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Abstract
Over the last years, the need for better user interfaces in
scientific computing has become apparent by the enormous
growth in popularity of computational notebooks. However,
the user experience provided by these notebooks is very
limited compared to the live programming environments of
Smalltalk, and first studies on how they are actually used in
research studies point out various weaknesses. We present
the first steps we have taken towards building a scientific
workbench in Pharo, based on the Glamorous Toolkit, and
outline future developments towards that goal.

Keywords Pharo, scientific computing, computational doc-
ument

1 Introduction
Research in all domains of science is increasingly relying
on computational methods. At the minimum, figures and
tables used to communicate results in scientific publications
are produced with the help of software, but more elaborate
computational data processing techniques, often involving
statistical methods, are routinely applied by scientists who
consider their core work to be experimental or theoretical
rather than computational. At the other extreme, whole sub-
fields dedicated to the development and use of computational
methods are firmly established in all the natural sciences and
are becoming more and more important in the humanities.
The driving force behind the adoption of computational

methods in scientific research is the new possibilities they
offer for dealing with larger amounts of data and with more
complex models. However, there is also a downside to the in-
troduction of computers, which in the philosophy of science
is referred to as the epistemic opacity of computation. To-
day, scientists routinely apply computational methods that
they do not fully understand and may not even be aware
of. One factor contributing to this problem is the increasing
complexity of computational methods. However, a factor
that in our opinion is much more important is the complex-
ity and opacity of today’s computing technology, in which
understandability has so far not played a major role.
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Recent years have seen an increasing awareness of this
problem in many scientific disciplines. Its most visible man-
ifestation is the "reproducible research" movement, whose
goal is to extend scientific publications by the inclusion of all
the code and input data required to reproduce the presented
results. Many obstacles of both technical and social nature
make this a surprisingly difficult goal to achieve in practice.
It requires that all research code is published in such a way
that someone else can install and run it. But reproducibility
is only one aspect of the problem. A computation can be
fully reproducible and yet remain incomprehensible because
of poorly written code or documentation.
The challenge for the coming years is to develop new

ways of doing computational science that emphasize com-
prehensibility during all phases: the development of com-
putational methods, their application to specific research
questions, and the communication of the results. We believe
that the Smalltalk tradition of encouraging transparency and
explorability of computational systems is an excellent start-
ing point for future work in this field. We describe the first
steps that we have taken to design and implement a scientific
workbench in Pharo (an open-source Smalltalk implemen-
tation), and we outline the future work that remains to be
done.

2 Computational notebooks
For several decades, interactive scientific computing environ-
ments have been designed around variants of the Read-Eval-
Print Loop (REPL) introduced in the 1950s with Lisp. In 1988,
Mathematica [18] introduced the notebook interface, which
can be considered a fusion of the REPL with Donald Knuth’s
concept of literate programming [20]. A computational note-
book is a sequence of input, output, and text parts commonly
called “cells” (see Fig. 1 for an example). Text cells have no
impact on the computation, they can be considered rich-text
comments. Input cells contain code snippets that can be fed
into a language interpreter, either individually or in larger
groups. An output cell is inserted immediately below each
input cell upon execution, and contains the result of the code
snippet, using a textual or a graphical representation.
In the initial stage of exploring a dataset or a scientific

model, a scientist creates new input cells for each command,
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Figure 1. A Jupyter notebook consisting of input, output,
and text cells. Input cells can be executed manually, one by
one, meaning that they are not necessarily run in textual
order. Therefore they are marked by ‘In‘ followed by a num-
ber in brackets that indicates the order of execution. Output
cells are marked by ‘Out‘ plus that same number in execution
order. When a notebook is run as a whole, input cells are
executed in textual order. Readers must verify the execution
order by inspecting the numbers, because results can depend
on it.

using the notebook much like a traditional REPL. Text cells
are used sparingly for adding comments where deemed use-
ful for later work. As the scientist gains a better understand-
ing of the problem, he or she starts to revise earlier input
cells, typically resulting in more compact and more focused
code. At the same time, text cells are expanded into a more
complete documentation of the computation, intended ini-
tially for collaborators. Further editing iterations transform
the notebook into a publishable document that a reader un-
familiar with the work should be able to understand.

The reader typically starts by reading the notebook in the
order of presentation of the cells. He or she can also explore
some aspect in more detail by modifying (or inserting) input
cells and executing them. This does, however, require a prior
re-execution of the complete notebook, in order to make
all the intermediate results available in memory. An incon-
venience of this exploration strategy is that it modifies the
original notebook. After an intensive exploration session, it
is often hard to see which input and output cells were part of
the original notebook and which were added or modified by
the reader. This is a direct consequence of the linear nature
of the computational notebook.

This linear structure of a notebook, which follows from
the linear structure of the computation even though, para-
doxically, the latter is not enforced, also lies at the heart of
other problems that become apparent when notebooks are
used for anything but the simplest tasks. A recent study [25]
of more than a million notebooks in public GitHub reposito-
ries found many indicators of poor quality, some of which
support earlier criticisms of notebooks encouraging bad soft-
ware engineering habits [11, 23, 27, 34]. Overall, the problems
stemming from the imposed linearity can be classified as

1. Computational issues: the computation in a notebook
is a linear sequence of commands modifying shared
global state. This prevents the application of best prac-
tices from software engineering, in particular any at-
tempt to modularize the code.

2. Documentation issues: the discussion of the science
behind the computation must follow the order of the
computation and thus cannot be structured for clarity
of exposure. For example, the documentation of a data
analysis must start with the rather boring details of
preprocessing, which in a traditional paper would be
relegated to an appendix.

Recently, the popularity of computational notebooks has
surged in the wake of the Reproducible Research movement.
It is often claimed that notebooks “improve reproducibility”,
but such claims rarely clarify what exactly they compare
notebooks to. In fact, notebooks improve reproducibility
compared to traditional scientific articles, which contain no
code at all. However, notebooks are no more reproducible
than plain scripts, given that the information they contain
in addition to scripts (text and output cells) is for human
consumption only and has no impact on reproducibility. In
practice, today’s notebook implementations require note-
book authors to take various precautions to ensure repro-
ducibility, which are exactly the same as required for making
scripts reproducible: a detailed documentation of the soft-
ware environment that was used, listing all dependencies
with detailed version information.

3 Leveraging the Smalltalk heritage to
improve on the notebook

Two of the outstanding features that Smalltalk has had since
its beginnings are a graphical user interface and an integrated
development environment. The place of the terminal-based
REPL is taken by workspaces (also called playgrounds) for
editing and executing code snippets, and inspectors for ex-
ploring results. This toolset encourages experimentation by
running small independent code snippets that have neither
shared state (other than the global system environment) nor
a natural order. In software development, these experimental
code snippets are often the starting point of test cases, or
find their way into the code documentation as examples.
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Computer-aided research always involves some software
development, but has some additional requirements. In par-
ticular, the focus of attention is not on code, but on data.
This can be raw data from observations or experiments, but
also pre-processed data or model-derived data (e.g. by way
of simulation). The complete documentation of a scientific
study consists of

1. Input data (observations, experiments)
2. Code written for processing or generating data
3. Processed and generated data
4. A narrative relating the data and code to the scientific

context: motivation, references to earlier work, origin
of experimental data, assumptions made, conclusions,
etc.

Contrary to code snippets used for illustrating and testing
software, the code snippets that process and generate data
are not independent. Code snippets and datasets are nodes
in a data dependency graph, which must be easy to follow
for a reader [32]. What must be added to a Smalltalk environ-
ment to turn it into a scientific workbench is thus (1) data
dependency management and (2) a documentation facility
for writing narratives that can refer to or embed code and
data.
One recent innovation in Smalltalk environments is the

Glamorous Toolkit [10], which is a complete redesign of
the traditional Smalltalk tools: browsers, inspectors, debug-
gers. A central feature is a rich document type based on the
markup language Pillar [5]. Such documents can contain in-
line code snippets, much like computational notebooks, but
they can also refer to arbitrary objects, including classes and
individual methods. Objects referred to can be displayed and
even edited right in the document. They can also be opened
in separate inspector panes for more extensive exploration.
These features make the Glamorous Toolkit a promising
basis for a scientific workbench that combines, in a single
environment, the development of scientific software and its
application to the exploration of datasets and models. More-
over, the “moldable tools” approach [7] should make such
an extension relatively straightforward.

The ActivePapers Pharo edition [14] is such an extension
of the Glamorous Toolkit to data- or model-centric computa-
tions, building on the experience gained with earlier work in
the ActivePapers project [12]. An ActivePaper is, by defini-
tion, a package combining the code, data, and documentation
that describe together a computational scientific study. The
first two editions of ActivePapers focused on reproducibility
and high-performance computing, storing code and data in
a single HDF5 file [21] for easy transferability. In the Pharo
edition, an ActivePaper is a singleton, with the class con-
taining the code and its unique instance holding the data.
The documentation part takes the form of a Wiki whose
individual pages are the rich documents introduced by the
Glamorous Toolkit. The Wiki pages are stored in methods,

borrowing a trick used by Pharo’s help system. The main
reason for this choice is the automatic inclusion of the Wiki
pages into the version control repository. The example in
appendix A illustrates further details of how an ActivePaper
functions.

The integration of ActivePaperswith theGlamorous Toolkit
is mostly achieved using the latter’s extension mechanisms
(an example is shown in Fig. 2, a demo video is available as
well [15]). The rich documents and the dependency graph are
displayed using inspector plugins, with an additional Pillar
annotation type providing links to Wiki pages. ActivePapers
also adds a few user interface elements, in particular a spe-
cialized playground for working in the context of the object,
with full access to its methods and instance variables. This
playground is what readers of an ActivePaper use to explore
its contents without having to modify them. It is also the
tool that authors use for testing code before adding it to the
ActivePaper’s methods.

The linear command sequencewith shared global state of a
notebook is replaced by a workflow consisting of named code
snippets called scripts, which are implemented as methods
containing a special pragma. Their shared state is defined by
the ActivePaper’s instance variables, which are implemented
as slots that track read and write accesses. This makes it
possible to generate a data dependency graph during the
execution of the scripts (the right-hand pane in Fig. 2). The
workflow is completely independent of the documentation
layer in the Wiki. Each layer can be structured according
to its own logic. The Wiki pages can reference scripts and
datasets via the standard Pillar annotations provided by the
Glamorous Toolkit.
In addition to having a more flexible structure, ActivePa-

pers in Pharo have another major advantage over compu-
tational notebooks: they are standard Pharo objects. One
consequence is that the data and code they contain can be
used by other Pharo code, and in particular other ActivePa-
pers. In contrast, notebooks are always top-level code that
cannot be integrated into larger code assemblies. Moreover,
there is no boundary in terms of development tools between
an ActivePaper and the Pharo libraries it builds on. All the
development, inspection, and refactoring tools of Pharo can
therefore be applied. In contrast, most computational note-
book implementations (in fact all except for Mathematica)
treat notebooks as entities completely separate from library
code. Moving code across the notebook-library boundary
thus implies using different user interfaces, even if they are
implemented in the same tool as is the case for Emacs or
JupyterLab.

4 Existing computational platforms and
frameworks in Pharo

A good scientific workbench must not only provide tools, but
also support libraries for data management, data analysis,

3
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Figure 2. The document view and workflow view of an ActivePaper. These are two of the four views specific to the class
APActivePaper, each of which being defined by a method containing the <gtView> pragma. The other two are “Pages” (a list
of Wiki pages in the document) and “Scripts”, a view permitting to read, edit, and run the scripts that make up the workflow.

and for the implementation of scientific models and methods.
For now, Pharo cannot compete with the large scientific
ecosystems that have developed around popular languages
such as Python or R. However, two key libraries provide
sufficient support for simple data analysis tasks, which are
extremely common in many scientific disciplines:

• PolyMath [26], a scientific library similar to NumPy or
SciPy in Python. PolyMath provides a lot of functional-
ities: complex numbers, quaternions, random number
generators, numerical methods, ordinary differential
equations (ODE) solvers, and more.

• DataFrame [8], a tabular data structure for data analy-
sis in Pharo. The DataFrame project is similar to the
Pandas library in Python or the built-in data.frame
class in R.

It is also worth mentioning more domain-specific libraries,
which show the potential of this language to build a more
versatile scientific workbench in the future:

• Pharo bindings to Tensorflow [31], which allow to use
the TensorFlow C API and kernels. More elaborate
frameworks like Keras are now also available from
Pharo via PythonBridge [28]

• Kendrick [4], a domain-specific language focused on
epidemiologymodelling that supportsmodularity through

clear separation of concerns, hence fostering repro-
ducibility and reuse of models and simulations. It al-
lows epidemiologists to craft their models and simula-
tions more easily. Kendrick use PolyMath for solving
ordinary differential equations.

• CORMAS [2] (for COmmon pool Resources and Multi-
Agent Systems), an Agent-Based Modeling platform
based on Pharo and dedicated to natural and common-
pool resources management. CORMAS’ main intent is
to facilitate the design of ABM as well as the monitor-
ing and analysis of agent-based simulation scenarios.
This has been done by taking an innovative direction
oriented towards participatory modeling, i.e. the col-
lective design of models as an appropriate medium
for fostering interdisciplinarity, and interactive sim-
ulations involving several stakeholders who interact
with a simulation by acting directly on their agents.

• BioSmalltalk[22] and PhyloclassTalk, (Open-source
phylogenetics workbench) which are bioinformatics
platforms. They provide tokenizers, parsers and for-
matters to manipulate biological sequences and data
from databases.

4
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5 Future work
The ActivePapers Pharo edition is still at the prototype stage
at this time. One issue that remains to be addressed is re-
producibility. Pharo’s package management infrastructure,
which already provides dependency analysis, looks like a
promising basis for a user interface that allows scientists
to ensure the reproducibility of their work without having
to go into the arcane technical details required by today’s
common approaches based on package managers at the op-
erating system level. Another important issue is exporting a
computational document in a format suitable for publishing.
We expect the XDoc subsystem of the Glamorous Toolkit to
be a good basis for this. Finally, the current implementation
lacks a straightforward way to store the data held in an Ac-
tivePaper permanently. Code and documentation are easily
stored in a version-controlled repository because they are
defined by Pharo classes. Datasets, however, can be arbitrary
Pharo objects, and can potentially be very big. Moreover, it is
highly desirable to make these datasets accessible from other
languages than Pharo. For this reason, efficient and general
but Pharo-specific serialization protocols such as Fuel [9]
are not a good choice.

The management of scientific data is currently undergoing
a transition motivated by the increasing desire to publish
and share datasets, and the simultaneous rise of distributed
processing strategies in grid and cloud computing. For small
datasets stored in text files using formats such as CSV, XML,
or JSON, data management is not an issue because Pharo al-
ready supports these formats and the publication of the data
is handled via standard Web techniques that are also already
implemented in Pharo. Larger datasets are typically stored in
specific binary formats such as HDF5 [21], which Pharo does
not currently support (though an existing HDF5 interface
for Squeak [6] could probably be adapted). However, these
datasets are also most affected by the ongoing transition,
and it might be more profitable for the Pharo community to
concentrate on future distributed storage technologies such
as IPFS [1] or dat [29].

The main limitation of Pharo as a scientific workbench is
the relatively small number of libraries supporting scientific
computing, compared to established ecosystems such as Sci-
entific Python. However, there are many computationally
simple use cases in data analysis for which today’s libraries,
together with currently on-going work on PolyMath and
DataFrames, are fully sufficient. These application domains
are therefore ideal targets to test and improve the user inter-
face framework provided by ActivePapers. For more domain-
specific work, a case by case analysis must be conducted to
identify the most promising strategy: implement well-known
methods in Pharo, or provide interfaces to existing code in
other languages via the FFI (Foreign Function Interface) or
higher-level techniques such as PythonBridge.

Finally, Pharo is particularly suited to the implementation
of new approaches to scientific computing that require both
fundamental algorithms and corresponding user interfaces.
An example is the reification of scientific models, which is
the goal of the digital scientific notation Leibniz whose Pharo
implementation is work in progress [16]. Prior experiments
using traditional programming systems [13] have shown the
importance of having editors, inspectors, and debuggers for
scientific models, all of which are very difficult to implement
in programming systems based on text files and compilers.

6 Related work
The idea of using a Smalltalk live programming environ-
ment as a user interface for scientific computing has come
up before [24] and its utility was demonstrated with a few
applications [3, 33]. This happened at the same time that
Mathematica introduced the computational notebook. Both
approaches to introducing interactivity were revolutionary
at a time when the state of the art in scientific computing
was compiled languages with their edit-compile-run cycles,
and graphical user interfaces limited to plotting and other
simple visualization tasks.
Recent popular notebook implementations are Jupyter

[19], which supports awide range of programming languages
(including Pharo1), and RMarkdown [17] for the R language
that is widely used for data analysis tasks. The Org-Mode
package of the Emacs editor provides an implementation
of computational notebooks as part of a powerful general
document processing system [30], which makes for a flexi-
ble and highly customizable computing environment which
however suffers from poor support for graphics. Two more
recent andmore experimental notebook implementations are
purely browser-based and thus implemented in JavaScript: Io-
dide (https://github.com/iodide-project/iodide) aims atmulti-
language scientific computation via WebAssembly, and Ob-
servable (https://observablehq.com/) makes the code and
data in notebooks re-usable through a modularized data-
flow approach.

7 Conclusion
We hope to have demonstrated the potential of Smalltalk-
style live programming environments in general, and of
Pharo plus Glamorous Toolkit in particular, as a powerful
user interface for computational science. Furthermore, we
hope to develop this idea into a practically usable tool, while
at the same time making the live programming approach
more generally known and potentially adopted by other lan-
guages and environments.

In addition to the benefits we have outlined in this paper,
we expect Smalltalk environments to improve computational
science in another, less obvious way: by reducing the epis-
temic opacity of computational methods that we mentioned
1https://github.com/jmari/JupyterTalk/
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in the introduction. In all of today’s scientific computing
environments, there is a strong boundary between note-
books, scripts, and interactive REPLs on one hand, and li-
brary code on the other hand. A notebook that applies a
statistical method from a code library has no way to include
or refer to that code in order to explain the method. It is up
to the reader to figure out where the corresponding source
code is (assuming it is available at all), and use an appropriate
tool to inspect it. In this way, today’s environments actively
discourage readers from exploring the models and methods
underlying computational work. Smalltalk systems do not
have any such barrier, and in the contrary assist their users
with exploring all the code in the system as far as they like.
The computational documents implemented by the Glam-
orous Toolkit perpetuate this tradition by permitting links
to arbitrary objects and even embedding arbitrary object
inspectors. Unlike a notebook, an ActivePaper can easily
contain a page describing a model or method implemented
in library code, adding examples if necessary. In the long
run, this may well be the most important contribution of
Smalltalk to computational science.
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A Appendix: a simple example
The following commented Pharo code constructs a simple Ac-
tivePaper with two datasets and two scripts computing their
values. It is provided as an illustration of howActivePapers is
implemented. Note that only the first step would normally be
executed by running code from a playground, the remaining
steps being performed using Pharo’s development tools.

1. Create anActivePaper as a subclass of APActivePaper:
APActivePaper subclass: #ActivePaperExample.

2. Add a class comment containing the main page of the
ActivePaper’s Wiki, using Pillar markup:
ActivePaperExample comment: '!A simple ActivePaper'

3. Add two instance variables:
ActivePaperExample addInstVarNamed: 'x y'.

The superclass APActivePaper converts instance vari-
ables to dataset slots whose read and write access it
observes and regulates. All read accesses are traced
in order to construct a data dependency graph. The
superclass also creates read accessors for each dataset.

4. Add a script that defines dataset x:
ActivePaperExample compile: 'setX
<computes: #x>
x := 42'
classified: 'scripts'.

Whatmakes thismethod a script is the pragma computes:,
which also states the dataset that is computed by this
script. A script can contain multiple pragmas to signal
that it computes multiple datasets. It is not allowed to
change the value of any other dataset.

5. Add a script that defines dataset y:
ActivePaperExample compile: 'computeY
<computes: #y>
y := x / 2'
classified: 'scripts'.

This script reads the value of x, creating a dependence
of y on x.

6. Look up the value of dataset y:
ActivePaperExample data y

This code snippet invokes the read accessor for y that
has been created automatically. It retrieves the script
computing y (searching for the pragma) and executes
it. When this script attempts to read x, which has not
been set, the same mechanism is applied to retrieve
the script computing x and execute it. All dataset com-
putations are thus performed lazily.
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