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Abstract: We consider the reduced constrained linear Cosserat continuum, a particular type of 
a Cosserat medium, for three different material behaviors or symmetries: the isotropic elastic case, 
a special type of elastic transversely isotropic case, and the isotropic viscoelastic case. Such continua, 
in which stresses do not work on rates of microrotation gradients, behave as acoustic metamaterials 
for the (pure) shear waves and also for one branch of the mixed wave in the considered anisotropic 
material case. In elastic media, those waves do not propagate for frequencies exceeding a certain 
threshold, whence these media exhibit a single negative acoustic metamaterial behavior in this range. 
In the isotropic viscoelastic case, dissipation destroys the bandgap and favors wave propagation. 
This curious effect is, probably, due to the fact that the bandgap is associated not with the dissipation, 
but with the wave localization which can be destroyed by the viscosity. The dispersion curve is now 
decreasing in some part of the former bandgap, above a certain frequency, whence the medium is 
a double negative acoustic metamaterial. We prove the existence of a boundary wavenumber in 
the viscoelastic case and estimate its value. Below the characteristic frequency corresponding to 
the boundary of the elastic bandgap, the wave attenuation (logarithmic decrement) is a growing 
function of the viscous dissipation parameter. Above this frequency, the attenuation decreases as the 
viscosity increases.

Keywords: micropolar viscoelastic media; acoustic metamaterials; waves in reduced Cosserat media

1. Introduction

Three-dimensional solid continua, in which both translational and rotational motions of body
points are considered, and respectively characterized by displacement field u and microrotation vector
field θ, were introduced by the Cosserat brothers [1]. Their theory then sank into oblivion for about
50 years before it was systematically revisited by [2]. Among recent books on the subject, one can
mention [3].

The present study focusses on acoustic or seismic wave propagation in reduced Cosserat continua,
a special class of Cosserat media in which internal stresses do not work on the microrotation gradient
velocity. This entails special symmetry conditions on the strain energy, which depends on the Cosserat
deformation tensor but not on the wryness tensor. Possible strain measures for continua with rotational
degrees of freedom with various types of symmetry are discussed in [4–6]. Such models may be applied
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to granular materials [7–10], media with high contrasts, geomaterials [11–16], in which non-classical
wave propagation is observed [17]. One of the first applications of an elastic reduced isotropic Cosserat
model to wave propagation in granular materials was suggested in [7].

Media with effective negative parameters (density and/or the relevant elastic modulus), as regards
wave propagation, are called acoustic metamaterials [18]. This phenomenon takes place in a certain
frequency domain. If both elastic and inertial effective frequency-dependent parameters are negative,
one has a double negative acoustic metamaterial. It exhibits negative refraction, i.e., a decreasing
dispersion curve. If only one of the effective frequency-dependent parameters is negative, this is
a single negative acoustic metamaterial, i.e., the dispersion graph for the corresponding harmonic
wave has a band gap [19]. These media can be used, for instance, to control wave beams, energy fluxes,
or to conceal objects, rendered acoustically undetectable.

We can consider more general elastic continua, in which the strain energy depends on a certain
vector field but not on its gradient. In reduced Cosserat media this is the microrotation vector. One can
intuitively view a reduced complex continuum as a hosting continuum, with all elastic connections
present, including isolated resonators that are not directly coupled to one another.

Such reduced generalized elastic media were shown to behave as acoustic metamaterials [20].
In particular, reduced elastic Cosserat media are single negative acoustic metamaterials, for which
harmonic shear waves are evanescent in a certain frequency domain. Lots of works consider acoustic
metamaterials with internal (often rotational) degrees of freedom, on the discrete and continuum
level [21–27].

The possible interpretation of a time-dispersive material as an “extended” material with hidden
internal degrees of freedom is suggested, for instance, in [28]. Viscosity may drastically change the
wave properties of an elastic metamaterial [13], destroying the bandgap and, in some cases, leading to
a decreasing dispersion curve in some range. Relaxed linear micromorphic metamaterials (with
band gaps) are discussed in [29,30], where a certain kinematical constraint is accepted, as well as in
the full constrained Cosserat medium [31]. Other materials with microstructure having band gaps
are investigated in [32,33], the latter one being an example of a hosting continuum enhanced by
distributed resonators, discussed in [20]. In linear constrained Cosserat media the microrotation
θ is identically equal to the vortex deformation (macrorotation) of the neighbourhood ∇ × u/2.
These models are popular in the scientific community [34,35], possibly they could be used for the
description of blocky media.

Specialists in the rotational seismology, a science which has developed during the past decades,
agree that rotational degrees of freedom of blocks and heterogeneities in the geomedium must be taken
into account [36–38]. However, there is a strong discussion on the most appropriate model. There are
works that insist taking into account only the macro-rotation of the medium, see, for instance, [39].
To satisfy the principle of material objectivity, in this case, it is necessary to accept the kinematical
hypothesis that the macro-rotation is equal to the micro-rotation, i.e., to consider the constrained
Cosserat theory. On the other hand, the presence of slow waves [40] is an argument in favor of reduced
Cosserat continuum or another acoustic metamaterial as an appropriate model.

In this work, we have considered elastic and viscoelastic models which combine features of the
constrained Cosserat medium and reduced Cosserat medium. The viscoelastic model is taken in its
simplest isotropic variant, which can be found in [41] for the full linear Cosserat medium; we consider
a particular case, when it is reduced (i.e., couple stresses are zero) and constrained (i.e., a kinematical
hypothesis “microrotation equals macrorotation” is accepted). The investigation of wave propagation
in such media (elastic isotropic, elastic with anisotropic coupling and viscoelastic isotropic) will give
some information for experimentalists to judge if it is an adequate theory for a real granular or blocky
medium. We have chosen this model also since it has a very few parameters and therefore we can
clearly see in this case how the viscosity can change the wave propagation in a rotational metamaterial.
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2. Model and Basic Laws

We consider a linear micropolar medium each point of which is characterized by an infinitesimal
translational displacement u and an infinitesimal microrotation vector θ. In the linear medium,
actual and initial configurations coincide as well as nabla operators in both of them. Since we consider
a reduced Cosserat medium, we suppose that no stresses work on ∇θ̇, see [7,42]. Since we consider
a constrained Cosserat medium, we accept a kinematical hypothesis

θ = ∇× u/2, (1)

as in [31]. Each body point of the medium possesses density ρ and density of the tensor of inertia
ρI. We will shortly recall here dynamic laws for a constrained reduced Cosserat medium of any type,
which can be found in [13], and write down its final form for the general case.

Balance of force in its local form looks as follows:

∇ · τ + ρK = ρü, (2)

where τ is the stress tensor, ρK is the density of the external body force, ()̇ is the time derivative.
We can write this law, representing τ as

τ = τS + τA = τS − τ× × E/2. (3)

Here τS = (τmn + τnm)imin/2 and τA = (τmn − τnm)imin/2 are the symmetric and

antisymmetric parts of τ, respectively, and τ×
def
= τmnim × in, im being a certain basis, E is the

identity tensor. Then (2) takes form

∇ · τS −∇× τ×/2 + ρK = ρü. (4)

Balance of moment in its local form is

τ× + ρL = I · θ̈, (5)

where ρL is the density of the external body moment.
Substituting the kinematical hypothesis (1) into the balance of moment, we obtain

τ× = I · (∇× ü)/2− ρL. (6)

Then we substitute this expression into the balance of force (4) and obtain

∇ · τS + ρ(K +∇× L) = ∇× (I · (∇× ü))/4 + ρü. (7)

Note that if τS obeys the equations of a local theory, we still obtain a local theory, although with
a sophisticated dynamical term that has mixed spatial–temporal derivatives. This is contrary to the
case of the constrained full Cosserat medium, where the kinematical constraint yields in equivalent
second gradient theory. This difference is related to the fact that the strain energy in the reduced model
does not depend on ∇θ.

The law of balance of energy looks as

ρU̇ = τS · ·(∇u̇)S (8)

(heat transfer is not considered). Equation (7) is valid for any type of the linear constrained reduced
Cosserat medium. Symmetric part of the stress τS is determined by the constitutive equations.
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We see that antisymmetric part of τ is determined by balance of moment (6) and not by
a constitutive equation. This is due to the fact that in the linear non-constrained model τ× works
on the strain rate ∇× u̇/2− θ̇. Indeed, if Unc is the mass density of the strain energy for a linear
non-constrained reduced model, then [42]

ρU̇nc = τS · ·∇u̇S
+ τA · ·[(θ−∇× u/2)× E]˙ = τS · ·∇u̇S

+ τ× · (∇× u/2− θ)˙. (9)

Note that
(θ−∇× u/2)× E = ∇uA + θ× E. (10)

Constitutive equations for the non-constrained elastic medium are obtained from the law of
balance of energy both for the symmetric and antisymmetric part of τ. In the constrained model,
θ̇−∇× u̇/2 ≡ 0, therefore τA cannot be obtained from this law, but it is determined by the dynamic
law (6).

2.1. Constitutive Equations for the Linear Elastic Constrained Reduced Cosserat Media

We will consider the elastic medium in adiabatic or isothermal processes. The second law of
thermodynamics is satisfied identically for this case. Since the medium is linear, U a quadratic form
of ∇uS:

ρU =
1
2
∇uS · ·C · ·∇uS, (11)

the same as for the classical medium, where C = Cmnkliminikil is the elastic tensor of the fourth rank.
As in the classical elasticity, it satisfies the symmetry conditions Cmnkl = Cnmkl = Cklmn. The law of
balance of energy (8) thus gives us the constitutive equation

τS = ρ
∂U

∂∇uS = C · ·∇uS. (12)

However, since we have rotational degrees of freedom and the kinematical constraint
θ = ∇× u/2, the medium is not classical, and τA 6= 0 but determined from dynamic Equation (6).
Concrete form of C is determined by the symmetry of the material: its group of symmetry includes the
group of symmetry of the medium, according to the Curie–Neumann’s principle [43].

We can also obtain the same equations in terms of modified strain energy with Lagrange
multipliers. Consider zero external loads. Indeed, Lagrange equations for the continuum look as

∇ · ∂L
∂∇q

+
d
dt

∂L
∂q̇
− ∂L

∂q
= 0, (13)

where q is a generalised vector consisting of generalised co-ordinates (components of u and θ in our
case), Lagrangian density L = ρ(U − K), ρK being the density of the kinetic energy, ρU the density
of the strain energy of the continuum. This is true in case when there are no kinematical constraints.
When they exist, we have to use the density of the modified strain energy Um instead of U. In our
(linear) case

ρK =
1
2

ρ(u̇2 + θ̇ · I · θ̇), (14)

U is defined by (11), and

ρUm =
1
2
∇uS · ·C · ·∇uS + Λ> · ·((θ−∇× u/2)× E) =

1
2
∇uS · ·C · ·∇uS + λ · (θ−∇× u/2), (15)

where Λ is a Lagrange multiplier, an antisymmetric tensor of the second rank, vector λ = −Λ×. In fact,
Λ has a physical sense of τA.
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Note that

∂Um

∂u
= 0, (16)

∂Um

∂∇u
= C · ·∇uS + Λ, (17)

∂Um

∂θ
= −Λ · ·(E× E) = Λ×, (18)

∂Um

∂∇θ
= 0. (19)

This allows us to write down Equation (15) with L = ρ(K−Um) as

∇ · (C · ·∇uS + Λ) = ρü , (20)

Λ× = ρ(I · θ̇)˙ = ρI · θ̈ , (21)

where Λ = ΛA. We see that up to the notation Λ = τA these equations coincide with balance of
force (2), balance of moment (5) for zero loads provided the constitutive relation (12).

2.2. Isotropic Elastic Model

First we choose an isotropic homogeneous elastic model. Then the elastic tensor C is also isotropic
and looks as

C = λEE + 2µ(imin)
S(imin)

S, (22)

where λ, µ are elastic Lamé constants. Then the constitutive equation for the symmetric part of the
stress tensor takes form

τS = λ∇ · uE + 2µ(∇u)S. (23)

Substituting this expression to the dynamic law (7), and considering zero external loads and
spherical density of the inertia tensor I = IE, we obtain equations in displacements:

(λ + 2µ)(∇∇ · u)− µ∇× (∇× u) = ∇× (I∇× ü)/4 + ρü. (24)

Let us look for the plane wave solution: u = u0ei(k·r+ωt). Then we obtain

− (λ + 2µ)kk · u + µk× (k× u) = −ρω2u + Iω2k× (k× u)/4. (25)

Denote k̂ = k/k, where k = |k|. We can rewrite this equation as

(ρω2 − (λ + 2µ)k2)k̂k̂ · u + (ρω2 − (µ− Iω2/4)k2)(E− k̂k̂) · u = 0. (26)

Compression plane wave is separated and it is not influenced by the rotational degrees of freedom.
Indeed, if u0 = u0k̂, we obtain the classical dispersion relation for the longitudinal wave:

ω = cPk, cP =
√
(λ + 2µ)/ρ. (27)

Denote ω2
1 = 4µ

I (this will be a certain characteristic frequency of the medium), c2
s = µ

ρ (wave

velocity). The dispersion relation for the shear–rotational wave (u0 · k̂ = 0), given by (26), is

k2 =
ρω2

µ− Iω2/4
=

ω2

c2
s (1−ω2/ω2

1)
=

ω2

c2
s

ω2
1

ω2
1 −ω2

. (28)



Symmetry 2020, 12, 521 6 of 22

We see that at low frequency this dispersion branch starts as the classical shear wave, but for
higher frequencies dispersion becomes more pronounced, and the curve has a horizontal asymptote
ω = ω1 (boundary frequency). Above this frequency, no shear wave propagates (see Figure 1).

In the reduced non-constrained linear isotropic elastic Cosserat medium (see [42]) we do not
accept kinematical hypothesis (1). Instead of that there exist a rotational elastic constant α, and the
strain energy has an additional term 1

2 α(∇× u/2− θ)2. In this case there are two branches of this
curve with a bandgap between them. The low branch for the non-constrained model is analogous to
the curve presented in Figure 1, but instead of ω1 for the constrained medium we have a boundary
frequency ω1 = 2(α/(I(1 + α/µ)))1/2. The upper branch for the non-constrained medium starts
at a cut-off frequency ω0 = 2(α/I)1/2. When the resistance to the strain θ− ∇ × u/2 tends to
infinity (α → ∞), the cut-off frequency tends to infinity also, and the boundary frequency tends to
ω1 = 2(µ/I)1/2, i.e., we obtain the dispersion graph for the constrained linear isotropic elastic reduced
Cosserat medium. This is to expect. This also tells us that the theory under consideration could be
possibly applicable for blocky media.

0 1 2 3 4 5

csk/ 1

0.0

0.2

0.4

0.6

0.8

1.0

/
1

Figure 1. Dispersion graph for the plane shear–rotational wave in the 3D infinite elastic isotropic linear
reduced constrained Cosserat medium. Parameters: cs = 1. Infinite band gap above ω1.

2.3. Elastic Model with the Simplest Anisotropic Coupling Term (Axial Symmetry with Axis n)

Now consider the influence of anisotropy on the wave propagation. The anisotropic term of most
interest would be a coupling between shear and compressional deformations, a feature which is present
in granular-like materials. Such a coupling does not exist in isotropic theories. We consider a simplest
variant of such an anisotropic medium: a transversally isotropic medium with the unit vector of the
axis of isotropy n, where the anisotropy is only present in this coupling and has a particular form,
coupling volumetric and shear deformations. Namely, let the density of the strain energy be

ρU = 1
2 (∇u)S · ·(λEE + 2µ(imin)S(imin)S + N(Enn + nnE)) · ·∇uS = ρUi + N(∇ · u) n · ∇u · n, (29)

where ρUi is the strain energy for the isotropic case. The constitutive equations are

τS = λ∇ · u + 2µ(∇u)S + NEn · ∇u · n + N∇ · u nn. (30)

Substituting them into dynamic law (7), considering zero external loads K = 0, L = 0 and
spherical symmetry for the tensor of inertia (I = IE), we obtain dynamic equations in displacements:
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(λ + 2µ)(∇∇ · u)− µ∇× (∇× u)+N∇(∇u · ·nn) + Nn · ∇∇ · un = ∇× (I∇× ü)/4 + ρü. (31)

Looking for the plane wave propagation u = u0ei(ωt+k·r), we obtain the spectral problem:

− (λ + 2µ)kk · u + µk× (k× u)−Nkku · ·nn− Nn · kk · un = −ω2ρu− Iω2k2u/4. (32)

Denote k̂ = k/k, then n = n · k̂k̂ + ñ, where ñ def
= (E− k̂k̂) · n. Then the spectral problem can be

rewritten as:

[(ρω2 − (λ + 2µ)k2 − 2Nk2(k̂ · n)2)k̂k̂ + (ρω2 − µk2 +
I
4

ω2k2)(E− k̂k̂)

− Nk2(k̂ · n)(ñk̂ + k̂ñ)] · u = 0. (33)

Due to the specific type of coupling there exist a purely shear wave, the same as in the
isotropic case, if u || (n× k̂). The last and the first term in (33) then vanish and the corresponding
dispersion relation the same form (28) as in the isotropic case. However, the compression wave,
generally speaking, does not exist, it is coupled to the shear wave, with the exception of some special
directions of wave propagation.

2.3.1. Special Directions of Wave Propagation

Consider waves propagating along or orthogonal to the axis of isotropy n. In both cases the last
term in parentheses in (33) disappears, since either ñ = 0 if k̂||n, or k̂ · n = 0. The spectral problem
for compression and shear wave can be decoupled, as in the isotropic case, and we have the same
dispersion relations, with the only difference that for k||n the wave velocity for the compressional
wave is influenced by the anisotropic constant, the dispersion relation looks as

ρω2 − (λ + 2µ + 2N)k2 = 0. (34)

Thus, if n · k̂ = ±1 or n · k̂ = 0, anisotropic term for the shear wave disappears, and its dispersion
relation is the same as for the isotropic medium, longitudinal wave is non-dispersive, with constant
velocity cp,

c2
p =

λ + 2µ + 2N
ρ

for k̂||n̂, c2
p =

λ + 2µ

ρ
for k̂ · n̂ = 0. (35)

2.3.2. Mixed Wave

If neither n · k̂ 6= ±1 nor n · k̂ 6= 0, longitudinal wave and shear wave with u not parallel to n̂× k̂
do not exist. Waves become mixed. Separating the “isotropic-like” shear wave, we obtain from (33) the
dispersion relation for the mixed wave:

ω4(1 +
c2

s k2

ω2
1
)−ω2k2(c2

p(1 +
c2

s k2

ω2
1
) + c2

s ) + k4(c2
pc2

s − c4
n(n · k̂)2|n× k̂|2) = 0, (36)

where
c2

n = N/ρ, c2
p = (λ + 2µ + 2N(k̂ · n̂)2)/ρ

def
= c2

P + 2c2
n(k̂ · n̂)2, c2

P =
λ + 2µ

ρ
(37)

It can be rewritten as

ω2 =
k2

2

(
c2

p +
c2

s

1 + c2
s k2

ω1
2

±

√√√√(c2
p −

c2
s

1 + c2
s k2

ω1
2

)2

+
4c4

n(k̂ · n̂)2|k̂× n̂|2

1 + c2
s k2

ω1
2

)
def
= c2

f (ω)k2. (38)
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We can find eigenvectors for the mixed wave from this relation and Equation (33). Omitting some
calculations, we give the result:

u0 = u0(k̂ + ñ(c2
f (ω)

ρ

N
− (

λ + 2µ

N
+ 2(k̂ · n)2))). (39)

An example of dispersion curves is given in Figure 2. Both curves are dispersive but for the upper
one we hardly notice this.

The branch with “+” of Equation (38) at large k tends to cpk, and at small k

ω ≈ ((c2
p + c2

s + ((c2
p − c2

s )
2 + 4c4

n(k̂ · n̂)2|k̂× n̂|2)1/2)/2)1/2 k. (40)

These two velocities are relatively close if we require the strain energy to be positively definite.
For instance, for the parameters shown in Figure 2, if we take cs = 1, we obtain the velocity at low
frequencies approximately equal to 2.92, and at large frequencies approximately 2.83.

The lower (“−”) branch of Equation (38) has a horizontal asymptote ω = ω1a < ω1, analogously
to the isotropic case, where ω2

1a = (1− c4
n(k̂ · n̂)2|k̂× n̂|2/(c2

pc2
s ))ω1

2 (for instance, ω1a ≈ 0.709ω1 for
parameters in Figure 2), and it is highly dispersive. At low frequencies it behaves as

ω ≈ ((c2
p + c2

s − ((c2
p − c2

s )
2 + 4c4

n(k̂ · n̂)2|k̂× n̂|2)1/2)/2)1/2 k, (41)

and its velocity is less than cs.

0.0 0.5 1.0 1.5 2.0 2.5

csk/ 1

0

1

2

3

4

5

6

7

/
1

Figure 2. Dispersion curves for the constrained anisotropic elastic linear reduced Cosserat medium,
cP = 2.01, cN = 2, k̂ · n = 0.707. Both curves are dispersive but for the upper branch we hardly
notice this.

Summary for the Elastic Models

We see that for the linear elastic constrained reduced Cosserat media (isotropic and special
transversally isotropic with a coupling between volumetric and shear deformations)

• there is an infinite bandgap above the boundary frequency ω1 for the shear waves in both
models and above a lower frequency ω1a, which depends also on the anisotropy and propagation
direction, for the slower mixed wave in the considered anisotropic case.

• compression wave in the isotropic case is classical, non-dispersive



Symmetry 2020, 12, 521 9 of 22

• the upper branch of the mixed wave in the considered anisotropic case is weakly dispersive
and has no band gap; its effective moduli, in particular, depend on the direction of the wave
propagation and anisotropy parameter

2.4. Isotropic Viscoelastic Model

Let us consider how viscosity in case of the simplest viscoelastic model will influence the wave
propagation. For the reduced isotropic Cosserat medium it yields in drastic change [13]. As we
discussed before, for any constrained linear reduced Cosserat medium τS is determined from the
constitutive equations. We choose an isotropic homogeneous viscoelastic Kelvin–Voight model

τS = λ∇ · u + 2µ(∇u)S + λκ∇ · u̇ + 2µν(∇u̇)S. (42)

This constitutive equation satisfies the 2nd law of thermodynamics if κ, ν > 0. Consider zero
external body loads and spherical tensor of inertia, as in previous sections. This equation together with
the balance of force (7) lets us to write down equations in displacements:

(λ + 2µ)(∇∇ · (u + κu̇))− µ∇× (∇× (u + νu̇)) = ∇× (I∇× ü)/4 + ρü (43)

2.4.1. Plane Shear Wave

Taking the divergence of (43), we see that as in the purely elastic isotropic case, considered in
Section 2.2, compression wave is not influenced by rotational degrees of freedom. It is separated from
the shear wave. We will not discuss it here, since it is the same as in the classical viscoelasticity.

We look for the plane wave solution of (43): u = u0ei(k·r+ωt) and consider the case of the shear
wave (u · k = 0). Shear wave obeys the following equation in the Fourier domain:

µ(1 + iνω)k× (k× u) = −ω2ρu− Iω2k2u/4. (44)

It gives us the following dispersion relation:

c2
s k2 =

(
1 + iνω

ω2 − 1
ω2

1

)−1

, c2
s =

µ

ρ
, ω2

1 =
4µ

I
. (45)

Let us investigate how the viscosity will influence the band gap which exists in the elastic case.
Let us denote

cs

ω1
k = K + iκ, Ω =

ω

ω1
, n = νω1. (46)

Taking the real and imaginary part of the dispersion relation (45), we obtain

κ = −nΩ3

2zK
, z = (1−Ω2)2 + n2Ω2 > 0, (47)

K4 − Ω2(1−Ω2)

z
K2 − n2Ω6

4z2 = 0. (48)

There is one positive root for K2, since n > 0:

K2 =
Ω2

2z

(
1−Ω2 +

√
(1−Ω2)2 + n2Ω2

)
. (49)

Figure 3 shows us an example of numerical graphs for the dispersion relation:
In this figure we see that both <k and |=k| first increase with ω, then they reach their maximal

values (not at the same frequency), and after this decrease with ω. This is a quite untypical behavior.
For all parameters checked numerically <k(ω) has one maximum, and |=k|(ω) has one maximum
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for n which is small enough. Approximately at n > 1.5 the extremum for the imaginary part of the
wavenumber disappears.

20 15 10 5 0

Solid: Re csk/ 1, dashed: Im csk/ 1, n=0.05

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

/
1

Figure 3. Dispersion curve for the linear constrained reduced viscoelastic isotropic Cosserat medium,
ω
ω1

vs. < csk
ω1

,= csk
ω1

, n = 0.05.

2.4.2. Dispersion Relation Properties of the Viscoelastic Model

Asymptotics for Various Domains of Frequencies

Let us consider the properties of the dispersion relation (49). First, we can see from this equation,
that in the viscoelastic reduced linear isotropic constrained Cosserat continuum there are no band
gaps. Indeed, there is one positive root for k2, given (up to multiplication by a constant ω1/cs) by
Equation (49) for any frequencies. Consider its asymptotics at low frequencies. At Ω→ 0 we obtain
almost classical shear wave. Indeed, (45) in this limit gives us

K ≈ Ω, κ ≈ −nΩ2/2 (csk ≈ ω). (50)

In the vicinity of the boundary frequency ω = ω1 (Ω = 1)

Ω→ 1, Ω = 1 + ε, ε = o(1) =⇒ (51)

K ≈ 1√
2n

(1 + ε(
1
2
− 1

n
)), κ ≈ − 1√

2n
(1 + ε(

1
2
+

1
n
)). (52)

So we see that if n < 2 dispersion curve decreases at Ω = 1. The decreasing part of the dispersion
curve corresponds to the behavior of a double negative acoustic metamaterial. At n > 2 it increases at
this point, and at n = 2 it has a maximum Ω = 1.

At large frequencies our medium is always a double negative acoustic metamaterial, since the
dispersion curve decreases: if Ω→ ∞ (Ω >> n), then

K ≈ n
2Ω

, κ ≈ −1. (53)

We see that Figure 3 confirms this asymptotics.
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Detailed Analysis of the Real Part of the Wavenumber. Influence of the Dissipation Parameter n on
Its Behaviour

We see that <k(ω) is a differentiable function, increasing at small ω and decreasing at large ω.
Therefore, it has at least one maximum and it is limited by a certain value. We will estimate this value
from above. Note that

2K2 =
Ω2(1−Ω2)

z
+

Ω2
√

z
. (54)

Estimating from above each term in the right part of this equation (see Appendix A), we obtain

K2 <


1
8 + 1

n
√

4−n2 , n2 6 2/3,
1

2n2(3n2+4) +
1

n
√

4−n2 , 2/3 < n2 < 2,
1

2n2(3n2+4) +
1
2 , 2 6 n2.

(55)

In all numerical examples K increases with Ω until a certain value Ωmax where it has a maximum
and then decreases, tending to 0 at large Ω, as it follows from the analytics obtained above.
Numerical examples of the dispersion curve for the real part of the wave number (Figures 4–7) show
us how it changes when the dissipation parameter n increases. We see that K(Ωmax), corresponding
to the minimal wavelength, decreases with n. The medium exhibits features of a double negative
acoustic metamaterial above Ωmax, which can be controlled via the dissipation. However, Ωmax is not
a monotone function of n. Numerical examples show us that first, it decreases from 1 as n increases,
and then increases, overpassing 1 again at n = 2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Re csk/ 1, 1 = 0.05

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

/
1

Figure 4. Dispersion curve for the linear constrained reduced viscoelastic isotropic Cosserat medium,
ω
ω1

vs. < csk
ω1

, n = 0.05.
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Figure 5. Dispersion curve for the linear constrained reduced viscoelastic isotropic Cosserat medium,
ω
ω1

vs. < csk
ω1

, n = 0.5.
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Figure 6. Dispersion curve for the linear constrained reduced viscoelastic isotropic Cosserat medium,
ω
ω1

vs. < csk
ω1

, n = 2.

We can analytically find how the value of <k at a given ω changes if we change the dissipation
parameter n. If we differentiate Equation (54) with respect to n2 and find its extremuma, we obtain that

• at 0 < ω < ω1, i.e., in the zone where the shear wave in the elastic medium propagates, as well
as at ω = ω1, the value of <k decreases when n increases;

• at ω > ω1, i.e., in the zone where the shear wave in the elastic medium does not exist, <k for

a given ω first increases as n increases, then reaches its maximal value at n =
√

3(ω2−ω2
1)

ωω1
and then

decreases as n increases. The corresponding maximal value of (<k)2 is given by

( cs<k
ω1

)2
=

ω2

8(ω2 −ω2
1)

. (56)
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Figure 7. Dispersion curve for the linear constrained reduced viscoelastic isotropic Cosserat medium,
ω
ω1

vs. < csk
ω1

, n = 5.

Logarithmic Decrement.

It is curious that the logarithmic decrement

2π

∣∣∣∣<k
=k

∣∣∣∣ = 2π
nΩ

1−Ω2 +
√

z
(57)

at high frequencies behaves as 4πΩ/n = 4πω/ν, i.e., the larger dissipation is, the better wave passes.
This peculiar property is related to the fact that the band gap in the elastic medium was related not to
the dissipation, but to the localization, which appears to be broken by presence of viscosity.

At low frequencies, on the contrary, it is equal to πnΩ = πνω, i.e., it is proportional to the
dissipation. At n = 2, the same parameter at which K reaches its maximal value at the characteristic
frequency ω = ω1, asymptotics for logarithmic decrease at small and large frequencies coincide.

Near the characteristic frequency ω = ω1, i.e., when Ω = 1 + ε, ε = o(1), the logarithmic
decrement tends to 2π(1 + 2ε/n). It means that above this frequency the dissipation favors the shear
wave propagation and below it attenuates the wave.

If we differentiate (57) with respect to n, we find that it is a monotone function of n at Ω < 1
(increasing with n) and at Ω > 1 (decreasing with n), and it does not depend on n at Ω = 1 (equals
2π). Numerical examples show a non-monotonic behavior of the logarithmic decrement as a function
of frequency for relatively small n near the characteristic frequency ω1 (see Figure 8).

Summary for the Viscoelastic Case

• P-wave is classical due to the isotropy of the model
• Viscoelasticity makes a bandgap for the shear wave to disappear and creates a decreasing part of

the dispersion curve
• In the former bandgap (existing for elastic case) viscosity favors the shear wave propagation and

below it attenuates the wave
• There exists a boundary wavelength, i.e., a minimal wavelength for propagating waves
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Figure 8. Dispersion curve for the shear plane wave in the linear constrained reduced viscoelastic
isotropic Cosserat medium, ω

ω1
vs: < csk

ω1
(solid), = csk

ω1
(dashed), logarithmic decrement divided by 2π

(dashed-dotted), n = 0.2.

3. Discussion

We see that the constrained reduced Cosserat medium in its elastic variant has properties which
are similar to the non-constrained reduced Cosserat continuum. It is also a single negative acoustic
metamaterial, but the bandgaps for the shear waves in both considered elastic constrained models and
for the slower mixed wave in the considered anisotropic case are limited only from below (see Figure 1,
Figure 2). The isotropic variant can be obtained as a limit case from the reduced non-constrained
isotropic Cosserat model, if we consider in the latter an infinite elastic resistance to the strain θ−∇×
u/2. The anisotropic model is not the limit case for an anisotropic reduced non-constrained Cosserat
theory with a coupling term between volumetric and rotational deformations, considered in [44].
We cannot introduce a similar coupling because of the kinematical hypothesis which we accept in the
constrained model. Indeed, in the non-constrained case, it was a term coupling ∇uS and θ−∇× u/2.
Therefore, it is not strange that one of the branches in the constrained medium is very little dispersive
and has no bandgap, unlike the non-constrained continuum. However, both slower waves have some
similar to the non-constrained model features (boundary frequencies), due to the fact that both media
are reduced, whence some waves cannot propagate.

The constrained reduced viscoelastic Cosserat model demonstrates drastical change in the wave
behavior comparing to the elastic case (Figures 3–8). We have seen similar effects in the non-constrained
theory [13], but in the model considered here, due to its simplicity, it has been possible to analytically
investigate the influence of the dissipation in reduced micropolar continua in more detail. We see
that in the viscoelastic constrained isotropic reduced Cosserat medium the bandgap Ω > 1 does
not exist anymore, but it converts, partially or completely, into a decreasing part of the dispersion
curve. Thus the medium, which was in a certain domain of frequencies a single negative acoustic
metamaterial in the elastic case, becomes a double negative acoustic metamaterial in the viscoelastic
case, though, generally speaking, in another domain of frequencies.

At high frequencies, the real part of the wavenumber tends to zero, and the group velocity to
infinity. The imaginary part tends to−ω1/cs at high frequencies (see Figures 3 and 8). This corresponds
to a very fast backward wave whose amplitude decreases in space as e−(ω1/cs)k̂·r. These waves become
infinitely fast as their wavelength tends to infinity. This peculiar behavior, in our opinion, is related to
the existence of the kinematical hypothesis, which introduces a rigid constraint into the medium.
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The real part of the wavenumber is limited by a certain value for all frequencies. In all numerical
examples <k(ω) has only one maximum (Figures 3–8). It does not coincide with the extremum for
the imaginary part, when the latter one exists (Figures 3 and 8). Let us discuss the physical meaning
of this. All the plane waves existing in the medium have a wavelength that is larger than a certain
minimal value, reached at a specific frequency. Above this frequency we have a decreasing part of
dispersion curve (a zone of anomalous dispersion), i.e., the medium is a double negative acoustic
metamaterial. Thus, introducing the viscosity, we change the type of acoustic metamaterial. For each
wavelength larger than this boundary-value, two plane waves co-exist in the continuum. One of them,
a forward wave, whose phase velocity has the same sign as the group velocity, has a lower frequency.
Another one, with a higher frequency, is a backward wave: its direction of propagation of wave energy,
determined by the group velocity, is opposite to the phase velocity. The longer waves are, the faster is
the backward wave, and the forward wave is closer to the classical shear wave.

The frequency which separates two zones, of anomalous and normal dispersion, depends on
the dissipation parameter, but, as we can suppose from the numerical experiment, cannot be
made arbitrarily small in comparison to the characteristic frequency ω1 for the undamped medium.
The group velocity at this point is infinite. Some authors believe that such a point on a dispersion
graph corresponds to instabilities in the real medium [45]. Numerical examples (Figures 4–7) show
that this frequency depends on the dissipation parameter n in a non-monotonous way.

Logarithmic decrement has, generally speaking, a complex frequency-dependent behavior
(Figure 8), but we know that it decreases with dissipation n for frequencies above the characteristic
one (i.e., in the former band gap) and increases with n below it. This, probably, can be explained as
follows: in the elastic medium the existence of the bandgap was related not to the dissipation, but to
the localization, and the viscosity breaks condition for its existence. At low and high frequencies the
logarithmic decrement is proportional to the frequency, but in the middle, it may have (or not have)
extremuma, depending on the parameters.

One can observe similar effects also in media of other types. For instance, non-polar dielectrics,
if to neglect dissipation, have a bandgap. Dispersion in the low-frequency transparency window is the
same as in the elastic constrained reduced isotropic Cosserat medium. The high-frequency transparency
window is the same as for the non-constrained elastic reduced isotropic Cosserat medium, but it is
absent in our case. When dissipation is taken into account, the bandgap is not present anymore,
but a zone of anomalous dispersion appears [45].

In classical viscoelastic metamaterials, considered in [46], viscosity produces similar effects:
“transmission is generally worsened in passing bands, while it is enhanced inside locally resonant
band gaps”. The metamaterial considered in the work mentioned above is a periodic structure of
circular metal bars coated with rubber, embedded into a viscoelastic matrix. It is difficult to make
a precise comparison with our case, since we do not consider in this work a discrete structure of
metamaterial, as it is done in [46]. A similar model is investigated in [47]. It is also concluded that
viscosity contracts existing band gaps, and elasticity enhances them. An important difference with
the constrained reduced Cosserat medium is that in our case the dissipation destroys completely the
bandgap existing in the elastic case, while for the case considered in these two works band gaps are
still present in the viscoelastic case. Perhaps the reason is that the considered discrete structure is much
more complex than the reduced Cosserat model.

We could expect that these kinds of models may be useful for the description of blocky media
and for design of artificial acoustic metamaterials with desired properties.

4. Materials and Methods

This is a theoretical work with methods based upon fundamental laws of continuum mechanics of
complex media in their local form, direct tensor calculus and Fourier transform. Numerical graphs are
plotted with help of scripts in python which can be found in Appendix B. Numerical results validate
analytical formulae for the obtained dispersion curves.
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We describe all the material types considered above and their properties in Table 1.

Table 1. Linear reduced Cosserat constrained media and their wave properties.

Medium Wave Properties Classification

Isotropic Classical compression wave. Highly dispersive shear– single negative acoustic
elastic rotational wave, which does not propagate above metamaterial at ω > ω1

boundary frequency ω1 (large wavenumber limit)

Elastic with a Shear wave (same as in isotropic case), non-dispersive single negative acoustic
simplest compression wave (for k ⊥ n with classical velocity or metamaterial with respect
axisymmetric k||n with larger velocity), and two mixed waves to the shear wave at ω > ω1
coupling coexist. One mixed wave is weakly, the other is and with respect to the
N∇ · u(n · ∇u · n) strongly dispersive with a boundary frequency slower mixed wave
between shear and ω1a < ω1 depending on the propagation direction at ω > ω1a
volumetric strains

Viscoelastic Classical compression wave. Highly dispersive shear– Double negative acoustic
isotropic rotational wave. Its dispersion branch has a decreasing metamaterial with respect

part and large velocity at large ω; there is a minimal to the shear wave
wavelength, <k(ω) < kmax(n) has at least one above a certain frequency
maximum; at small ω the wave tends to classical;
band gap disappeared, in its domain dissipation
enhances wave propagation, at ω < ω1 attenuates
the wave, at ω1 does not influence the attenuation
Logarithmic decrement is proportional to ω
at low and high frequencies
(proved analytically and checked numerically).
<k(ω) has only one maximum, the group velocity
there is infinite, this point separates zones of normal
and anomalous dispersion. =k has one maximum
(at small n) or does not have, it depends
on n in a complex way (checked numerically).

5. Conclusions

We considered three types of linear constrained reduced Cosserat media: elastic isotropic,
elastic with specific transversely isotropic coupling between volumetric and shear deformations,
and viscoelastic isotropic.

Elastic models present an infinite bandgap above a certain characteristic frequency for some
type of waves: shear plane wave and, in case of anisotropic theory, also one of the mixed waves.
Therefore they should be classified as single negative acoustic metamaterials. They have also a branch
without a bandgap, non-dispersive (in the isotropic case, compressional wave) and weakly dispersive
(model with anisotropic coupling, the upper branch of the mixed wave). In the anisotropic case
dispersion curves essentially depend on the propagation direction.

The isotropic viscoelastic model possesses a classical compressional wave, but the shear wave
changes drastically. The bandgap disappears. At high frequencies, we observe a decreasing dispersion
curve in some frequency range (i.e., the medium is a double negative acoustic metamaterial in this
domain), with a diverging group velocity as the frequency increases. Depending on dissipation,
this frequency domain may cover a part of the former band gap ω > ω1 or extend to the whole
former bandgap and occupy also some domain below ω1. Above the characteristic frequency ω1 the
logarithmic decrement decreases as the dissipation increases (the viscosity favors wave propagation),
and below it, the logarithmic decrement increases with the viscosity increases (which attenuates the
wave in this case). Viscous dissipation appears to destroy the wave localization, related to the existence
of the bandgap in the elastic case. Shear waves with a wavelength shorter than a certain threshold
cannot propagate in this medium. One may thus control the properties of the acoustic metamaterial by
means of viscosity.
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In the future, we plan to analyze in more detail the influence of small and large dissipation in
the linear isotropic reduced constrained viscoelastic Cosserat medium, to consider a purely viscous
case, possibly to combine viscosity with anisotropic coupling and also to continue the investigation of
waves in viscoelastic non-constrained reduced Cosserat continua.
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Appendix A. Estimation of the Minimal Wavelength

Let us estimate from above each term in the right part of Equation (54). First, take into account
that z(Ω) reaches its minimal value

zmin = 1 at Ω = 0 if n2 6 2/3, (A1)

and

zmin = n2(1 +
3
4

n2) at Ω = 1 +
n2

2
if n2 > 2/3. (A2)

Then the first term can be estimated as

Ω2(1−Ω2)

z
<

max(Ω2(1−Ω2))

zmin
=

 1
4 if n2 6 2/3

1
n2(3n2+4) if n2 > 2/3

. (A3)

To estimate the second term in the right part of (54) we calculate the derivative of its square with
respect to Ω2 and find the extremum:

∂(Ω2/z)
∂(Ω2)

= 0 ⇐⇒ 2Ω2(Ω4 +(n2− 2)Ω2 + 1) = Ω4(2Ω2 + n2− 2) ⇐⇒ Ω2 =
1

2− n2 , (A4)

if n2 < 2. The maximal value of Ω2/
√

z is equal to 2
n
√

4−n2 . For n2 > 2 this derivative cannot equal

zero for positive Ω2. For this value the term being estimated is a monotone function changing from 0
at Ω = 0 to 1 at Ω = ∞.

Therefore, Equation (54) gives us

K2 <


1
8 + 1

n
√

4−n2 , n2 6 2/3,
1

2n2(3n2+4) +
1

n
√

4−n2 , 2/3 < n2 < 2,
1

2n2(3n2+4) +
1
2 , 2 6 n2.

(A5)

Appendix B. Numerical Scripts

Script for plotting dispersion graphs for the elastic constrained reduced isotropic and anisotropic
Cosserat medium:

import numpy as np
import matplotlib.pyplot as plt
import cmath as~cm

# assign~values
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# omega0=1, cs=1, since we have adimensionalised the equations
cp = 2.01 # cp^2 = (lambda + 2 mu)/rho, cp --- compression wave velocity
# in the isotropic case
cn = 2 # cn^2=N/rho. For~isotropic medium it is 0.
c = 0.707 # c = cos(k,n) --- cosine of angle between the axis of isotropy
# and direction of wave propagation
cpnsq = cp**2+2*cn**2*c**2

N = 10000 # number of elements to evaluate
k_values = np.linspace(0.0,1,N) # wave number
real_omegasqp = np.zeros(N) # square of the adimensionalised
# frequency, upper part of the dispersion branch.
real_omegasqm = np.zeros(N) # square of the adimensionalised
# frequency, lower part of the dispersion~branch

real_omegap = np.zeros(N) # adimensionalised frequency,
# upper part of the dispersion branch. For~isotropic case
# it becomes a compressional wave
real_omegam = np.zeros(N) # adimensionalised frequency,
# lower part of the dispersion branch. For~isotropic case
# it is a shear~wave

#-----------
# MAIN CODE
#-----------
for o_index in range(N):

k = k_values[o_index]

# omega1/csalphad=1, we adimensionalised the equations
omegasqp = 0.5*k**2*(cpnsq+1/(1+k**2)
+cm.sqrt((cpnsq-1/(1+k**2))**2+4*cn**4*c**2*(1-c**2)/(1+k**2)))
omegasqm = 0.5*k**2*(cpnsq+1/(1+k**2)
-cm.sqrt((cpnsq-1/(1+k**2))**2+4*cn**4*c**2*(1-c**2)/(1+k**2)))
real_omegasqp[o_index] = np.real(omegasqp)
real_omegasqm[o_index] = np.real(omegasqm)

omegap = cm.sqrt(omegasqp)
real_omegap[o_index] = np.real(omegap)

omegam = cm.sqrt(omegasqm)
real_omegam[o_index] = np.real(omegam)

#----------------
# plot solutions
#----------------
font = {’size’: 12}
plt.rc(’font’, **font)
plt.figure(num=1,figsize=(12,6),dpi=100) # define plot size in inches
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# (width, height) & resolution(DPI)

plt.subplot(111)
plt.plot(k_values,real_omegap, ’b*’,linewidth=1)
plt.plot(k_values,real_omegam,’r*’,linewidth=1)
plt.xlabel(’$c_s k/\omega_1$’, size=28)
plt.ylabel(’$\omega/\omega_1$’,size=28)
plt.grid(True)

plt.show()

Script for plotting the dispersion graphs for the viscoelastic reduced isotropic Cosserat medium:

import numpy as np
import matplotlib.pyplot as plt
import cmath as~cm

# viscoelastic isotropic constrained reduced Cosserat medium,
# dispersion curves and logarithmic~decrement

# assign values
n = 0.2
# omega1=1, cs=1, since we have adimensionalised the~equations

N = 10000 # number of elements to evaluate
x_values = np.linspace(0.0,1.5,N) # x = omega / omega_1
real_tgphi = np.zeros(N) # tgphi = Re k / Im k
real_kdsq = np.zeros(N) # kdsq = (Re k c_s / omega_1)^2
real_kd = np.zeros(N) # kd = Re k c_s / omega_1
real_kverif = np.zeros(N) # kverif = Im k c_s / omega_1

#-----------
# MAIN CODE
#-----------
for o_index in range(N):

x = x_values[o_index]

kdsq = x**2*((1-x**2)+cm.sqrt((1-x**2)**2+n**2*x**2))/(2*((1-x**2)**2+n**2*x**2))
real_kdsq[o_index] = np.real(kdsq)

kd = cm.sqrt(kdsq)
real_kd[o_index] = np.real(kd)

kverif = -n*x**3/(2*kd*(1-x**2)**2+n**2*x**2)
real_kverif[o_index] = np.real(kverif)

tgphi = kverif/kd
real_tgphi[o_index] = np.real(tgphi)

#----------------
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# plot solutions
#----------------
font = {’size’: 12}
plt.rc(’font’, **font)
plt.figure(num=1,figsize=(12,6),dpi=100) # define plot size in inches
(width, height) & resolution(DPI)

plt.subplot(111)
plt.plot(real_kd, x_values, ’b*’,linewidth=1)
plt.plot(real_kverif,x_values,’r--’,linewidth=3)
plt.plot(-real_tgphi,x_values,’c-.’,linewidth=4)
plt.xlabel(’Solid: Re $c_s k/\omega_1$, dashed: Im $c_s k/\omega_1$,
dashed-dotted: |Im $k$ / Re $k$|, n=’+str(n), size=28)
#plt.xlabel(’Re $c_s k/\omega_1,\quad$’+chr(957)+’$\omega_1=$’+str(n), size=28)
#plt.xlabel(’Im $c_s k/\omega_0$’, color=’red’, size=16)
plt.ylabel(’$\omega/\omega_1$’,size=28)
#plt.ylabel(Blue: ’Re $k$, red: Im $k$’,size=16)
plt.grid(True)

plt.show()

The 7th line from below in the last script contains the following text (which too large to print as it
is in python):

plt.xlabel(’Solid: Re $c_s k/\omega_1$, dashed: Im $c_s k/\omega_1$,
dashed-dotted: |Im $k$ / Re $k$|, n=’+str(n), size=28)
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