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Abstract

We study the problem of finding the optimal dosage in early stage clinical trials through the multi-
armed bandit lens. We advocate the use of the Thompson Sampling principle, a flexible algorithm that
can accommodate different types of monotonicity assumptions on the toxicity and efficacy of the doses.
For the simplest version of Thompson Sampling, based on a uniform prior distribution for each dose, we
provide finite-time upper bounds on the number of sub-optimal dose selections, which is unprecedented
for dose-finding algorithms. Through a large simulation study, we then show that variants of Thompson
Sampling based on more sophisticated prior distributions outperform state-of-the-art dose identification
algorithms in different types of dose-finding studies that occur in phase I or phase I/II trials.

1 Introduction

Multi-armed bandit models were originally introduced in the 1930’s as a simple model for a (phase III)
clinical trial in which one control treatment is tried against one alternative (Thompson, 1933). While those
models are nowadays widely studied with completely different applications in mind, like online advertisement
(Chapelle and Li, 2011), recommender systems (Li et al., 2010) or cognitive radios (Anandkumar et al., 2011),
there has been a surge of interest in the use of bandit algorithms for clinical trials (see Villar et al. (2015)).
More broadly, Adaptive Clinical Trials have received an increased attention (Pallmann et al., 2018) as the
Food and Drug Administration recently updated a draft of guidelines for their actual use (Food and Drugs
Administration (FDA), 2018). In this paper, we focus on adaptive designs for phase I and phase I/II clinical
trials for single-agent in oncology, for which adaptations of the original bandit algorithms may be of interest.

Phase I trials are the first stage of testing in human subjects. Their goal is to evaluate the safety (and
feasibility) of the treatment and identify its side effects. For non-life-threatening diseases, phase I trials
are usually conducted on human volunteers. In life-threatening diseases such as cancer or AIDS, phase I
studies are conducted with patients because of the aggressiveness and possible harmfulness of the treatments,
possible systemic treatment effects, and the high interest in the new drug’s efficacy in those patients directly.
The aim of a phase I dose-finding study is to determine the most appropriate dose level that should be used in
further phases of the clinical trials. Traditionally, the focus is on determining the highest dose with acceptable
toxicity called the Maximum Tolerated Dose (MTD). Once the initial safety of the drug has been confirmed
in phase I trials, phase II trials are performed on larger groups and are designed to establish the efficacy
of the drug and confirm the safety identified in phase I. In phase II dose-finding studies, the dose-efficacy
relationship is modeled in order to estimate the smallest dose to obtain a desired efficacy, called the minimal
effective dose (MED). Approaches that use both efficacy and toxicity to find an optimal dose are called phase
I/II designs. If the new potential treatment shows some efficacy in phase II, it is compared to alternative
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treatments in phase III. We here consider two classes of algorithms for dose-finding in early stage trials:
algorithms which consider only toxicity, suited for phase I trials, and algorithms which consider both toxicity
and efficacy, suited for phase I/II trials.

Until recently, cytotoxic agents were the main agent of anti-tumor drug development. A common as-
sumption for these agents is that both toxicity and efficacy of the treatment are monotonically increasing with
the dose (Chevret, 2006). Hence, only toxicity is required to determine the optimal dose which is then the
Maximum Tolerated Dose. From a statistical perspective, the MTD is often defined as the dose level closest
to an acceptable targeted toxicity probability fixed prior to the trial onset (Faries, 1994; Storer, 1989). How-
ever, Molecularly Targeted Agents (MTAs) have emerged as a new treatment option in oncology that have
changed the practice of cancer patient care (Postel-Vinay et al., 2009; Le Tourneau et al., 2010, 2011, 2012).
Previously-common assumptions do not necessarily hold for MTAs. Although toxicity is still assumed to be
increasing with the dose, it may be so low that the trial cannot be driven by toxicity occurrence only. Efficacy
needs to be studied jointly with toxicity, so that the most appropriate dose is not just the MTD. In particular,
for some mechanisms of action, a plateau of efficacy can be observed when increasing the dose (Hoering
et al., 2011), for instance when the targeted receptors are saturated. In this paper, we aim at providing a uni-
fied approach that can be used both for phase I trials involving cytotoxic agents and phase I/II trials involving
MTAs.

Phase I cytotoxic clinical trials in oncology involve several ethical concerns. Therefore, in order to gather
information about the dose-toxicity relationship it is not possible to include a large number of patients and
randomize them at each different dose level considered in the trial. Patients treated with dose levels over the
MTD would be exposed to very high toxicity, and patients treated at low dose levels would be administrated
ineffective dose levels. In addition, the total sample size is often very limited. For these reasons, the doses
to be allocated should be selected sequentially, taking into account the outcomes of the previous allocated
doses, with ideally two objectives in mind: finding the MTD (which is crucial for the next stages of the trial)
and treating as many trial participants as possible with this MTD. This trade-off between treatment (curing
patients during the study) and experimentation (finding the best treatment) is a common issue in clinical
trials. By viewing optimal dose identification as a particular multi-armed bandit problem, this trade-off can
be rephrased as a trade-off between rewards and error probability, two performance measures that are well-
studied in the bandit literature and that are known to be somewhat antagonistic (see Bubeck et al. (2011);
Kaufmann and Garivier (2017)).

In this paper, we investigate the use of Thompson Sampling (Thompson, 1933) for dose-finding clinical
trials. This Bayesian algorithm has gained a lot of popularity in the machine learning community for its
successful use for reward maximization in bandit models (see, e.g., Chapelle and Li (2011)). Interestingly, in
the growing literature on Bayesian Adaptive Designs (Berry, 2006; Berry et al., 2010), several designs that
may be viewed as variants of Thompson Sampling have been proposed for other types of clinical trials in
which different treatments are compared (Thall and Wathen, 2007; Satlin et al., 2016). However, to the best
of our knowledge, the use of Thompson Sampling has not been investigated yet for dose-finding trials, and
the present paper aims to fill this gap. We show that, unlike other bandit algorithms that are better suited for
phase III trials, Thompson Sampling can indeed be naturally adapted to dose-finding trials.

Our first contribution is a theoretical study in the context of MTD identification showing that the simplest
version of Thompson Sampling based on independent prior distributions for each arm asymptotically mini-
mizes the number of sub-optimal allocations during the trial. Albeit asymptotic, this sanity-check for Thomp-
son Sampling with a simple prior motivates our investigation for its use with more realistic prior distributions,
where theoretical guarantees are harder to obtain. Our second contribution is to show that Thompson Sam-
pling using more sophisticated prior distributions can compete with state-of-the art dose-finding algorithms.
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We indeed show that the algorithm can exploit the monotonicity assumption on the toxicity probabilities that
are common for MTD identification (Section 4.1), but also deal with more complex assumptions on both the
toxicity and efficacy probabilities that are relevant for trials involving MTAs (Section 4.2). Through extensive
experiments on simulated clinical trials we show that our Thompson Sampling variants typically outperform
state-of-the-art dose-finding algorithms. Finally, we propose a discussion revisiting the treatment versus
experimentation trade-off through a bandit lens, and explain why an adaptation of existing best arm identi-
fication designs (Audibert et al., 2010; Karnin et al., 2013) seems currently less promising for dose-finding
clinical trials.

The paper is structured as follows. In Section 2, we present a multi-armed bandit (MAB) model for the
MTD identification problem and introduce the Thompson Sampling algorithm. In Section 3, we propose an
analysis of Thompson Sampling with independent Beta priors on the toxicity of each dose: We provide finite-
time upper-bounds on the number of sub-optimal selections, which match an (asymptotic) lower bound on
those quantities. Then in Section 4, we show that Thompson Sampling can leverage the usual monotonicity
assumptions in dose-finding clinical trials. In Section 5, we report the results of a large simulation study
to assess the quality of the proposed design. Finally in Section 6, we propose a discussion on the use of
alternative bandit methods.

2 Maximum Tolerated Dose Identification as a Bandit Problem

In this section, we propose a simple statistical model for the MTD identification problem in phase I clinical
trials and show that it can be viewed as a particular multi-armed bandit problem.

A dose-finding study involves a number K of dose levels that have been chosen by physicians based on
preliminary experiments (K is usually a number between 3 and 10). Denoting by pk the (unknown) toxicity
probability of dose k, the Maximum Tolerated Dose (MTD) is defined as the dose with a toxicity probability
closest to a target:

k∗ ∈ argmin
k∈{1,...,K}

|θ − pk|,

where θ is the pre-specified targeted toxicity probability (typically between 0.2 and 0.35). For clinical trials
in life-threatening diseases, efficacy is often assumed to be increasing with toxicity, hence the MTD is the
most appropriate dose to further investigate in the rest of the trial. However, we shall see in Section 4 that
under different assumptions the optimal dose may be defined differently.

2.1 A (Bandit) Model for MTD Identification

A MTD identification algorithm proceeds sequentially: at round t a dose Dt ∈ {1, . . . ,K} is selected and
administered to a patient for whom a toxicity response is observed. A binary outcome Xt is revealed where
Xt = 1 indicates that a harmful side-effect occurred and Xt = 0 indicates than no harmful side-effect
occurred. We assume that Xt is drawn from a Bernoulli distribution with mean pDt and is independent from
previous observations. The selection rule for choosing the next dose level to be administered is sequential
in that it uses the past toxicity observations to determine the dose to administer to the next patient. More
formally, Dt is Ft−1-measurable where Ft = σ(U0, D1, X1, U1, . . . , Dt, Xt, Ut) is the σ-field generated by
the observations made with the first t patients and the possible exogenous randomness used in each round t,
Ut−1 ∼ U([0, 1]). Along with this selection rule, a (Ft-measurable) recommendation rule k̂t indicates which
dose would be recommended as the MTD, if the experiments were to be stopped after t patients.
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Usually in clinical trials the total number of patients n is fixed in advance and the first objective is to
ensure that the dose k̂n recommended at the end of the trial is close to the MTD, k∗, but there is also an
incentive to treat as many patients as possible with the MTD during the trial. Letting Nk(t) =

∑t
s=1 1(Ds=k)

be the number of time dose k has been given to one of the first t patients, this second objective can be
formalized as that of minimizing Nk(n) for k 6= k∗. In the clinical trial literature, empirical evaluations of
dose-finding designs usually report both the empirical distribution of the recommendation strategy k̂n (that
should be concentrated on the MTD) and estimates of E[Nk(n)]/n for all doses k to assess the quality of the
selection strategy in terms of allocating MTD as often as possible.

The sequential interaction protocol described above is reminiscent of a stochastic multi-armed bandit
(MAB) problem (see Lattimore and Szepesvari (2018) for a recent survey). A MAB model refers to a situation
in which an agent sequentially chooses arms (here doses) and gets to observe a realization of an underlying
probability distribution (here a Bernoulli distribution with mean being the probability that the chosen dose
is toxic). Different objectives have been considered in the bandit literature, but most of them are related to
learning the arm with largest mean, whereas in the context of clinical trials we are rather concerned with the
arm which is the closest to some threshold.

2.2 Thompson Sampling for MTD Identification

Early works on bandit models (Robbins, 1952; Lai and Robbins, 1985) mostly consider a reward maximiza-
tion objective: The samples (Xt) are viewed as rewards, and the goal is to maximize the sum of these rewards,
which boils down to choosing the arm with largest mean as often as possible. This problem was originally
introduced in the 1930s in the context of phase III clinical trials (Thompson, 1933). In this context, each
arm models the response to a particular treatment, and maximizing rewards amounts to giving the treatment
with largest probability of success to as many patients as possible. This suggests a phase III trial is designed
for treating as many patients as possible with the best treatment rather than identifying it. The trade-off be-
tween treatment and identification is also relevant for MTD identification: besides finding the MTD another
objective is to treat as many patients as possible with it during the trial.

Reward maximization in a Bernoulli bandit model is a well-studied problem (Jacko, 2019). In particular,
it is known since (Lai and Robbins, 1985) that any algorithm that performs well on every bandit instance
should select each sub-optimal arm k more than Ck log(n) times, where Ck is some constant, in a regime of
large values of n. Algorithms with finite-time upper bounds on the number of sub-optimal selections have
been exhibited (Auer et al., 2002; Audibert et al., 2009), some of which match the aforementioned lower
bound on the number of sub-optimal selections (Cappé et al., 2013). In the context of MTD identification,
we are also concerned about minimizing the number of sub-optimal selections but with a different notion of
optimal arm: the MTD instead of the arm with largest mean.

Algorithms for maximizing rewards in a bandit model mostly fall in two categories: frequentist algo-
rithms, based on upper-confidence bounds (UCB) for the unknown means of the arms (popularized by Kate-
hakis and Robbins (1995); Auer et al. (2002)) and Bayesian algorithms, that exploit a posterior distribution
on the means (see, e.g. Powell and Ryzhov (2012); Kaufmann et al. (2012a)). Among those, Thompson Sam-
pling (TS) is a popular approach, known for its practical successes beyond simple bandit problems (Agrawal
and Goyal, 2013b; Agrawal and Jia, 2017). In the context of clinical trials, variants of Thompson Sampling
have been notably studied for phase III clinical trials involving two treatments (see Thall and Wathen (2007)
and references therein), or for adaptive trials involving interim analyses (Satlin et al., 2016). Strong theo-
retical properties have also been established for this algorithm in simple models. In particular, Thompson
Sampling was proved to be asymptotically optimal for Bernoulli bandit models (Kaufmann et al., 2012b;
Agrawal and Goyal, 2013a).
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Thompson Sampling, also known as probability matching, implements the following simple Bayesian
heuristic. Given a prior distribution over the arms, at each round an arm is selected at random according to its
posterior probability of being optimal. In this paper, we advocate the use of Thompson Sampling for dose-
finding, using the appropriate notion of optimality. In particular, Thompson Sampling for MTD identification
consists of selecting a dose at random according to its posterior probability of being the MTD. Given a prior
distribution Π0 on the vector of toxicity probabilities, p = (p1, . . . , pK) ∈ [0, 1]K , a posterior distribution
Πt can be computed by taking into account the first t observations. A possible implementation of Thompson
Sampling consists of drawing a sample θ(t) = (θ1(t), . . . , θK(t)) from the posterior distribution Πt and
selecting at round t+ 1 the dose that is the MTD in the sampled model: Dt+1 = argmink |θk(t)− θ|. There
are several possible choices for the recommendation rule k̂t, which are discussed in the upcoming sections.

2.3 Why Thompson Sampling?

Thompson Sampling is by far not the only existing bandit algorithm, yet other algorithms may not be as easily
adaptable to the MTD identification problem, which justifies our focus on this algorithm.

Indeed, Thompson Sampling only requires defining some notion of optimal arm (or arm to discover),
which is naturally defined as the arm with mean closest to the threshold θ in the MTD identification problem.
Many other popular bandit algorithms instead require a value to be assigned to each sampled arm, and require
the optimal arm to be the arm with largest expected value. This is the case for the frequentist optimistic
(UCB) algorithms (see, e.g., Auer et al. (2002); Cappé et al. (2013)), which construct confidence intervals on
the expected value of each arm and select the arm which has the largest statistically plausible expected value
(i.e. the largest Upper Confidence Bound). Adapting this optimism in face of uncertainty principle for MTD
identification is not straightforward: one can certainly build confidence intervals on the toxicity probability
of each dose (several of them may contain the MTD), but there is no natural way to define a “best plausible
value” for each dose in that case.

In the literature on Bayesian ranking and selection, value-based approaches have also been proposed.
Some algorithms are indeed based on defining some Expected Value of Information (Chick, 2006). Among
those, knowledge gradient methods (Powell and Ryzhov, 2012) are particularly interesting since they permit
handling correlations between arms. For example Xie et al. (2016) consider a prior distribution over the arms’
means which is a multivariate Gaussian, and Wang et al. (2016) consider a Bayesian logistic model (where a
Laplace approximation is used for Bayesian inference). However, the proposed algorithms are both tailored
to finding an arm a maximizing E[V (a,D)] for some function V that depends on a random variable D under
which the expectation is taken (like other algorithms from the Bayesian Optimization (BO) literature (Brochu
et al., 2010)). The MTD identification problem cannot naturally be cast in this framework, and adapting,
e.g., knowledge gradient methods would require defining an appropriate notion of value of information in
this setting. This is why we focused on a Bayesian approach which is easier to adapt to MTD identification,
Thompson Sampling.

3 Independent Thompson Sampling: an Asymptotically Optimal Algorithm

Inspired by the bandit literature, we introduce the simplest version of Thompson Sampling, that assumes
independent uniform prior distributions on the probability of toxicity of each dose. We refer to this algorithm
as Independent Thompson Sampling and propose some theoretical guarantees for it.
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3.1 Algorithm Description

The prior distribution on p = (p1, . . . , pK) is Π0 =
⊗K

i=1 π
0
k, where π0

k = U([0, 1]) is a uniform distribution.
Letting πtk be the posterior distribution of pk given the observations from the first t patients, the posterior
distribution also has a product form, Πt =

⊗K
i=1 π

t
k. Moreover, each πtk can be made explicit: πtk is a

Beta(Sk(t) + 1, Nk(t) − Sk(t) + 1) distribution where Sk(t) =
∑t

s=1Xs1(Ds=k) is the sum of rewards
obtained from arm k and Ds is the dose allocated at time s.

The selection rule of Independent Thompson Sampling is simple: a sample from the posterior distribution
on the toxicity probability of each dose is generated, and the dose for which the sample is closest to the
threshold is selected: {

∀k ∈ {1,K}, θk(t) ∼ πtk
Dt+1 = argmink |θk(t)− θ|.

Several recommendation rules may be used for Independent Thompson Sampling. As the randomization
induces some exploration, recommending k̂t = Dt+1 is not a good idea. Inspired by what is proposed by
Bubeck et al. (2011) for assigning a recommendation rule to rewards maximizing algorithms, a first idea is to
recommend k̂t = argmink |µ̂k(t) − θ|, where µ̂k(t) is the empirical mean of dose k after the t-th patient of
the study. Leveraging the fact that TS is supposed to allocate the MTD most of the time, we could also select
k̂t = argmaxk Nk(t) or pick k̂t uniformly at random among the allocated doses.

3.2 Upper Bound on the Number of Sub-Optimal Selections

For the classical rewards maximization problem, the first finite-time analysis of Thompson Sampling for
Bernoulli bandits dates back to Agrawal and Goyal (2012) and was further improved by Kaufmann et al.
(2012b); Agrawal and Goyal (2013a). In Appendix A, building on the analysis of Agrawal and Goyal (2013a),
we prove the following for Thompson Sampling applied to MTD identification.

Theorem 1. Introducing for every k 6= k∗ the quantity

d∗k := argmin
d∈{pk∗ ,2θ−pk∗}

|pk − d|,

Independent Thompson Sampling satisfies the following. For all ε > 0, there exists a constant Cε,θ,p (de-
pending on ε, the threshold θ and the toxicity probabilities) such that for all k : |pk − θ| 6= |θ − pk∗ |,

E[Nk(n)] ≤ 1 + ε

kl(pk, d
∗
k)

log(n) + Cε,θ,p,

where kl(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)) is the binary Kullback-Leibler divergence.

Theorem 1 shows that the total number of allocations to a sub-optimal dose in a trial involving n patients
is logarithmic in n, which justifies that the MTD is given most of the time, at least in a regime of large values
of n (as the second order term can be large). Also, this bounds tells us that in this regime each sub-optimal
dose is allocated in inverse proportion of kl(pk, d

∗
k), which can be seen as a distance between dose k and an

optimal dose with toxicity probability d∗k which is illustrated in Figure 1.
The lower bound given in Theorem 2 below furthermore shows that Independent Thompson Sampling

actually achieves the minimal number of sub-optimal allocations when n grows large.
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Figure 1: Optimal dose d∗k associated with dose k. In some cases d∗k = pk∗ (left), in others d∗k = 2θ − pk∗
(right), which is symmetric to the MTD with respect to threshold θ.

Theorem 2. We define a uniformly efficient design as a design satisfying for all possible toxicity probabilities
p, for all α ∈]0, 1[, for all k : |θ − pk| 6= |θ − pk∗ |, E[Nk(n)] = o(nα) when n goes to infinity. If pk∗ 6= θ,
any uniformly efficient design satisfies, for all k: |θ − pk| 6= |θ − pk∗ |,

lim inf
n→∞

E[Nk(n)]

log(n)
≥ 1

kl(pk, d
∗
k)
.

Theorem 2 can be viewed as a counterpart of the Lai and Robbins lower bound for classical bandits
(Lai and Robbins, 1985) and can be easily derived using recent change-of-measure tools (see Garivier et al.
(2019b)). Its proof is given in Appendix B for the sake of completeness.

3.3 Upper Bound on the Error Probability

If the recommendation rule k̂n consists of selecting uniformly at random a dose among the doses that were
allocated during the trial, {D1, . . . , Dn}, it follows from Theorem 1 that

P
(
k̂n 6= k∗

)
=
∑
k 6=k∗

E[Nk(n)]

n
≤ D ln(n)

n
, (1)

where D is a (possibly large) problem-dependent constant. Hence finite-time upper bounds on the number of
sub-optimal selection lead to non-asymptotic upper bound on the error probability of the design. Note that
for the state-of-the-art dose-finding designs it is not known whether such results can be obtained; the only
results available provide conditions for consistency. For example Shen and O’Quigley (1996); Cheung and
Chappell (2002) exhibit some conditions on the toxicity probabilities under which a classical design called
the CRM is such that k̂n converges almost surely to k∗.

This being said, the upper bound (1) is not very informative, as a very large number of patients is needed
for the upper bound to be at least smaller than 1, and one could expect to have an upper bound that is
exponentially decreasing with n. As we shall see in Section 6, an adaptation of a best arm identification
algorithm (Karnin et al., 2013) leads to such an upper bound, but may be less desirable for clinical trials
from an ethical point of view. This is why we rather chose to investigate in what follows several variants of
Thompson Sampling coupled with an appropriate recommendation rule.

By using uniform and independent priors on each toxicity probability, Independent Thompson Sampling
is the simplest possible implementation of Thompson Sampling. We now explain that using a more so-
phisticated prior distribution allows the algorithm to leverage some particular constraints of the dose-finding
problem, like increasing toxicities or a plateau of efficacy.
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4 Exploiting Monotonicity Constraints with Thompson Sampling

Independent Thompson Sampling is an adaptation of a state-of-the-art bandit algorithm for identifying the
MTD that does not leverage any prior knowledge on (e.g.) the ordering of the arms’ means. While it can be
argued that when testing drug combinations no natural ordering between the doses exists (see, e.g., Mozgunov
and Jaki (2017)), in most cases monotonicity assumptions can speed up learning.

A typical assumption in phase I studies is that both efficacy and toxicity are increasing with the dose. We
show in Section 4.1 that Thompson Sampling using an appropriate prior is competitive with state-of-the-art
phase I approaches leveraging the monotonicity. In Section 4.2, we further show that Thompson Sampling
is a flexible method that can be useful in phase I/II trials, under more complex monotonicity assumptions on
both toxicity an efficacy. More specifically, we show it can handle an efficacy “plateau,” where efficacy may
be non-increasing after a certain dose level.

4.1 Thompson Sampling for Increasing Toxicities: A Phase I Design

In a phase I study in which both toxicity and efficacy are increasing with the dose, the MTD is the most
relevant dose to allocate in further stages. We now focus on algorithms leveraging the extra information that
p1 ≤ · · · ≤ pk. To exploit this structure, escalation procedures have been developed in the literature, the
most famous being the “3+3” design (Storer, 1989). In this design, adjusted for θ = 0.33, the lowest dose
is first given to 3 patients. If no patient experiences toxic effects, one escalates to the next dose and repeats
the process. If one patient experiences toxicity, the dose is given to 3 more patients, and if less than two
patients among the 6 experience toxicity, one escalates to the next dose. Otherwise the trial is stopped, which
is also the case if from the beginning 2 out of the 3 patients experience a toxic effect. Upon stopping, the
previous dose is recommended as the MTD, or all doses are deemed too toxic if one stops at the first dose
level. Although it is clear that the guarantees in terms of error probability (or sub-optimal selections) are very
weak, “3+3” is still often used in practice.

Alternative to this first design are variants of the Continuous Reassessment Method (CRM), proposed
by O’Quigley et al. (1990). The CRM uses a Bayesian model that combines a parametric dose/toxicity
relationship with a prior on the model parameters. Under this model, CRM appears as a greedy strategy
that selects in each round the dose whose expected toxicity under the posterior distribution is closest to the
threshold. We propose in this section several variants of Thompson Sampling based on the same Bayesian
model, but that favor (slightly) more exploration.

A Bayesian model for increasing toxicities In the CRM literature, several parametric models that yield
an increasing toxicity have been considered. In this paper, we choose a two-parameter logistic model that is
among the most popular. Under this model, each dose k is assigned an effective dose uk (that is usually not
related to a true dose expressed in a mass or volume unit) and the toxicity probability of dose k is given by

pk(β0, β1) = ψ(k, β0, β1), where ψ(k, β0, β1) =
1

1 + e−β0−β1uk
.

A typical choice of prior is
β0 ∼ N (0, 100) and β1 ∼ Exp(1).

It is worth noting that this model also heavily relies on the distinct effective dose levels u1, . . . , uK that are
usually chosen depending on some prior toxicities set by physicians, p0

1 ≤ p0
2 ≤ · · · ≤ p0

K . Letting β0, β1 be
the prior mean of each parameter, the effective doses are calibrated such that for all k, ψ(k, β0, β1) = p0

k. If
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there is no medical prior knowledge about the toxicity probabilities, some heuristics for choosing them in a
robust way have been developed (see Chapter 9 of Cheung (2011)).

Under this model, given some observations from the different doses one can compute the posterior dis-
tribution over the parameters β0 and β1; that is, the conditional distribution of these parameters given the
observations. Although there is no closed form for these posterior distributions, they can be easily sam-
pled from using Hamiltonian Monte-Carlo Markov Chain algorithms (HMC) as the log-likelihood under
these models is differentiable. In practice, we use the Stan implementation of these Monte-Carlo sampler
(Stan Development Team, 2015), and use (many) samples to approximate integrals under the posterior when
needed.

4.1.1 Thompson Sampling

Thompson Sampling selects a dose at random according to its posterior probability of being the MTD. Under
the two-parameter Bayesian logistic model presented above, letting πt denote the posterior distribution on
(β0, β1) after the first t observations, the posterior probability that dose k is the MTD is

qk(t) := P
(
k = argmin

`
|θ − p`(β0, β1)|

∣∣∣∣Ft)
=

∫
R
1

(
k = argmin

`
|θ − p`(β0, β1)|

)
dπt(β0, β1).

A first possible implementation of Thompson Sampling that we use in our experiments consists of com-
puting approximations q̂k(t) of the probabilities qk(t) (using posterior samples) and selecting at round t+ 1
a dose Dt+1 ∼ q̂(t), i.e. such that P (Dt+1 = k|Ft) = q̂k(t). A second implementation of Thompson Sam-
pling (that may be computationally easier) consists of drawing one sample from the posterior distribution of
(β0, β1), and selecting the MTD in the sampled model:(

β̃0(t), β̃1(t)
)
∼ πt,

DTS
t+1 ∈ argmin

k∈{1,...,K}

∣∣∣θ − pk (β̃0(t), β̃1(t)
)∣∣∣ . (2)

It is easy to see that this algorithm coincides with Thompson Sampling in that P
(
DTS
t+1 = k|Ft

)
= qk(t). We

will present below a variant of Thompson Sampling based on the first implementation (TS A) and a variant
based on the second implementation (TS(ε)).

Recommendation rule Due to the randomization, Thompson Sampling performs more exploration than
the “greedy” CRM (O’Quigley et al., 1990) method, which selects at time t the MTD under the model
parameterized by (β̂0, β̂1), the posterior means of the two parameters, given by

β̂0(t) =

∫
R
β0dπt(β0, β1) and β̂1(t) =

∫
R
β1dπt(β0, β1). (3)

More precisely, the sampling rule of the CRM is

DCRM
t+1 ∈ argmin

k∈{1,...,K}

∣∣∣θ − pk(β̂0(t), β̂1(t))
∣∣∣ .
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The recommendation rule for CRM after t patients is identical to the next dose that would be sampled under
this design, that is k̂CRM

t = DCRM
t+1 . For Thompson Sampling, due to the more exploratory nature of the

algorithm, we do not want to recommend k̂TS
t = DTS

t+1. Instead, we propose the use of recommendation rule
k̂TS
t = argmin

k∈{1,...,K}
|θ − pk(β̂0(t), β̂1(t))|, which coincides with that of the CRM.

4.1.2 Two variants of Thompson Sampling

The randomized aspect of Thompson Sampling makes it likely to sample from large or small doses, without
respecting some ethical constraints of phase I clinical trials. Indeed, patients should not be exposed to too-
high dose levels; overdosing should be controlled. Hence, we also propose two “regularized” versions of
TS. The first depends on a parameter ε > 0 set by the user that ensures that the expected toxicity of the
recommended dose remains within ε of the toxicity of the empirical MTD. The second restricts the doses to
be tested to a set of admissible doses. These algorithms are formally defined below, and their performance is
evaluated in Section 5.

TS(ε) We first compute the posterior means β̂0(t), β̂1(t) from (3) and the toxicity of the dose closest to θ
under the model parameterized by (β̂0(t), β̂1(t)) (i.e., the toxicity of the dose selected by the CRM):

p̂(t) = pk̂t(β̂0(t), β̂1(t)), with k̂t = argmin
k∈{1,...,K}

∣∣∣θ − pk(β̂0(t), β̂1(t))
∣∣∣

Next we sample β̃0(t), β̃1(t) from the posterior distribution πt and select a candidate dose level Dt+1 using
(2). If the predicted toxicity level pDt+1(β̂0(t), β̂1(t)) is not in the interval (p̂(t)− ε, p̂(t) + ε), then we reject
our values of β̃0(t), β̃1(t), draw a new sample from πt and repeat the process. In order to guarantee that the
algorithm terminates, we only reject up to 50 samples, after which we use the sample that gives the dose
with minimum toxicity among all 50 samples. We choose 50 to limit the computational complexity of the
algorithm, but it can also be replaced by a larger value if more computational power is available.

TS(ε) can be seen as a smooth interpolation between the CRM (which correspond to ε = 0) and vanilla
Thompson Sampling (which corresponds to ε = 1). Regarding the tuning of the parameter ε, large values do
not reduce much the amount of exploration while too small values lead to a behavior which is indistinguish-
able from that of the CRM. We did (large scale) experiments with ε ∈ {0.02, 0.05, 0.1} and we found that the
three values lead to comparable performance across the different scenarios we tried. To ease the presentation,
we report results for TS(0.05) only in Section 5.

TS A The TS A algorithm limits exploration by enforcing the selected dose to be in some admissible set
At, by sampling from the modified distribution

P (Dt+1 = k|Ft) =
q̂k(t)1(k∈At)∑

`∈At q̂`(t)
,

instead of sampling directly from q̂(t) as vanilla Thompson Sampling does. The admissible set At is defined
as set of doses that meet the following two criteria:

1. dose k has either already been tested, or is the next-smallest dose which has not yet been tested
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2. the posterior probability that the toxicity of dose k exceeds the toxicity of the dose closest to θ is
smaller than some threshold:

P

(
ψ(k, β0, β1) > ψ(k′, β0, β1), where k′ = argmin

k′∈{1,...,K}

∣∣θ − ψ(k′, β0, β1)
∣∣ ∣∣∣∣∣Ft

)
≤ c1.

At is inspired by the admissible set of Riviere et al. (2017) described in detail in the next section.
In our experiments, we tried different values of the parameter c1 and we found that the performance of

TS A is better with values of c1 that are not too small. In Section 5, we report experiments with c1 = 0.8, but
the performance was comparable for the choices c1 = 0.6 or 0.9.

4.2 Thompson Sampling for Efficacy Plateau Models: A Phase I/II Design

In some particular trials, it has been established that efficacy is not always increasing with the dose. Motivated
by some concrete examples discussed in their paper, Riviere et al. (2017) consider a model in which the dose
effectiveness can plateau after some unknown level, while toxicity still increases with dose level. In these
models, MTD identification is no longer relevant and the objective is rather to identify the smallest dose with
maximal efficacy and with toxicity no more than θ. More formally, introducing effk the efficacy probability
of dose k, the Minimal Effective Dose (MED) is

k∗ = min

{
k : effk = max

`:p`≤θ
eff`

}
In a dose-finding study involving efficacy, at each time step t a dose Dt is allocated to the t-th patient,

and the toxicity Xt is observed, as well as the efficacy Yt. With this two-dimensional observation, assigning
a value (or reward) to each sampled arm is even less natural than before. However as one can still define
a notion of optimal dose (the MED instead of the MTD), Thompson Sampling can still be applied in this
setting. As we shall see, it bears some similarities to the state-of-the-art method developed by Riviere et al.
(2017).

A Bayesian model for toxicity and efficacy Thompson Sampling requires a Bayesian model for both the
dose/toxicity and the dose/efficacy relationship that enforces an increasing toxicity and a increasing then
plateau efficacy. We use the model proposed by Riviere et al. (2017), that we now describe.

Under this model, toxicity and efficacy are assumed to be independent. The (increasing) toxicity follows
the two-dimensional Bayesian logistic model with effective doses uk:

pk = pk(β0, β1) = ψ(k, β0, β1)

and β0 ∼ N (0, 100), β1 ∼ Exp(1).

Efficacy also follows a logistic model, with an additional parameter τ that indicates the beginning of the
plateau of efficacy. The efficacy probability of dose level k is

effk = effk(γ0, γ1, τ) = φ(k, γ0, γ1, τ), where φ(k, γ0, γ1, τ) :=
1

1 + e−[γ0+γ1(vk1(k<τ)+vτ1(k≥τ))]
,

with vk the effective efficacy of dose k. Given (t1, . . . , tK) such that
∑K

i=1 ti = 1, a probability distribution on
{1, . . . ,K}, the three parameters (γ0, γ1, τ) are independent and drawn from the following prior distribution:

γ0 ∼ N (0, 100), γ1 ∼ Exp(1), τ ∼ (t1, . . . , tK).
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The prior on τ may be provided by a physician or set to (1/K, . . . , 1/K) in case one has no prior information.
Just like the effective doses uk (that we may now call effective toxicities), the effective efficacies vk are
calculated using prior efficacies eff0

1 ≤ · · · ≤ eff0
K :

vk =

(
log

(
eff0

k

1− eff0
k

)
− γ0

)/
γ1,

where γ0 = 0 and γ1 = 1 are the prior means of the parameters γ0 and γ1.

Posterior sampling Let Deff
t = {(D1, Y1), . . . , (Dt, Yt)} be the efficacy data gathered in the first t rounds.

Generating samples from the posterior distribution of (γ0, γ1, τ) given Deff
t is a bit more involved than gen-

erating posterior samples from (β0, β1). Indeed, it cannot be handled directly with HMC given that (γ0, γ1)
are continuous and τ is discrete. Thus, we proceed in the following way: we first draw samples from
p(γ0, γ1|Deff

t ), which can be performed with HMC (and requires marginalizing out the discrete parameter
τ , following the example of change point models given in the Stan manual (Stan Development Team, 2015)).
Then we sample τ conditionally to γ0, γ1,Deff

t .

4.2.1 Thompson Sampling

Recall that the principle of Thompson Sampling is to randomly select doses according to their posterior prob-
ability of being optimal. This idea can also be applied in this more complex model, using the corresponding
definition of optimality. Given a vector ψ = (ψ1, . . . , ψK) of increasing toxicity probabilities and a vector
φ = (φ1, . . . , φK) of increasing then plateau efficacy probabilities, the optimal dose is

MED(ψ,φ) := min

{
k : φk = max

`:ψ`≤θ
φ`

}
.

The posterior probability of dose k to be optimal in that case is

qk(t) := P (k = MED (ψ(·, β0, β1), φ(·, γ0, γ1, τ))| Ft)

and in our experiments, we implement Thompson Sampling by computing approximations q̂k(t) from the
quantities qk(t) (based on posterior samples) and then selecting a doseDt+1 ∼ q̂(t) where q̂(t) = (q̂1(t), . . . , q̂K(t)).
Just like in the previous model, an alternative implementation of Thompson Sampling would sample param-
eters from their posterior distributions and select the optimal dose in this sampled model. Letting

β̃0(t), β̃1(t) and γ̃0(t), γ̃1(t), τ̃(t),

be samples from the posterior distributions after t observations of the toxicity and efficacy parameters respec-
tively, one can compute ψ̃k(t) = ψ(k, β̃0(t), β̃1(t)) and φ̃k(t) = φ(k, γ̃0(t), γ̃1(t), τ̃(t)) for every dose k.
Given the toxicity and efficacy vectors

ψ̃(t) =
(
ψ̃1(t), . . . , ψ̃K(t)

)
and φ̃(t) =

(
φ̃1(t), . . . , φ̃K(t)

)
,

this implementation of Thompson Sampling selects at round t+ 1 DTS
t+1 = MED

(
ψ̃(t), φ̃(t)

)
.
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Recommendation rule Here also we expect Thompson Sampling to be too exploratory for dose recommen-
dation. Hence, we base our recommendation on estimated values. Given the posterior means β̂0(t), β̂1(t), γ̂0(t), γ̂1(t)
(estimated from posterior samples) and τ̂(t) the mode of the posterior distribution of the breakpoint (see the
next section for its computation), we compute ψ̂k(t) = ψ(k, β̂0(t), β̂1(t)) and φ̂k(t) = φ(k, γ̂0(t), γ̂1(t), τ̂(t))

and recommend k̂t = MED
(
ψ̂(t), φ̂(t)

)
.

4.2.2 A Variant of Thompson Sampling using Adaptive Randomization

Interestingly, the need for randomization in the context of plateau efficacy has already been observed by
Riviere et al. (2017). More precisely, as we explain below, the algorithm MTA-RA described in that work
can be viewed as an hybrid approach between Thompson Sampling and a CRM approach.

Additionally to the use of adaptive randomization, the MTA-RA algorithm also introduces a notion of
admissible set. The set of admissible doses after t patients, denoted by At, is the set of dose levels k meeting
all of the following criteria:

1. dose k has either already been tested, or is the next-smallest dose which has not yet been tested

2. the posterior probability that the toxicity of dose k exceeds θ is smaller than some threshold:

P (ψ(k, β0, β1) > θ|Ft) ≤ c1 (4)

3. if the dose has been tested more than 3 times, the posterior probability that the efficacy is larger than ξ
is larger than some threshold:

P (φ(k, γ0, γ1, τ) > ξ|Ft) ≥ c2 (5)

Practical computation of the admissible set can be performed using posterior samples from (β0, β1) to check
the criterion (4) and posterior samples from (γ0, γ1, τ) to check the criterion (5).

The MTA-RA algorithm works in two steps. The first step exploits the posterior distribution of the
breakpoint, tk(t) := P

(
τ = k|Deff

t

)
, and uses randomization to pick a value τ̂(t) close to the mode of this

distribution. More precisely, given (t̂k(t))k=1,...,K an estimate of the posterior distribution of τ , let

Rt :=

{
k :

∣∣∣∣ max
1≤`≤K

(t̂`(t))− t̂k(t)
∣∣∣∣ ≤ s1, 1 ≤ k ≤ K

}
be a set of candidate values for the position of the breakpoint. Then under MTA-RA,

P (τ̂(t) = k|Ft) =
t̂k(t)1(k∈Rt)∑

`∈Rt t̂`(t)
.

The threshold s1 is often adapted such that it is larger in the beginning of the trial when we have high
uncertainty about the estimates, but it grows smaller as the trial continues. The second step of MTA-RA
doesn’t employ randomization. Based on posterior samples from (γ0, γ1) conditionally to τ being equal to
τ̂(t), efficacy estimates φ̂k are produced (taking the mean of the values of φ(k, γ̃0, γ̃1, τ̂(t)) for many samples
γ̃0, γ̃1) and finally the selected dose is

DMTA-RA
t+1 = inf

{
k ∈ At : φ̂k = max

j∈At
φ̂j

}
.
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If τ̂(t) were replaced by a point estimate (e.g. the mode of the breakpoint posterior distribution t̂(t)),
MTA-RA would be close to a CRM approach that computes estimates of all the parameters and acts greedily
with respect to those estimated parameters (with the additional constraint that the chosen dose has to remain
in the admissible set). However, the first step of MTA-RA bears similarities with the first step of a Thompson
Sampling implementation that would sample a parameter τ from the t̂(t) (and later sample the other param-
eters conditionally to that value and act greedily in the sampled model). The difference is the use of adaptive
randomization, in which the sample is not exactly drawn from t̂(t), but is constrained to fall in some set (here
Rt) that depends on previous observations.

The TS A algorithm We believe that using adaptive randomization is a good idea to control the amount
of exploration performed by Thompson Sampling, which leads us to propose the TS A algorithm, that incor-
porates the constraint to select a dose that belongs to the admissible set At. More formally, TS A selects a
dose at random according to

P (Dt+1 = k|Ft) =
q̂k(t)1(k∈At)∑

`∈At q̂`(t)
,

where we recall that q̂k(t) is an estimate of the posterior probability that dose k is optimal. Compared to the
variant of TS A for increasing toxicities that is proposed in Section 4.1, the difference here is the appropriate
definition of the admissible set, that involves both toxicity and efficacy probabilities.

Practical remark Approximations t̂k(t) of the breakpoint distribution can be computed using that

tk(t) = tk

∫
L(Defft |γ0, γ1, k)∑K

s=1 tsL(Defft |γ0, γ1, s)
p(γ0, γ1|Defft )dγ0dγ1,

where L(Deff
t |γ0, γ1, s) is the likelihood of the efficacy observations when the efficacy model parameters are

(γ0, γ1, s) and p(γ0, γ1|Deff
t ) is the density of the distribution of (γ0, γ1) given the observations. t̂k(t) can be

thus be obtained by Monte-Carlo estimation based on samples from p(γ0, γ1|Deff
t ).

5 Experimental Evaluation

We now present an empirical evaluation of the variants of Thompson Sampling introduced in the paper first
in the context of increasing efficacy and then with the presence of a plateau of efficacy. In both groups of
experiments, we adjusted our designs to some common practices in dose-finding trials. We used a start-up
phase for all designs (starting from the smallest dose and escalating until the first toxicity is observed) and
we also used cohorts of patients of size 3. This means that the same dose is allocated to 3 patients at a time
and the model is updated after seeing the outcome for these 3 patients.

5.1 Phase I: MTD Identification

In this set of experiments, we evaluate the performance of the three algorithms introduced in Section 4.1, TS,
TS(ε) and TS A, and compare them to the 3+3 and CRM baselines. We report experiments with the value
ε = 0.05 for TS(ε) and c1 = 0.8 for TS A. We refer the reader to Section 4.1.2 for discussions on the choice
of these parameters. We also include Independent TS as proposed in Section 2, which is agnostic to the
increasing structure.
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In Tables 1 to 3 we provide results for nine different scenarios in which there are K = 6 doses with a
target toxicity θ = 0.30, budget n = 36 and prior toxicities

p0 = [0.06 0.12 0.20 0.30 0.40 0.50].

We choose the same prior toxicities for all scenario, that are sometimes close to actual toxicities (e.g. in
Scenario 2) and sometimes quite far, in order to showcase the robustness of Bayesian algorithms.

For each scenario and algorithm, we report in the first column of these tables the percentage of allocation
to each dose, that is, an estimate of P(k̂n = k) for each dose k, based on N = 2000 repetitions. In the second
column, we report an estimate of the percentage of allocation to each dose during the trial, computed for each
dose k as the average value of 100∗Nk(n)/n overN = 2000 repetitions. We add in parenthesis the empirical
standard deviation of these allocation percentages, as allocations under bandit algorithms are known to have a
large variance. For the 3+3 design, only the recommendation percentages are displayed, as the percentage of
allocations would be computed based on a number of patients smaller than 36 (as a 3+3 based trial involves
some random stopping). This design is also the only one that would stop and recommend none of the doses
if they are all judged too toxic: we add this fraction of no recommendation between brackets in the tables.

For each scenario, corresponding to different increasing toxicity probabilities, the MTD is underlined
and we mark in bold the fraction of recommendation or allocation of the MTD that are superior to what is
achieved by the CRM. We now comment on the performance of the algorithms on those scenarios.

Dose recommendation TS outperforms CRM 3 out of 9 times, TS(ε) does so 5 out of 9 times, and TS A
does so 5 out of 9 times. As expected, Independent TS, which does not leverage the increasing structure,
does not have a remarkable performance. This algorithm would need a larger budget to have a good empirical
performance. With n = 36 in most cases this strategy is not doing much better than selecting the doses
uniformly at random. One can also observe that the 3+3 design (that may however require less than 36
patients in the trial) performs very badly in terms of dose recommendation.

Dose allocation While TS A and TS(ε) do not always have higher allocation percentage at the optimal
(underlined) dose compared to CRM, a scan of the dose allocation results in Tables 1 to 3 shows that the
addition of the admissible set A and ε regularity to the Thompson Sampling method consistently reduces
the allocation percentage of higher toxicity doses. TS A performs best in this regard (it is more cautious
with allocating higher doses) across all algorithms (e.g. it consistently has superior performance compared to
CRM), while TS(ε) has performance better than or comparable to CRM. We believe this result is of interest
in trials where toxicity is an ethical concern.

5.2 Phase I/II: MED Identification when Efficacy Plateaus

In this set of experiments, we evaluate the performance of the two algorithms introduced in Section 4.2, TS
and TS A, and compare them to the MTA-RA algorithm. We use the experimental setup of Riviere et al.
(2017): several scenarios with K = 6 doses, budget n = 60, θ = 0.35, toxicity and efficacy priors

p0 = [0.02, 0.06, 0.12, 0.20, 0.30, 0.40] and eff0 = [0.12, 0.20, 0.30, 0.40, 0.50, 0.59].

Furthermore, we use the same parameters for the admissible set and the implementation of MTA-RA as those
chosen by Riviere et al. (2017): ξ = 0.2, c1 = 0.9, c2 = 0.4, and s1 = .2

(
1− I

n

)
, where I is the number of

samples used so far. These parameters are defined above in the main text.
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In Tables 4 to 6 we provide results for several scenarios with increasing toxicities and efficacy, with
efficacy which (quasi) plateaus. We report the percentage of allocation to each dose, the percentage of
recommendation of each dose when n = 60, and the percentage of time the trials stopped early (E-Stop),
estimated over N = 2000 repetitions. As before, we also report standard deviations for the percentage of
allocations to each dose.

Optimal doses are underlined by a plain line while a dashed line identifies doses whose toxicity is larger
than θ. We mark in bold cases where our algorithms makes the optimal decision (in terms of the percentage
of recommendations) more often than the MTA-RA baseline.

Dose recommendation Recall that the modeling assumption here is that efficacy increases monotonically
in toxicity up to a point and then it plateaus. We present experimental results on several scenarios, some of
which are borrowed from Riviere et al. (2017), on which this plateau assumption is not always exactly met.
In most of these scenarios, TS A outperforms the MTA-RA algorithm.

In scenarios 1 through 4 and in scenarios 12 and 13, there is a plateau of efficacy starting at a reasonable
toxicity: in this case the optimal dose corresponds to the plateau breakpoint. Our algorithms make the optimal
decision compared to MTA-RA consistently: TS 4 out of 6 times and TS A 5 out of 6 times. In scenarios
5 and 6 the plateau of efficacy starts when the toxicity is already too high, hence the optimal dose is before
than the plateau. In scenario 5, TS A and TS both outperform MTA-RA, while on scenario 6 MTA-RA has
a slight advantage over TS.

In scenario 7 and 8 there is no true plateau of efficacy, however in both cases there exists a “breakpoint”
(underlined) after which the efficacy is increasing very slowly while the toxicity is increasing significantly.
This breakpoint can thus be argued to be a good trade-off between efficacy and toxicity and should be inves-
tigated in further phases. In these two scenarios TS A identifies this pseudo-optimal dose more often than
MTA-RA, while TS has a slightly worse performance.

Lastly, we study the case when there is no clear optimal or near-optimal dose, i.e. scenarios 9-11. In
scenario 9 wherein most doses, including the entire quasi-plateau, are too toxic, we would like to stop early
or at most recommend dose 1 (the only dose meeting the toxicity constraint but whose efficacy is not very
high). Under this interpretation, TS and TS A outperform MTA-RA. Note that our algorithms most often
either stop early or recommend dose 1, while in comparison MTA-RA recommends the toxic dose 2 a large
fraction of the time (33.1 %). In scenarios 10 and 11 in which all doses are either too toxic or ineffective a
good algorithm would stop early with no recommendation. TS A makes this optimal decision more often
than MTA-RA in both scenarios and TS in one of the two scenarios.

Dose allocation While TS and TS A have lower allocation percentage at the optimal (underlined) dose
compared to MTA-RA, the addition of the admissible set A to the Thompson Sampling method consistently
reduces the percentage of dose allocation at doses that are too toxic. Furthermore, TS A is more cautious in
allocating higher doses compared to MTA-RA. Our experiments notably reveal that the fraction of allocation
to doses whose toxicity is larger than θ (that are underlined with a dashed line) is always smaller for TS A
than for MTA-RA. Hence, not only is TS A very good in terms of recommending the right dose, it also
manages to avoid too-toxic doses more consistently.

6 Revisiting the Treatment versus Experimentation Trade-off

Ideally, a good design for MTD identification should be supported by a control of both the error probability
en = P(k̂n 6= k∗) and the number of sub-optimal selections E[Nk(n)] for k 6= k∗. These two quantities
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Table 1: Results for MTD identification

Algorithm Recommended Allocated
1 2 3 4 5 6 1 2 3 4 5 6

Sc. 1: Tox prob 0.30 0.45 0.55 0.60 0.75 0.80 0.30 0.45 0.55 0.60 0.75 0.80

3 + 3 [30.4] 35.2 21.6 7.7 4.0 1.0 0.1 - - - - - -

CRM 77.2 20.8 1.9 0.1 0.0 0.0
70.1

(32.1)
21.7

(24.1)
6.2

(12.1)
1.5

(5.4)
0.3

(1.9)
0.3

(1.7)

TS 78.9 18.9 2.2 0.0 0.0 0.0
67.0

(24.4)
18.8

(16.2)
6.3

(9.5)
2.3

(5.2)
1.0

(3.1)
4.6

(5.6)

TS(ε) 78.6 19.5 1.8 0.1 0.0 0.0
73.0

(31.0)
20.7

(24.3)
5.2

(10.8)
0.7

(3.6)
0.1

(1.2)
0.3

(1.6)

TS A 79.8 18.2 1.7 0.2 0.1 0.0
76.3

(24.1)
19.7

(18.7)
3.5

(8.7)
0.5

(3.2)
0.1

(1.0)
0.0

(0.3)

Independent TS 37.6 27.3 16.9 13.2 3.2 1.9
23.4

(12.9)
21.0

(11.5)
17.4

(10.2)
15.9
(9.5)

11.7
(6.2)

10.6
(5.5)

Sc. 2: Tox prob 0.05 0.12 0.15 0.30 0.45 0.50 0.05 0.12 0.15 0.30 0.45 0.50

3 + 3 [0.5] 4.9 6.2 23.0 28.6 18.8 17.9 - - - - - -

CRM 0.2 1.2 17.1 53.9 21.7 5.9
10.3
(6.4)

10.7
(11.1)

20.6
(19.6)

29.9
(21.0)

15.9
(16.3)

12.7
(16.6)

TS 0.0 1.2 17.8 47.2 25.9 8.0
13.6
(8.8)

14.6
(10.6)

18.2
(13.0)

20.3
(13.8)

12.5
(11.2)

20.7
(15.2)

TS(ε) 0.2 1.5 14.9 51.5 24.2 7.6
10.4
(6.8)

11.1
(11.3)

22.3
(19.6)

30.2
(21.2)

13.0
(15.3)

13.0
(16.0)

TS A 0.0 1.8 14.9 44.3 24.9 14.1
15.3

(11.6)
19.5

(14.6)
25.7

(15.5)
23.9

(17.0)
10.2

(12.3)
5.5

(11.1)

Independent TS 17.7 17.2 19.2 20.2 14.7 11.0
16.0
(8.8)

18.6
(7.5)

18.7
(8.0)

17.6
(8.9)

15.0
(8.3)

14.2
(8.0)

Sc. 3: Tox prob 0.01 0.03 0.07 0.11 0.15 0.30 0.01 0.03 0.07 0.11 0.15 0.30

3 + 3 [0.0] 0.3 1.8 3.6 6.2 20.8 67.2 - - - - - -

CRM 9.6 0.0 0.1 1.4 14.8 74.1
14.0

(15.1)
8.2

(1.8)
8.9

(4.5)
8.7

(8.2)
14.8

(14.5)
45.4

(21.4)

TS 2.9 0.0 0.1 1.8 14.8 80.2 11.8
(9.8)

9.2
(3.6)

10.1
(6.2)

11.7
(8.8)

14.1
(10.5)

43.2
(16.3)

TS(ε) 2.9 0.1 0.1 1.5 15.8 79.8 11.0
(8.9)

8.4
(2.5)

9.0
(4.7)

10.5
(9.2)

15.3
(13.9)

45.8
(19.1)

TS A 2.5 0.0 0.1 1.7 14.3 81.5 11.7
(9.4)

10.6
(6.2)

13.6
(9.7)

15.9
(10.9)

16.0
(10.6)

32.1
(19.0)

Independent TS 18.8 10.0 14.4 19.4 18.6 19.0
15.3
(8.2)

16.3
(5.4)

16.8
(6.3)

17.6
(7.1)

17.6
(7.5)

16.4
(8.2)
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Table 2: Results for MTD identification (part 2/3)

Algorithm Recommended Allocated
1 2 3 4 5 6 1 2 3 4 5 6

Sc. 4: Tox prob 0.10 0.20 0.30 0.40 0.47 0.53 0.10 0.20 0.30 0.40 0.47 0.53

3 + 3 [4.7] 12.5 20.5 23.0 18.8 11.6 9.0 - - - - - -

CRM 1.2 22.0 42.2 25.7 6.9 2.1
14.6

(13.7)
23.1

(23.7)
30.6

(24.0)
18.0

(19.4)
7.4

(12.3)
6.3

(12.2)

TS 1.2 19.6 40.1 28.2 8.1 2.8
21.4

(15.1)
21.6

(15.4)
20.8

(15.0)
13.7

(12.3)
6.8

(8.7)
15.7

(13.6)

TS(ε) 2.1 19.9 44.1 24.9 7.0 1.8
15.5

(15.8)
25.3

(24.5)
31.8

(24.5)
16.2

(19.2)
5.1

(9.8)
6.1

(10.8)

TS A 1.4 20.6 42.3 22.2 9.0 4.5
25.1

(19.3)
31.0

(18.4)
27.4

(18.8)
11.9

(14.9)
3.2

(7.9)
1.3

(5.6)

Independent TS 17.8 22.2 22.6 15.9 12.6 9.0
16.6
(9.3)

19.4
(8.7)

18.7
(9.3)

16.5
(8.8)

15.3
(8.6)

13.5
(7.7)

Sc. 5: Tox prob 0.10 0.25 0.40 0.50 0.65 0.75 0.10 0.25 0.40 0.50 0.65 0.75

3 + 3 [3.1] 20.6 30.8 24.2 15.3 5.1 0.8 - - - - - -

CRM 4.8 49.7 39.0 6.5 0.1 0.0
17.8

(18.2)
38.3

(27.4)
30.9

(23.9)
9.0

(14.8)
2.4

(5.5)
1.7

(4.0)

TS 4.3 50.7 39.4 5.4 0.1 0.1
26.3

(17.6)
31.2

(17.5)
22.3

(16.0)
8.8

(11.4)
3.2

(5.4)
8.2

(7.2)

TS(ε) 4.8 52.2 36.5 6.2 0.2 0.0
18.8

(19.3)
41.2

(27.1)
29.7

(24.4)
7.3

(13.7)
1.4

(4.2)
1.6

(3.9)

TS A 3.0 50.8 36.4 7.0 1.6 1.1
29.6

(20.0)
40.1

(18.8)
23.4

(18.5)
6.1

(11.0)
0.8

(3.2)
0.1

(1.1)

Independent TS 24.3 32.6 21.4 14.6 5.4 1.6
19.4

(10.5)
22.6

(10.8)
19.1

(10.0)
16.0
(9.1)

12.5
(7.0)

10.4
(5.5)

Sc. 6: Tox prob 0.08 0.12 0.18 0.25 0.33 0.39 0.08 0.12 0.18 0.25 0.33 0.39

3 + 3 [2.1] 5.1 9.6 15.3 19.3 18.5 30.2 - - - - - -

CRM 0.3 1.2 10.6 29.1 31.2 27.5
11.7
(8.4)

10.7
(11.4)

16.2
(17.1)

19.5
(19.3)

18.2
(18.0)

23.7
(23.9)

TS 0.3 1.4 10.6 27.0 29.9 30.9
14.9

(10.7)
13.2
(9.9)

15.3
(12.0)

15.1
(12.3)

12.2
(11.3)

29.2
(18.7)

TS(ε) 0.1 1.7 11.5 28.3 30.4 28.0
12.0
(8.9)

11.9
(12.5)

19.2
(18.6)

20.3
(19.2)

13.5
(15.4)

23.0
(22.7)

TS A 0.1 1.9 12.0 28.5 26.5 31.0
17.5

(14.4)
21.1

(15.0)
24.7

(15.9)
19.3

(15.9)
8.9

(11.5)
8.5

(15.0)

Independent TS 13.6 15.6 19.1 19.4 16.8 15.4
14.7
(8.4)

17.7
(7.4)

18.0
(8.0)

17.5
(8.5)

16.4
(8.5)

15.7
(8.4)
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Table 3: Results for MTD identification (part 3/3)

Algorithm Recommended Allocated
1 2 3 4 5 6 1 2 3 4 5 6

Sc. 7: Tox prob 0.15 0.30 0.45 0.50 0.60 0.70 0.15 0.30 0.45 0.50 0.60 0.70

3 + 3 [7.7] 24.7 32.8 18.0 10.2 4.9 1.8 - - - - - -

CRM 16.9 59.4 20.4 3.0 0.2 0.2
27.7

(27.2)
40.8

(27.1)
22.4

(22.1)
6.0

(11.6)
1.8

(5.5)
1.4

(4.2)

TS 14.5 55.7 25.6 3.9 0.1 0.1
34.9

(21.8)
29.5

(17.0)
17.5

(14.8)
7.0

(9.8)
2.9

(5.4)
8.2

(8.0)

TS(ε) 15.0 58.0 23.2 3.5 0.2 0.1
28.8

(27.5)
43.3

(27.0)
20.8

(21.9)
4.7

(11.0)
1.0

(4.0)
1.5

(4.0)

TS A 13.7 59.5 21.5 3.7 0.9 0.8
41.7

(24.8)
39.3

(18.9)
15.5

(16.8)
3.1

(7.9)
0.4

(2.7)
0.1

(1.2)

Independent TS 25.4 33.1 16.8 13.7 7.6 3.4
19.2

(11.0)
22.5

(11.1)
17.5
(9.9)

16.3
(9.4)

13.3
(7.7)

11.2
(6.3)

Sc. 8: Tox prob 0.10 0.15 0.30 0.45 0.60 0.75 0.10 0.15 0.30 0.45 0.60 0.75

3 + 3 [3.1] 6.8 24.1 30.8 22.4 11.0 1.8 - - - - - -

CRM 1.1 15.1 60.6 21.6 1.6 0.1
13.5

(12.4)
20.4

(20.8)
39.6

(24.5)
18.4

(20.2)
4.9

(9.3)
3.1

(5.5)

TS 0.9 21.0 58.5 18.5 1.0 0.1
20.4

(15.4)
23.8

(15.0)
27.4

(16.3)
13.8

(13.5)
4.9

(7.3)
9.8

(7.6)

TS(ε) 0.8 17.0 59.4 20.2 2.0 0.7
14.4

(14.0)
23.4

(21.8)
39.9

(24.3)
16.3

(19.8)
2.6

(6.1)
3.4

(5.4)

TS A 0.3 14.5 51.9 24.0 5.4 3.9
22.4

(17.5)
30.1

(17.6)
31.7

(18.3)
13.0

(14.7)
2.3

(6.0)
0.5

(2.3)

Independent TS 22.4 24.4 26.8 17.1 7.4 2.0
18.3
(9.9)

21.5
(9.1)

20.5
(9.8)

16.9
(9.4)

13.0
(7.4)

9.9
(5.3)

Sc. 9: Tox prob 0.01 0.05 0.08 0.15 0.30 0.45 0.01 0.05 0.08 0.15 0.30 0.45

3 + 3 [0.1] 0.8 2.1 8.0 23.8 30.0 35.2 - - - - - -

CRM 1.9 0.1 0.4 16.1 54.1 27.4
9.8

(7.3)
8.5

(3.5)
10.0
(7.6)

17.0
(16.4)

28.9
(18.9)

25.8
(20.8)

TS 0.5 0.0 0.5 17.1 50.8 31.1
10.3
(6.0)

10.0
(4.8)

12.0
(7.9)

18.3
(12.1)

20.0
(12.7)

29.4
(16.0)

TS(ε) 0.7 0.1 0.4 15.2 55.9 27.9
9.3

(5.3)
8.4

(2.5)
10.6
(7.3)

20.2
(17.2)

26.3
(18.3)

25.2
(19.9)

TS A 0.3 0.0 0.5 13.2 46.7 39.2
10.4
(5.8)

12.3
(8.4)

16.5
(11.5)

22.9
(14.2)

19.9
(13.3)

18.1
(17.1)

Independent TS 18.8 11.6 14.8 19.0 21.0 14.8
15.4
(8.4)

17.1
(6.2)

17.5
(6.8)

18.1
(7.6)

17.1
(8.4)

14.9
(7.9)
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Table 4: Results for MED identification (part 1/3).
Algorithm E-Stop Recommended Allocated

1 2 3 4 5 6 1 2 3 4 5 6
Sc. 1: Tox prob 0.01 0.05 0.15 0.2 0.45 0.6 0.01 0.05 0.15 0.2 0.45 0.6
Sc. 1: Eff prob 0.1 0.35 0.6 0.6 0.6 0.6 0.1 0.35 0.6 0.6 0.6 0.6

MTA-RA 0.4 0.4 7.0 54.9 29.1 7.4 0.8
7.1

(3.8)
14.2

(13.9)
37.9

(24.4)
24.9

(18.8)
12.9

(13.6)
2.5

(4.9)

TS 0.9 0.1 9.7 57.6 27.0 4.2 0.4
10.6
(5.7)

18.4
(11.0)

31.9
(14.4)

23.8
(13.2)

10.0
(8.0)

4.4
(4.5)

TS A 0.9 0.3 9.6 59.4 26.1 3.5 0.2
10.7
(5.4)

20.7
(12.9)

35.7
(14.9)

23.9
(14.1)

7.3
(8.1)

0.9
(2.7)

Sc. 2: Tox prob 0.005 0.01 0.02 0.05 0.1 0.15 0.005 0.01 0.02 0.05 0.1 0.15
Sc. 2: Eff prob 0.001 0.1 0.3 0.5 0.8 0.8 0.001 0.1 0.3 0.5 0.8 0.8

MTA-RA 1.9 0.0 0.1 1.6 5.1 55.0 36.2
5.2

(1.7)
5.6

(3.1)
7.5

(8.5)
11.4

(13.6)
36.7

(25.8)
31.7

(26.9)

TS 0.8 0.0 0.0 0.5 4.7 56.6 37.5
5.9

(2.4)
6.6

(3.4)
9.3

(6.0)
16.9
(9.7)

32.5
(13.3)

28.1
(14.4)

TS A 2.2 0.0 0.1 1.6 5.0 55.9 35.2
5.9

(2.3)
6.8

(3.8)
10.9
(8.7)

17.9
(10.8)

31.8
(14.3)

24.5
(15.5)

Sc. 3: Tox prob 0.01 0.05 0.1 0.25 0.5 0.7 0.01 0.05 0.1 0.25 0.5 0.7
Sc. 3: Eff prob 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

MTA-RA 0.4 51.5 26.4 12.5 6.8 2.2 0.2
38.2

(25.2)
24.8

(17.9)
16.6

(13.9)
12.9

(12.3)
6.1

(8.4)
0.9

(2.7)

TS 0.1 53.9 24.8 12.2 7.8 1.1 0.1
24.1

(11.4)
22.7
(9.8)

23.8
(10.9)

19.0
(10.6)

7.2
(6.1)

3.1
(3.6)

TS A 0.5 53.8 26.4 10.4 8.2 0.7 0.1
26.6

(13.3)
25.1

(11.4)
24.8

(11.4)
17.7

(11.9)
4.8

(6.6)
0.5

(2.0)
Sc. 4: Tox prob 0.01 0.02 0.05 0.1 0.2 0.3 0.01 0.02 0.05 0.1 0.2 0.3
Sc. 4: Eff prob 0.25 0.45 0.65 0.65 0.65 0.65 0.25 0.45 0.65 0.65 0.65 0.65

MTA-RA 0.1 1.8 13.2 49.0 21.7 8.5 5.7
9.5

(7.9)
17.7

(15.9)
31.6

(21.5)
20.6

(15.6)
13.9

(12.6)
6.6

(10.2)

TS 0.1 1.8 15.7 45.8 18.1 10.8 7.8
12.1
(6.8)

16.8
(8.9)

23.1
(11.0)

21.6
(10.2)

16.5
(9.3)

9.8
(7.6)

TS A 0.2 2.4 15.0 49.1 20.2 9.8 3.2
13.2
(8.0)

19.3
(10.8)

25.5
(12.3)

21.9
(10.8)

14.1
(10.7)

5.8
(7.9)

Sc. 5: Tox prob 0.1 0.2 0.25 0.4 0.5 0.6 0.1 0.2 0.25 0.4 0.5 0.6
Sc. 5: Eff prob 0.3 0.4 0.5 0.7 0.7 0.7 0.3 0.4 0.5 0.7 0.7 0.7

MTA-RA 1.4 9.0 13.2 25.9 40.6 8.3 1.5
15.5

(16.7)
19.1

(17.0)
24.9

(17.7)
26.7

(19.5)
9.9

(11.0)
2.4

(5.0)

TS 5.8 8.3 24.4 40.0 18.9 2.4 0.3
20.8

(15.8)
27.3

(15.8)
24.4

(14.8)
13.0

(11.2)
5.5

(6.3)
3.3

(4.3)

TS A 6.9 16.7 30.6 30.6 14.4 0.8 0.0
25.9

(19.2)
33.8

(18.6)
22.8

(16.1)
8.6

(11.7)
1.8

(4.8)
0.2

(1.3)
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Table 5: Results for MED identification (part 2/3).
Algorithm E-Stop Recommended Allocated

1 2 3 4 5 6 1 2 3 4 5 6
Sc. 6: Tox prob 0.1 0.3 0.35 0.4 0.5 0.6 0.1 0.3 0.35 0.4 0.5 0.6
Sc. 6: Eff prob 0.3 0.4 0.5 0.7 0.7 0.7 0.3 0.4 0.5 0.7 0.7 0.7

MTA-RA 4.2 11.2 24.3 24.6 28.9 5.4 1.3
17.9

(19.9)
24.2

(22.2)
23.7

(18.6)
20.7

(19.8)
7.7

(10.5)
1.7

(4.2)

TS 8.4 17.8 41.9 22.4 8.1 1.1 0.2
29.6

(21.3)
30.4

(17.0)
16.9

(13.4)
8.2

(9.5)
4.0

(5.7)
2.4

(3.8)

TS A 9.4 28.5 43.6 14.2 4.0 0.2 0.0
34.5

(24.0)
37.2

(20.2)
14.3

(14.5)
3.9

(8.3)
0.6

(2.7)
0.1

(0.9)
Sc. 7: Tox prob 0.03 0.06 0.1 0.2 0.4 0.5 0.03 0.06 0.1 0.2 0.4 0.5
Sc. 7: Eff prob 0.3 0.5 0.52 0.54 0.55 0.55 0.3 0.5 0.52 0.54 0.55 0.55

MTA-RA 0.1 8.6 45.5 25.1 13.7 5.7 1.4
16.1

(14.6)
31.5

(21.8)
22.8

(17.0)
17.0

(14.0)
9.9

(10.9)
2.5

(6.1)

TS 0.7 10.3 43.7 22.1 16.3 5.7 1.2
17.5
(8.9)

22.7
(11.3)

23.2
(10.8)

20.6
(11.0)

10.3
(7.6)

4.9
(5.2)

TS A 0.4 11.3 47.9 22.8 13.3 4.2 0.1
19.8

(11.2)
26.9

(13.3)
26.1

(11.6)
19.0

(12.6)
6.6

(8.0)
1.2

(3.5)
Sc. 8: Tox prob 0.02 0.07 0.13 0.17 0.25 0.3 0.02 0.07 0.13 0.17 0.25 0.3
Sc. 8: Eff prob 0.3 0.5 0.7 0.73 0.76 0.77 0.3 0.5 0.7 0.73 0.76 0.77

MTA-RA 0.1 1.1 10.2 39.0 24.4 16.8 8.4
9.3

(7.5)
15.8

(14.8)
28.8

(21.0)
22.6

(16.0)
15.7

(14.1)
7.8

(12.3)

TS 0.3 1.2 11.1 36.9 24.2 16.1 10.2
12.1
(7.2)

17.4
(9.9)

24.1
(12.1)

21.9
(10.8)

15.0
(10.3)

9.1
(8.2)

TS A 0.3 1.8 13.2 45.6 24.1 11.4 3.7
14.2
(9.4)

22.2
(13.5)

28.6
(13.7)

21.0
(12.5)

10.3
(11.2)

3.4
(6.9)

Sc. 9: Tox prob 0.25 0.43 0.50 0.58 0.64 0.75 0.25 0.43 0.50 0.58 0.64 0.75
Sc. 9: Eff prob 0.3 0.4 0.5 0.6 0.61 0.63 0.3 0.4 0.5 0.6 0.61 0.63

MTA-RA 18.8 40.0 33.1 7.0 0.9 0.1 0.1
32.0

(30.3)
30.3

(24.5)
13.6

(15.6)
4.3

(7.4)
1.0

(3.2)
0.1

(0.7)

TS 49.0 37.3 12.4 1.1 0.1 0.0 0.0
29.0

(31.9)
13.7

(16.5)
4.5

(7.5)
1.9

(3.9)
1.1

(2.8)
0.8

(2.1)

TS A 50.5 39.8 9.2 0.5 0.1 0.0 0.0
31.2

(35.1)
14.6

(18.6)
3.3

(7.0)
0.4

(1.9)
0.0

(0.3)
0.0

(0.2)
Sc. 10: Tox prob 0.05 0.1 0.25 0.55 0.7 0.9 0.05 0.1 0.25 0.55 0.7 0.9
Sc. 10: Eff prob 0.01 0.02 0.05 0.35 0.55 0.7 0.01 0.02 0.05 0.35 0.55 0.7

MTA-RA 91.8 0.5 0.5 2.3 4.8 0.1 0.0
0.6

(2.8)
0.7

(2.6)
1.3

(5.9)
4.4

(15.4)
1.1

(4.3)
0.2

(1.1)

TS 61.9 12.2 2.5 1.8 19.7 1.8 0.1
3.8

(6.8)
8.9

(15.2)
16.3

(23.0)
6.3

(10.6)
1.9

(4.0)
0.9

(2.3)

TS A 94.1 0.2 0.1 1.2 4.3 0.1 0.0
0.5

(2.2)
0.6

(2.5)
1.4

(6.1)
2.9

(12.0)
0.5

(2.4)
0.0

(0.4)
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Table 6: Results for MED identification (part 3/3).
Algorithm E-Stop Recommended Allocated

1 2 3 4 5 6 1 2 3 4 5 6
Sc. 11: Tox prob 0.5 0.6 0.69 0.76 0.82 0.89 0.5 0.6 0.69 0.76 0.82 0.89
Sc. 11: Eff prob 0.4 0.55 0.65 0.65 0.65 0.65 0.4 0.55 0.65 0.65 0.65 0.65

MTA-RA 90.1 9.6 0.2 0.1 0.0 0.0 0.0
7.2

(22.7)
2.0

(7.9)
0.5

(2.3)
0.1

(0.9)
0.0

(0.2)
0.0

(0.0)

TS 99.8 0.2 0.0 0.0 0.0 0.0 0.0
0.1

(3.0)
0.1

(1.2)
0.0

(0.4)
0.0

(0.1)
0.0

(0.0)
0.0

(0.1)

TS A 99.5 0.5 0.0 0.0 0.0 0.0 0.0
0.4

(5.6)
0.1

(1.6)
0.0

(0.2)
0.0

(0.0)
0.0

(0.0)
0.0

(0.0)
Sc. 12: Tox prob 0.01 0.02 0.05 0.1 0.25 0.5 0.01 0.02 0.05 0.1 0.25 0.5
Sc. 12: Eff prob 0.05 0.25 0.45 0.7 0.7 0.7 0.05 0.25 0.45 0.7 0.7 0.7

MTA-RA 1.0 0.1 1.2 8.9 52.8 29.4 6.4
5.8

(2.4)
7.6

(6.5)
14.6

(15.7)
35.9

(24.2)
24.9

(20.0)
10.2

(12.8)

TS 0.8 0.0 0.7 10.0 57.0 27.7 4.0
7.7

(4.2)
10.4
(6.5)

17.9
(10.1)

32.2
(13.6)

21.9
(11.9)

9.3
(7.0)

TS A 1.7 0.0 1.4 10.0 56.0 26.8 4.2
7.5

(3.9)
11.3
(8.5)

19.5
(11.3)

32.1
(14.4)

21.6
(13.0)

6.4
(7.5)

Sc. 13: Tox prob 0.01 0.05 0.1 0.2 0.3 0.5 0.01 0.05 0.1 0.2 0.3 0.5
Sc. 13: Eff prob 0.05 0.1 0.2 0.35 0.55 0.55 0.05 0.1 0.2 0.35 0.55 0.55

MTA-RA 14.9 0.7 1.8 5.5 17.0 50.3 9.7
6.4

(6.5)
7.4

(7.3)
11.1

(12.6)
18.7

(18.7)
30.7

(23.8)
10.8

(14.0)

TS 8.6 0.5 1.8 6.7 37.6 39.0 5.6
9.1

(6.3)
11.5
(8.2)

17.5
(12.0)

26.3
(14.8)

18.6
(14.2)

8.4
(7.7)

TS A 17.3 0.5 1.4 7.4 31.6 37.5 4.2
7.2

(4.5)
9.1

(6.8)
16.7

(13.7)
26.8

(17.1)
18.1

(15.3)
4.7

(7.3)
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are respectively useful to check whether the design achieves a good identification of the optimal dose and
whether a large number of patients have been treated with the optimal dose.

For classical bandits (in which k∗ is the arm with largest mean instead of the MTD), those two perfor-
mance measures are known to be antagonistic. Indeed, Bubeck et al. (2011) shows that the smaller the regret
(a quantity that can be related to the number of sub-optimal selections), the larger the error probability. Such
a trade-off may also exist for the MTD identification problem. However, the precise statement of such a
result would be meaningful for large values of the number of patients n, which is of little interest for a real
clinical trial as it can only involve a small number of patients. In practice, we showed that adaptations of
Thompson Sampling, a bandit design aimed at maximizing rewards, achieve good performance in terms of
both allocation and recommendation.

Still, another natural avenue of research is to investigate the adaptation of bandit designs aimed at min-
imizing the error probability. Minimizing the error probability for MTD can be viewed as a variant of the
fixed-budget Best Arm Identification (BAI) problem introduced by Audibert et al. (2010); Bubeck et al.
(2011). In contrast to the standard BAI problem that aims to identify the arm with largest mean (which would
correspond here to the most toxic dose), the focus is on identifying the arm whose mean is closest to the
threshold θ. A state-of-the art fixed-budget BAI algorithm is Sequential Halving (Karnin et al., 2013), and
we propose in Algorithm 6 a natural adaptation to MTD identification.

Sequential Halving for MTD identification proceeds in phases. In each of the log2(K) phases, all the
remaining doses are allocated the same amount of times to patients and their empirical toxicity based on
these allocations (that is, the average of the toxicity responses) is computed. At the end of each phase the
empirical worst half of the doses is eliminated. For MTD identification, rather than the doses with the smallest
empirical means (as the vanilla Sequential Halving algorithm would do), the doses whose empirical toxicity
are the furthest away from the threshold θ are eliminated. Observe that by design of the algorithm, the total
number of allocated doses is indeed smaller than the prescribed budget n.

Algorithm 1 Sequential Halving for MTD Identification
Input: budget n, target toxicity θ
Initialization: Set of dose levels S0 ← {1, . . . ,K};
for r ← 0 to dlog2(K)e − 1 do

Allocate each dose k ∈ Sr to tr =
⌊

n
|Sr|dlog2(K)e

⌋
patients;

Based on their response compute p̂rk, the empirical toxicity of dose k based on these tr samples;
Compute Sr+1 the set of d|Sr|/2e arms with smallest d̂rk := |θ − p̂rk|

Output: the unique arm in Sdlog2(K)e

Building on the analysis of Karnin et al. (2013), one can establish the following upper bound on the error
probability of Sequential Halving for MTD identification. The proof can be found in Appendix C.

Theorem 3. The error probability of the SH algorithm is upper bounded as

P
(
k̂n 6= k∗

)
≤ 9 log2K · exp

(
− n

8H2(p) log2K

)
,

where H2(p) := maxk 6=k∗ k∆−2
[k] where ∆k = |pk − θ| − |pk∗ − θ| and ∆[1] ≤ ∆[2] ≤ · · · ≤ ∆[K].

A consequence of Theorem 3 is that in a trial involving more than n = 8H2(p) log2K log (9 log2(K)/δ)
patients, Sequential Halving is guaranteed to identify the MTD with probability larger than 1− δ. However,
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this number is typically much larger than the number of patients involved in a clinical trial. Indeed the
complexity term H2(p) may be quite large, when some doses have a distance to the threshold θ which is very
close to the smallest distance |pk∗ − θ|.

An important shortcoming of Sequential Halving is that due to the uniform exploration within each phase
each dose is selected at least n/(K log2(K)) times, even the largest, possibly harmful ones. This is highly
unethical in a clinical trial without prior knowledge that too-toxic (or too ineffective) doses have already
been eliminated. This problem of allocating too extreme doses is likely to be shared by adaptations of any
other BAI algorithm, that are expected to select all the arms a linear number of times. For example the APT
algorithm proposed by Locatelli et al. (2016) to identify all arms with mean above a threshold θ using a fixed
budget n also selects all arms a linear number of times.

To overcome this problem, an interesting avenue of research would be to try to incorporate monotonicity
assumptions in BAI algorithms. Garivier et al. (2019a) recently proposed such an algorithm, in the fixed
confidence setting: given a risk parameter δ, the goal is to identify a dose k̂τ such that P(k̂τ 6= k∗) ≤ δ, using
as few samples τ as possible. Their analysis identifies a minimal sample complexity E[τ ] that guarantees
a δ-correct identification for any increasing toxicities, which can be obtained under an optimal allocation
w∗ (where w∗k indicates the fraction of time dose k is allocated). Interestingly, this optimal allocation is
supported only on the neighboring doses of the MTD. The fixed-confidence setting requires allowing for
random stopping rules τ , i.e. for a dose-finding trial based on an adaptively chosen number of patients. This
is not always possible in practice, and it would be interesting to investigate optimal allocations in a fixed-
budget setting as well. Yet optimality in the fixed-budget setting is a notoriously hard question already for
classical bandits (Carpentier and Locatelli, 2016).

7 Conclusion

Motivated by the literature on multi-armed bandit models, we advocated the use of the powerful Thompson
Sampling principle for dose-finding studies. This Bayesian randomized algorithm can be used in different
contexts as it can leverage different prior information about the doses. For increasing toxicities and increasing
or plateau efficacies, we proposed variants of Thompson Sampling, notably the TS A algorithm that often
outperforms our baselines in terms of recommendation of the optimal dose, while significantly reducing the
allocation to doses with high toxicity.

We provided theoretical guarantees for the simplest version of Thompson Sampling based on independent
uniform priors on each dose toxicity, but advocated the use of more sophisticated priors for practical dose-
finding studies. We believe that finding a practical design for which we can also establish non-trivial finite-
time performance guarantees is a crucial research question.

Another interesting direction would be taking contextual information (e.g. a patient’s medical history and
other medications used) into account for a more “personalized” assessment of toxicity and efficacy of a drug.
Bayesian methods also seem promising for such an objective, following the success of Thompson Sampling
for contextual bandits.
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A Analysis of Independent Thompson Sampling: Proof of Theorem 1

Fix a sub-optimal arm k. Several cases need to be considered depending on the relative position of pk and
pk∗ with respect to the threshold. All cases can be treated similarly and to fix the ideas, we consider the case
pk∗ ≥ θ > pk, which is illustrated below. In that case d∗k = 2θ − pk∗ satisfies pk < d∗k ≤ θ.

θ

pk

pk*

dk*
x
y

y'

Let x, y ∈]0, 1[2 be such that pk < x < y < dk∗ , that will be chosen later. Define y′ = 2θ − y > θ the
symmetric of y with respect to the threshold (see the above illustration). We denote by µ̂k(t) the empirical
mean of the toxicity responses gathered from dose k up to the end of round t and recall θk(t) is the sample
from the Beta posterior on pk after t rounds that is used in the Thompson Sampling algorithm. Inspired by
the analysis of Agrawal and Goyal (2013a), we introduce the following two events, that are quite likely to
happen when enough samples of arm k have been gathered:

Eµk (t) = (µ̂k(t) ≤ x) and Eθk(t) = (θk(t) ≤ y) .

The expected number of allocations of dose k is then decomposed in the following way

E[Nk(T )] =

T−1∑
t=0

P
(
Dt+1 = k,Eµk (t), Eθk(t)

)
︸ ︷︷ ︸

(I)

+
T−1∑
t=0

P
(
Dt+1 = k,Eµk (t), Eθk(t)

)
︸ ︷︷ ︸

(II)

+

T−1∑
t=0

P
(
Dt+1 = k,Eµk (t)

)
︸ ︷︷ ︸

(III)

Terms (II) and (III) are easily controlled using some concentration inequalities and the so-called Beta-
Binomial trick, that is the fact that the CDF of a Beta distribution with parameters a and b, FBeta

a,b , is related
to the CDF of a binomial distribution with parameter n, x, FBn,x, in the following way:

FBeta
a,b (x) = 1− FBa+b−1,x(a− 1).
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Term (III) is very small as arm k is unlikely to be drawn often while its empirical mean falls above x > pk
and term (II) grows logarithmically with T . More precisely, it can be shown using Lemma 3 and 4 in Agrawal
and Goyal (2013a) that

(II) ≤ log(T )

kl(x, y)
+ 1 and (III) ≤ 1

kl(x, y)
+ 1.

The tricky part of the analysis is to control term (I), that is to upper bound the number of selections of dose k
when both the empirical mean and the Thompson sample for dose k fall close to the true mean pk. For this
purpose, one can prove a counterpart of Lemma 1 in Agrawal and Goyal (2013a) that relates the probability
of selecting dose k to that of selecting the MTD k∗.

Lemma 4. Define py(t) := P (θk∗(t) ∈ [y, y′]|Ft), where Fs is the filtration generated by the observation up
to the end of round s. Then

P
(
Dt+1 = k|Eθk(t+ 1),Ft

)
≤ 1− py(t)

py(t)
P
(
Dt+1 = k∗|Eθk(t+ 1),Ft

)
.

Proof. The proof is inspired of that of Lemma 1 in Agrawal and Goyal (2013a). We introduce the event in
which the Thompson sample for dose k is the closest to the threshold θ among all sub-optimal doses:

Mk(t) = {|θ − θk(t)| ≥ |θ − θ`(t)|∀` 6= k∗}.

On the one hand, one has

P
(
Dt+1 = k∗|Eθk(t+ 1),Ft

)
≥ P

(
Dt+1 = k∗,Mk(t)|Eθk(t+ 1),Ft

)
≥ P

(
θk∗(t) ∈ [y, y′],Mk(t)|Eθk(t+ 1),Ft

)
= py(t)× P

(
Mk(t)|Eθk(t+ 1),Ft

)
.

On the other hand, it holds that

P
(
Dt+1 = k|Eθk(t+ 1),Ft

)
≤ P

(
θk∗(t) /∈ [y, y′],Mk(t)|Eθk(t+ 1),Ft

)
= (1− py(t))× P

(
Mk(t)|Eθk(t+ 1),Ft

)
.

Combining the two inequalities yields Lemma 4.

�

Using the same steps as Agrawal and Goyal (2013a) yields an upper bound on the first term:

(I) ≤
T−1∑
j=1

E
[

1

py(τj)
− 1

]
,

where τj is the time instant at which dose k is selected for the j-th time. The expectation of 1/py(τj) can be
explicitly written

E
[

1

py(τj)

]
=

j∑
s=0

fBj,pk∗ (s)

P (y ≤ Xs+1,j−s+1 ≤ y′)
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where fBn,x stands for the pdf of a Binomial distribution and Xa,b denotes a random variable that has a
Beta(a, b) distribution. The following lemma is crucial to finish the proof. This original result was specif-
ically obtained for the MTD identification problem and is needed to control the probability that a Beta dis-
tributed random variable fall inside an interval, that is P (y ≤ Xs+1,j−s+1 ≤ y′).

Lemma 5. There exists j0 such that, for all j ≥ j0,

∀s ∈ {0, . . . , j}, P
(
y ≤ Xs+1,j−s+1 ≤ y′

)
≥ 1

2
min

{
P (Xs+1,j+s+1 ≥ y) ;P

(
Xs+1,j+s+1 ≤ y′

)}
Using Lemma 5 and the Beta-Binomial trick, one can write, for j ≥ j0,

E
[

1

py(τj)

]
≤

j∑
s=0

2fBj,pk∗ (s)

P (Xs+1,j+s+1 ≥ y)
+

j∑
s=0

2fBj,pk∗ (s)

P (Xs+1,j+s+1 ≤ y′)

=

j∑
s=0

2fBj,pk∗ (s)

FBj+1,y(s)
+

j∑
s=0

2fBj,pk∗ (s)

1− FBj+1,y′(s)

=

j∑
s=0

2fBj,pk∗ (s)

FBj+1,y(s)
+

j∑
s=0

2fBj,1−pk∗ (s)

FBj+1,1−y′(s)
, (6)

where the last equality relies on the following properties of the Binomial distribution

fBn,x(s) = fBn,1−x(n− s) and FBn,x(s) = 1− Fn,1−x(n− s− 1)

and a change of variable in the second sum.
Now the following upper bound can be extracted from the proof of Lemma 3 in Agrawal and Goyal

(2013a).

Lemma 6. Fix u and v such that u < v and let ∆ = v − u. Then

j∑
s=0

fBj,v(s)

FBj,u(s)
≤

{
1 + 3

∆ if j < 8/∆,

1 + Θ
(
e−∆2j/2 + 1

(j+1)∆2 e
−2∆2j + 1

e∆
2j/4−1

)
else.

Each of the two sums in (6) can be upper bounded using Lemma 6. Letting ∆1 = pk∗ − y and ∆2 =
y′ − pk∗ , one obtains

(I) ≤
j0∑
j=1

E
[

1

py(τj)

]
− j0 +

24

∆2
1

+
24

∆2
2

+ C
T−1∑
j=0

[
e−∆2

1j/2 +
1

(j + 1)∆2
1

e−2∆2
1j +

1

e∆2
1j/4 − 1

]

+ C
T−1∑
j=0

[
e−∆2

2j/2 +
1

(j + 1)∆2
2

e−2∆2
2j +

1

e∆2
2j/4 − 1

]
,

which is a constant (as the series have a finite sum) that only depends on y, θ and pk∗ (through y′ and the gaps
∆1 and ∆2 defined above).
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Putting things together, we proved that for every x and y satisfying pk < x < y < dk∗ , the number of
selections of dose k is upper bounded as

E[Nk(T )] ≤ 1

kl(x, y)
log(T ) + Cx,y,θ,p

for some constant that depends on the toxicity probabilities, the threshold θ and the choice of x and y. Now,
picking x and y such that kl(x, y) = kl(pk,dk∗ )

1+ε yield the result.

�

Proof of Lemma 5. The proof uses the two equalities below

P
(
y ≤ Xs+1,j−s+1 ≤ y′

)
= P (Xs+1,j−s+1 ≥ y)− P

(
Xs+1,j−s+1 ≥ y′

)
(7)

P
(
y ≤ Xs+1,j−s+1 ≤ y′

)
= P

(
Xs+1,j−s+1 ≤ y′

)
− P (Xs+1,j−s+1 ≤ y) , (8)

as well as the Sanov inequalities: if Sn,x is a binomial distribution with parameters n and x, then

e−nkl(k/n,x)

n+ 1
≤ P (Sn,x ≥ k)

≤ e−nkl(k/n,x) if k > xn (9)

e−nkl(k/n,x)

n+ 1
≤ P (Sn,x ≤ k)

≤ e−nkl(k/n,x) if k < xn (10)

We prove the inequality considering 4 cases. We define ymid = y+y′

2 .

Case 1: s < (j + 1)y Starting from equality (7) and using the Beta-Binomial trick yields

P
(
y ≤ Xs+1,j−s+1 ≤ y′

)
= P (Sj+1,y ≤ s)− P

(
Sj+1,y′ ≤ s

)
.

Using Sanov inequalities, we shall prove that there exists some j1 such that if j ≥ j1,

∀s ≤ (j + 1)y, P
(
Sj+1,y′ ≤ s

)
≤ 1

2
P (Sj+1,y ≤ s) .

As s is smaller than the mean of the two Binomial distributions, by (10) it is sufficient to prove that

∀s ≤ (j + 1)y, e
−(j+1)kl

(
s
j+1

,y′
)
≤ 1

2(j + 2)
e
−(j+1)kl

(
s
j+1

,y
)

which in turn is equivalent to

∀s ≤ (j + 1)y, kl

(
s

j + 1
, y′
)
− kl

(
s

j + 1
, y

)
≥ log(2(j + 2))

j + 1
.

As the function in the left-hand side is non-increasing in s, a sufficient condition is that j satisfies

kl
(
y, y′

)
≥ log(2(j + 2))

j + 1
,

which is the case for j superior to some j1. Thus, for j ≥ j1,

P
(
y ≤ Xs+1,j−s+1 ≤ y′

)
≥ 1

2
P (Sj+1,y ≤ s) =

1

2
P (Xs+1,j−s+1 ≥ y) .
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Case 2: (j + 1)y ≤ s ≤ (j + 1)ymid Starting from equality (7) and using the Beta-Binomial trick and
the upper bound in (10) yields

P
(
y ≤ Xs+1,j−s+1 ≤ y′

)
≥ P (Sj+1,y ≤ s)− e

−(j+1)kl
(

s
j+1

,y′
)

≥ P (Sj+1,y ≤ s)− e−(j+1)kl(ymid,y
′).

The median of Sj+1,y is b(j + 1)yc or d(j + 1)ye. As s ≤ (j + 1)y, it holds that P (Sj+1,y ≤ s) ≥ 1
2 .

Therefore, for all j ≥ j2 := ln 4
kl(ymid,y′)

− 1,

e−(j+1)kl(ymid,y
′) ≤ 1

4
≤ 1

2
P (Sj+1,y ≤ s) .

Therefore if j ≥ j2, P (y ≤ Xs+1,j−s+1 ≤ y′) ≥ 1
2P (Xs+1,j−s+1 ≥ y).

Case 3: (j + 1)ymid ≤ s ≤ (j + 1)y′ Starting from equality (8) and using the Beta-Binomial trick and
the upper bound in (9) yields

P
(
y ≤ Xs+1,j−s+1 ≤ y′

)
≥ P

(
Sj+1,y′ ≥ s

)
− e−(j+1)kl

(
s
j+1

,y
)

≥ P
(
Sj+1,y′ ≥ s

)
− e−(j+1)kl(ymid,y).

The median of Sj+1,y′ is b(j + 1)y′c or d(j + 1)y′e. As s ≤ (j + 1)y′, it holds that P
(
Sj+1,y′ ≥ s

)
≥ 1

2 .
Therefore, for all j ≥ j3 := ln 4

kl(ymid,y) − 1,

e−(j+1)kl(ymid,y) ≤ 1

4
≤ 1

2
P
(
Sj+1,y′ ≥ s

)
.

Therefore if j ≥ j3, P (y ≤ Xs+1,j−s+1 ≤ y′) ≥ 1
2P (Xs+1,j−s+1 ≤ y′).

Case 4: s > (j + 1)y′ Starting from equality (8) and using the Beta-Binomial trick yields

P
(
y ≤ Xs+1,j−s+1 ≤ y′

)
= P

(
Sj+1,y′ ≥ s

)
− P (Sj+1,y ≥ s) .

Using Sanov inequalities, we shall prove that there exists some j4 such that if j ≥ j4,

∀s ≥ (j + 1)y′, P (Sj+1,y ≥ s) ≤
1

2
P
(
Sj+1,y′ ≥ s

)
.

As s is larger than the mean of the two Binomial distributions, by (9) it is sufficient to prove that

∀s ≥ (j + 1)y′, e
−(j+1)kl

(
s
j+1

,y
)
≤ 1

2(j + 2)
e
−(j+1)kl

(
s
j+1

,y′
)

which in turn is equivalent to

∀s ≥ (j + 1)y′, kl

(
s

j + 1
, y

)
− kl

(
s

j + 1
, y′
)
≥ log(2(j + 2))

j + 1
.

As the function in the left-hand side is non-decreasing in s, a sufficient condition is that j satisfies

kl
(
y′, y

)
≥ log(2(j + 2))

j + 1
,
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which is the case for j superior to some j4. Thus, for j ≥ j4,

P
(
y ≤ Xs+1,j−s+1 ≤ y′

)
≥ 1

2
P
(
Sj+1,y′ ≥ s

)
=

1

2
P
(
Xs+1,j−s+1 ≤ y′

)
.

Conclusion Letting j0 = max(j1, j2, j3, j4), for all j ≥ j0, for every s ∈ {0, . . . , j},

P
(
y ≤ Xs+1,j−s+1 ≤ y′

)
≥ 1

2
min

{
P (Xs+1,j+s+1 ≥ y) ;P

(
Xs+1,j+s+1 ≤ y′

)}
B Lower Bound on the Number of Allocation: Proof of Theorem 2

Fix a uniformly efficient algorithm and a vector of toxicity probabilities p. We denote by Ep the expectation
under the model parameterized by pwhen this algorithm is used. Letting p′ be another vector of probabilities,
it follows from the change-of-distribution lemma of Garivier et al. (2019b) that for all random variable ZT ∈
[0, 1] which is FT -measurable

K∑
`=1

Ep[N`(T )]kl
(
p`, p

′
`

)
≥ kl

(
Ep[ZT ],Ep′ [ZT ]

)
. (11)

Letting k∗ be a MTD in p, we fix k which is not a MTD (i.e. |pk − θ| > |pk∗ − θ|) and we prove that

lim inf
T→∞

Ep[Nk(T )]

ln(T )
≥ 1

kl(pk, d
∗
k)
. (12)

Recall that we assume pk∗ 6= θ. Then one can define the alternative model p′ in which for all ` 6= k,
p′` = p` and p′k = d∗k + ε if d∗k < θ and p′k = d∗k − ε if d∗k > θ, with ε small enough such that under p′, dose
k is the unique MTD (refer to Figure 1 for an illustration).

For this particular choice of alternative model p′, (11) becomes

Ep[Nk(T )]kl(pk, d
∗
k ± ε) ≥ kl

(
Ep[ZT ],Ep′ [ZT ]

)
≥ (1− Ep[ZT ]) ln

(
1

1− Ep′ [ZT ]

)
− ln(2)

Choosing ZT = Nk(T )
T , exploiting the fact that the algorithm is uniformly efficient we know that

• limT→∞ Ep[ZT ] = 0 as k is a sub-optimal dose under p

• 1
1−Ep′ [ZT ] = T

T−Ep′ [Nk(T )] = T∑
` 6=k Ep′ [N`(T )] and

∑
` 6=k Ep′ [N`(T )] = o(Tα) for all α ∈ (0, 1) as k is

the only MTD under p′, which yields, for all α ∈ (0, 1),

lim
T→∞

1

ln(T )
ln

(
1

1− Ep′ [ZT ]

)
≥ 1− α .

Letting α go to zero, we obtain

lim inf
T→∞

Ep[Nk(T )]kl(pk, d
∗
k ± ε)

ln(T )
≥ 1

and (12) follows by letting ε go to zero.
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C Analysis of Sequential Halving: Proof of Theorem 3

Recall d̂rk = |θ − p̂tk| is the empirical distance from the toxicity of dose k to the threshold, where p̂rk is the
empirical average of the toxicity responses observed for dose k during phase r (based on tr samples). The
central element of the proof is Lemma 7 below, that controls the probability that dose k seems to be be closer
to the threshold than the MTD k∗ in phase r. Its proof is more sophisticated than that of Lemma 4.2 in Karnin
et al. (2013) as several cases need to be considered.

Lemma 7. Assume that the arm closest to θ was not eliminated prior to round r. Then for any arm k ∈ Sr,

P(d̂rk∗ > d̂rk) ≤ 3 exp

(
− tr

2
∆2
k

)
. (13)

Proof. For the means pk∗ and pk let p̂rk∗ and p̂rk denote their expected rewards in round r, respectively. We
will first derive a probability bound which does not depend on the ordering of pk and pk∗ w.r.t. θ, and then
we will do a case analysis of the possible orderings to produce our final bound.

The error event can be decomposed as follows.{
d̂rk∗ > d̂rk

}
=

({p̂k∗,r > θ} ∩ {p̂k,r > θ} ∩ {p̂k∗,r − θ > p̂k,r − θ})
∪ ({p̂k∗,r ≤ θ} ∩ {p̂k,r > θ} ∩ {θ − p̂k∗,r > p̂k,r − θ})
∪ ({p̂k∗,r > θ} ∩ {p̂k,r ≤ θ} ∩ {p̂k∗,r − θ > θ − p̂k,r})
∪ ({p̂k∗,r ≤ θ} ∩ {p̂k,r ≤ θ} ∩ {θ − p̂k∗,r > θ − p̂k,r})

From there, we distinguish two cases, in which we show the error event is included in a reunion of events
whose probability can be controlled using the Hoeffding’s inequality.

Case 1: pk ≥ θ. In that case, it is very unlikely that {p̂k,r < θ}. Hence, we can isolate that event and use
the previous decomposition to write{

d̂rk∗ > d̂rk

}
⊆

{p̂k,r ≤ θ} ∪ {p̂k∗,r − p̂k,r > 0} ∪ {p̂k,r + p̂k∗,r < 2θ} .

When pk ≥ θ, irrespective of the position of pk∗ with respect to θ, one can justify that pk > θ, pk∗ − pk < 0
and pk + pk∗ > 2θ (as pk ≥ max(pk∗ , 2θ − pk∗) because k is a suboptimal arm larger than the threshold).
Therefore, the above three events are unlikely. More precisely, using Hoeffding’s inequality yields

P(d̂rk∗ > d̂rk) ≤ P(p̂k,r ≤ θ) + P(p̂k∗,r − p̂k,r > 0) + P(p̂k∗,r + pk,r < 2θ)

≤ exp
(
−2tr(θ − pk)2

}
+ exp

{
− tr

2
(pk∗ − pk)2

}
+ exp

{
− tr

2
(pk∗ + pk − 2θ)2

)
≤ 3 exp

(
− tr

2
min

{
(pk − θ)2, (pk − pk∗)2, (pk∗ + pk − 2θ)2

})
= 3 exp

(
− tr

2
min

{
(pk − pk∗)2, (pk − (2θ − pk∗))2

})
Equation (13) follows as ∆2

k = min
{

(pk − pk∗)2, (pk − (2θ − pk∗))2
}

.
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Case 2: pk ≤ θ. In that case, the unlikely event is {p̂k,r > θ} and we write{
d̂rk∗ > d̂rk

}
⊆ {p̂k,r > θ} ∪ {p̂k,r − p̂k∗,r > 0} ∪ {p̂k,r + p̂k∗,r > 2θ} .

When pk < θ, irrespective of the position of pk∗ with respect to θ, one can justify that pk < θ, pk − pk∗ < 0
and pk + pk∗ < 2θ (using the fact that pk ≤ min(pk∗ , 2θ − pk∗)). Then from Hoeffding’s inequality,

P(d̂rk∗ > d̂rk) ≤ P(p̂k,r > θ) + P(p̂k,r − p̂k∗,r > 0) + P(p̂k∗,r + pk,r > 2θ)

≤ exp
(
−2tr(θ − pk)2

}
+ exp

{
− tr

2
(pk∗ − pk)2

}
+ exp

{
− tr

2
(2θ − pk∗ − pk)2

)
≤ 3 exp

(
− tr

2
min

{
(θ − pk)2, (pk∗ − pk)2, (2θ − pk∗ − pk)2

})
= 3 exp

(
− tr

2
min

{
(pk∗ − pk)2, ((2θ − pk∗)− pk)2

})
which proves Equation 13 as ∆2

k = min
{

(pk∗ − pk)2, ((2θ − pk∗)− pk)2
}

.

�

Building on Lemma 7, the next step is to control the probability that the MTD is eliminated in phase r.
The proof bears strong similarities with that of Lemma 4.3 in Karnin et al. (2013). It is given below for the
sake of completeness.

Lemma 8. The probability that the MTD is eliminated at the end of phase r is at most

9 exp

(
− n

8 log2K
·

∆2
kr

kr

)

where kr = K/2r+2.

The end of the proof of Theorem 3 is identical to than of Theorem 4.1 in Karnin et al. (2013), except that
it uses our Lemma 8. We repeat the argument below with the appropriate modifications. Observe that if the
algorithm recommends a wrong dose, the MTD must have been eliminated in one of t log2(K) phases. Using
Lemma 8 and a union bound yields the upper bound

P
(
k̂n 6= k∗

)
≤ 9

log2K∑
r=1

exp

(
− n

8 log2K
·

∆2
kr

kr

)

≤ 9 log2K · exp

(
− n

8 log2K
· 1

maxk k∆−2
k

)

≤ 9 log2K · exp

(
− n

8H2(p) log2K

)
,

which concludes the proof.
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Proof of Lemma 8 Define S′r as the set of arms in Sr, excluding the 1
4 |Sr| = K/2r+2 arms with means

closest to θ. If the MTD k∗ is eliminated in round r, it must be the case that at least half the arms of Sr (i.e.,
1
2 |Sr| = K/2r+1 arms) have their empirical average closer to θ than its empirical average. In particular, the
empirical means of at least 1

3 |S
′
r| = K/2r+2 of the arms in S′r must be closer to θ than that of the k∗ at the

end of round r. Letting Nr denote the number of arms in S′r whose empirical average is closer to θ than that
of the optimal arm, we have by Lemma 7:

E[Nr] =
∑
k∈S′r

P(d̂rk < d̂rk∗)

≤
∑
k∈S′r

3 exp

(
− tr

2
∆2
k

)

≤ 3
∑
k∈S′r

exp

(
−1

2
∆2
k ·

n

|Sr| log2K

)

≤ 3|S′r|max
k∈S′r

exp

(
−1

2
∆2
k ·

2rn

K log2K

)
≤ 3|S′r| exp

(
− n

8 log2K
·

∆2
kr

kr

)

Where the last inequality follows from the fact that there are at least kr − 1 arms that are not in S′r with
average reward closer to θ than that of any arm in S′r. We now apply Markov’s inequality to obtain

P
(
Nr >

1

3
|S′r|

)
≤ 3E[Nr]/|S′r|

≤ 9 exp

(
− n

8 log2K
·

∆2
kr

kr

)
,

and the lemma follows.
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