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Abstract 

In the modern era of cancer treatment, with targeted agents superseding more traditional 

cytotoxic chemotherapeutics, it is becoming increasingly important to employ stratified 

medicine approaches to ensure that patients receive the most appropriate drugs and 

treatment schedules. In this context there is significant potential for the use of 

pharmacodynamic biomarkers to provide pharmacological information which could be 

utilised in a therapeutic drug monitoring setting. The current review focuses on discussing 

some of the challenges faced to date in translating preclinical pharmacodynamic biomarker 

approaches to a clinical setting, recent advances in important areas including circulating 

biomarkers and pharmacokinetic/pharmacodynamic modelling approaches and provides 

some selected examples of anticancer drugs where there is existing evidence for potentially 

advancing pharmacodynamic therapeutic drug monitoring approaches to deliver more 

effective treatment. While we may not yet be in a position to systematically implement 

therapeutic drug monitoring approaches based on pharmacodynamic information in a cancer 

patient setting, such approaches are likely to become more commonplace in the coming 

years. Based on ever increasing levels of pharmacodynamic information being generated on 

newer anti-cancer drugs, facilitated by increasingly advanced and accessible experimental 

approaches available to researchers to collect these data, we can now look forward 

optimistically to significant advances being made in this area.  

 

Keywords:  Cancer, Therapeutic drug monitoring, Pharmacodynamics, Predictive biomarker 
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Introduction 

The modern era of targeted drug approaches for the treatment of cancer patients has 

involved moving away from cytotoxic agents with efficacy against a wide spectrum of 

tumours, to newer drugs with more focused, target-selective anti-tumour activities. For these 

targeted agents, treatment is very much being driven by stratified medicine approaches 

designed to match particular drugs with patients expressing the relevant targets. In this 

respect there is significant scope for pharmacodynamic biomarkers to provide useful 

information relating to the pharmacological activity of particular drugs and hence the use of 

therapeutic drug monitoring is becoming a feasible goal in an oncology clinical setting. While 

pharmacokinetic therapeutic drug monitoring approaches have been used with some success, 

for a limited number of traditional cytotoxic and targeted drugs in particular clinical settings,1 

the use of pharmacodynamic information to guide treatment is to date a relatively underused 

utility. In addition to supporting decisions made relating to the continuation or cessation of 

treatment with a particular drug, modelling approaches utilising both pharmacokinetic and 

pharmacodynamic data provide the opportunity to guide dosing in a more quantitative way. 

The current review will focus on discussing some of the challenges faced to date in terms of 

translating preclinical findings to a patient setting, the promises provided by recent advances 

in research in the area of circulating biomarkers and the importance of 

pharmacokinetic/pharmacodynamic (PK/PD) modelling approaches. Finally, examples will be 

provided of agents belonging to cytotoxic drug, targeted therapy and immunotherapy drug 

classes where there is significant potential for advancing pharmacodynamic therapeutic drug 

monitoring approaches to deliver effective treatments. 

 

The Challenges of Monitoring Drug Pharmacodynamics in Cancer Patients 

Murine models play a vital role in the development of novel cancer therapies, including the 

identification and validation of potential biomarkers for monitoring pharmacodynamic 

responses in patients.2, 3 Acquisition of multiple tissue samples from mice, optimisation of 

tissue processing methods and the development of robust methods for measuring 

pharmacodynamic effects of novel agents directly in tumour can be performed with relative 

ease. However, successful translation of pharmacodynamic biomarkers from mouse studies 
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into patients can pose a significant challenge. Ideally, pharmacodynamic studies within clinical 

trials are based on analysis of target engagement in tumour biopsies taken prior to and 

following treatment.  With the exception of haematological malignancies, where repeated 

sampling of blood pharmacodynamic marker analysis during therapy is feasible, it is 

challenging to collect serial biopsies from patients with solid tumour cancers because of the 

invasiveness of the biopsy procedure. Furthermore, tumour heterogeneity between biopsy 

samples, even from the same patient, can complicate the interpretation of pharmacodynamic 

biomarker assay data.  For these reasons, many clinical trials use alternative tissues such as 

blood, skin or plucked hairs as a surrogate for the measurement of pharmacodynamic 

responses in patients.  The most commonly used tissues are discussed below, with a more 

exhaustive list of the wide range of sample types available for pharmacodynamic biomarker 

studies summarised in Table 1. 

 

Blood  

Blood-derived samples are the most commonly used tissue surrogates for pharmacodynamic 

biomarker analysis within clinical trials. This is predominantly due to the ease with which 

serial samples can be collected, processed and stored for future analysis. For cancer 

therapies, blood-borne markers of cell apoptosis and/or necrosis in plasma or serum are often 

measured to provide an indication of an anti-tumour effect. Cytokeratin 18 (CK-18) is an 

example of a well-established blood-borne biomarker of epithelial cell necrosis and/or 

apoptosis.4 The amount of circulating full-length and caspase-cleaved CK-18 across the course 

of chemotherapy treatment can be measured in serum or plasma samples collected across 

treatment cycles using enzyme-linked immunoassays.5, 6 Baseline levels of CK-18 in blood are 

typically low but the amount of caspase-cleaved CK-18 fragments can increase during anti-

cancer therapy. Since drug-induced apoptosis/necrosis of tumour cells is a common endpoint 

of all anti-cancer agents, measurement of CK-18 and CK-18 fragments in plasma or serum can 

be a useful means to monitor for anti-tumour effects of different classes of anti-cancer drugs 

across a wide range of tumour types,7 including pancreatic,8 lung,9 breast,10 testicular11 and 

gastric12 cancers. This area is discussed in more detail later in the review. 
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Blood can also be used as a surrogate for pharmacodynamic monitoring of molecularly 

targeted anti-cancer drugs within clinical trials. However, it is essential to first confirm that 

drug-induced pharmacodynamic changes can be robustly measured using a suitable assay. 

Pre-validation studies using blood from mouse models or volunteers are typically performed 

to determine blood biomarker and assay suitability. Secondly, the degree of correlation 

between pharmacodynamic responses measured in blood and those measured directly in 

tumour tissue should be established. As an example, clinical trials of poly(ADP-ribose) 

polymerase (PARP) inhibitors in cancer patients have used peripheral blood mononuclear 

cells (PBMCs) as a surrogate tissue to monitor for pharmacodynamic effects.13, 14  Preclinical 

mouse models were initially used to establish methods for measuring PAR levels in tumour 

tissue by ELISA.15, 16 The PAR ELISA method was adapted for blood samples using human 

PBMCs cultured ex vivo, and the effects of PARP inhibitors tested to determine whether these 

agents exerted comparable effects in PBMCs as in tumours.17 In a phase I trial of olaparib, 

90% inhibition of PARP activity was observed in PBMCs obtained from patients treated with 

60mg of drug or more, confirming drug-target engagement.12 Furthermore, the relationship 

between PARP inhibition in PBMCs and drug exposure was established. Immunoblotting of 

PAR levels in cell extracts isolated from paired tumour biopsies pre-treatment and after 

olaparib treatment was also confirmed. Thus, target engagement markers in blood helped to 

establish that olaparib had acceptable pharmacokinetic and pharmacodynamic properties 

and informed dose selection for later phase clinical studies. 

 

Immune checkpoint inhibitors, such as anti-CTLA4, anti-PD-1 and anti-PD-L1 antibodies, have 

recently emerged as an important new class of anti-cancer agents. Checkpoint inhibitors block 

the interaction between T cells and their inhibitory receptors expressed within tumours.  The 

study of immune cell populations in patient blood prior to and during checkpoint inhibitor 

treatment to discover biomarkers to predict for response or resistance to treatment is an area 

of intense research.18 Circulating lymphocytes, neutrophils, eosinophils and monocytes have 

been monitored for evidence of pharmacodynamic responses to checkpoint inhibition. For 

example, successful treatment with the anti-CTLA4 antibody, ipilimumab, is associated with 

increased levels of circulating lymphocytes19-22 and, specifically, an increase in CD4 T cells 

expressing inducible co-stimulator (ICOS).23 In cancer patients, flow cytometry analysis of 
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circulating T cells further indicated that an increased frequency of ICOS+ CD4 T cells can be 

used as a reproducible pharmacodynamic biomarker of anti-CTLA4 therapy.24 In this study, 

the ICOS+ CD4 T cell flow cytometry assay was found to correctly detect patients with a 

response of 71%, after two administrations of ipilimumab. Other blood-circulating biomarkers 

that are reported to be associated with response to anti-CTLA4 treatment include depletion 

of Treg cell numbers,25 a combination of low lactate dehydrogenase, absolute monocyte 

counts, monocytic myeloid derived suppressor cells, high absolute eosinophil counts and 

relative lymphocyte counts and Treg frequencies.26 In another study, melanoma patients 

treated with ipilimumab exhibited upregulation of Ki67, ICOS and Gata3 expression on CD4+ 

and CD8+ T cells isolated from blood, providing potential pharmacodynamic biomarkers of 

anti-CTLA4 therapy.27 Studies aiming to identify blood-borne markers to predict and monitor 

clinical response to anti PD-1/PDL-1 blockade have also focused on changes in T cell 

populations.  In non-small cell lung cancer (NSCLC) patients, an increase in Ki67+ PD1+ CD8 T 

cells was observed in the majority of patients following treatment with anti-PD-1 targeted 

therapies.28 In summary, analysis of peripheral blood cell populations as markers to monitor 

response to checkpoint inhibition is still an evolving area. However, given the complexity of 

the immune system and the fact that the tumour can evade the immune system by multiple 

mechanisms, developing blood-based biomarkers may help decipher each patient’s immune 

system abnormalities and hence provide valuable information on response to 

immunotherapies. 

 

Skin 

Skin biopsies are more difficult to obtain than blood samples but represent a useful tissue 

surrogate for the monitoring of therapies in patients.29 The epidermis of the skin contains a 

basal layer of proliferating keratinocytes, including a population of stem cells which retain the 

ability to self-renew.30 Unlike blood, which contains a predominantly differentiated cell 

population, skin cells functionally express developmental signalling networks and these 

networks involve molecular targets identified in tumours or involve pathways which are likely 

to be altered by anti-cancer therapy.29 Thus, skin biopsies can be an ideal surrogate tissue for 

measuring drug pharmacodynamic responses in cancer patients for drugs that target cell cycle 

pathways, DNA damage repair pathways, Notch signalling, Wnt, Shh/Dhh, retinoic acid and 



7 
 

epidermal growth factor (EGF) pathways.29 For example, early phase clinical studies of EGF 

receptor inhibitors have exploited involvement of the EGF pathway in skin homeostasis, 

repair and regulation of keratinocyte stem cell function.31 Biomarkers of EGFR pathway 

blockade including inhibition of EGFR auto-phosphorylation, phosphorylation of mitogen 

activated protein (MAP) kinase and alterations in Akt and p27 levels, were initially established 

in tumour cell lines and tissues using preclinical models.32, 33 These same markers were then 

evaluated in normal skin samples obtained from cancer patients enrolled in phase I studies of 

the EGFR inhibitors erlotinib (OSI-774) and gefitinib (ZD1839), to study the relationship 

between dose and target engagement.34-36 In a study by Malik et al,34 28 patients with 

advanced cancer underwent skin biopsies at baseline and again after the last dose of the first 

cycle of treatment with erlotinib. The expression and phosphorylation of EGFR, MAP kinase 

and p27 in skin were assessed by immunohistochemical staining. Following erlotinib 

treatment, a significant decrease in phospho-EGFR expression in skin and an increase in the 

mean numbers of skin cells with nuclear staining for p27 were observed. However, a 

treatment-related change in MAP kinase phosphorylation was not seen. Furthermore, of 

these EGFR inhibitor responsive markers, only p27 expression showed any relationship to the 

administered dose of erlotinib. Based on these data and the simplicity and reliability of the 

method to measure p27 expression, the authors concluded that this was the most promising 

biomarker of EGFR inhibition for use in phase II studies with erlotinib. This study nicely 

illustrates that early evaluation of multiple potential biomarkers in phase I is an important 

step for identifying the most relevant tissue surrogates and biomarkers for monitoring drug 

pharmacodynamics.  

 

Hair Follicles 

The human hair follicle contains proliferating cells and is therefore another source of tissue 

with the potential to be used for analysis of pharmacodynamic markers in response to anti-

cancer drug treatment. A major advantage of hair follicles as a tissue surrogate is that they 

are extremely easy to collect from patients and animal models. Unlike skin and blood, hair 

follicle bulbs contain proliferating epithelial stem cells which control the growth and cycling 

of hair.37 Since hair follicle stem cells are constantly undergoing a process of cell division, 

these cells are thought to be particularly useful for measuring gene expression and/or protein 
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changes to anti-cancer agents that disrupt DNA synthesis/repair and the cell cycle. Examples 

of biomarkers relating to cell cycle and DNA-repair pathways that are typically measured in 

hair follicles include Ki67, pRb, p27/phospho-p27 and γ-H2AX.38 Phosphorylated H2AX (γ-

H2AX) is a marker of the formation of DNA double-strand break repair complexes39, 40 and is 

often used to assess the effects of therapies that inhibit DNA repair, including PARP inhibitors 

such as olaparib. In a phase I study of olaparib in cancer patients, induction of γ-H2AX foci 

was observed in plucked eyebrow hair follicles collected 6 hours post-treatment.12 

Furthermore, induction of γ-H2AX foci was observed at all doses tested and was sustained at 

later time points. These data demonstrated that PARP inhibition causes induction of collapsed 

DNA replication forks and DNA-double strand breaks, confirming the predicted mechanism of 

action for olaparib. In addition, these pharmacodynamic data were used to inform dose 

selection of olaparib for subsequent clinical studies.     

Plucked hair follicles have also been applied as a surrogate tissue for biomarker analysis of 

the effects of PI3 kinase inhibitors,41 Akt inhibitors42 and cyclin-dependent kinase (CDK) 

inhibitors.43 In a phase I healthy volunteer study of the CDK inhibitor AZD5438, the 

pharmacodynamic effects of the drug were assessed in plucked hairs from the scalp.43 

Volunteers were given single oral doses of AZD5438 (10, 40, 60 mg or placebo), with hair 

pluckings taken before each dose and again at 1.5, 6 and 24 hours post-dose. Expression of 

the CDK pathway biomarkers, phospho-pRB, Ki67 and phospho-p27 were assessed using 

immunohistochemistry (IHC) methods. Ten hair pluckings were used for each biomarker but 

hair wastage was observed during processing of the samples and quantitative IHC data were 

obtained for around 70-80% of the samples. The authors noted that different sections of hair 

have different proliferative potential along the hair sheath44 and this is an important factor 

to take into account when interpreting quantitative data on biomarkers of proliferation. They 

also found that a significant proportion of the hairs had no nuclear staining at all for each 

marker and it was felt that this was unrelated to the drug effect but instead reflected the 

stage of hair growth. These negatively-stained hairs were assumed to be processing failures 

and were excluded from the final analysis. In spite of these challenges, levels of phospho-pRB, 

Ki67 and phospho-p27 were altered at 1.5 and 6 hours post-dose with AZD5438, although the 

changes observed were not statistically significant. This study demonstrates some of the 

technical challenges associated with biomarker analysis using hair follicles. Each hair follicle 
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bulb contains a relatively small population of proliferative cells, therefore robust signal 

detection can be difficult.  Wastage of hair follicle samples will occur during sample processing 

and sectioning of hair follicles to prepare slides suitable for microscopy-based techniques is 

challenging.38 As well as heterogeneity in stages of cell proliferation along the length of a 

single hair shaft, heterogeneity exists between follicles collected from different regions of the 

body. For example, scalp hair is reported to have higher expression levels of Ki67, total p27 

and phospho-p27 in comparison to eyebrow hair.38 In summary, plucked hairs are potentially 

attractive as readily accessible surrogate tissue for monitoring the effects of anti-cancer drugs 

due to their ease of collection, but suffer from a number of technical drawbacks. Advances in 

processing methods and the development of techniques which provide higher analytical 

sensitivity may aid the success rate of hair follicle-derived biomarker assays. 

 

The Promises of Circulating Biomarkers 

Determining the efficacy of potential or existing therapies in cancer often requires physical 

examination, access to patient tissue or tumour samples to assess changes in the molecular 

profile, imaging to monitor the presence of disease over time and the use of serological 

markers. Obtaining tumour biopsies for many malignancies is uncomfortable for the patient, 

risks further complications and is costly. Imaging alone can be challenging in cancers such as 

glioblastoma multiforme (GBM) where evidence of pseudo-progression can complicate 

diagnosis.45 Furthermore, current assays for circulating tumour markers, such as 

carcinoembryonic (CA 15-3) and muc-1 (CA 27.29) antigens in breast cancer or prostate 

specific antigen (PSA) in prostate cancer, often lack the necessary specificity.46 

The ultimate goal in oncology is to validate the use of circulating biomarkers as surrogate 

endpoints of tumour burden or disease progression during treatment and to monitor the 

molecular profile of tumours in real time for evidence of the emergence of drug resistance. 

The relative ease of taking multiple blood samples or ‘liquid biopsies’ throughout treatment 

has the potential to allow for decisions to be made on whether to discontinue or alter 

treatment. This section explores the promise of circulating microRNAs (miRNAs), circulating 

tumour cells (CTCs), and circulating tumour DNA (ctDNA) in this endeavour and the challenges 

that are still faced in fully validating these approaches.  
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microRNAs 

MicroRNAs are small non-coding RNAs (18-25 nucleotides) that are negative regulators of 

gene expression.47 The ability to measure the expression of these molecules in a variety of 

tissues and bodily fluids, in addition to the discovery that unique microRNA signatures can 

classify different cancers,48, 49 has led to huge interest in their potential as biomarkers. 

Circulating miRNAs have been described as possible non-invasive diagnostic, prognostic and 

predictive biomarkers in oncology.  

As a prognostic tool, Lawrie et al,50 in their initial discovery of stable miRNAs in the circulation, 

reported that high miR-21 expression in serum was associated with improved relapse-free 

survival time in patients with diffuse large B cell lymphoma (DLBCL). In pancreatic cancer, Ali 

et al51 additionally showed that increased plasma miR-21 expression was associated with 

worse patient survival and drug resistance in vitro, suggesting a possible role for miR-21 in 

predicting tumour aggressiveness.  

Since 2008 there have been scores of studies investigating the potential for utilising 

information relating to circulating miRNAs to support the decision making process in cancer 

treatment. In studies investigating circulating miRNA markers of treatment response, Cui et 

al52 reported high serum miR-125b expression to be significantly associated with non-

response to cisplatin-based chemotherapy in patients with NSCLC, whilst high levels of miR-

200c in serum were reported to be correlated with poor response to cisplatin and 5-

fluorouracil-based chemotherapy in oesophageal cancer patients.53 

The identification of miRNAs that monitor tumour burden and disease progression 

throughout the treatment of a patient is an important avenue that may have potential for 

drug monitoring. Greystoke et al54 showed in CDX mouse models of small cell lung carcinoma 

(SCLC) that circulating miR-95 detected in tail vein plasma was a sensitive monitor of tumour 

growth and was detectable before measurable tumours were observed. Subsequently, they 

selected a panel of 10 miRNAs (miRs-95, 141, 195, 200a, 200b, 200c, 210, 335, 375, 429) that 

were elevated in SCLC, NSCLC, colorectal and pancreatic cancer patients as compared to 

healthy volunteers and was more accurate at distinguishing between low and high tumour 
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burden patients. Furthermore, levels decreased post-treatment, with larger changes seen in 

patients who showed greater clinical response.  

Circulating miRNAs have also been described as potential markers of drug toxicity. For 

example, levels of miR-122 measured in plasma are an early detector of liver injury caused by 

acetaminophen (paracetamol) poisoning, outperforming alternative clinical tests.55 An 

ongoing clinical study aims to further explore the use of serum miR-122 as a real-time marker 

of chemotherapy-induced liver toxicity (NCT03039062).56 Additionally, Zhao et al57 reported 

that elevated levels of circulating cardiac miRNAs (miR-1254 and miR-579) were found in 

patients with cardiotoxicity following administration of bevacizumab.   

 

Circulating tumour cells 

Circulating tumour cells (CTCs) originating from solid tumours are present in the peripheral 

blood and are believed to provide a mechanism for depositing metastases at distant sites.58   

Although they were first described as early as 1869 by Thomas Ashworth, their clinical utility 

has only started to gain attention in recent years, as isolation and detection methods and 

single cell analysis have improved. CTCs have subsequently been described as potential 

prognostic, predictive and disease monitoring endpoints through CTC enumeration and 

molecular characterisation.  

Many techniques that allow for the isolation of CTCs have been described, including immune-

magnetic isolation and methods that isolate cells based on size, deformability and density.59 

The CellSearch method is an immune-magnetic method for isolating CTCs whereby epithelial-

derived cells in the circulation are enriched by capturing those expressing EpCAM. CTCs are 

further identified by looking for EpCAM-positive cells expressing cytokeratin but not the 

leukocyte-associated CD45.60 This method was used to show that enumeration of CTCs was a 

reliable prognostic indicator in metastatic breast,61, 62 prostate63 and colorectal cancer 

patients,64 both before and during treatment. As a result the use of CellSearch to enumerate 

baseline CTC numbers has been cleared by the FDA for prognostic use. Although these studies 

did not specifically evaluate whether patients with an elevated CTC count might benefit from 

other therapies, it raises the question as to whether CTC enumeration could act as a surrogate 

endpoint for efficacy and potentially guide the decision to discontinue ineffective treatment. 
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Using an alternative technical approach, Ogle et al65 used imaging flow cytometry to identify 

hepatocellular carcinoma (HCC) derived CTCs based on immunofluorescence of the epithelial 

markers cytokeratin and EpCAM, as well as HCC specific markers AFP and glypican-3, and 

DNA-PK, a candidate biomarker for treatment stratification in HCC. CTCs were additionally 

identified based on size, morphology and DNA content. However a proportion of cells were 

found not to express any of the CTC markers and had to be identified based on size and the 

absence of CD45 positivity. This brings into question what the consensus should be when 

trying to accurately define the presence of a CTC in analysis, as a reliance of epithelial markers 

may exclude a proportion of the CTC population. In order to address the issue of ‘epitope bias’ 

in CTC enrichment, several groups have recently developed methods using the Parsortix 

system, which enriches CTCs based on size and rigidity. Chudziak et al,66 in a preliminary 

clinical study, were able to develop a method whereby 20 or more CTCs were identified in all 

12 samples enriched by Parsortix, whereas 2 samples enriched by CellSearch in the same 12 

samples showed no CTCs and an additional 3 samples contained fewer than 5 CTCs.  

Mutational analysis in CTCs may also reveal key information relating to the effect of treatment 

on sub-populations of CTCs. A study in metastatic NSCLC patients reported that a majority of 

patients who showed clinical tumour progression whilst receiving tyrosine kinase inhibitors 

(TKIs) also had CTCs with the acquired EGFR kinase domain T790M drug resistance mutation.67 

 

Circulating tumour DNA 

The presence of DNA in the circulation is another marker that could be exploited for disease 

monitoring and prediction of treatment response. Circulating free DNA (cfDNA) is thought to 

be released into the bloodstream following cell death (either apoptosis or necrosis)68 

although there is some evidence that cfDNA could also be actively secreted.69 The discovery 

of common cancer mutations in cfDNA increased the interest of using circulating tumour DNA 

(ctDNA) as a potential non-invasive diagnostic tool. Advances in technologies have allowed 

for the detection and quantitation of mutant alleles by digital drop PCR (ddPCR)70 and next 

generation sequencing of circulating DNA has heralded the detection of multiple mutations,71 

chromosomal aberrations,72 focal amplifications73 and gene rearrangements74 in cancer 

patients.  
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The analysis of ctDNA has been shown to be important for overcoming the issue of 

heterogeneity in tissue biopsies, whereby the many clones that may be present in a patient 

can be monitored. Furthermore, there is evidence that resistant sub-clones can be detected 

at the beginning of a study and can increase many months before clinical progression. Diaz et 

al75 reported increasing amounts of mutant KRAS ctDNA in the serum of patients with 

colorectal cancer who were receiving anti-EGFR therapy and who were originally identified as 

having KRAS wild-type tumours. Dawson et al76 additionally showed in patients with 

metastatic breast cancer that ctDNA in plasma showed a greater sensitivity and better 

correlation with changes in tumour burden than other circulating biomarkers, as well as 

providing the earliest measure of treatment response. These examples highlight the potential 

that ctDNA analysis has in monitoring changes in disease burden, subclinical responses to 

therapy, and drug resistance. These factors may prove vital in determining an optimum 

therapeutic dose during pharmacodynamic monitoring of existing and future targeted 

therapies. At present the use of ctDNA to help select patients with EGFR-mutant NSCLC for 

specific targeted therapy has been approved by the EMA and FDA if a tumour sample is 

unavailable. 

 

The challenges for establishing circulating biomarkers in TDM  

The potential of cancer specific circulating nucleic acids and CTCs as useful diagnostic, 

prognostic and predictive cancer biomarkers, as well as toxicity markers, is becoming well 

established. Their use in therapeutic drug monitoring of new and existing cancer therapies 

will depend on the success of being able to reliably incorporate these new tests into 

established PK/PD models. Another major challenge is the pre-analytical and technical 

variation in the literature, making robust validation challenging. 

In miRNA studies a consensus is needed for factors such as i) choice of technology used to 

quantify miRNAs, ii) method of normalisation and iii) methodology for sample collection and 

processing. Expression of miRNA can be affected by patient factors such as age, comorbidities, 

and current medication,77 highlighting the need to cut through the ‘noise’ and identify vital 

disease or toxicity specific miRNAs. A consensus is similarly required for what exactly 

constitutes a CTC. Despite the FDA-approved CellSearch method, there needs to be an 
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assurance that a chosen method isolates all populations of CTCs and that this method is 

sensitive enough for cancers where CTC count is typically low. The standardisation of blood 

collection, storage and processing protocols that are convenient in clinical practice will aid in 

further establishing this promising area of biomarker research. 

 

Clinical Toxicity as a Pharmacodynamic Biomarker 

One of the main reasons to use biomarkers in a clinical setting is to prevent or lessen the toxic 

side effects of anti-cancer drugs. In the field of oncology many conventional drugs, but also 

newer targeted agents, are known to be associated with severe side effects including 

myelosuppression, hypertension, thyroid dysfunction and cardiotoxicity.78, 79 In multi-drug 

therapy, co-administered agents can often share overlapping adverse effects. Therefore a 

single biomarker for a specific toxicity could simplify clinical monitoring, as opposed to 

numerous biomarkers for each individual drug. The successful implementation of such 

biomarkers could reduce toxicity and increase efficacy, if informed decisions are taken in 

response to changes in these clinical parameters. 

 

Cardiotoxicity 

Due to the prolonged survival rates of cancer patients, long-term side effects including 

cardiotoxicity are becoming increasingly important considerations.80-82 Various drugs, 

including anthracyclines and trastuzumab, can cause alterations in cardiomyocytes through 

different mechanisms.83-85 During treatment with trastuzumab a reversible decrease in Left 

Ventricular Ejection Fraction (LVEF)86 is commonly observed. Therefore a 3-monthly LVEF87 

evaluation plan is established to minimise treatment-associated cardiotoxicity. There are 

attempts to optimise and individualise these protocols88 to reduce the burden of unnecessary 

over-examination for low-risk patients, but this still includes time consuming 

echocardiography.  

 

Whereas heart failure due to trastuzumab is often reversible, patients treated with 

anthracyclines mostly suffer from a chronic version of heart failure.84 In reaction to this a 
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maximum cumulative lifetime89, 90 dose is commonly defined to reduce risk of developing such 

toxicity. However, these approaches are not adaptive and the need for a personalised 

monitoring regimen is evident. In the field of cardiology alternative biomarkers to LVEF are 

widely used to determine heart function. Troponins are responsible for calcium-regulated 

muscle contraction91 and the cardiac specific isoforms, cardiac Troponin I (cTnI) and T (cTnT), 

are established biomarkers for diagnosis and prognosis92-94 of cardiomyocyte damage, e.g. 

myocardial infarction and heart failure. The precursor of the B-type natriuretic peptide, NT-

proBNP, is another wide spread biomarker for the diagnosis and follow-up of heart failure.94 

It is specific for cardiomyocytes where it is synthesised in reaction to dilatation of the heart 

muscle.95 The major advantage of these biomarkers is their potential to identify changes in 

heart muscle structure (cTnI and cTnT) and function (NP-proBNP) before they are clinically 

manifested in the form of a reduction in LVEF. In a study involving 703 cancer patients, it was 

shown that high levels of cTnI have a significant prognostic value in cardiac risk stratification 

following chemotherapeutic treatment.96 Similarly, cTnT is a good predictive marker 

determining whether HER2-positive breast cancer patients treated with trastuzumab are 

likely to suffer from heart failure, as a recent study suggests.97 The same study showed that 

increases in NT-proBNP levels are associated with significant decreases in LVEF. 

 

A pharmacodynamic modelling approach98 of these biomarkers in breast cancer patients 

undergoing treatment with anthracyclines or trastuzumab, demonstrated a correlation 

between changes in troponin levels and the effect on LVEF. Furthermore, the optimal time 

for cTnI quantification was shown to be the last day of treatment, since the predictive peak 

concentration is reached at this point. Finally, the model showed that other risk factors, such 

as age, other cardiac diseases and dosing intervals, could not be identified as covariates.  

 

Whereas in conventional pharmacokinetic TDM the reaction to suboptimal plasma 

concentrations is an adaptation of the dosing regimen, in TDM approaches based on toxicity 

pharmacodynamic endpoints, other options for intervention can be considered. Although 

there are currently no clinical trials to confirm the effectiveness of drugs used for treating 

heart failure in this setting, a prospective study on 2625 patients receiving anthracyclines 
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against solid tumours indicated that heart function is likely to improve when treated with an 

angiotensin-converting-enzyme (ACE) inhibitor. 99  

 

To confirm the promising data presented above two clinical trials are currently ongoing. The 

Patients Undergoing AnthRacycline-Based Chemotherapy to Assess the Effectiveness of Using 

Biomarkers to Detect and Identify Cardiotoxicity and Describe Treatment (PREDICT) trial100 is 

a multicentre interventional study involving 597 cancer patients. The feasibility of measuring 

BNP and cTnI for identifying patients that will develop cardiotoxicity in the course of 

anthracycline treatment is being assessed. A recently published interim analysis 

demonstrated the applicability of non-invasively derived echocardiogram measurements as 

an indicator for predicting such toxicities. Furthermore, the aim of a prospective cohort 

study101 on 35 patients is to show that early changes in biomarkers of stress (NT-proBNP), 

fibrosis (galectin-3), necrosis (troponin) and inflammation (ST2) are predictive for changes in 

LVEF. Both studies are expected to provide guidance for the implementation of new 

monitoring approaches for clinical use. 

 

Hypertension 

Another commonly observed adverse effect on the cardiovascular system during 

chemotherapy is the induction of hypertension. Vascular endothelial growth factor (VEGF) 

inhibitors such as bevacizumab, sunitinib and sorafenib are associated with an increased risk 

of developing reversible hypertension,102–104 the mechanism for which is directly linked to the 

mechanism of action. By inhibiting the VEGF receptor, endothelial function and nitric oxide 

synthesis are affected, which leads to vasoconstriction and the reduction of vascular 

permeability.105–107 Some studies have shown that patients treated with sunitinib are more 

likely to have better overall survival and progression free survival when blood pressure 

increases during treatment.108,109  This link could potentially be used to discriminate patients 

that are more likely to benefit from treatment with VEGF inhibitors.110,111 More research 

needs to be conducted to find specific cut-off levels of blood pressure increase that indicate 

changes in dosing or even a change of the drugs used. Furthermore, potential confounding 

factors including age, metabolic diseases and smoking should be included.  
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The use of alkylating agents and related drugs such as cisplatin, have also been associated 

with the development of high blood pressure following chemotherapy112. Nephrotoxicity and 

direct damage on the endothelial function are proposed mechanisms of inducing 

hypertension.113,114 In this respect biomarkers of nephrotoxicity such as creatinine clearance 

are a helpful tool to monitor kidney function over time, while kidney injury molecule-1 (KIM-

1), cystatin C or albumin could indicate early damage of the nephron.115,116 A specific 

biomarker of endothelial function, microalbuminuria occurs in a fifth of patients treated with 

cisplatin,117 but its clinical utility needs to be investigated in future studies.  

 

Thyroid dysfunction 

Many chemotherapeutic drugs can have adverse effects on the thyroid glands, especially 

targeted and immunological therapies. Between 32-85% of patients treated with sunitinib 

have been reported to suffer from hypothyroidism, but other tyrosine kinase inhibitors, like 

imatinib, dasatinib, nilotinib and sorafenib, are also known to have negative effects on the 

thyroid glands118–121. The exact mechanism of this effect is still unknown122, but capillary 

regression, antibodies against the thyroid peroxidase or decreased iodine intake have all been 

suggested123.  

 

The thyroid hormones (triiodothyronine (T3) and thyroxine (T4)) play a major role in regulating 

metabolism.  High serum levels of T3 and T4 cause elevated blood pressure, tremor, a rapid 

heart rate and weight loss, whereas low levels can be mistaken for symptoms commonly 

associated with chemotherapy, such as fatigue, weakness, memory loss and depression. An 

effect on drug metabolism might also play a role in how well treatment is tolerated.124,125  The 

thyroid hormones and thyroid-stimulating hormone (TSH) can easily be monitored, with the 

individual levels as compared to each other being used to distinguish between different 

thyroid conditions. There is currently no universal evidence to guide which patients should be 

treated with levothyroxine. In this respect, it has been suggested by Hamnvik et al. that 

hypothyroidism should only be treated with substitution therapy when TSH-levels exceed 10 
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mIU/L and T4 levels are low.119 Levothyroxine is generally well tolerated and symptoms of 

fatigue can be lessened.121 For more detailed guidance it may be helpful to develop a PK/PD 

model that includes the complex quantity of confounding factors and individual risk of the 

many drugs that affect thyroid function. 

 

Cell Death  

CK-18 is a protein predominantly found in the cytoskeleton of the epithelia that is released 

into the bloodstream during various forms of cell death.126 Depending on the mechanism, 

either the caspase-cleaved M30 fragment or the M65 fragment of CK-18 can be detected. 

Whereas M65 can be measured when cells are dying due to apoptosis and necrosis, the 

presence of M30 indicates cell death through apoptosis.127 The ratio of these two fragments 

could help to identify how cells are affected by different drugs. Because the eradication of 

tumours goes hand in hand with cell death, various studies have been carried out to 

investigate CK-18 as a prognostic biomarker for solid cancers, showing non-concordant 

outcomes.7, 128-131  The combination of multiple drugs with a variety of molecular mechanisms 

and small cohort size could explain inconsistencies in the results obtained. The potential for 

using CK-18 fragments in lymphomas represents a different approach, as CK-18 as an 

epithelial specific protein is not found in lymphoid cells. Therefore it could potentially be used 

to determine chemotherapy-induced cytotoxicity in patients with this disease type. A study 

of patients with different forms of lymphoma showed that geometric mean baseline 

concentrations of M65 were comparable to healthy individuals and markedly lower than 

patients with epithelial cancer.132 Changes in M65 concentrations to baseline concentrations 

after treatment were compared. It was shown that larger increases in CK-18 on day three of 

a treatment cycle were associated with subsequent epithelial toxicity. Whether this can also 

be used in a pharmacodynamic therapeutic drug monitoring setting needs to be investigated 

in future studies. Elevated plasma concentrations of CK-18 are also known to be a biomarker 

for many liver problems, for example non-alcoholic fatty liver disease (NAFLD).133 A PK/PD 

model and a large cohort study would be useful to find confounding factors and to show 

clinical relevance, specificity and selectivity of predicting toxicity with CK-18.  
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Skin Toxicity 

Another field of biomarker monitoring is the use of non-invasive Raman spectroscopy to 

detect skin toxicity caused by TKIs. This approach is particularly relevant to patients treated 

with EGFR inhibitors, but drugs that inhibit MAP- and BRAF-pathways, are also associated with 

dermal reactions.134-136  The incidence of cutaneous side effects is 66-75% for the EGFR 

inhibitors erlotinib137–140 and gefitinib141–143, 16-45% for the BRAF inhibitors vemurafenib and 

dabrafenib144 and 9-45% for the MAP inhibitor selumetinib,145 dependent on cancer type and 

drug. The EGFR pathway regulates cell survival, cell migration and differentiation. Following 

inhibition of the EGF receptor in mice, skin homeostasis is disrupted by an increase in necrosis 

factor alpha and interleukin-1, which promote inflammation and cell death146,147. This 

mechanism explains the on-target side effect of EFGR inhibitors and supports the potential 

use of cutaneous abnormalities as an indicator of drug efficacy. 148–151  Ideally the toxicity is 

not fully developed when an intervention is made. A recent pilot study showed that Raman 

spectroscopy could discriminate between affected and healthy skin.152  The key advantage of 

this approach is to detect information that is unreachable on a histologic level without the 

need for a biopsy. 

 

Pharmacokinetic/Pharmacodynamic Modelling Approaches 

Given the toxicity of most anti-cancer agents, adapting dose and/or schedule for a given 

patient is a potentially crucial issue. Decreasing dose or spacing out administration is 

frequently perceived as pejorative by clinicians unless a severe toxicity is present. 

Nevertheless, empirical alternative schedules or reduced/adapted dosing can represent 

genuine alternatives. For instance, in patients with renal cell carcinoma receiving sunitinib, an 

alternative 2 weeks on/1 week off schedule has been proposed by Atkinson et al,153 who 

reported that this adapted schedule resulted in better progression-free survival (PFS) and 

overall survival (33 months versus 18 months; p <0.0001) compared to results obtained with 

standard dosing guidelines. While this example illustrates an empiric success, modern tools 

like computational pharmacology can surely help clinicians identify better schedules of drug 

administration. 
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The ever-increasing power of computer software has facilitated the use of mathematical 

models to play a growing role in the cancer field. While computational oncology has mostly 

focused on cancer biology and systems biology studies,154 computational pharmacology has 

recently emerged as a new strategy to help better use anti-cancer agents.155 Computational 

pharmacology certainly has the potential to support daily clinical practice through the 

personalisation of treatment. To improve the efficacy/toxicity balance through adjustment of 

drug doses and schedules beyond serendipity or empiricism, computational pharmacology 

relies on modelling of PK/PD relationships. Indeed, mathematical models can be used to 

predict not only tumour responses and efficacy, but also toxicity during treatment planning 

or adaptation of doses. Computational pharmacology encompasses a wide variety of 

techniques155 ranging from very simple tools (e.g. geometric scale correcting factor or 

Bayesian estimation after therapeutic drug monitoring) through physiological models and 

highly sophisticated multiscale models such as the ‘oncosimulator’.156 Among mathematical 

constructs, three main categories can be identified:  

1) statistical learning algorithms that rely on biologically agnostic models leveraging large-

scale data into predictive signatures of value for improved classification of patients. 

2) multiscale mathematical models that rely on an in-depth description of a large range of 

interacting biological processes, with the aim to better understand complex phenomena. 

3) phenomenological models that have an intermediate complexity and use simplified yet 

mechanistic descriptions of the reality to provide concrete tools adapted to the sparsity of 

clinical data. This can provide practical solutions to clinical problems ranging from 

personalised prognosis of metastatic relapse to the adaptive scheduling of anti-cancer drugs 

(Figure 1). 

These models can be applied to toxicities and/or the anti-tumour potential of a given 

treatment. As haematological side effects represent the dose-limiting toxicities of most 

cytotoxic drugs, they have been the focus of several models. In routine practice a blood count 

is performed immediately before the subsequent cycle of chemotherapy, since a normal 

count is required to administer the chemotherapy, or in the case of fever or bleeding when 

major neutropenia or thrombocytopenia is suspected. Until recently, PK/PD analysis was 

based on a two-stage approach. Firstly, by involving a summary of both pharmacokinetic and 
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pharmacodynamic outputs for each patient: usually individual plasma drug exposure (AUC), 

and percentage decrease of neutrophil count (%ANC) from baseline to nadir count; the 

second stage is the statistical step consisting of correlating AUC and %ANC. This two-stage 

approach has several limitations: any missing blood count makes the patient non-evaluable, 

the duration of a critical count is not considered, and only baseline and nadir counts are taken 

into account. Several modelling approaches have been developed in order to circumvent 

these limitations.157-163 Some are strictly mathematical and simply allow transformation of 

the discrete values of ANC count into a continuous function (e.g. a cubic spline function162). 

The models proposed by Friberg et al163 and Meille et al161 may be qualified as semi-

physiological models since they are based on the modelisation of different steps in the 

haematopoietic process. A model proposed by Fornari et al mimics the maturation chain of 

neutrophils based on five compartments.157 In the model proposed by Friberg et al, after drug 

administration, the cytotoxic effect of the drug (Edrug) on the proliferating neutrophil cells at 

any time, is proportional to the plasma drug concentration (Conc) according to the equation: 

Edrug = Slope x Conc; the slope corresponding to the patient sensitivity to the neutropenic 

effect of the cytotoxic agent. It is then possible to identify patient characteristics responsible 

for pharmacodynamic inter-individual variability by showing that typical values of Slope are 

related to these pharmacodynamic covariates.163 Schmitt et al164 proposed an optimal 

carboplatin AUC depending on the drug used in combination. Although this semi-physiological 

model has not been used to monitor patients routinely, ideally the sensitivity of each patient 

to chemotherapy would be determined after the first cycle, and the dose would be adapted 

for following cycles in order to achieve the acceptable toxicity. We may even consider using 

a K-PD approach (i.e. modelling of ANC profiles in the absence of drug concentrations) that 

spare any blood sampling and plasma drug analyses. However, such a protocol would require 

prospective validation to check both the robustness of the model and that intra-patient 

variability is limited. 

Mathematical modelling can also be utilised to optimise the dosing or sequence of 

administration of anti-cancer agents. Thus, recently, a phenomenological model was used to 

optimise the dosing of gemcitabine in a neuroblastoma setting.165 The authors were able to 

predict the superiority of metronomic administration of gemcitabine over maximum 

tolerated dose (MTD) approaches, but also to optimise the dosing of metronomic 



22 
 

gemcitabine. In vivo experiments in mice bearing neuroblastoma confirmed the prediction of 

the model in terms of superiority of the metronomic regimen and led to the use of 14-fold 

lower exposures of metronomic gemcitabine (AUC values of 10 vs 0.69 mg/mL/min), while 

maintaining the same control of tumour growth. Elsewhere, a multiscale model was 

developed to describe the in vitro cellular dynamics of the EGFR-mutant glioma cell line, 

taking into account the heterogeneity of the cancer cells and the invasiveness of the disease 

and blood brain barrier following different lapatinib dosing schedules.166 The model predicted 

that continuous dosing was the most appropriate and clinically feasible strategy to both slow 

down tumour growth and decrease tumour burden. 

The sequence of drug administration is also crucial. For instance, bevacizumab, an anti-VEGF 

antiangiogenic drug, is almost always administered in combination with chemotherapy. 

Interestingly, several teams have reported that bevacizumab could induce a transient phase 

of vascular normalisation,167 thus enabling a potentially better drug delivery when cytotoxic 

administration is adjuvant. Mollard et al168 developed a phenomenological model to simulate 

the anti-tumour activity of different sequences of administrations between bevacizumab and 

paclitaxel in breast cancer and predicted that the administration of bevacizumab followed by 

paclitaxel would lead to better outcome. The model could also estimate the most efficacious 

time interval between bevacizumab and chemotherapy, with two days representing the 

optimal gap between administration of the two drugs, yielding a 68.3% tumour size reduction 

when compared to the concomitant schedule. Interestingly, the model also predicted that in 

some cases, sequential schedules could be detrimental and lead to an increase in tumour size 

when compared with the concomitant schedule, such as an 8-day gap (+13.6%). Most 

importantly, the predictions were then prospectively validated in vivo in a murine breast 

cancer model, in which the bevacizumab/paclitaxel sequence was statistically more efficient 

in terms of reducing tumor growth versus concomitant dosing, both at the end of treatment 

and at conclusion of the study.169 

One of the greatest challenges is to apply and validate these models in the clinic as reliable 

approaches to drive patient treatment, with such experiences still relatively limited. In 

children with neuroblastoma, Panetta et al used mathematical modelling and simulation to 

assess the contribution of topotecan systemic exposure and scheduling on both the activity 

and the haematological toxicity of topotecan. They used PK and PD data obtained from a 
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phase II study for paediatric patients with high-risk neuroblastoma and were able to show 

that the protracted administrations led to better control of tumour growth (-5% vs -65% with 

the same drug exposure).170 These findings were confirmed by Santana et al, who reported 

that protracted administration of topotecan in children with relapsing/refractory solid 

tumours using PK guided administration was feasible and safe. Of note, 5 partial responses 

were reported using this approach.171     

Elsewhere, Yu et al published results from a phase I trial of evolutionary modelling-based 

dosing schedule combining pulsed and low dose erlotinib.172 The schedule was well-tolerated 

but did not improve progression-free survival or prevent emergence of EGFR resistant clones 

and therefore at first sight did not validate the mathematical predictions of the model. 

Nevertheless, the authors proposed that this was likely due to low peak serum concentrations 

of erlotinib. Moreover, the proposed schedule was able to prevent progression of untreated 

or any new central nervous system metastases in all patients. 

In a phase I/II trial in women with breast cancer, Henin et al173 validated a mathematical-

based model of densification/intensification of the combination of docetaxel/epirubicin.174 

The optimised dosing regimen led to fewer toxicities and higher efficacy as compared with 

standard or empirical densified dosing. This study showed that model-driven dosage 

adjustment could lead to improved efficacy-toxicity balance in patients. 

Recently, Barbolosi et al developed a mathematical model to optimise the dose and schedule 

of metronomic vinorelbine, taking into account both anticancer activity and haematological 

toxicities, which consisted of different dosing per day (60 mg on Day 1, 30 mg on Day 2 and 

60 mg on Day 4 weekly versus the empirical 3x 50mg/week).175 The dosing regimen proposed 

by the model has been tested in a clinical trial and shown to be safe in patients with 

relapsing/refractory NSCLC or mesothelioma.176 Studies are currently ongoing to further 

explore the activity of the regimen. 

 

Drug Focus 

Within the world of oncology there are many different agents belonging to distinct drug 

classes which are used in the treatment of various types of cancer. The purpose of the current 

review is not to provide a detailed account of individual drugs which may have potential for 
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future dosing based on pharmacodynamic characteristics. We have selected a targeted 

therapy for treating solid tumours (osimertinib), a targeted therapy used in haematology 

(ibrutinib) and an immunotherapeutic (pembrolizumab) which provide good examples of the 

current state of play regarding the potential utility of TDM based on pharmacodynamics in 

the modern era of cancer therapy. 

 

Osimertinib 

Activating mutations in the kinase domain (exon 18-21) of the EGF receptor are the canonical 

oncogenetic drivers of 15% (Europe) and up to 40% (Asia) of NSCLC and pave the way for using 

EGFR TKIs.177 Unfortunately, most NSCLC patients will relapse after 1st or 2nd generation TKIs 

because of a variety of mechanisms of acquired resistance, including the EGFR T790M 

mutation. Osimertinib is a third-generation TKI that has shown selectivity against T790M plus 

other mutated forms of the EGF receptor, and is now considered as a mainstay for treating 

NSCLC patients that have progressed after 1st and 2nd generation TKIs, or for patients whose 

tumours exhibit de novo the EGFR T790M genotype.178 

Osimertinib is an oral TKI exhibiting linear pharmacokinetics over the 20-240 mg range.179 

While relationships have been observed between osimertinib exposure and side-effects 

including rash, diarrhoea and corrected QT interval (QTcF), the therapeutic window of 

osimertinib is considered to be large and toxicities are limited following standard 80 mg QD 

dosing.180 There are currently few recommendations regarding pharmacodynamic adaptive 

dosing of osimertinib. Initial 80 mg QD dosing is recommended to be reduced to 40 mg when 

increases in QT intervals greater than 500 ms over two consecutive electrocardiograms are 

observed. Any other toxicity of grade 3 or above should lead to empirical treatment 

discontinuation and reintroduction of the drug at a lower dose if the condition improves to 

grade 0-2 after withholding osimertinib for 3 weeks.   

Monitoring osimertinib efficacy is mostly based upon RECIST evaluation 3 months after 

treatment initiation and radiologic evidence of complete or partial response, both in terms of 

the main tumour and metastatic sites.  Should the patient progress, re-checking for the 

T790M mutational status or EGFR amplification, e.g. using liquid biopsies, is strongly 

encouraged.181 Clonal evolution of NSCLC calls indeed for regular re-appraisal of the 
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molecular and genomic status of the new main dominant clone when targeted therapies are 

used.182 Indeed, subclones sensitive to selection pressure may disappear and be replaced by 

emerging subclones with innate or acquired resistance.183 In particular, eradication of the 

T790M clone upon osimertinib treatment paves the way for using standard platinum-based 

chemotherapy or re-introduction of 1st and 2nd generation TKIs.184 Re-challenging NSCLC 

that will further progress can even be considered through the re-introduction of osimertinib, 

provided that the T790M mutation is proven to be back after that 3rd generation TKI has been 

withdrawn and that other anti-cancer agents have failed.185 Consequently, osimertinib 

administration should be closely bioguided by pharmacogenomic markers - of note, early 

detection of clonal evolution (i.e. before tumour growth is evidenced upon imaging) allows 

the initiation of sequential therapies, thus limiting the risk of disease progression and 

metastasis in patients with lung cancer.186 

 

Ibrutinib 

Ibrutinib is an example of a TKI that is registered for treatment of several B-cell malignancies 

including chronic lymphocytic leukemia (CLL). Ibrutinib is an irreversible Bruton tyrosine 

kinase (BTK) inhibitor, forming a covalent bond with the cysteine 481 residue in the adenosine 

triphosphate (ATP)-binding domain of the kinase.187 BTK is a cytoplasmic protein involved in 

B-cell receptor (BCR) signal transduction and is important for antigen-induced BCR activation 

in normal developing and mature B cells (Bruton's disease, or X-linked agammaglobulinemia, 

derives from BTK mutations). BTK activates, among others, phospholipase C-γ2 (PLC-γ2) and 

the NF-κB and NF-AT transcription factor pathways, both being involved in many cellular 

responses (proliferation, survival, migration/retention). BTK is not mutated but constitutively 

phosphorylated in B cell lymphoma with chronic BCR activation, such as the autonomous BCR 

signaling (without antigen) which has been described in CLL cells.188 BTK belongs to the TEC 

family kinases (TFKs), and other members of this family (TEC, ITK, BMX, RLK/TXK) are also 

targeted by ibrutinib, albeit at higher concentrations. Ibrutinib inhibits other kinases such as 

BRK and CSJK at similar concentrations to BTK, exhibiting an IC50 for BTK of 0.5 nM.189 

Monitoring ibrutinib treatment consists of evaluating its efficacy, emergence of resistant 

clones and side effects. Efficacy evaluation is based on clinical assessment together with CT 
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scan (performed every 6 months) to assess the lymph node response. Lymphocytosis is often 

observed during the first weeks of treatment (peak value after a median time of 4 weeks) and 

then slowly declines.190 Ibrutinib decreases both survival and adhesion of CLL cells within their 

tumour niches, resulting in rapid redistribution towards the bloodstream, and progressive 

elimination by elusive mechanisms. Haematological recovery of blood counts 

(haemoglobinemia, platelets) in patients with pre-existing cytopenia represents an additional 

biological parameter of ibrutinib efficacy. During clinical development, monitoring BTK 

occupancy of the subjects’ PBMCs before and after treatment was performed using a 

fluorescent affinity probe;187 the results were part of the rationale to choose the standard 

dose of ibrutinib, but this monitoring is never performed in routine clinical practice. 

Early progressions (<2 years) are most often due to transformation of CLL into an aggressive 

diffuse large B cell lymphoma (aka Richter syndrome), but after 2 years patient relapse is 

driven by subclones carrying acquired mutations of BTK at the binding site of ibrutinib, or in 

PLCG2, the protein immediately downstream of BTK.191 These mutations were found in 85% 

of patients experiencing relapse of CLL and were detected at an estimated median of 9.3 

months before relapse.192 BTK C481 and PLCG2 mutations are widely used as biomarkers for 

future relapse during ibrutinib treatment. 

As its main side effect, ibrutinib is associated with bleeding in more than half of patients, with 

events ranging from minor mucocutaneous bleeding to life-threatening haemorrhage.193 

Ibrutinib inhibits several intracellular proteins important for platelet signalling including BTK 

and TEC, which are involved in the downstream signalling of the platelet collagen receptor 

(glycoprotein VI), and C-type lectin-like receptor 2. BTK is also essential in von Willebrand 

factor (vWF)-induced signalling and GPIb-mediated thrombus formation in vivo. Monitoring 

bleeding tendency using a quantitative assessment of vWF/ristocetin-induced platelet 

aggregation (RIPA) in ibrutinib-treated CLL patients has been proposed. However, this 

assessment is not yet performed routinely. Today, the recommendations regarding this 

bleeding-risk are limited to contraindication of vitamin K antagonists and restricted use of 

other dual antiplatelet therapies. Atrial fibrillation and flutter have been reported to occur in 

5-10% of patients with ibrutinib,194 linked with BTK and TEC inhibition in the heart alongside 

interaction of ibrutinib with other targets such as HER2. This side effect may justify regular 

blood pressure monitoring since hypertension represents a co-causal risk of atrial fibrillation. 



27 
 

Lastly, infections should be closely monitored, as fungal and bacterial infection risk is high for 

the first six months of month treatment, with reducing frequency while patients recover from 

the immunosuppression characterising florid CLL. 

 

Pembrolizumab 

Pembrolizumab is an immune checkpoint inhibitor directed against the programmed cell 

death-1 (PD-1) receptor, a negative regulator of T cell activity found on the T cell membrane. 

Through blockade of PD-1 binding to programmed death ligands 1 and 2 (PD-L1 and PD-L2), 

expressed on tumour and antigen presenting cells, pembrolizumab potentiates T cell immune 

responses, including anti-tumour responses.195 Pembrolizumab is approved in Europe for the 

treatment of unresectable/metastatic melanoma, locally advanced/metastatic NSCLC, locally 

advanced/metastatic urothelial carcinoma and relapsed/refractory Hodgkin lymphoma.195 

In clinical trials, pembrolizumab demonstrated relatively high response rates, durable 

responses and improved overall survival. Clinical responses are typically seen at week 12, but 

delayed responses may occur and most patients do not experience durable clinical benefit. 

Toxicity primarily consisting of immune-related adverse events, though often manageable, 

can be a major issue.195 Early identification of patients most likely to respond to 

pembrolizumab could help avoid unnecessarily prolonged treatments, thus limiting toxicity 

and healthcare costs, as well as avoid early termination in patients who will eventually 

experience clinical benefit.   

Imaging assessment of treatment efficacy is challenging as it is difficult to differentiate 

responders from non-responders early on in treatment. Initial transient increase in total 

tumour size, or even the appearance of new lesions, due to tumour immune infiltration 

followed by tumour shrinkage, i.e. pseudo-progression, is indeed often observed during 

pembrolizumab treatment.195 Therefore, surrogate prognostic and predictive biomarkers of 

response and toxicity are needed to guide clinical decisions when imaging is inconclusive.  

Several studies have suggested a significant association between PD-L1 expression on tumour 

and immune cells on biopsies and clinical response.196 However, conflicting results arose from 

different studies showing a lack of or inconclusive correlations between PD-L1 expression in 

cancer tissues and objective clinical response.196 Therefore, PD-L1 expression is not required 
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for patient selection except for NSCLC. High pre-treatment levels of circulating soluble PD-L1 

(sPD-L1) have recently been associated with increased likelihood of progressive disease in 

melanoma patients treated by pembrolizumab. After treatment, short-term increase in sPD-

L1 was correlated with progressive disease and shorter survival, whereas long-term/delayed 

increase in sPD-L1 (after 5 months of treatment), indirectly reflecting anti-tumour immune 

responses, translated into a greater likelihood of developing a partial response.197 Other 

studies sought to enlighten the role of tumour infiltrating lymphocytes (CD8+ T cells) 

negatively regulated by the PD-1/PD-L1 pathway in response to anti-PD-1 agents. Serial 

biopsies from melanoma patients treated with pembrolizumab revealed that responders had 

higher densities of PD-1+ CD8 T cells in close proximity to PD-L1+ tumour cells at the invasive 

tumour margin at baseline and displayed greater CD8+ T cell proliferation, tumour infiltration 

and effector function upon treatment.198 More recently, Huang et al199 showed in a small 

cohort of melanoma patients that the ratio of reinvigorated circulating CD8+ T cells to pre-

treatment tumour burden, rather than the absolute count of CD8+ T cells, is correlated with 

clinical response. A ratio cut-off value able to segregate patients by outcomes after 6 weeks 

of therapy is even proposed.199 Other circulating biomarkers have been studied as they are 

more easily sampled than tumour tissues. Firstly, ctDNA detection at baseline and week 8 was 

shown to be a significant prognostic factor in terms of progression-free survival and overall 

survival in NSCLC, melanoma and microsatellite-instable colorectal cancer patients treated 

with pembrolizumab.200 In this very small cohort, only patients with undetectable ctDNA 

levels at week 8 benefited from pembrolizumab treatment, in terms of a marked and lasting 

response.200 Besides, a high mutational burden was correlated with response to 

pembrolizumab in melanoma and NSCLC patients, likely related to a high load of 

immunogenic cancer-specific neo-antigens able to induce clonal expansion of CD8+ T cells.195, 

201 Secondly, IL-8 serum concentrations were studied as they reflect tumour burden, since IL-

8 is a pro-tumoural chemokine secreted by tumour tissues. Changes in serum IL-8 levels could 

be used to monitor and predict, with high specificity and sensitivity, clinical benefit from 

pembrolizumab in melanoma and NSCLC patients as early decreases in IL-8 levels (2–4 weeks 

after treatment initiation) were associated with longer overall survival.202 IL-8 concentrations 

may also be helpful to identify pseudo-progression.202 
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Contrary to efficacy, there is currently no predictive biomarker of immune-related toxicity.203 

So far, serum IL-8 levels have been studied, but no significant association with toxicity was 

observed.202 As previously illustrated for EGFR and VEGFR inhibitors, toxicity can be related 

to efficacy. In NSCLC patients treated by anti-PD-1 agents, including pembrolizumab, thyroid 

dysfunction upon treatment was shown to be an independent predictive marker of response, 

since progression-free survival and overall survival were significantly longer in the thyroid 

dysfunction group.203  

Considering the increasingly wide use of anti-PD-1 agents, including pembrolizumab, a major 

challenge is to identify companion biomarkers of efficacy and toxicity and to assess their 

medical and economic benefits. While this need still remains unmet, active ongoing research 

is being carried out in this area.204 

 

Summary 

In the current era of targeted anti-cancer drug therapy, where treatment is increasingly driven 

by stratified medicine approaches, there is clearly scope for the utility of pharmacodynamic 

biomarkers to support treatment decisions. Indeed, such approaches are likely to be key to 

the successful development and use of molecularly targeted agents in a cancer setting in 

terms of selecting the most appropriate drugs and dosing schedules for individual patients 

(Figure 2). This could potentially involve the use of pharmacodynamic biomarkers to assess 

response to treatment, incorporating information obtained from relevant surrogate markers 

of activity as discussed in the current review. While we may not yet be in a position to widely 

implement TDM approaches based on pharmacodynamic information in a cancer patient 

setting, such approaches will become more commonplace in the coming years. Based on the 

wealth of pharmacodynamic information being generated on newer anti-cancer drugs and 

the various different experimental approaches available to researchers to collect these data, 

we can now look forward optimistically to significant advances being made in this area. 
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Figure Legends 

 

Figure 1. Illustration of a phenomenological pharmacokinetic/pharmacodynamic 

(PK/PD) modelling approach - 1) basic description of physiological/mechanism 

of actions of drugs to be combined; 2) translation into mathematical formulae 

to describe the processes involved; 3) addition of known PK/PD data; 4) 

computation of the optimal way to combine drugs; 5) validation of the 

proposed schedule in mice; 6) testing of the optimised model in patients.     

 

Figure 2. Incorporation of pharmacodynamic biomarker therapeutic drug monitoring 

approaches into the updated pharmacological audit trail (PhAT) proposed and 

developed by Workman and colleagues.205, 206   
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Table 1.  Summary of the advantages and disadvantages of different sample types for pharmacodynamic biomarker studies  
 

Sample Type Ease of 
collection 

Advantages Disadvantages 
 

Tumour biopsy + 
 

• Allows assessment of PK/PD relationships at the 
site of disease.  

• Physiological relevance: Enables the study of 
biomarkers that reflect interactions between 
different components of the tumour 
microenvironment (tumour cells, immune cells, 
tumour vasculature and non-malignant cells).  

 

• Requires specialist clinical expertise for sample 
collection. 

• Invasive and potentially risky procedure. 
• Some patients may not be eligible. 
• Collection of paired/multiple biopsies, especially at 

the appropriate timepoints pre/post drug 
treatment, may not be feasible. 

• Limited amount of tumour may be present in core 
biopsies, restricting the scope of biomarker analysis. 

• Variance due to tissue heterogeneity. 
• Variance due to pre-analytical sample handling. 

Blood (serum, 
plasma, 
PBMCs) 

++ • Multiple samples can be taken across the course 
of treatment and readily stored for downstream 
analysis. 

• Highly amenable for the development of routine 
clinical assays. 

• Samples from healthy volunteers can be readily 
obtained for analytical validation of biomarker 
assays. 

• Consists of predominantly differentiated cell types. 
The underlying pathways and mechanisms of drug 
action in tumour cells may not be present in blood. 

• The characteristics of PBMCs isolated from blood 
can differ significantly from immune cells within the 
tumour microenvironment  

• PK/PD relationships developed by analysis of blood 
markers may not extrapolate to tumour tissue.  

• Soluble biomarkers may be present in very low 
quantities, requiring sensitive and often expensive 
methods of detection. 

Skin + • Self-renewing stem cells within skin exhibit 
signalling pathways that are involved in cancer cell 
function/anti-cancer drug mechanism of action. 

• Requires specialist clinical expertise for sample 
collection. 

• Invasive procedure therefore multiple sampling may 
not be acceptable. 



• Variance due to tissue processing/pre-analytical 
sample handling. 

• Skin quality and biomarker measures can be 
influenced by many extrinsic factors, e.g. age, UV 
exposure.  

Hair follicles +++ • A source of proliferating epithelial cells that are 
useful for the study of many signalling pathways 
involved in cancer cell function /anti-cancer drug 
mechanism of action. 

• Extremely easy to collect from patients and 
volunteers. 

• Sample processing can be technically challenging and 
result in a high degree of sample wastage and loss of 
biomarker signal detection. 

• Contains very small numbers of cells. Biomarker 
expression is typically low and difficult to quantify. 

• Requires sensitive and often expensive methods for 
marker detection. 

• Biomarker expression can vary between follicles 
obtained from different locations of the body.  

Urine +++ • Non-invasive. 
• Large volumes can be collected. 
• Analysis of constituents can indicate 

pathophysiology of renal disease. 

• High inter- and intra-individual variation.  
• Physiological factors such as diet and exercise may 

alter biomarker profiles.  

Stool +++ • Non-invasive. 
• Potential for biomarker discovery and application 

in therapeutic monitoring for colorectal cancer. 
• Possible to monitor effects of immune-based 

therapies by analysis of gut microbiome 
biomarkers.  

• High inter- and intra-individual variation. 
• Physiological factors such as diet and exercise may 

alter biomarker profiles. 

Cerebrospinal 
fluid 

+ • Allows directly measurement of PK/PD markers in 
the central nervous system (CNS) for CNS 
malignancies. 
 

• Requires specialist clinical expertise for sample 
collection. 

• Invasive and potentially risky procedure. 
• Lack of standardised pre-analytical methods leading 

to poor reproducibility of data. 
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Population identification

Target drug candidate

Validated predictive assay for molecular 
aberration 

Pharmacokinetics

Pharmacodynamics

Biochemical pathway modulation

Achievement of biological effect

Hypothesis testing using intermediate end 
points of clinical response

Reassessment of molecular alterations at 
disease progression

Inhibition of resistant biological pathways

Toxicity 

CTC enumeration and amount of cfDNA (tumour burden)
CK18 levels in serum/plasma (anticancer effects of drugs) 

Circulating microRNAs (tumour burden) 
PBMCs (e.g. PARP inhibition)
Immune cell populations (e.g. CD4 T cells - checkpoint inhibitors)
Skin cells (e.g. EGFR/p27 phosphorylation - EGFR inhibitors)
Hair follicles (e.g. γH2AX induction - PARP inhibitors) 

Molecular characterisation of cfDNA and DNA enclosed 
in CTCs measured at baseline and disease progression (e.g. EGFR 
T790M mutational status - osimertinib)   

Circulating microRNAs (e.g. cardiac or liver 
toxicity) 

TnI, TnT and BNP (cardiac damage)

CK18 (epithelial toxicity for non-epithelial 
cancer drugs; e.g. lymphomas) 

Raman spectroscopy (skin toxicity)

PK/PD modelling approaches to therapeutic drug monitoring (e.g. 
bevacizumab/paclitaxel sequence and scheduling) 
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