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Electromagnetic meta-materials composed of a 3-D lattice of small conducting resonators can
be convenient to reach interesting permittivity and permeability levels, especially for applications
such as invisibility cloaking or superlenses. In this article, we present a fast dipolar expansion of
meta-atoms based on the far-field extracted from a simulation or experimentation. Using a dipole
approximation of the field scattered by a single inclusion, we develop a homogenization method based
on the Clausius-Mossotti relation, taking into account the interactions between meta-atoms. We
then establish a generalization of the Clausius-Mossotti relation for bi-anisotropic meta-materials to
extend our methodology to a more general class of meta-atoms. Some examples are given based on
full-wave simulations of a meta-atom, and a comparison with other approaches allows an evaluation
of the relevance of this methodology.

I. INTRODUCTION

Metamaterials are microstructured media exhibiting
interesting physical behavior in many domains: electro-
magnetics, mechanics and thermodynamics. The use of
metamaterials appears to be a privileged way to achieve
specific electromagnetic devices, such as superlenses [1]
or invisibility cloaks [2] [3]. The main objective consists
in creating an artificial micro-structured medium that
behaves in a specific way to reach electromagnetic
effective properties that cannot be found in nature.

For superlenses, the property of interest is the refrac-
tive index, which has to be negative to achieve negative
refraction. More specifically, for lossless materials, this
means that we either have both negative permittivity
and permeability at a given frequency. On the contrary,
permittivity and permeability required for an invisibility
cloak don’t need to reach negative values. However,
their realization remains very difficult because of the
high anisotropy levels and high inhomogeneity needed
in the cloak medium. Moreover, a theoretical invisibility
cloak in free space always involves the use of Epsilon-
Near-Zero (ENZ) and Mu-Near-Zero (MNZ) materials
[2] [4] [5]. This allows the creation of a refractive index
below unity, that is needed to divert the rays from their
original trajectory without disturbing their phase.

The development of metamaterials allowing the
production of such complex electromagnetic devices
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relies on the homogenization methods used to determine
their effective properties. Many papers have focused on
the way to extract permittivity and permeability via the
Nicolson-Ross methodology [6] [7] [8]. More recently,
this method has been adapted to metamaterials [9]
[10], whereas alternative ways to extract parameters
have emerged [11] [12] [13], introducing a definition
of effective permittivity and permeability parameters.
Chirality and more generally bi-anisotropy is usually not
taken into account in the classical methods, but have
been observed many times in the study of metamaterials
[14] [15] [16] and especially for the lattices of resonating
structures. These effects, caused by the geometry
of the inclusions, render the extraction of the classic
permittivity and permeability parameters irrelevant
because it provides crossed reactions between electric
and magnetic excitations. The authors of these papers
and of ref.[17] tried to take advantage of bi-anisotropic
phenomena to create an effective negative refractive
index for a given incident wave. Other authors suggest
homogenization methodologies that take into account
the specific behavior of the material and give chirality
parameters in addition to a restored permittivity and
permeability [18] [19] [20] [21].

Metamaterials composed of a lattice of resonating
structures often exhibit complex behavior and 3D-
simulations required for most homogenization methods
lead to an important computational burden for both
RAM and processors. An alternative approach consists
in the study of the metamaterial through the analysis of
the field scattered by a single particle. This approach
has been developed in [22] [23] [24] [25] and constitutes
a relevant way to analyse metamaterials that does not
require a simulation of the whole lattice.
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Based on this single meta-atom approach, we devel-
oped in a previous work [26] a fast extraction method of
the electric and magnetic moments for a single particle
in free space. Using a limited set of directions for the
far-field, we easily obtain a two-orders multipole expan-
sion. The scattering properties of the single-particle
in free space give important clues to understand the
physics of the whole metamaterial. We also briefly men-
tioned a homogenization methodology for permittivity
and permeability based on the expansion of the field
scattered.

In this article, we use a fast method to perform a dipole
expansion of the meta-atoms, we give an example of in-
clusion studied through this approach and compare it to
a more traditionnal method. Then, we propose an exten-
sion of this methodology to realize a full bi-anisotropic
homogenization procedure based on a Clausius-Mossotti
relation generalized to bi-anisotropic metamaterials. We
finally validate our method thanks to a comparison with
a theoretical approach developed in [27].

II. DIPOLE EXPANSION

Multipole expansion methods used to study the
radiated far fields require a large number of extraction
points from the simulation or the experimentation to
perform a projection on a spherical harmonic basis
and deduce the multipole moments. However, around
its first frequency of resonance, the field scattered by
a meta-atom is mainly dipolar [22] [26]. Considering
that the field scattered by a meta-atom can be approxi-
mated by the sum of an electric and a magnetic dipole
contribution, we describe in this section a fast method
allowing the extraction of the dipole moments exhibited
by a meta-atom using the extraction of the electric field
along a very limited number of directions.

Considering that the first order of the expansion is pre-
ponderant and based on equations presented in [28], we
can write the electric far-field Em scattered by a single
meta-atom in free space:

Em =
Z0ck

2

4π

eikr

r
[(n× p)× n− n×m/c] (1)

with n the unit vector in the direction of observation,
Z0 the free space impedance, k the free space wavenum-
ber, r the distance between the evaluation point and the
meta-atom, p and m, the electric and magnetic dipoles.

A simulation of the single meta-atom in free space
is computed with a background linearly polarized plane
wave. Thanks to this simulation we evaluate the far-field
scattered by the meta-atom in an arbitrary direction de-
scribed by its angular coordinates (θ, φ). For example,
if we choose (θ, φ) = (0, 0), a projection along x, y and
z-axis gives us the three following equations :



Efar(0, 0).x =
Z0ck

2

4π

eikr

r
(px −my/c)

Efar(0, 0).y =
Z0ck

2

4π

eikr

r
(py +mx/c)

Efar(0, 0).z = 0

(2)

We obtain here two-non trivial equations linking the
projections of the electric field to the variables of inter-
est, the electric and magnetic dipole moments. The pro-
jection along z-direction is zero because the field prop-
agates orthogonally to its orientation. Repeating this
procedure with two other directions of extraction of the
field, we can build a matrix equation by concatenation of
the non-trivial equations :

4πre−ikr

Z0k2



Ey(π/2, 0)

Ez(π/2, 0)

Ex(π/2, π/2)

Ez(π/2, π/2)

Ex(0, 0)

Ey(0, 0)



=



0 1 0 0 0 1

0 0 1 0 −1 0

1 0 0 0 0 −1

0 0 1 1 0 0

1 0 0 0 1 0

0 1 0 −1 0 0





px

py

pz

mx/c

my/c

mz/c



(3)

A simple inversion of the 6-by-6 matrix then gives the
dipole moments.

Although this methodology of dipole expansion of

a meta-atom is very general, we fixed as an example
a geometry of inclusion to illustrate its interest. This
geometry is presented in fig. 1: this inclusion is com-
posed of a thin metallic rolled-up wire from which we
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FIG. 1. Conductive flat spiral used as resonating structure
for a 3D-metamaterial. The span of the particle is 20mm long
whereas its curvilinear length is about 250mm long. We ex-
pect a low frequency resonance and a preponderant magnetic
response.

expect a magnetic response. Indeed, the use of a highly
curved metallic path should generate rotating currents
along the surface and create an overriding dipolar
magnetic response. Of course, we also expect a minor
dipolar electric response. We also define an integral
evaluation index to compare the dipole model and the
field scattered by the particle according to the full-wave
simulation.

Imodel =

∫
θ,φ

||Em −Ema||2 sin(θ) dθ dφ∫
θ,φ

||Em||2 sin(θ) dθ dφ

(4)

with Ema the exact field scattered by the meta-atom
and θ and φ, respectively the polar and azimuthal angles
in the spherical coordinate system.

The span of our inclusion is 2 centimeters long for
a curvilinear length of 25 centimeters. We know from
previous research [29] [30] that the longer the curvilinear
length of the metallic path, the longer the free-space
wavelength resonance. With a curvilinear wavelength
that is one order of magnitude longer than the global
span of the particle, we expect that the first resonance
happens for a very long free-space wavelength compared
to the span. Indeed if the particle is small compared
to the wavelength it is easier to realize lattices of in-
clusions whose parameters are small enough to consider
homogeneous behavior. The geometry of this structure
can easily be represented and meshed with the COM-
SOL commercial software. The material used for the
meta-atom is an electric conductor with a conductivity
of 105S/m, which could correspond to graphene-based

composits in the microwave domain [31]. We did not
choose a classical conductor like gold or copper because
of their high conductivity. The resonance is much
sharper at these levels of conductivity but we expect a
smoother response of the material [12] [32].

Simulations are then made using the RF module in
the frequency domain. To obtain a strong magnetic
response, the magnetic field of the background wave
is oriented along the z-axis and the electric field along
the y-axis. The far-field is then extracted from the
COMSOL file and sent to an algorithm that performs
the dipole expansion. The results for our meta-atom
are given in fig.2. As can be seen, the magnetic dipolar
response is mainly oriented along the z-direction, which
is the direction of the background magnetic field. The
electric dipolar response is mainly oriented along the
y-direction, that is the direction of the background
electric field.

First, we confirm with the evaluation index that
the hypothesis made on the far-field in equation 1 is
verified: the evaluation index shows a maximum of
the difference between the two-orders model and the
far-field from the simulation of 0.16%, which is very
low. We then consider that our expansion is valid
and that it is relevant to neglect high order multipole
moments. The most significant point in fig.2 is the
comparison of the power radiated by the electric and
the magnetic dipoles: we note that the magnetic
dipolar moment is responsible for almost all the power
radiated by the inclusion at the first frequency of
resonance. This meta-atom could, therefore, be a good
candidate for the realization of a magnetic metamaterial.

Note that even if the imaginary part of the electric
dipole is positive, this metamaterial is actually passive.
We have indeed to consider both electric and magnetic
losses to conclude on the global passivity of the system
[33].

III. MAGNETO-DIELECTRIC PARAMETERS
EXTRACTION BY CLAUSIUS-MOSSOTTI

INVERSION

Using the dipolar moments and the local electromag-
netic fields, we can easily deduce the polarizability of the
material composed of a lattice of the inclusion. The clas-
sical definition of the polarizability is given by :

αe =
p

ε0El
; αm =

m

Hl
(5)

where El and Hl are the local electric and magnetic
fields, whereas p and m are the electric and magnetic
dipoles exhibited by the particle. In our simulations,
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FIG. 2. Two-orders multipole expansion. The dipolar (a) (b) moments are given as functions of the reduced wavelength in free
space. The corresponding radiated power (c) is also given for each moment. We observe a large preponderance of the dipolar
magnetic moments at the first resonance of frequency. The magnetic response is mainly oriented in the z-direction, which is
the direction of the magnetic excitation. The evaluation index (d) measures the difference between our two-orders model and
the scattered far-field of the meta-atom, which remains under 0.16% over the whole frequency range.

the meta-atom is isolated so the local fields equal the
background fields Eb and Hb of the plane wave. We
consider in this section a diagonal permittivity and
permeability tensor in the (x, y, z) basis and we also
consider that no bi-anisotropic effect would make fields
revolve. The constitutive equations that are assumed
to describe the behavior of the material are given in
equation 6:

D = ε0

εr,xx 0 0
0 εr,yy 0
0 0 εr,zz

E

B = µ0

µr,xx 0 0
0 µr,yy 0
0 0 µr,zz

H

(6)

The dielectric permittivity and magnetic permeability
that we are looking for are the diagonal coefficients of
respectively these permittivity and permeability matri-
ces. We choose the electric field Ei to be oriented along
x,y or z-axis. In a similar way, Hj is oriented along j-
axis. Thanks to Clausius-Mossotti relations, we can link
the electric polarizability of the meta-atom to the per-
mittivity of a material composed of an assembly of this
meta-atom. An analog of the Clausius-Mossotti relation
for permeability can also be found in [34]:

εr,ii(ω)− 1

εr,ii(ω) + 2
=

1

3ε0
Nαe,ii(ω)

µr,jj(ω)− 1

µr,jj(ω) + 2
=
µ0

3
Nαm,jj(ω)

(7)

with N the density of particles, εr,ii(ω) the relative
permittivity along the ith direction, µr,jj(ω) the rel-
ative permeability along the jth direction, αe,ii(ω) is

the electric polarisability and αm,jj(ω) the magnetic
polarisability.

In our specific case, the density is given by the num-
ber of inclusion per unit of volume. This is given by the
volume V = a3 of the unit cell containing one inclusion,
with a the lattice parameter of the cubic structure. The
Clausius-Mossotti relation can, therefore, be written as
a function of V, pi and mj and of the amplitude of back-
ground electric and magnetic fields.

εr,ii(ω)− 1

εr,ii(ω) + 2
=

pi(ω)

3V ε0Ei
;

µr,jj(ω)− 1

µr,jj(ω) + 2
=
mj(ω)

3V Hj
(8)

We previously considered that the electric excitation
induces the electric response and that both have to be
oriented in the same direction. Under this assumption,
we can easily retrieve the effective permittivity and per-
meability, which are given by a simple inversion of the
Clausius-Mossotti relations in equation 9.

εr,ii(ω) =
1 +

2pi(ω)

3V ε0Ei

1− pi(ω)

3ε0V Ei

; µr,jj(ω) =

1 +
2mj(ω)

3V Hj

1− mj(ω)

3V Hj

(9)

IV. EXAMPLE FOR A MAGNETIC
METAMATERIAL

To verify the accuracy of the method based on the
Clausius-Mossotti formula, we apply it on the small
resonating metallic meta-atom represented in fig.1. A
good test is to check if the results coming from our
methodology are similar to results coming from the
classical Nicolson-Ross method. For this purpose two
kinds of simulations shown in fig.3 are performed.
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First, we perform simulations where the inclusion is
single in free space, with Perfectly Matched Layer (PML)
standing for infinite space. A background polarized
plane wave is defined and we realize a six-directions field
extraction to have the two-orders multipole expansion
(this methodology is described in parts 2 and 3). These
simulations give the behavior of a single inclusion
excited by a linearly polarized plane wave. As a rule of
thumb, we consider that an evaluation index under 5% is
necessary to neglect the contribution of higher multipole
moments in the scattering properties of the particle.
Then, if the evaluation index is small enough and the
power emitted by the dipolar moments sufficiently
important, we can use the permittivity and permeability
calculation method.

Then, we perform simulations that involve a whole lat-
tice composed of the inclusion and supposed to behave as
an homogeneous material. To perform such a simulation,
we use periodic boundary conditions in two directions of
space orthogonal to the direction of propagation. These
simulations study six inclusions aligned in the direction
of propagation of the incident wave. An emitting port
plays the role of the electromagnetic source and sends a
plane wave on the lattice of meta-atoms. On the opposite
side, a receiving port allows the transmission of a plane
wave. Using the Nicolson-Ross method, the extraction
of the complex Fresnel coefficients yields the effective
permittivity and permeability parameters. Simulations
are performed over a frequency range around the first
frequency of resonance. In this case, the frequency sweep
was made starting from 0.25 GHz to 0.55 GHz with a
step of 0.002 GHz, for a total of 151 different frequencies.

Fig.4 displays the results for a lattice parameter of
2.8 cm. The two methodologies give similar results and
show that the response is mainly magnetic, as predicted
with the multipolar expansion. The real part of the
magnetic permittivity takes negative values around the
frequency of resonance whereas the real part of the
permeability is comprised between 1.2 and 1.6.

Many factors can explain the differences between the
two methodologies. First, due to calculation considera-
tions, we had to restrain the number of mesh elements.
Thus, it may not be precise enough to describe the fine
geometry of the meta-atom.

Then, the Clausius-Mossotti formula assumes a very
high number of dipoles in the media in every direction
of space. This hypothesis allows us to obtain an average
value of the local electric field. In our simulation case,
we set periodic boundary conditions in two directions.
However, in the direction of the wave propagation, there
are only six inclusions: the validity of the Clausius-
Mossotti formula applied to such a thin lattice could
be discussed. Moreover, the non-propagative field of a
particle may have an impact on the neighbor particles.

  

PML Meta-atom

Receiving port

Emitting port

Air

Meta-atom

Air

3D-simulation of a single meta-atom in free space

3D-simulation of a lattice of meta-atoms with 
emitting and receiving ports

Periodic boundaries (the hidden face is also concerned)

k
H

b

x

y

z

E
b

x

y

z

FIG. 3. Configurations for the two kinds of simulation. The
first kind is a free space study of a single inclusion surrounded
by a Perfectly Matched Layer. We extract the far-field scat-
tered by the inclusion to perform a multipole expansion. The
second kind is a study of a whole lattice of meta-atoms us-
ing emitting and receiving ports. Fresnel coefficients can be
extracted and yield effective values of permittivity and per-
meability via Clausius-Mossotti formula.

The effective local field may not correspond to Lorentz
field, which is assumed to use this formula.

Finally, the chirality of the meta-atom may affect the
validity of the constitutive relation given in equation 6.
We will discuss that point in the next sections of this
paper.

A major benefit of our methodology lies in the
fact that only one simulation is required even if we
want to study several lattice parameters. Indeed, we
only have to modify the volume V of the unit cell
in equation 9 to obtain the effective parameters. On
the contrary, the Nicolson-Ross method needs a sim-
ulation for every lattice parameter. For example, we
performed a parametric study on the lattice parameter:
11 different parameters have been tested with both
methodologies. The simulation of the first kind re-
quired for our multipole expansion was 240 times faster
than the parametric study for the Nicolson-Ross method.

However, this model and the Nicolson-Ross method
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(a)

(b)

FIG. 4. Comparison of the effective permittivity (a) and
permeability (b) obtained with the Nicolson Ross method
(dashed curves) and the parameters computed with our
methodology (solid curves). The lattice parameter used is
28mm. The global behavior is the same and the calculation
seems predictive.

have an important limitation that may partially explain
the gap observed between the two approaches: in both
methods, we don’t take chirality into account. Another
drawback of Nicolson-Ross methodology is its inherent
mono-incidence and mono-reflection hypothesis. Our
method does not suffer from this inconvenience since it
relies on the fields radiated in every direction. Moreover,
we verify that de dipolar behavior of the inclusion is
valid which is consistent with a homogeneity hypothesis
of the material. These limitations had no substantial
impact on the previous example because the response of
the meta-atom to the chosen incoming wave is correctly
oriented, as explained in the first section. However,
if we want to describe the metamaterial composed of
this meta-atom, we have to consider every possible
incoming plane-wave. With a different plane wave, our
methodology shows limitations.

To illustrate this point, we realized a simulation
with an incoming plane wave in which the electric
and magnetic fields are oriented along respectively x
and y-axis. Currents created along the curved wire
generate a magnetic response in the z-direction. Yet,
this direction is perpendicular to the background mag-
netic field. Because of this, the wave propagation in
the metamaterial is being disturbed and the classical
Nicolson-Ross method and our methodology do not

  

(a)

(b)

FIG. 5. Comparison of the effective permittivity (a) and
permeability (b) obtained with the Nicolson-Ross method
(dashed curves) and the parameters computed with our
methodology (solid curves) for an excitation wave traveling
along the z-direction. The lattice parameter used is 28mm.
The global behavior is not well predicted by our methodol-
ogy because the background magnetic field and the magnetic
response of the meta-atoms are not oriented in the same di-
rection. The Nicolson-Ross method does also not give a good
response since it does not take the chirality into account.

give similar results, as shown in fig.5. We have to find
a more general approach that would give meaningful
homogenized parameters for any possible meta-atom,
taking into account a more general constitutive relation
than the one given in equation 6.

V. EXTENSION TO BI-ANISOTROPIC
PARAMETERS EXTRACTION

The assumption we made about the constitutive equa-
tion 6 was not correct in the case of an inclusion with
strong bi-anisotropic effects. A more general equation
given in [35] that can properly describe the physics at
stake is the general bi-anisotropic material relation :

(
D
B

)
=

(
ε a

b µ

)(
E
H

)
(10)

With this material relation, 36 different parameters of
a 6-by-6 matrix have to be determined for a proper de-
scription of the media. We first define the equation de-
scribing the polarizability of an atom in this configura-
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tion. As the constitutive equation is bi-anisotropic, the
polarizability equation takes a similar form.

(
p
m

)
=

(
αe αem
αme αm

)(
Eloc

Bloc

)
(11)

The vector on the left-hand side is a 6-by-1 vector
composed of the coefficients of the electric and magnetic
dipoles. Eloc and Bloc correspond respectively to the lo-
cal electric and magnetic field applied to the meta-atom.
The first objective consists in finding the 36 different co-
efficients of the polarizability tensor which describe the
response of the atom to external fields. With a single
simulation of a background plane wave, we cannot deter-
mine these coefficients. We have to enlighten the meta-
atom in several different ways to obtain enough informa-
tion about its scattering properties. With six different
excitation plane wave configurations we can build from
equation 11 a new matrix equation:

R =

(
αe αem
αme αm

)
S (12)

with

R =


p1x p2x p3x p4x p5x p6x
p1y p2y p3y p4y p5y p6y
p1z p2z p3z p4z p5z p6z
m1
x m2

x m3
x m4

x m5
x m6

x

m1
y m2

y m3
y m4

y m5
y m6

y

m1
z m2

z m3
z m4

z m5
z m6

z



S =


E1
x E2

x E3
x E4

x E5
x E6

x

E1
y E2

y E3
y E4

y E5
y E6

y

E1
z E2

z E3
z E4

z E5
z E6

z

B1
x B2

x B3
x B4

x B5
x B6

x

B1
y B2

y B3
y B4

y B5
y B6

y

B1
z B2

z B3
z B4

z B5
z B6

z



(13)

S- and R-matrix are defined by the concatenation
of the vectors of the 6 different simulations. R is the
reaction matrix defined for i=1 to 3 by Rij = pij and for

i=4 to 6 by Rij = mi
j , noting pij and mi

j the jth electric

and magnetic dipole coefficients of the ith simulation. S
is the source matrix defined for i=1 to 3 by Rij = Eij
and for i=4 to 6 by Rij = Bij , noting Eij and Bij the jth

electric and magnetic local field component of the ith

simulation.

As we study single meta-atoms in free space, the local
fields required in equation 11 are equal to the background
fields we define for the simulation. Moreover, every plane
wave of the set we use has to be linearly independent of
the five others so that the S-matrix is invertible. As we
only use linearly polarized waves in the (x, y, z) coordi-
nate system, this matrix can be simplified:

S =
Eb
c


c c 0 0 0 0
0 0 c c 0 0
0 0 0 0 c c
0 0 1 0 1 0
1 0 0 0 0 −1
0 −1 0 −1 0 0

 (14)

Eb is the amplitude of the background electric field
of the wave and c is the free-space speed of light.
We verify numerically that this S-matrix is invertible:
with these 6 excitation conditions, we have enough
information to determine every unknown material
parameter. The R-matrix is obtained by extraction
of the dipole moments for each of the 6 different
simulations, using the methodology described by inver-
sion of equation 3. Thanks to equation 12, a simple
inversion of the S-matrix gives the polarizability ten-
sor of the meta-atom. Since we have access to the
bi-anisotropic polarizability of our particle, we have
now to link it to the macroscopic material properties of
a whole lattice described by the constitutive equation 10.

First, we have to write equation 12 to link the electric
and magnetic dipole responses to the actual background
field in the general case. Indeed, if we consider a whole
lattice of the meta-atom, the background fields won’t be
equal to the local fields as for the single meta-atom. We
want to create an analog of the Clausius-Mossotti relation
for bi-anisotropic materials, so we consider that the local
electric field is the field inside a charged Lorentz sphere:

Eloc = Eb +
P

3ε0
(15)

with P the electric polarization of the medium. In
ref.[34], an analog for the magnetic field is given :

Bloc = Bb −
2µ0M

3
(16)

Electric and magnetic polarization can be linked to
electric and magnetic dipole moments and the volume V
of a unit cell containing the meta-atom :

P =
p

V

M =
m

V

(17)

The local fields can be replaced in equation 11 using
equations 15 and 16:

(
p
m

)
=

(
αe αem
αme αm

)
Eb +

p

3V ε0

Bb −
2µ0m

3V

 (18)
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After a few manipulations of equation 18, we obtain
an equation giving the electric and magnetic dipoles as a
function of the background fields:

(
p
m

)
=

I6 − ( αe αem
αme αm

) 1

3V ε0
I3 0

0 −2µ0

3V
I3



−1

(
αe αem
αme αm

)(
Eb

Bb

)
(19)

In this matrix equation, we give the link between the
dipoles and the background fields: the local fields are
similar to the Lorentz fields inside a charged sphere. We
obtain a relation between the macroscopic background
field and the microscopic dipole moments of the meta-
atoms. To manipulate easily this equation later in this
paper, we introduce a modified polarisability tensor:

(
p
m

)
=

(
α
′
e α

′
em

α
′
me α

′
m

)(
Eb

Bb

)
(20)

The coefficients of this new polarizability tensor can
be obtained by identification with equation 19. It is
straightforward to prove that as volume V of the unit
cell increases, the polarizability tensor defined in 20 con-
verges to the classical polarizability tensor.

(
α
′
e α

′
em

α
′
me α

′
m

)
V−→+∞−−−−−→

(
αe αem
αme αm

)
(21)

Equation 21 expresses the fact that if the meta-atom
density is very low in the metamaterial, the effect of the
neighbors becomes insignificant. Background fields and
local fields applied to the meta-atom are approximately
equal in that case. The next step consists in finding a
similar equation, linking dipoles and background fields,
involving macroscopic parameters instead of the micro-
scopic polarizability. We now consider that the global
response of the bi-anisotropic material is described by
susceptibility tensors:

P = ε0χeEb + ε0χemHb

M = χmHb + χmeEb
(22)

These formulae express susceptibility tensors as func-
tions of the background global fields. We now have to
replace Hb with Bb to perform an identification using
formula 19. We easily obtain the link between these two
fields considering the constitutive equation 10:

Bb = b Eb + µ Hb (23)

this can be rewritten:

Bb = µ0χmeEb + µ0

(
I3 + χm

)
Hb (24)

We then write Hb as a function of Bb and Eb:

Hb =
1

µ0

(
I3 + χm

)−1 (
Bb − µ0χmeEb

)
(25)

We replace Hb with expression 25 in equation 22, and
write the equation system as a matrix equation:

1

V

(
p
m

)
=


ε0

(
χe − χem

(
I3 + χm

)−1
χme

)
ε0
µ0
χem

(
I3 + χm

)−1
χme − χm

(
I3 + χm

)−1
χme

χm
µ0

(
I3 + χm

)−1

 Eb

Bb

 (26)

Equations 19 and 26 both link the microscopic dipole
response of a meta-atom with the external background
field. We perform a block-by-block identification to ob-
tain the susceptibility tensors. After a few calculations,
it is possible to express each block of susceptibility as a
function of the modified polarizability blocks defined in
20:

Block 22 : χm =
(
I3 −

µ0

V
α
′
m

)−1 µ0

V
α
′
m

Block 12 : χem =
µ0

ε0V
α
′
em

(
I3 + χm

)

Block 21 : χme =

[
I3 − χm

(
I3 + χm

)−1]−1 α′me
V

Block 11 : χe =
α
′
e

V ε0
+ χem

(
I3 + χm

)−1
χme

(27)
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(a)

(b)

λ/curvilinear length λ/curvilinear length λ/curvilinear length

λ/curvilinear length λ/curvilinear length λ/curvilinear length

FIG. 6. Relative permittivity (a) and permeability tensors (b) for the spiral. As predicted in [27], components 13, 23, 31 and 32
are close to zero in both matrices. Permittivity takes values above unity in the x- and y- directions and unity in the z-direction.
Permeability is almost equal to the 3-by-3 identity-matrix except for its 33-component: a Lorentz resonance appears. This
metamaterial can behave as an MNZ material near its first frequency of resonance. We use the same horizontal and vertical
ranges for every panel to facilitate the comparison between the different matrix components.
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(a)

(b)

λ/curvilinear length λ/curvilinear length λ/curvilinear length

λ/curvilinear length λ/curvilinear length λ/curvilinear length

FIG. 7. a-tensor (a) and b-tensor (b) parameters for the spiral. Reference [27] predicted that these parameters are equal to zero
except for components 13 and 23 of the a-tensor and components 31 and 32 for the b-tensor. Moreover, the Onsager-Casimir
relations are respected as we verify the relations : a13 = −b31 and a23 = −b32. We verify reciprocity for this metamaterial. We
use the same horizontal and vertical ranges for every panel to facilitate the comparison between the different matrix components.
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The first block to calculate is block 22, to obtain the
χm susceptibility that is required for the calculation of
the other blocks. We then compute block 12 and 21 to
obtain χem and χme. Finally, block 11 can be calculated.
The last step consists in the calculation of the permittiv-
ity, permeability and chirality tensors using the relations
given in equation 28:

ε = ε0

(
I3 + χe

)
µ = µ0

(
I3 + χm

)
a = ε0χem

b = µ0χme

(28)

In this section, we found an analog to the Clausius-
Mossotti relation that is valid for every bi-anisotropic
material as long as it satisfies the constitutive relation
10. Using this relation we can perform a parameter cal-
culation of a full bi-anisotropic metamaterial the same
way we performed it for regular magneto-dielectric.
The simulation of a single meta-atom in free space
under different enlightenment conditions gives enough
information to characterize the macroscopic behavior of
a whole lattice.

VI. VALIDATION OF THE BI-ANISOTROPIC
EXTRACTION

We study the meta-atom presented in section 4 to
realize the full bi-anisotropic parameters calculation.
We use the configuration of fig.3 for the full-wave
simulation, where the meta-atom is surrounded by a
Perfectly Matched Layer playing the role of infinite
free-space.

Assuming a lattice parameter of 2.8cm, this methodol-
ogy leads to a tensor description of the metamaterial over
a whole frequency range. This study is made around the
first frequency of resonance of the structure, for 151 dif-
ferent frequencies. We give in fig.6 the results for the rel-
ative permittivity and permeability and in fig.7 those for
the a- and b-parameters. Fig.6 shows a strong magnetic
behavior along the z-direction. Indeed, the real part of
the permeability gets negative values at the resonance. It
allows us to imagine a Mu-Near-Zero (MNZ) behavior for
this metamaterial for a frequency range close to the fre-
quency of resonance. The mathematical study published
by Isik and Esselle [27] describes the bi-anisotropic be-
havior of monofilar, bifilar, trifilar and quadrifilar spiral
metamaterial. We study here a monofilar spiral and our

bi-anisotropic response fits perfectly with what was ex-
pected. According to this paper, the material property-
tensor for a monofilar spiral takes the form given in equa-
tion 29:

(
ε a

b µ

)
=


ε0εr11 ε0εr12 0 0 0 a13
ε0εr21 ε0εr22 0 0 0 a23

0 0 ε0εr33 0 0 0
0 0 0 µ0µr11 µ0µr12 0
0 0 0 µ0µr21 µ0µr22 0
b31 b31 0 0 0 µ0µr33


(29)

Our results fully agree with this 6-by-6 property tensor
and the predictions made in [27]. Moreover, these results
are alsoo coherent with the Onsager-Casimir principle
[36] [37] [38] that predicts a relation between the a- and
b-tensors:

a = −b
T

(30)

We observe on fig7 that a13 = −b31 and a23 = −b32
over the whole frequency range, whereas all the other
components are negligible compared to these four ones.
The compatibility of our results with the computations
made in [27] and with the Onsager-Casimir reciprocal
principle constitutes a validation of our method.

  

Monofilar spirale
Bifilar spirale

FIG. 8. Chirality criterion for the monofilar and bifilar spi-
rals. We see that at the frequency of resonance the chirality
criterion is very high for the monofilar spiral. Chirality rep-
resents up to 55% of the meta-atom response. The criterion
remains very low for the bifilar spiral and does not exceed 3%.

Creating a validation tool for the properties of meta-
materials is one of the main objectives of this bi-
anisotropic study. Properties required for specific appli-
cations such as the super-lens or invisibility cloaks need
to be validated via a strong approach: we cannot settle
for an approach where chirality is assimilated to perme-
ability or permittivity. We build a criterion to measure
the chirality strength of the metamaterial. The effects
of the spatial dispersion are encoded in this far-field re-
sponse. We suggest the criterion provided in equation
31. This criterion measures the strength of the chiral
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FIG. 9. Geometry and b-matrix for an Omega-particle (a) and a twisted Omega-particle (b). We also give the chirality criterion
(c), which is high (superior to 1) for both particles. As we can see, the preponderant coefficient depends on the geometry of
the particle. For the Omega-particle, an electric excitation along the y-axis is responsible for an important magnetic response
along z-axis. For the twisted Omega-particle, an electric excitation along the z-axis is responsible for an important magnetic
response also along z-axis.
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response compared to the regular magneto-dielectric re-
sponse of the meta-atom.

C =
1

2

(
1

Z0

||χem||
||χe||

+ Z0
||χme||
||χm||

)
(31)

The first term of the sum compares the weight of the
chiral electric response to the regular dielectric response
of the metamaterial, whereas the second term compares
the chiral magnetic response to the regular magnetic re-
sponse. We define the criterion as the arithmetic mean
of these two terms. The norm used for the susceptibil-
ity tensors is the Frobenius norm for matrix, given in
equation 32:

||A|| =
√

trace(A∗A) (32)

where A∗ is the conjugate of the transpose matrix.

In reference [39], authors define a local chirality
criterion taking into account the local spatial dispersion
in optical metamaterials. On the contrary, our approach
leads to an effective chirality criterion taking into
account every possible direction of incidence. The
computation of this criterion has been realized for the
monofilar spiral and also for a bifilar spiral. We can
observe in fig.8 that the criterion is very high for the
monofilar, whereas it is very close to zero for the bifilar,
as predicted by Isik and Esselle in [27]. We can conclude
that the bifilar spiral may be a good candidate for the
design of an MNZ metamaterial whereas it is risky
to use the monofilar spiral because of non-negligible
chiral effects. In the realization of an electromagnetic
device such as the super-lens or an invisibility cloak,
it is important to know the whole permittivity and
permeability tensors of the metamaterial. Our approach
gives both permittivity and permeability tensors and
also give a criterion that quantifies the chirality of
the meta-atom: every required piece of information is
available.

This criterion can also be applied to state-of-the-art
chiral particles. The most common particles exhibiting
a high chirality are certainly the omega-particle and
the twisted omega-particle [40] [41]. We performed the
whole methodology for these two meta-atoms: geometry,
a-tensors and chirality criterion for both particles are
given in figure 9.

We have to pay particular attention to the dipole
expansion of such particles: as the omega-particle is not
really small compared to the wavelength around the first
frequency of resonance, quadrupole moments can impact
the accuracy of the dipole model. The relative error
of the dipole approximation estimated thanks to the
evaluation index defined in equation 4 gives a maximum
10% error near the frequency of resonance for both

particles. We have to keep in mind that quadrupole
and higher-order moments may partially invalidate the
hypothesis made to develop our methodology.

As we can see, the b32 coefficient for the omega-particle
is preponderant, showing the link between the electric
excitation along the y-axis and the magnetic response
along the z-axis. On the contrary, the b33 coefficient is
preponderant for the twisted omega-particle, showing the
link between the electric excitation along the y-axis and
the magnetic response along the y-axis. These results are
in good agreement with the literature [35].

VII. CONCLUSION

  

6-points extraction from a full wave simulation or experimental 
measurement of a single inclusion

Computation of p and m, the electric and magnetic dipole moments. 
Eq.3

Computation of  the α’- tensor, thanks to the generalized Clausius-
Mossotti relation. 

Eq.19-20

Calculation of the susceptibility tensors
Eq.27

Calculation of the permittivity, 
permeability and bi-anisotropic tensors

Eq.28

Calculation of the chirality 
criterion

Eq.31

Summary of the methodology 

Computation of  the α- tensor, by inversion of the S-matrix
Eq.12

FIG. 10. Description of the bi-anisotropic homogenization
methodology based on a Clausius-Mossotti generalization.

We demonstrate in this article that a few free-space
simulations of a single meta-atom can give an important
amount of information about an array of this inclusion.
Thanks to the 6-points extraction, it is possible to
calculate the electric and magnetic dipoles the particle
exhibits. By then performing simulations with different
polarizations and incidence angles, we compute the 36
components of the bi-anisotropic polarizability tensors.
To obtain suitable susceptibility tensors we establish a
generalized Clausius-Mossotti relation for bi-anisotropic
materials. Finally, we find permittivity and permeability
tensors and we define a chirality criterion. The whole
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method is summarized in fig.10.

This methodology could also employ experimental
measures of the field scattered by a meta-atom. Nothing
would change in the computation except that the
far-field scattered by the meta-atom would come from
the experience instead of a full-wave simulation.

Our approach is very convenient in the study of meta-
material because it gives precise information about its
behavior thanks to the study of a single particle in free

space. It is also convenient for the study of miniaturized
meta-atoms, for which meshes are sometimes difficult
to realize. Computation costs in terms of time and
processor capacity are reduced in comparison with the
study of a whole lattice. We can study a substantial
number of meta-atom designs. It also predicts the
behavior of the associated metamaterial and helps us
to choose the best designs required for any specific
application. Depending on the application, our method
can either be useful to prevent chiral effects or to amplify
it when designing metamaterials.
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