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Abstract

Since Dec 2019, the COVID-19 epidemic has spread over the globe
creating one of the greatest pandemics ever witnessed. This epidemic wave
will only begin to roll back once a critical proportion of the population
is immunised, either by mounting natural immunity following infection,
or by vaccination. The latter option can minimise the cost in terms of
human lives but it requires to wait until a safe and efficient vaccine is
developed, a period estimated to last at least 18 months. In this work, we
use optimal control theory to explore the best strategy to implement while
waiting for the vaccine. We seek a solution minimizing deaths and costs
due to the implementation of the control strategy itself. We find that
such a solution leads to an increasing level of control with a maximum
reached near the fourth month of the epidemics and a steady decrease
until vaccine deployment. This strategy strongly outperforms others with
constant or cycling allocations of the same amount of resources to control
the outbreak. This work opens new perspectives to mitigate the effects
of the ongoing COVID-19 pandemics, and be used as a proof-of-concept
in using mathematical modelling techniques to enlighten decision making
and public health management in the early times of an outbreak.
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1 Introduction
In early December 2019, an outbreak caused by a novel betacoronavirus was
reported in Wuhan, the capital city of the Hubei Chinese province [3, 16].
It rapidly spread to other provinces in China and to the rest of the world.
On March 17 2020, the World Health Organisation (WHO) officially declared
COVID-19 a pandemic. This RNA virus is now known as SARS-CoV-2 [21] and
it is reported to cause lower respiratory tract infections in humans with a variety
of unspecific symptoms [3, 10, 26]. The virulence of the infection is relatively
high with a case fatality ratio estimated to be in the order of 1% [5, 6, 23, 25],
therefore making the virus a public health priority issue given the anticipated
size of the epidemics due to the absence of pre-existing immunity.

Most countries reacted to the epidemics by rapidly implementing contain-
ment public health measures, also referred to as non-pharmaceutical interven-
tions. China was the first country to react by putting the city of Wuhan on
quarantine on January 23, 2020, shortly followed by the whole region. Other
countries also implemented a national lock-down, such as France on March 17
or the United Kingdom on March 23.

Broadly speaking, there are two main ways to halt the spread of the epi-
demics. The first one is through natural immunisation: once a proportion
1−1/R0 of the population has been infected (whereR0 is the basic reproduction
number), a ‘herd immunity’ develops and the epidemic starts to decrease [1].
Note that this herd immunity threshold is lower than the ‘worst-case scenario’,
i.e. the epidemics final size if no containment measure is implemented [13]. The
second option is to achieve population immunisation through vaccination. The
threshold to have the epidemics decrease remains the same, but the cost in
terms of mortality can be much lower. These options have been investigated by
the WHO Collaborating Centre for Infectious Disease Modelling in two reports
[7, 24]. The first report explores the effect of an on/off triggering of 5 types of
non-pharmaceutical interventions, whereas the second report compares a con-
tainment strategy to a suppression strategy, while factoring in indirect costs of
implementing the strategy. Other models have explored the efficiency of contact
tracing to mitigate the epidemics [11, 12].

Here, we adopt a more modelling approach based on optimal control theory
[15, 22] to determine the best strategy to implement until vaccine deployment.
We therefore focus on a finite time interval [0, T ], where T is the number of days
required for vaccine discovery, manufacturing and deployment. Our key metric
is the fraction c of decrease in R0 (or, equivalently, in the contact rate) obtained
through non-pharmaceutical interventions, which we refer to as control intensity.
Importantly, the model considers that implementing the control policy comes
with a cost, which corresponds to diverting funding from important sources or
to social deleterious effects, and can cause indirect mortality. Optimal control
theory allows us to find the optimal control strategy over time, denoted by
c(t), that minimises the cumulative sum of these costs over the [0, T ] period
of time. We compare this strategy to scenarios without any control or with
more homogeneous control (i.e. with c alternating between constant values at a
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given frequency) that involve the same average effort over time as the optimal
strategy. We find that the optimal control strategy outperforms the others in
terms of direct and indirect mortality.

We first present the structure of our epidemiological model, then we intro-
duce the objective function we optimise and derive the optimality condition.
We then present our results and analyse them in the light of earlier models
implemented in the context of pandemic influenza [14, 17] and of the ongoing
COVID-19 pandemics.

2 The Model

2.1 Model overview
The model describes the epidemic dynamics of COVID-19 in a population where
hosts can belong to five states: susceptible (S), latent i.e. infected but asymp-
tomatic and not infectious (E), asymptomatic infectious (A), symptomatic in-
fectious (I), recovered (R) and dead (D). Recovered hosts are assumed to be
immune for life. The model is also structured by differential disease severity,
since COVID-19 can cause both mild or severe infections [19, 26]. We assume
that severe symptomatic infections (Is) require hospitalisation, which reduces
their contagiousness. The main variables and parameters of the model are listed
in Table 1 and shown in Figure 1. The case-fatality ratio (θ) and the basic repro-
duction number (R0) of the epidemic are known from the literature [5, 6, 16, 25].
From these, we can calculate the disease-induced mortality (α) and the trans-
mission rate, assuming βA = βI , from the following equations:

βA = βI =
R0

S0
γmσ

αmin + γs
(γm + pσ)(αmin + γs) + ξγmσ(1− p)

, (2.1)

αmin = γs
θ

1− θ
. (2.2)

See Appendix D for details on the derivation of R0.
Next, we introduce the model and describe its parameters and general hy-

potheses.
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Figure 1: The compartmental model flow diagram. Host states are indicated by
squares and transitions by arrows (along with their corresponding rates). Hosts
in all compartments die at a natural mortality rate µ[Is(t)] that is not shown
for clarity. Notations are shown in Table 1.

2.2 The SEAIR model with differential severity
The total population size at a given time t is denoted by N = S + Em + Es +
Am+As+Im+Is+Rm+Rs, where subscript s and m refer to infection severity
("severe" or "mild"). Without indicating the time dependency for simplicity,
we define the force of infection by λ = (1 − c) (βA(As +Am) + βI(Im + ξIs)),
where c is the percentage of reduction in transmission due to public health
measures at time t, and βA and βI are the transmission rates of symptomatic
and asymptomatic infections respectively. Parameter ξ is the factor of reduction
of the transmission rate of severe and symptomatic infections, which is due to
being in a health care facility. A proportion p of exposed individuals (λS) move
to the mild asymptomatic infection class at a rate ε, while the remainder (1−p)
move to the severe asymptomatic infection class at the same rate ε. We also
assume that the epidemic is sustained by migration of Em and Es individuals
at a constant rate pν and (1− p)ν respectively. Severe and mild asymptomatic
infectious individuals become symptomatic at a same rate σ and recover at rates
γs and γm respectively. While mild infections are never lethal, severe cases lead
to death at rate α. We assume that the number of severely infected hosts at
a given time, Is, affects the disease induced mortality rate (if hospitals are
saturated for instance). If we denote by I? the total number of infected hosts
the health care system (especially the intensive care units, ICU) can sustain,
then we assume the mortality rate α to be a step function such that

α [Is] =

{
αmin if Is < I?

αmax if Is ≥ I?
(2.3)

We apply the same reasoning at the whole population level by assuming
that natural mortality increases because of hospital saturation. We capture this
using the following step function for the mortality rate µ:

µ [Is] =

{
0 if Is < I?

µ if Is ≥ I?
(2.4)
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Variables Description
S Density of susceptible individuals
Em, Es Density of latent individuals with mild/severe infection
Am, As Density of asymptomatic infectious individuals with mild/severe infection
Im, Is Density of symptomatic infectious individuals with mild/severe infection
Rm, Rs Density of recovered individuals
DCOVID Deaths directly caused by COVID-19
DSAT Indirect deaths due to hospital saturation
D Total deaths
Parameters Description (unit) Value(range) [ref.]
R0 Basic reproduction number 2.5 (2-3)
p Proportion of mild infections 0.9 (0.85-0.95) [9]
βI Symptomatic transmission rate Calculateda

βA Asymptotic transmission rate Calculateda

ξ Reduced transmission factor of severe infections 0.2 [assumed]
c Control effort (0,1)
ν Immigration rate (day−1) 2 [assumed]
ε Waiting rate to viral shedding (day−1) 1/4.2 (0.21-0.27) [16]
σ Waiting rate to symptom onset (day−1) 1 (0.9-1.1) [7]
γm Recovery rate from mild infections (day−1) 1/17 (0.025-0.1) [27]
γs Recovery rate from severe infections (day−1) 1/20 (0.039-0.13) [27]
µ Natural mortality rate with hospital saturation (day−1) 10−5 [assumed]
θ Case-fatality ratio in severe infections 0.15 (0.135-0.165) [9]
αmin Lower bound disease induced mortality rate (day−1) Calculatedb

αmax Higher bound induced mortality rate (day−1) 2αmin [assumed]
I∗ Healthcare capacity 12000 [assumed]
B Cost weight 800 (0,∞) [assumed]

Initial conditions
N0 Total population 67× 106

I0 Size of infected population 0.01× I∗ (variable)
a βA and βI are calculated by (2.1)
b αmin is calculated by (2.2)

Table 1: Model state variables and parameters
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Setting ẏ = dy
dt , the resulting system of equations captures our model:

Ṡ = −λ S − µ[Is] S, (2.5a)

Ėm = p λ S − ε Em − µ[Is] Em + p ν, (2.5b)

Ȧm = ε Em − σ Am − µ[Is] Am, (2.5c)

İm = σ Am − (γm + µ[Is]) Im, (2.5d)

Ṙm = γm Im − µ[Is] Rm, (2.5e)

Ės = (1− p) λ S − ε Es − µ[Is] Es + (1− p) ν, (2.5f)

Ȧs = ε Es − σ As − µ[Is] As, (2.5g)

İs = σ As − (γs + µ[Is] + α[Is]) Is, (2.5h)

Ṙs = γs Is − µ[Is] Rs, (2.5i)

Ḋ = α[Is] Is + µ[Is] N,

with
N = S + E +A+ I +R,

E = Es + Em, A = As +Am, I = Is + Im, R = Rs +Rm,

λ = (1− c) (βA(As +Am) + βI(Im + ξIs)) .

System (2.5) is coupled with the following initial conditions
S(0) = N0 − I0,
Im(0) = pI0; Is(0) = (1− p)I0,
Ev(0) = Av(0) = Rv(0) = 0 for v = m, s,

D(0) = 0,

where N0 and I0 are initial total and infected populations defined in Table 1.
Basic properties such as existence, positivity and boundedness solutions of (2.5)
are straightforward and therefore are not detailed here.

3 Optimal intervention
In this section, we find the optimal control effort c∗(t) which substantially mini-
mizes the cumulative number of deaths until vaccine deployment. We first define
the objective function to penalize and then derive the necessary optimality con-
dition.

3.1 The objective function
A key step is to define the function to optimise. We assume that a suc-
cessful scheme is one which reduces the number of deaths in the host pop-
ulation. For clarity, we separate deaths directly attributable to COVID-19
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(DCOVID = α[Is] Is) and deaths indirectly linked to COVID-19 infection but
due to the saturation of the hospital system (DSAT = µ[Is] N).

Therefore, the control scheme is optimal if it minimizes the objective function

M [c] =

∫ T

0

(DCOVID(t) +DSAT(t)) dt+B

∫ T

0

c2(t) dt, (3.6)

The first integral corresponds to the total number of deaths over the time pe-
riod considered and the second represents the total cost associated with the
implementation of the control measures. As earlier studies [14, 17], we assumed
a quadratic expression in the second term associated to the control to capture
non-linear costs potentially arising for intense control implementations. When
the objective function is quadratic with respect to the control, differential equa-
tions arising from optimization have a known solution. Other functional forms
often lead to systems of differential equations that are difficult to solve [15].
Finally, B is a coefficient allowing to weight the "cost" associated to the control
implementation (c(t)) relative to the cost due to deaths.

Our aim is to find the function c∗ satisfying

M(c∗) = min
c∈U

M(c), (3.7)

on the set U = {c ∈ L∞(0,∞) : 0 ≤ c(·) ≤ cmax} , where cmax ≤ 1, and L∞ is
the vector space of essentially bounded measurable functions.

3.2 The necessary optimality condition
In order to deal with the necessary optimality conditions, we use Pontryagin’s
maximum principle [22] and introduce the following Hamiltonian for the system
(2.5)-(3.7)

H(c) = α[Is] Is + µ[Is] N +Bc2 +
∑
v∈V

zvfv, (3.8)

where V = {S,Em, Es, Am, As, Im, Is, Rm, Rs}; (zv)v∈V are adjoint functions
and fv is given by the right-hand side of (2.5) for the v-compartment.

The necessary conditions for the existence of the solution to problem (3.7)
are

ḟv = −
∂H
∂v

, for, v ∈ V, (3.9a)

and
∂H
∂c

= 0. (3.9b)

If c∗ is a solution of (3.7), then, following 3.9, it is characterized by

c∗(t) = max (0,min (ĉ(t), cmax)) , (3.10)
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with
ĉ = S (βAA+ βII)

pzEm
+ (1− p)zEs

− zS
2B

.

and the adjoint functions verify System (C.1) with the boundary conditions (or
transversality conditions) zv(T ) = 0. The proof of the existence of such control
is standard and we refer to [8, 20] for existence results. Therefore, existence of
the optimal control to the above problem is assumed.

The state system (2.5) and the adjoint system (C.1) together with the con-
trol characterization (3.10) constitute the optimality system to be solved nu-
merically. Since the state equations have initial conditions and the adjoint
equations have final time conditions, we cannot solve the optimality system di-
rectly. Instead, we use an iterative algorithm to sweep forward in time using a
forward-backward sweep method [15].

4 Results

Doing-nothing scenario
The model proposed here describes epidemic dynamics during several weeks in
a host population before vaccine deployment. In the baseline situation, there is
no public health measure to control epidemics (c = 0). The infection spreads
rapidly and the peak is reached within few weeks with a large number of se-
vere cases (Figure 2b). The healthcare system is quickly overwhelmed and this
situation lasts for a relatively long period of time (black line in Figure 2b). Con-
sequently, the number of deaths increases exponentially with additional deaths
due to the saturation of the health system (Figure 2c,d).

Optimal control scenario
Overall, for our parameter values, the average of the optimal control during the
control period is c∗ ≈ 0.3. In the first stage, the optimal control increases rapidly
to an intermediate value of approximately 0.5 (Figure 2a) and the epidemics
remains under control for a long time period during which healthcare capacity
is not overwhelmed (Figure 2b). Consequently, the number of deaths is strictly
minimized during this first stage even though the control is far from its highest
level (Figure 2c,d). After this stage during which a dampened epidemic peak
is achieved, the number of severe cases starts to decrease (Figure 2d), and
the control intensity is progressively relaxed until the end of the time interval
considered (Figure 2a). Importantly, in the absence of any take-over by health
measures such as vaccine, the epidemic will certainly rebounce after the period of
control. Indeed, only a small proportion of the population has been exposed (less
than 0.03%) at the end of control period, which is far from the 1− 1/R0 ≈ 60%
required to reach the herd immunity threshold.

Furthermore, the total number of deaths with this optimal scenario is sub-
stantially lower compared to the "doing nothing" scenario (Figure 2c,d). The
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cumulative number of deaths with the optimal control being at least 6,700 times
smaller than when doing nothing. With the optimal control, the number of se-
vere cases always remains below the healthcare capacity threshold, and thus the
cumulative number of deaths indirectly attributable to the COVID-19 is mini-
mized during the control period (Figure 2d). An "intuitive" rule that emerges
from the optimal control (Figure 2a) is (i) from the beginning of the epidemic,
gradually but rapidly increase control intensity to an intermediate level when
the number of severe cases is still increasing and (ii) progressively decrease con-
trol intensity when the number of severe cases starts to decrease. Note that
the relationship between control intensity c and the log of severe cases log10(Is)
seems quasi-linear.

Constant control scenario
In this scenario, we start with a strict public health measure during 5 weeks,
followed by a constant control intensity until the end of the period of interest
(Figure 2a). The idea is to capture the reaction of several countries that have
first implemented strict containment strategies that cannot be sustained for a
long period of time. In order to facilitate comparisons between scenarios, the
fixed constant control corresponds to the average of optimal control c∗. The
initial strict control is assumed and it should be even easier to decrease deaths
(since we control more). With this strategy, the epidemic peak is strongly
delayed compared to the scenario without any control (Figure 2b). However,
the cumulative number of deaths at the end of the period of interest is very
similar to the scenario without control, both for the direct deaths caused by
COVID-19 infections and for the indirect deaths caused by the saturation of
the healthcare system (Figure 2c,d).

Effect of the cost of control B
By varying coefficient B, we can weight the relative importance of the death
term and the control cost term in the objective function (3.6). Small values
of B correspond to situations where the control can be seen as "inexpensive",
e.g. the host population can support strict public health measures both socially
and economically. As a consequence, corresponding optimal controls can be
very intense (Figure 3a) and further decrease severe cases and deaths (Figure
3b,c). On the other hand, large values of B correspond to situations where
control measures are "expensive" for the population, making strict public health
measures unsustainable at the population level. In this case, control intensities
remain intermediate (Figure 3a), with more infections and deaths compared to
cases with smaller values of B (Figure 3b,c). However, except for very little
costs where constant maximum control is the optimum, we find that the shape
of the control function remains unchanged with an intense control by week 20,
followed by a decrease in control intensity.
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Effect of the initial epidemic size on the optimal control
The initial size of the epidemic plays an important role in the optimal control
strategy. The larger the initial number of infections, the higher the optimal
control intensity (Figure 4a). Consequently, the longer the delay in implement-
ing non-pharmaceutical interventions, the tighter the control in the first weeks
before the gradual decreasing. Also, the longer the delay in implementing the
strategy, the less the optimal strategy can minimise the number of severe infec-
tions and deaths (Figure 4b,c).
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Figure 2: Effect of the optimal strategy and constant control on the num-
ber of severe cases (Is), deaths directly attributable to COVID-19 (DCOVID)
and deaths indirectly linked to COVID-19 (DSAT). (a) Control strategies. (b)
Number of severe cases with and without controls. (c)-(d) Cumulative num-
ber of deaths with and without controls. Parameters of the model are set to
their reference values given in Table 1. The dash line represents the healthcare
capacity (color online).
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5 Discussion
The COVID-19 pandemics represents a dilemma for public health policies, which
are faced with either mitigating the epidemic wave to rely on natural immunisa-
tion, or suppressing the wave long enough to develop and implement a vaccine.
We focused on the latter case to address the following question: in a context
where resources are finite, how to best allocate the control effort of the epidemic
over the time period necessary to deploy a vaccine?

Using optimal control theory, we show that, assuming a quadratic cost for
the control effort at a given time (c(t)), an optimal control strategy significantly
reduces the number of deaths and is particularly sustainable at the population
level. With this strategy, the intensity of the control increases rapidly over the
first quarter of the time period to an intermediate value and then decreases
steadily. Other strategies, such as implementing a strong short containment
("lock-down") followed by a looser and constant control effort are almost com-
parable to a strategy without control in terms of cumulative number of deaths.
Indeed, in this constant control strategy, the epidemic peak is delayed but barely
dampened.

As shown in the Appendix, we also investigated cycling strategies that alter-
nate two levels (cmax and cmin) of control intensity every 6 weeks. cmax is fixed
to 90% for all scenarios and cmin is variable (Figure S1). Overall, such scenarios
delay the epidemic peak for the time during which controls are implemented.
In the end of the period of interest, the cumulative number of deaths with all
cycling strategies is comparable to that reached in the absence of control. This
configuration is the same with shorther cycles, e.g. a weekly cycle of 2 work
days and 5 lock-down days (Figure S2).

Assuming an all-or-nothing scenario, we then considered an intense lock-
down (c = 90%) with a variable duration of 12 or 50 weeks (Figure S3a). At
first, this strategy maintains the epidemic dynamics under control (Figure S3b).
However, as for the constant or the cycling strategies, these strategies only delay
the epidemic peak and in the end the cumulative mortality over the time period
of interest is comparable to the one without any control measure (Figure S3b,c).

These results should be interpreted in a qualitative sense because we have
made a number of assumptions to derive our solutions. First, the structure
of the model itself could be refined, for instance to explicitly model critical
cases as in the model by [2]. Several epidemiological parameters of the COVID-
19 epidemics also remain largely unknown at this stage [18]. The natural and
disease-induced mortality functions could also be modified to fit even more to the
data. For instance, both of these could depend on the intensity of the control c(t)
because resource allocation to fighting COVID-19 can imply increased mortality
by other diseases. Finally, the structure of the objective function itself and the
quadratic cost associated with the cost coefficient B could also be explored
further.

The question of controlling the epidemic before a deployment of a vaccine
may also arise for other pharmaceutical interventions such as the development
of a curative treatment. One of the limitations of our study is that we assumed
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that in the time necessary for vaccine development, the standard of treatment
of COVID-19 infections remains constant. In reality, the time to discover and
implement a new treatment could be lower than the time to discover and deploy
a vaccine. This would not affect the general picture because the epidemic threat
will remain unless the herd immunity threshold is reached. However, it would
greatly affect our disease-induced mortality function and therefore the optimal
strategy itself. Nevertheless, this same model remains valid in the context of
treatment discovery if we redefine the time interval as the time necessary to
set-up such a treatment. Qualitatively, we anticipate our results to hold on a
shorter time interval.

One of the limitations of our study is that we assumed that in the time
necessary for vaccine development, the standard of treatment of COVID-19 in-
fections remains constant. In reality, the time to discover and implement a new
treatment could be lower than the time to discover and deploy a vaccine. This
would not affect the general picture because the epidemic threat will remain
unless the herd immunity threshold is reached. However, it would greatly af-
fect our disease-induced mortality function and therefore the optimal strategy
itself. Nevertheless, this same model remains valid in the context of treatment
discovery if we redefine the time interval as the time necessary to set-up such
a treatment. Qualitatively, we anticipate our results to hold on a shorter time
interval.

Our results offer new perspectives and research avenues to control the COVID-
19 epidemics. In particular, we find that stragies that alleviate epidemic control
too early all tend to only delay the epidemic wave. We also see that varying the
level of control over time provides the best results for a constant control effort
over the period of interest. An open challenge is to identify optimal strategies
that could be implemented in the field, especially by accounting for potential
differences in the cost of control implementation among populations.
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A Figures of cycling strategies that alternate two
levels (cmax and cmin)
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Figure S1: Intermediate constant control versus optimal control. In the inter-
mediate control, each cycle last 12 weeks (with 6 weeks of lock-down at level
cmax = 90% and 6 weeks at level cmin). The first column (a)-(b)-(c) are re-
spectively the control strategy, number of severe cases and cumulative number
of deaths, with cmin = 0. Second column (d)-(e)-(f) with cmin = 0.3. Third
column (g)-(h)-(i) with cmin = 0.6. Parameters of the model are set to their
reference values given in Table 1. The dashed line represents the healthcare
capacity (color online).
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Figure S2: Intermediate constant control versus optimal control. In the in-
termediate control, each cycle last 1 week (with 5 days of lock-down at level
cmax = 90% and 2 days at level cmin). The first column (a)-(b)-(c) are re-
spectively the control strategy, number of severe cases and cumulative number
of deaths, with cmin = 0. Second column (d)-(e)-(f) with cmin = 0.3. Third
column (g)-(h)-(i) with cmin = 0.6. Parameters of the model are set to their ref-
erence values given in Table 1. The dash line represents the healthcare capacity
(color online).
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B Figures of full lock-down strategies
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Figure S3: Full lock-down during 12 and 50 weeks versus optimal control. (a)
The control strategy. (b) The number of severe cases. (c) The cumulative
number of deaths. Parameters of the model are set to their reference values
given in Table 1. The dash line represents the healthcare capacity (color online).

C The adjoint system

żS = −µ[Is]− pλzzE1
+ (λz + µ[Is])zS

żEm
= −µ[Is]− εzAm

+ (ε+ µ[Is])zEm

żEs
= −µ[Is]− εzAs

+ (ε+ µ[Is])zEs

żAm = −µ[Is] + (1− c)βAS(zS − pzEm − (1− p)zEs)− σzIm − (σ + µ[Is])zAm ,

żAs = −µ[Is] + (1− c)βAS(zS − pzEm − (1− p)zEs)− σzIs − (σ + µ[Is])zAs ,

żIm = −µ[Is] + (1− c)βIS(zS − pzEm
− (1− p)zEs

)− γmzRm
+ (γm + µ[Is])zIm ,

żIs = −µ[Is] + (1− c)βIS(zS − pzEm
− (1− p)zEs

)− γszRs
+ (γs + µ[Is] + α[Is])zIs ,

żRm
= −µ[Is] + µ[Is]zRm

,

żRs
= −µ[Is] + µ[Is]zRs

,

(C.1)
with λz = (1− c)βA(zAm + zAs) + (1− c)βI(zIm + ξzIs).

D The basic reproduction number
It is useful to write System (2.5) into a more compact form. To that end, we
set E = (Em, Es), A = (Am, As) and I = (Im, Is). As deaths and recovered are
decoupled from the system, it is not necessary to keep them here. Here xT is set
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for the transpose of a vector or matrix x. Then, System (2.5) can be rewritten
as 

Ṡ =− S
〈
β, (A, I)T

〉
,

Ė =SPβ(A, I)T − (ε+ µ[I])E + νP,
Ȧ =εE − (σ + µ[I])A,

İ =σA− (γ + µ[I]I+ d(I))E,

(D.2)

where β = (βA, βA, βI , ξβI) , P = (p, 1−p)T , γ = diag(γm, γs), d(I) = diag (0, α[I]),
I is the 2× 2 identity matrix, diag(w) is a diagonal matrix which elements are
given by w; and 〈x, y〉 is set for the usual scalar product of vectors x and y.

Linearizing System (D.2) at the disease free environment (S,E,A, I) =
(S0, 0, 0, 0) and setting u = (E,A, I)T , we obtain u̇ = (F − V )u, where F
is the rate of appearance of new infections in each class, and V is composed by
the rate of transfer into each class by all other means and the rate of transfer
out of each class. It the comes

F =

 0 S0P(βA, βA) S0P(βI , ξβI)
0 0 0
0 0 0

 , and V =

 εI 0 0
−εI σI 0
0 −σI γ + d(0)

 .

Following [4], the basic reproduction number of Model (2.5) is defined as the
spectral radius ρ

(
FV −1

)
of the next generation matrix FV −1. A straightfor-

ward computation leads to

ρ
(
FV −1

)
=S0 ρ

(
1

σ
P(βA, βA) + P(βI , ξβI) (γ + d(0))

−1
)

=S0 ρ(K),

with K =

(
px py

(1− p)x (1− p)y

)
, x = βA

σ + βI

γm
and y = βA

σ + ξβI

γs+α[0]
. Since

det(K) = 0, it comes

R0 = tr(K) = p

(
βA
σ

+
βI
γm

)
+ (1− p)

(
βA
σ

+
ξβI

γs + α[0]

)
.

20


