Σ, X∗2 ). Since C is the unique controller
enforcing uniform attractivity of X∗0 from all initial states in A-cont(Σ, X∗0 ), there does not exist any controller
enforcing uniform attractivity of X∗0 and X∗2 at the same time. �
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0

3 0

10

0 0

0

Figure 4. Illustration of Example 3.12: there does not exist a memoryless controller that
enforces uniform attractivity of X∗0 = {0} and X∗2 = {0, 1, 2} at the same time.

If we relax the uniformity requirement for some of the states, the following controller, which is independent
of δ can be used.

(3.15) C?A(x) =



arg min
u∈enabF (x)

(
max

x+∈F (x,u)
W

k?(x)−1
A (x+)

)
if k?(x) ≥ 1;

arg min
u∈enabF (x)

(
max

x+∈F (x,u)
W ?

S (x+)
)

if k?(x) = 0 and x ∈ nbsF ;
∅ if x /∈ nbsF

If k?(x) ≥ 1, then x ∈ nbsF and therefore the first case in (3.15) is well-defined. Also, let us remark that for
x /∈ nbsF then by (3.2), (3.12), we get that W ?

A(x) = W ?
S (x) = +∞. Therefore, it follows that for all x ∈ X,

such that W ?
A(x) < +∞, x ∈ nbsF and C?A(x) 6= ∅.

Theorem 3.13. Let Σ be a finite transition system, let W ?
S and W ?

A be the fixed-points of (3.1), (3.2) and
(3.11), (3.12), respectively. Let C?A be given by (3.15). Then, the following holds:

• For all δ ∈ R, for all x0 ∈ Lδ(W ?
A), all maximal trajectories (xt)

T
t=0 ∈ Tmax(Σ, C?A, x0) are complete

and there exists T0 ∈ N such that xt ∈ X∗δ , for all t ≥ T0.
• For all x0 ∈ Lδ0(W ?

A), with δ0 = minx∈XW
?
S (x), all maximal trajectories (xt)

T
t=0 ∈ Tmax(Σ, C?A, x0)

are complete and satisfy xt ∈ X∗δ0 , for all t ≥ K.

Proof. Let δ ∈ R, let us consider x0 ∈ Lδ(W ?
A) and (xt)

T
t=0 ∈ Tmax(Σ, C?A, x0).

For all t ∈ N<T , such that k?(xt) ≥ 1, we can show similar to the proof of Lemma 3.6 that
(W ?

A(xt+1), k?(xt+1)) <lex (W ?
A(xt), k

?(xt)).

For all t ∈ N<T , such that k?(xt) = 0, and we have from (3.3) and (3.15) that W ?
S (xt+1) ≤ W ?

S (xt). Since
k?(xt) = 0, we have W ?

S (xt) = W ?
A(xt). Moreover, we have from (3.12) that W ?

A(xt+1) ≤ W ?
S (xt+1). There-

fore, W ?
A(xt+1) ≤ W ?

A(xt). Moreover, if W ?
A(xt+1) = W ?

A(xt), we get that W ?
A(xt+1) = W ?

S (xt+1) and
therefore k?(xt+1) = 0. Hence, for all t ∈ N<T , such that k?(xt) = 0, we have (W ?

A(xt+1), k?(xt+1)) ≤lex
(W ?

A(xt), k
?(xt)).

If T < +∞, then from above we get that W ?
A(xT ) ≤ δ, which implies that C?A(xT ) 6= ∅ and contradicts

the maximality of (xt)
T
t=0. Hence T = +∞, and (xt)

T
t=0 is complete. Moreover from above, we get that

there exists T0 ∈ N, such that for all t ≥ T0, W ?
A(xt) = W ?

A(xT0) and k?(xt) = 0. Hence, for all t ≥ T0,
W ?

S (xt) = W ?
A(xt) = W ?

A(xT0) ≤ δ. Since H(x) ≤ W ?
S (x) for all x ∈ X, we get the first statement of the

theorem.

Let us assume that x0 ∈ Lδ0(W ?
A). For all x ∈ X, we have W ?

A(x) ≥ δ0. Then, from above we have for all
t ∈ N, W ?

A(xt) = δ0. Moreover, when k?(xt) ≥ 1, it follows that k?(xt+1) < k?(xt) and when k?(xt) = 0,
it follows that k?(xt+1) = 0. Since k?(x0) ≤ K, we have for all t ≥ K that k?(xt) = 0. Then, for all
t ≥ K, W ?

S (xt) = W ?
A(xt) = δ0. Since H(x) ≤ W ?

S (x) for all x ∈ X, we get the second statement of the
theorem. � �
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Hence, the previous theorem shows that there exists a controller given by (3.15), independent from the param-
eter δ, and such that for all δ ∈ R, all maximal closed-loop trajectories initiating in A-cont(Σ, X∗δ ) do not leave
X∗δ after some finite time, though it is not possible to provide a uniform bound on that time. Nonetheless,
the controller (3.15) enforces uniform attractivity of X∗δ0 from all initial states in A-cont(Σ, X∗δ0).

4. Abstraction-based synthesis for infinite systems

In this section, we show how to lift our approach from finite state systems to infinite state systems by
using abstraction techniques. Let consider us consider two transition systems Σ1 = (X1, U1, Y1, F1, H1) and
Σ2 = (X2, U2, Y2, F2, H2) sharing the same set of outputs Y1 = Y2 = R. In the following discussion, Σ1

represents the concrete system and is generally an infinite transition system while Σ2 is the finite abstraction.
Hence, safety, uniform reachability and uniform attractivity controllability measures and the associated least-
violating controllers can be computed for Σ2 using the techniques presented in the previous section. To be
able to lift these results to Σ1 we need to assume that some formal behavioral relationship holds between Σ1

and Σ2. We consider the following notion of approximate alternating simulation relation, which is adapted
from [36].

Definition 4.1. Let ε ∈ R+
0 , a relation R ⊆ X1×X2 is an ε-approximate alternating simulation relation from

Σ1 to Σ2 if for all (x1, x2) ∈ R, the following conditions hold:

(1) H1(x1) ≤ H2(x2) + ε
(2) for all u2 ∈ enabF2

(x2), there exists u1 ∈ enabF1
(x1), such that F1(x1, u1) ⊆ R−1(F2(x2, u2)).

R is said to be an ε-approximate alternating bisimulation relation between Σ1 and Σ2 if R and R−1 are
ε-approximate alternating simulation relation from Σ1 to Σ2 and from Σ2 to Σ1 respectively.

There exist techniques for computing finite abstractions of nonlinear systems provided these satisfy some
assumptions. Under the mild assumption of incremental forward completeness, finite abstractions can be
computed that are related by ε-approximate alternating simulation relations [40]. When considering the much
stronger assumption of incremental stability, finite abstractions can be related by ε-approximate alternating
bisimulation relations [27, 16, 28]. Finally, if the system satisfies some incremental stabilizability assumption,
finite abstractions can be computed that are related by ε-approximate alternating simulation relations [35].
Let us remark that while the abstractions obtained in [40] are non-deterministic, those of [35] are deterministic.
Note that in all these techniques, the parameter ε determining the accuracy of the abstraction can be chosen
arbitrarily small. Of course, more accurate abstractions require more states.

The following result establishes relations between the controllability measures of Σ1 and Σ2:

Theorem 4.2. Let VS,i, VR,i and VA,i denote the safety, uniform reachability, uniform attractivity controlla-
bility measures for system Σi, i = 1, 2:

• If R ⊆ X1 × X2 is an ε-approximate alternating simulation relation from Σ1 to Σ2, then for all
(x1, x2) ∈ R

VS,1(x1) ≤ VS,2(x2) + ε,

VR,1(x1) ≤ VR,2(x2) + ε,

VA,1(x1) ≤ VA,2(x2) + ε.

• If R ⊆ X1×X2 is an ε-approximate alternating bisimulation relation between Σ1 and Σ2, then for all
(x1, x2) ∈ R

|VS,1(x1)− VS,2(x2)| ≤ ε,
|VR,1(x1)− VR,2(x2)| ≤ ε,
|VA,1(x1)− VA,2(x2)| ≤ ε.
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Proof. Let R ⊆ X1×X2 be an ε-approximate alternating simulation relation from Σ1 to Σ2, and let us consider
(x1, x2) ∈ R. With only minor modifications to the proofs of Theorems 1 and 3 in [14], it is possible to show
that the following implication holds for all δ ∈ R:

x2 ∈ S-cont(Σ2,Lδ(H2))

=⇒ x1 ∈ S-cont(Σ1, Lδ+ε(H1))

x2 ∈ R-cont(Σ2,Lδ(H2))

=⇒ x1 ∈ R-cont(Σ1, Lδ+ε(H1))

This implies that VS,1(x1) ≤ VS,2(x2) + ε and VR,1(x1) ≤ VR,2(x2) + ε for all (x1, x2) ∈ R. Similarly, we can
show that for all δ ∈ R, for all (x1, x2) ∈ R:

x2 ∈ R-cont(Σ2,Lδ(VS,2))

=⇒ x1 ∈ R-cont(Σ1, Lδ+ε(VS,1)).

This, together with Proposition 2.10, allows us to conclude that for all δ ∈ R, for all (x1, x2) ∈ R:

x2 ∈ A-cont(Σ2,Lδ(H2))

=⇒ x1 ∈ A-cont(Σ1, Lδ+ε(H1)).

Hence VA,1(x1) ≤ VA,2(x2) + ε for all (x1, x2) ∈ R. The second item of the theorem is a straightforward
consequence of the first one. � �

Let us now move to controller refinement. Namely, given the least-violating controllers for Σ2 as defined in
the previous section, we address the question about how one can obtain safety, reachability and attractivity
controllers for Σ1. For systems related by ε-approximate alternating simulation relation, there exists a canon-
ical controller refinement procedure described e.g. in [36]. However, this procedure does not allow to produce
memoryless controllers for Σ1 even when memoryless controllers are given for the abstraction Σ2. However,
specific refinement procedures can be designed for safety and reachability specifications, which result in mem-
oryless controllers, see [14] for the qualitative case, and [12] for the quantitative case. Note that all these
controllers allow to achieve the bounds established in Theorem 4.2. In the following, for the sake of simplicity
and brevity, we will discuss controller refinement only in the specific case of feedback refinement relations [31].

Definition 4.3. A relation R ⊆ X1 × X2 is a feedback refinement relation from Σ1 to Σ2 if dom(R) = X1

and for all (x1, x2) ∈ R, the following conditions hold:

(1) H1(x1) ≤ H2(x2)
(2) enabF2

(x2) ⊆ enabF1
(x1)

(3) for all u ∈ enabF2
(x2), R(F1(x1, u)) ⊆ F2(x2, u).

While all feedback refinement relations are 0-approximate alternating simulation relation the converse is not
true. The main advantage of feedback refinement relations is that they have a very simple canonical controller
refinement procedure, which in particular preserves the memoryless property from the abstract to the concrete
controller. Techniques for computing finite abstractions of nonlinear systems related by feedback refinement
relations are described in [31]. For our setting, we can state the following result, which is a straightforward
consequence of Theorems 3.2, 3.7, 3.13 and Theorem V.4 in [31]:

Theorem 4.4. Let R ⊆ X1 ×X2 be a feedback refinement relation from Σ1 to Σ2:

(1) For Σ2, let W ?
S,2 be the fixed-point of (3.1), (3.2), and let C?S,2 be given by (3.4). Then, for all δ ∈ R,

for all x0 ∈ X1 with R(x0) ⊆ Lδ(W
?
S,2), all maximal trajectories (xt)

T
t=0 ∈ Tmax(Σ1, C

?
S,2 ◦ R, x0) are

complete and satisfy xt ∈ Lδ(H1), for all t ∈ N.
(2) For Σ2, let W ?

R,2 be the fixed-point of (3.5), (3.6), let C?R,2 be given by (3.10). Then, there exists

T0 ∈ N, such that for all δ ∈ R, for all x0 ∈ X1 with R(x0) ⊆ Lδ(W
?
R,2), for all maximal trajectories

(xt)
T
t=0 ∈ Tmax(Σ1, C

?
R,2 ◦R, x0), T ≤ T0 and xT ∈ Lδ(H1).
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(3) For Σ2, let W ?
S,2 and W ?

A,2 be the fixed-points of (3.1), (3.2) and (3.11), (3.12), respectively and let

C?A,2 be given by (3.15). Then, the following holds:

• For all δ ∈ R, for all x0 ∈ X1 with R(x0) ⊆ Lδ(W
?
A,2), all maximal trajectories (xt)

T
t=0 ∈

Tmax(Σ1, C
?
A,2 ◦R, x0) are complete and there exists T0 ∈ N such that xt ∈ Lδ(H1), for all t ≥ T0.

• There exists T0 ∈ N, such that for all x0 ∈ X1 with R(x0) ⊆ Lδ0(W ?
A,2), with δ0 =

minx2∈X2 W
?
S,2(x2), all maximal trajectories (xt)

T
t=0 ∈ Tmax(Σ1, C

?
A,2 ◦ R, x0) are complete and

satisfy xt ∈ Lδ(H1), for all t ≥ T0.

5. Application to adaptive cruise control

In this section, we show an application of our approach to adaptive cruise control. We consider the following
set-up with two vehicles. Vehicle 1 is following vehicle 2, the relative position of the former with respect to
the latter is given by d ∈ (−∞, 0]. Vehicles are driving at velocities v1 and v2 respectively. In the following,
the dynamics of vehicle 1 is controlled while that of vehicle 2 is considered as a disturbance. We consider the
following discrete-time model with sampling period τ derived from [25] :

(5.1)


dt+1 = dt + τ(v1,t − v2,t)
v1,t+1 = v1,t + τf(v1,t, ut)
v2,t+1 = σ[vmin

2 ,vmax
2 ](v2,t + τa2,t)

where f(v, u) = u − (f0 + f1v + f2v
2)/M and σ[a,b] is a saturation function defined by σ[a,b](v) =

max(a,min(v, b)), which guarantees that v2,t ∈ [vmin
2 , vmax

2 ] for all time. The control input ut ∈ [umin, umax]
represents the contribution of braking and engine torque to the acceleration of vehicle 1. M denotes the mass of
the vehicle 1, while the vector of parameters f = (f0, f1, f2) describes road friction and vehicle aerodynamics.
The disturbance a2,t ∈ [amin

2 , amax
2 ] represents the acceleration of vehicle 2.

We consider the problem of designing an adaptive cruise control system. For that purpose, we define the time
headway ωt = −dt/v1,t. The requirements for adaptive cruise control, parameterized by a target velocity v∗

and a target time headway ω∗, are formulated as follows. We must either:

• keep the time headway ωt ≥ ω∗ and maintain the velocity v1,t at the desired value v∗, or
• keep velocity v1,t ≤ v∗ and maintain the time headway ωt at the desired value ω∗.

We formalize this specification as synthesizing a controller enforcing uniform attractivity of

X∗ = {(d, v1, v2) ∈ R3| (−d/v1, v1) ∈ Z∗a ∪ Z∗b }

where

Z∗a = {(ω, v1) ∈ R2| ω ≥ ω∗, v1 = v∗},
Z∗b = {(ω, v1) ∈ R2| ω = ω∗, v1 ≤ v∗}.

Actually, this specification cannot be enforced so we aim at synthesizing the least-violating controller with
respect to the following distance function:

H(d, v1, v2) = min
(ω′,v′1)∈Z∗a∪Z∗b

max(| − d/v1 − ω′|, α|v1 − v′1|)

where α > 0 is a design parameter defining the relative tolerance to deviations from the desired velocity
and from the desired time headway. In addition, we specify strong safety requirements regarding collision
avoidance and conformance to speed limitations. We must at all time:

• keep the distance dt ≤ 0, and
• keep velocity v1,t ∈ [vmin

1 , vmax
1 ].
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To enforce these specifications by design, we disable in system (5.1) the inputs leading to states violating
such constraints. Note that this may introduce some blocking states in (5.1), which can be handled by our
approach. Values of parameters, compatible with empirical measurements are taken from [25] and given in
Table 1.

M 1370 kg
f0 51 N
f1 1.2567 Ns/m
f2 0.4342 Ns2/m2

τ 0.5 s
g 9.82 m/s2

umin -0.3g m/s2

umax 0.2g m/s2

vmin
2 12 m/s
vmax
2 28 m/s
amin
2 -3 m/s2

vmax
2 2 m/s2

v∗ 20 m/s
ω∗ 1.5 s
vmin
1 10 m/s
vmax
1 30 m/s
α 0.5

Table 1. Parameter values

We propose to solve the problem using the abstraction-based approach presented in the paper. For that
purpose, we build a symbolic abstraction of system (5.1). We use a covering of the state space (−∞, 0] ×
[vmin

1 , vmax
1 ]× [vmin

2 , vmax
2 ], given by the Cartesian product of coverings of the three intervals defined as follows:

(−∞, 0] = (−∞, d0 + θd]∪⋃nd−1
i=1 [d0 + iθd, d0 + (i+ 1)θd],[

vmin
1 , vmax

1

]
=

⋃nv1
−1

i=0 [vmin
1 + iθv1 , v

min
1 + (i+ 1)θv1 ],[

vmin
2 , vmax

2

]
=

⋃nv2
−1

i=0 [vmin
2 + iθv2 , v

min
2 + (i+ 1)θv2 ],

where θd = −d0/nd, θv1 = (vmax
1 − vmin

1 )/nv1 , θv2 = (vmax
2 − vmin

2 )/nv2 . We also use a subset of the input
set given by {umin + iθu| i = 0, . . . , nu − 1} where θu = (umax − umin)/(nu − 1). The symbolic abstraction is
computed using an approach similar to [31, 34] and is related to the system (5.1) by a feedback refinement
relation. Note that the function H needs also to be over-approximated on each element of the covering. For the
numerical results reported below the following abstraction parameter where chosen: d0 = −100 m, nd = 50,
nv1 = 50, nv2 = 40, nu = 10.

For the abstraction, we used the approach presented in Section 3 to compute W ?
S,2 and W ?

A,2 the fixed-points

of (3.1), (3.2) and (3.11), (3.12), respectively and the associated least-violating controller C?A,2 given by (3.15).

Then, we used Theorem 4.4 to obtain a controller for system (5.1). The overall computation took about 3
hours (CPU: 2.2 GHz Intel Core i7, RAM: 16 Go 1600 MHz DDR3, Matlab R2015a). The computed minimal
safety controllability measure is δ0 = minx2∈X2

W ?
S,2(x2) = 0.9118.

In Figure 5, we show slices of the computed sets represented at different values of v2:

• The red line represents the target set X∗.
• The white set represents the set Lδ0(W ?

S,2). All trajectories starting in this set stay there forever. It
is the set of safety controllable states that is the closest to X∗ as measured by distance H. This set
is also shown in full dimension in Figure 6.
• The light grey set represents the set Lδ0(W ?

A,2). All trajectories starting in this set will reach the

white set before a uniformly bounded finite time (here 10 s).
• The dark grey represents the set

⋃
δ<+∞ Lδ(W

?
A,2). All trajectories starting in this set stay there

forever, without guarantees of ever reaching the white set.
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• The black set consists of the uncontrollable states from which the strong safety requirements cannot
be guaranteed.

Figure 5. Sets of safety controllable states (white), of uniform attractivity controllable states
(light and dark grey) and of uncontrollable states (black) computed by the algorithm (detailed
description in the text).

Figure 6. Boundary of Lδ0(W ?
S,2), the set of safety controllable states that is the closest to

X∗ as measured by distance H.
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Figure 7. Simulated trajectories of system (5.1) using the synthesized controllers: evolution
of the time headway, of the velocities of vehicle 1 and vehicle 2 and the control input of vehicle
1; The values of the target velocity v∗ and the target time headway ω∗ are represented by
dashed lines.

In Figure 7, we show a simulation of system (5.1) using the controller given in Theorem 4.4. We consider
the following scenario, the initial value of (d, v1, v2) is (−50, 25, 20). The leading vehicle (vehicle 2) drives
at constant speed for the first 25 s, then applies maximal deceleration until reaching minimal speed for the
next 50 s, and maximal acceleration until reaching maximal speed for the last 25 s. The plots represent the
evolution of the time headway, of the velocities of vehicle 1 and vehicle 2 and the control input of vehicle 1.
The values of the target velocity v∗ and the target time headway ω∗ are represented by dashed lines. Initially
the time headway is greater than ω∗ so vehicle 1 regulates its speed around v∗. After vehicle 2 decelerates,
the time headway reduces and drops below ω∗, then vehicle 1 stops regulating its speed to regulate its time
headway around ω∗. When vehicle 2 accelerates, the time headway increases again and becomes larger than
ω∗, then vehicle 1 restarts regulating its speed around v∗. We can see on this simulation, that the system
behaves as expected.

6. Conclusion

In this paper, we presented an approach to synthesize least-violating controllers for safety, uniform reachability
and uniform attractivity specifications. Our approach is based on quantitative controllability measures. For
finite systems, we showed how these measures and the associated controllers can be computed using dynamic
programming. For infinite systems, abstraction based techniques allow to lift these results with strong guar-
antees. An application to adaptive cruise control shows promising results and proves the relevance of our
approach, when ideal specifications cannot be enforced. Future work should focus on extending these results
to other types of specifications such as those expressed in Linear Temporal Logic or given under the form of a
dynamical system. We will also consider extensions of this work enabling to cope with robustness with respect
to unmodelled disturbances.
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