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NLOS-Aware VLC-based Indoor Localization:
Algorithm Design and Experimental Validation

Chuanxi Huang, Xun Zhang, Fen Zhou, Zhan Wang, Lina Shi

Abstract—The Visible Light Indoor Positioning System (VL-
IPS) has been a popular research area recently. In VL-IPS,
many localization methods have been proposed by leveraging
the Received Signal Strength (RSS) based trilateration. However,
the traditional RSS based trilateration localization (RSS-TL)
method is very sensitive to the lighting environment and would
results in a big localization error due to the presence of non-
line-of-sight (NLOS) light signal. In light of this, we propose
a novel NLOS-aware localization algorithm, namely Enhanced
Fingerprinting-aided RSS-TL (EFP-RSS-TL). It permits to im-
prove the localization accuracy for the corner regions of a room
by eliminating the NLOS impact while keeping the same high
accuracy for the room center. This is achieved by leveraging a
RSS fingerprint database which records the line-of-sight (LOS)
light power ratios beforehand. For validation purpose, we built a
real VL-IPS platform and implemented the proposed algorithm.
Experimental results show that the proposed NLOS-aware EFP-
RSS-TL algorithm enables to reduce significantly the average
positioning error (by up to 79%) compared to its counterparts.
Besides, our proposal cuts the database size by 50% and is more
robust to environment changes. In a room of 4.7 m x 2.7 m, the
achieved average positioning error is around 6 cm when it is
vacant and it is no more than 14.5 cm when it is occupied by
several people.

Index Terms—Indoor Positioning System, Visible Light Com-
munications (VLC), Received-Signal-Strength based trilateration

I. INTRODUCTION

Visible Light Indoor Positioning System (VL-IPS) has at-
tracted a lot of attentions of researchers recently, because it
has many advantages. With the long lifetime of LEDs and the
installed illumination systems, the VL-IPS is not only able
to provide a high positioning accuracy but also requires low
installation & maintenance cost. Moreover, the visible light
has a 104 wider bandwidth than radio spectrum and it does
not have any electromagnetic interference. Thus, the VL-IPS
is suitable for a large number of users and radio frequency
(RF) sensitive environments, like hospital and gas station [1].

A VL-IPS locates the target based on visible light com-
munications (VLC) [2, 3]. As shown in Fig. 1, it consists of
three parts: VL-IPS transmitter (Tx), VL-IPS receiver (Rx)
and positioning algorithm. The VL-IPS Txs are installed on
the ceiling with known positions and the VL-IPS Rx is carried
by the target or mobile users. Positioning Reference Signals
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Fig. 1. Overview of VL-IPS.

(PRSs) are emitted by Txs and detected by the Rx. The
positioning algorithm will then analyze the received PRSs and
calculate the target position.

Many works have been done for VL-IPS. According to a
recent survey [4], the positioning algorithms play an important
role in VL-IPS and nearly one-third of works focus on them.
According to the measurement parameters, these algorithms
can be divided into four categories, time measurement algo-
rithms [5] [6], signal strength measurement algorithms [7] [8],
signal phase measurement algorithms [9] and others [10] [11].
The Received Signal Strength based Trilateration Localization
(RSS-TL) algorithm can achieve a high positioning accuracy
with low system complexity [4], it thus becomes more and
more popular for VL-IPS. But the RSS-TL has a critical
limitation, i.e., the received PRSs powers are sensitive to
indoor lighting environment, while a changeable indoor envi-
ronment is unavoidable. According to the literature [12] [13],
the reflection and the presence of non-line-of-sight (NLOS)
light is the most important and common impact factor on
VL-IPSs for indoor lighting environment, which may cause
a significant positioning error with 1 to 2 meters. But there
are few effective solutions to reduce this impact. To this end,
the Received Signal Strength based Fingerprinting (RSS-FP) is
adopted extensively because of its improvement on positioning
accuracy [14] [15]. In RSS-FP, the user position estimation is
based on a database recording the pre-collected RSS of a set of
reference points from the experiment room. In the positioning
phase, according to the RSS measured at the mobile target,
K nearest reference points to the mobile target are identified.
Then, the position of the mobile target is approximated by
a weight average of these K point coordinates. However, the
average positioning accuracy is still not satisfying (in the order
of 20 cm), and the positioning error can be very large at the
room corners. Moreover, this method is still very sensitive to
lighting environment changes.

In this paper, we propose an NLOS-aware localization
method, namely Enhanced Fingerprint RSS Trilateration (EFP-
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RSS-TL), to improve the positioning accuracy and system
robustness. Different from the RSS-FP solution proposed in
[14], our algorithm leverages an EFP database storing the
line-of-sight light power ratios instead of the absolute value
of RSS. With the help of this EFP database and K-Nearest
Neighbors (K-NN) method, the impact of NLOS and reflection
can be eliminated so that the received Line-of-Sight (LOS)
PRSs powers can be estimated as precisely as possible. This in
turn enables to cut the the positioning error, especially for the
corner regions of a room, where light reflection is significant.

The main contributions of this paper are summarized as
follows:

• Through numerical simulations, we show that the light
reflection and the presence of NLOS is an important
factor degrading the positioning accuracy.

• To improve the positioning accuracy and system ro-
bustness, we propose an EFP-RSS-TL method, which
leverages an EPF database to eliminate the impact of
NLOS and light reflection.

• The proposed solution is validated by building a real VL-
IPS. Experimental results demonstrate that our solution
outperforms its counterparts in terms of positioning accu-
racy (reducing up to 79% of the average positioning error)
and system robustness. Besides, it requires a smaller
storage size.

The rest of this paper is organized as follows. We first
analyze the impact of light reflection on localization accuracy
in Section II, and then propose an NLOS-aware algorithm to
eliminate its impact in Section III. To validate the proposed so-
lution, experiments carried out on a real VL-IPS are presented
in Section IV. Finally, we conclude this paper in Section V.

II. RSS-TL LOCALIZATION SYSTEM AND THE IMPACT OF

NLOS SIGNAL

In this section, we will first present the traditional RSS-
TL [4], and then analyze the key factors which degrading the
positioning accuracy of this algorithm.

In the VL-IPS, several LEDs are used as the transmitters.
The target is equipped with a Photodiode (PD), which is served
as a receiver and used for localization. The RSS-TL uses the
received signal powers of several LEDs to compute the PD
position. Let J be the number of LEDs used and at least
three LEDs are generally required, J ≥ 3. The height of the
target PD is fixed and known, and the orientation of the PD
is assumed to be always vertical to the ceiling. We denote the
vertical height between the target PD and the LEDs as h, and
m is the lambertian factor of an LED. The effective area of
a PD is noted as APD. For the j-th LED, Ptj represent its
transmitted PRSs power and Prj signifies the received PRSs
power at the target PD from this LED.

Fig. 2. 2D RSS-TL positioning algorithm.

As shown in Fig. 2, the 2D RSS-TL system includes two
steps. First, we should estimate the distance dj from the target
PD to each LED j ∈ [1, J ] by using the received PRSs signal
power Prj . According to the Optical Wireless Channel model
(OWC) [12], this distance can be computed by

dj =

(

(m+1)APDhm+1

2π
Ptj
Prj

)
1

m+3

, j ∈ [1, J ] (1)

Second, with the estimated distance vector [dj ]
T
1≤j≤J and

the LED coordinates vector [(xLEDj
, yLEDj

)]T1≤j≤J , the esti-
mated PD position X̂PD = (x̂PD, ŷPD) can be calculated by
solving Eqs. (2).

d2j = (x̂PD − xLEDj
)2 + (ŷPD − yLEDj

)2 + h2, j ∈ [1, J ]
(2)

Unfortunately, due to the interference power (noise or
reflection powers), there is no common solution to Eq. (2).
A least square (LS) estimator will be applied to estimate an
optimized PD position. Defining matrices A and B as follows
respectively,

A =











xLED2
− xLED1

yLED2
− yLED1

xLED3
− xLED1

yLED3
− yLED1

...
...

xLEDJ
− xLED1

yLEDJ
− yLED1











B = 1
2











d21 − d22 + x2
LED2

+ y2LED2
− x2

LED1
− y2LED1

d21 − d23 + x2
LED3

+ y2LED3
− x2

LED1
− y2LED1

...
d21 − d2J + x2

LEDJ
+ y2LEDJ

− x2
LED1

− y2LED1











(3)
then the estimated PD position can be obtained by Eq. (4).

X̂PD = (ATA)−1ATB (4)

The RSS-TL algorithm is only based on the LOS PRSs
power. According to the Optical Wireless Channel model
(OWC) [12], however the received PRS power of jth LED
(Prj) consists of the LOS signal power (Prlosj ), NLOS signal
power (Prnlosj ) as well as the noise (Prnj ). The noise involves
shot noise and thermal noise which are dependent on the
received light power and the temperature, respectively. Both
noises are considered as an Additive White Gaussian Noise
(AWGN).

Prj = Prlosj + Prnlosj + Prnj j ∈ [1, J ] (5)

Since the reflection is the most important and common
NLOS propagation for indoor environment, the NLOS PRSs
is represented by the reflection PRSs. Both reflection and
noise will create an error for distance estimation and affect
the positioning accuracy. To show this negative impact, we
conduct simulations in a common indoor environment: Room
size 5m x 5m x 3m with 4 LEDs, temperature 20◦C, Ambient
light 200 lx [16], and reflection factor of Walls 30% [17].
The distribution of positioning accuracy is plotted in Fig. 3.
In the center area, the 2D RSS-TL algorithm can achieve a
good positioning accuracy within 10 cm. In the corner area,
with the decrease of LOS PRS power and the increase of
reflection PRS power, the positioning error can be as large as
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1 meter. Meanwhile, the reflection PRSs powers are not fixed
for the entire room due to the diversity of indoor structure.
The reflection light may come from walls, floor, obstacles or
humans.

0

2

1

P
o

s
it
io

n
in

g
 e

rr
o

r 
(m

)

2

X axis (m)

0

Y axis (m)

2

0
-2 -2

(a)

0

2

1

P
o

s
it
io

n
in

g
 e

rr
o

r 
(m

)

2

X axis (m)

0

Y axis (m)

2

0
-2 -2

(b)

Fig. 3. Influence of noise (a) and reflection (b) on positioning accuracy for
RSS-TL algorithm.

III. NLOS-AWARE ENHANCED FINGERPRINT RSS
TRILATERATION (EFP-RSS-TL) POSITIONING

ALGORITHM

In order to eliminate this negative impact of NLOS light
signal and improve the positioning accuracy, we propose
an enhanced fingerprint RSS trilateration positioning algo-
rithm (EFP-RSS-TL). Our proposal leverages an enhanced
fingerprint (EFP) database and K-Nearest Neighbors (K-NN)
method to estimate the received LOS PRSs power as precisely
as possible. The framework of our proposal is depicted in Fig.
4, which contains two phases: Offline (database creation) and
online (positioning computation).

Received PRSs

power

Estimated

PD position

RSS-TL positioning

algorithmReceived

PRSs power

LOS PRSs power estimation

Enhanced Fingerprint

(EFP) Database

Priori

information

PRSs optimization

Estimated LOS

PRSs power

Fig. 4. The framework of our proposal EFP-RSS-TL.

A. The offline phase: Database creation

In this phase, we construct beforehand an enhanced finger-
print (EFP) database, which includes three matrices.

DBEFP = {S, P̃ r
los

, Q̃} (6)

where S is the matrix of VL-IPS setting parameters, P̃ r
los

represents the matrix of the reference LOS PRSs power, and
Q̃ is the matrix of reference PRSs quality.

1) VL-IPS Setting Parameters Matrix: The matrix S

records the positioning related VL-IPS parameters for each
LED j, such as its transmitted PRSs power (Ptj), horizontal
position coordinates (xLEDj

, yLEDj
), PRSs frequency fj ,

lambertian factor m, effective area of photodiode (APD), the
responsivity of photodiode (RPD), as well as the vertical
distance h.

S =

[

(Ptj , xLEDj
, yLEDj

, fj ,m, h,APD, RPD)

]

1≤j≤J

(7)
2) Reference LOS PRSs Power Matrix: In order to calculate

the reference LOS PRSs power, we predetermine R PD
positions (e.g., a grid) and select them as reference points in
the room. An example is given in Fig. 5. Let (xr, yr) be the

Fig. 5. Example of reference points.

coordinates of the r-th reference point, then the distance dj,r
to the j-th LED can be expressed by Eq. (8)

dj,r =
√

(xLEDj
− xr)2 + (yLEDj

− yr)2 + h2 (8)

According to the OWC model [12], the received LOS PRSs
power P̃ r

los

j,r at the r-th reference point and from the j-th LED
can be calculated by

P̃ r
los

j,r =
(m+ 1)APDhm+1Ptj

2πdm+3
j,r

(9)

This then constitutes the matrix

P̃ r
los

=

[

P̃ r
los

j,r

]

1≤j≤J,1≤r≤R

(10)

3) Reference PRSs quality matrix: The PRS quality is
defined by the ratio of received LOS PRS power with respect
to the received PRS power. If this ratio is one, it means there
has no NLOS PRSs power in received PRSs power. For the
j-th LED and the r-th reference point, the values of P̃ r

los

j,r

have already been saved in the reference LOS PRSs power
matrix. Meanwhile, by real measurement, we can get the real
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received PRSs power P̃ rj,r. Consequently, wen can calculate
the reference PRS quality Q̃j,r by

Q̃j,r =
P̃ r

los

j,r

P̃ rj,r
, j ∈ [1, J ]; r ∈ [1, R] (11)

Finally, we can obtain the reference PRSs quality matrix

Q̃ =

[

Q̃j,r

]

1≤j≤J,1≤r≤R

(12)

B. The online phase: positioning

The objective of this phase is to estimate the coordinates
of the target PD. As we have shown in the previous section,
the NLOS signal is the key factor degrading the positioning
accuracy. In light of this, we propose a novel method to
estimate the received LOS PRSs power from each LED as
precisely as possible by eliminating the negative impact of
NLOS light. To achieve this goal, we create an adaptive-size
EFP database and make use of K-Nearest Neighbors (K-NN)
method. The procedure of this phase is shown in Fig. 6, which
has five steps.

Fig. 6. Process of EFP-RSS-TL algorithm.

With the detected received PRSs power Pr at the target PD
side, our proposal will compute a set of assumed received LOS
PRSs powers by using the reference PRSs quality matrix Q̃.
We denote the assumed received LOS PRSs power from j-th

LED at the r-th reference point as P̆ r
los

j,r , which is expressed
by Eq.(13).

P̆ r
los

j,r = Q̃j,rPrj , j ∈ [1, J ]; r ∈ [1, R] (13)

In the second step, we compute the assumed error ∆Prlosj,r

for each reference point, which is defined as the difference
between the assumed LOS power and reference LOS power.

∆Prlosj,r = P̆ r
los

j,r − P̃ r
los

j,r , j ∈ [1, J ]; r ∈ [1, R] (14)

After that, we need to calculate the sum of the assumed error
of J LEDS for each reference point. The K reference points
with the lowest square error sum will be selected as K-NN
reference points noted as rmin = [rmin

k ]1≤k≤K , i.e.,

rmin
k = argminr 6∈r

min(
∑J

j=1 ∆Pr2
los

j,r ), k ∈ [1,K]
(15)

Given these K-NN reference points, we next compute the
approximated PRS quality for each LED by a weighted K-
NN method. To this end, we define wj,k as the weight factor
for j-th LED, which is given by

wj,k = 1
∆Pr2los

j,rmin
k

, j ∈ [1, J ], k ∈ [1,K] (16)

Thus, we can obtain an approximated PRS quality Q̂j as
follows

Q̂j =
1∑

K
k=1

wj,k

∑K

k=1(wj,kQ̃j,rmin
k

), j ∈ [1, J ] (17)

At last, the approximated PRS quality vector Q̂ = [Q̂j ]1≤j≤J

can be used to eliminate the NLOS power. As a result, the LOS

PRSs power vector P̂ r
los

= [P̂ r
los

j ]1≤j≤J can be precisely
estimated by

P̂ r
los

j = Q̂jPrj j ∈ [1, J ] (18)

After the LOS PRSs power optimization using the EFP
method, the PD position can be computed by substituting

[Prj ]1≤j≤J with [P̂ r
los

j ]1≤j≤J in Eqs.(1)-(4).
To summarize, the novelty of our proposal lies at the precise

estimation of the LOS PRSs power, which is critical for the
positional accuracy. The traditional RSS-TL algorithm uses
directly the received PRSs power for computing the target
PD position, which contains both the LOS and NLOS PRSs
powers. Although RSS-FP uses a database, only the absolute
values of PRS powers are stored for positioning. Thus, it
is also sensitive to environment changes. Differently, our
algorithm proposes to create an a-priori EFP database to store
the PRSs quality ratio. As the LOS PRS quality ratio is stored,
we can estimate the LOS PRS power as precisely as possible
in different light environments and resolve the positioning
equation to localize the target. Thus, our proposal enables to
distinguish these two powers and eliminate in turn the negative
influence of NLOS signal.

IV. EXPERIMENTAL VALIDATION

In order to validate the proposed EFP-RSS-TL method, we
built a real VL-IPS platform. Real experiments were then
conducted in a room of size 2.7m(width)×4.7m (length)×
2.38m(height), which is shown in Fig. 7. Three LEDs are
installed on the ceiling and used for positioning. The receiver
is posed on the floor with height 0.187m. A positioning area
of 2m × 1m is located at the left side of the room. The LEDs
and PD parameters are given in Tab. I. Three LEDs (Spot LED
MR16 4W-12V) emit 500, 700, 900 kHz sine waves as PRSs,
respectively. The receiver PD (Hamamatsu APD C12702-12)
will detect the received PRSs and analyze it in Lumen.

Our experimental validation involves two parts: data acqui-
sition and performance validation. The performance of our
proposal is then evaluated in terms of positioning accuracy,
system robustness to environment and system complexity.
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Fig. 7. Real VL-IPS platform and scenarios.

TABLE I
REAL VL-IPS PLATFORM PARAMETERS

Parameters Typical values

Positioning area (L*W) 2 m × 1 m
Height of PD 0.175m

Position of LEDs (-0.5, 0.25, 2.4)(-0.5, 0.6, 2.4)(0.5, 0.25, 2.4)
Transmitted PRSs power 3.0 lm

Lambertian factor of LED 1.56
Gain of optical filter 1

Gain of optical concentrator 1

Effective area of PD 7E-6 m2

A. Data acquisition

In order to create the EFP database, we first make some
measurements and collect data in different scenarios at differ-
ent time of a day. As shown in the Fig. 7, three scenarios are
considered. For scenario I, the door is closed and a trash can
is posed near the desk. For scenario II, the door is opened and
the trash can is removed. In scenario III, some black bags,
chairs, boxes and white board are put in the different area of
the room. For each scenario, three measurements are taken
at different time of a day, as shown in Tab. II. During the
daytime 10-17h, the room is occupied by 2-4 persons and
the presence of human will cause some random interference
on lighting environment.From 18h to 20h, the room is vacant
and the lighting environment is more stable.

In the experiment room, we predetermined 21×11 sampling
points and recorded their coordinates. We then computed their
distances to each LED by Eq. (8). These points were then used
either as reference points for creating the EFP database or used
for evaluating the positioning error. For each point and lighting
environment, we measure also the PRSs power received at the
target PD from each LED. Meanwhile, we can calculate the
estimated reference LOS PRSs power of a reference point by
Eq. (9). With these measurements, we obtain the reference

TABLE II
DEFINITION OF EXPERIMENT ENVIRONMENT

Scenario Lighting environment Description

Scenario I
E1 Time: 18h-20h (vacant room)
E2 Time: 10h-12h (Occupy room with 2-4 persons)
E3 Time: 12h-17h (Occupy room with 2-4 persons)

Scenario II
E4 Time: 18h-20h (vacant room)
E5 Time: 10h-12h (Occupied room with 2-4 persons)
E6 Time: 12h-17h (Occupied room with 2-4 persons)

Scenario III
E7 Time: 18h-20h (vacant room)
E8 Time: 10h-12h (Occupied room with 2-4 persons)
E9 Time: 12h-17h (Occupied room with 2-4 persons)

PRSs quality matrix according to Eq. (11). Finally, we finish
the creation of the EFP database by recording these data.

B. Algorithm performance validation

In order to validate our proposal, we compare our proposal
(EFP-RSS-TL algorithm) with two benchmark algorithms,
namely RSS-TL and RSS-FP. Three series of evaluations
are conducted: positioning accuracy, system robustness to
environment, as well as the system complexity.

1) Positioning accuracy: We plot the distribution of posi-
tioning error for the three algorithms in Fig. 8. The constructed
EFP database contains 15 reference points. Both the reference
data (EFP database) and the positioning data (PRSs power
received at the target PD) are acquired in the same environment
E1. We observe that the RSS-TL has significant positioning
error especially in the room corners, although it obtains a
good positioning performance in the room center. This can be
explained by its sensitivity due to the light reflection. The RSS-
FP can diminish the impact of reflection but its positioning
error can be as large as 50 cm in some area. Because the
performance of RSS-FP is restricted by limited reference point
number and its distribution. In contrast, our proposal achieves
an average positioning error of 6.19 cm for the entire room.
Compared with 26.3cm of RSS-TL and 15.12cm of RSS-FP,
our proposal reduces 72.7% and 59% of positioning error,
respectively. This result can be interpreted as follows. By
using the EFP database to record the LOS Power ratio at the
reference points, our algorithm enables to eliminate the impact
of reflection and NLOS power. As a result, our EFP-RSS-TL
permits to cut significantly the positioning error in the corner
while keeping a high positing accuracy in the room center.

Besides, we repeat the same analysis for nine lighting envi-
ronments (E1-E9) specified in Tab. II. The average positioning
error of the entire room is presented in Tab. III. We can
find that our proposal can reduce the impact of reflection and
improve the positioning accuracy in all lighting environments.

2) System Robustness to environments: In the previous
analysis, the positioning evaluation and the measurements
for EFP database creation were done in the same lighting
environment. In reality, the environment is changeable in
any time. Consequently, it is difficult to guarantee the same
lighting environment for them. Thus, we will evaluate the
system robustness to lighting environment change. In this part,
only the algorithms based on database are considered: RSS-FP
and EFP-RSS-TL. We created nine different EFP databases
(DB1-DB9), and each database DBi records the data of
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Fig. 8. Distribution of positioning error (PE) with different algorithms.

TABLE III
AVERAGE POSITIONING ERROR IN DIFFERENT LIGHTING ENVIRONMENTS

Average PE (cm)
E1 E2 E3 E4 E5

RSS-TL 26.3 27.2 28.7 22.3 23.2
RSS-FP 15.1 16.6 17.0 15.8 17.3

EFP-RSS-TL 6.2 12.2 14.5 5.5 12.2

Average PE (cm)
E6 E7 E8 E9

RSS-TL 25.5 21.8 23.9 24.9
RSS-FP 18.1 15.1 17.8 19.4

EFP-RSS-TL 14.5 5.1 10.0 14.4

15 reference points acquired in the corresponding lighting
environment Ei. The databases creation and positioning tests
were conducted in two unrelated environments. Thus, 9 × 9
positioning tests in total were done for each algorithm. Fig.
9 plots the average PE for each test and presents also the
distribution of average PE among four error ranges. According

to the results, our proposal (EFP-RSS-TL) has a probability
of 20% to achieve a PE less than 10 cm and only 16% to have
a PE in the range 30-40 cm. While for RSS-FP, 41% of the
tests fall into the PE range 30-40 cm, and no test has a PE
less than 10 cm. Thus, we can say that our proposal is less
sensitive to lighting environment change.

3) System complexity: The number of reference points has a
significant impact on the system complexity, for both database
creation and positioning computation. In this part, we first
assert the computing time and storage size when changing the
number of reference points from 6 to 66 for E1 in Fig. 10.
One can find that the PE of RSS-TL algorithm is fixed at
27.6 cm, which does not depend on the number of reference
points. While the positioning error will be reduced for the
other two algorithms, when the number of reference points
increases. It should also be noted that our proposal results in
a lower installation & maintenance cost for VL-IPS, because
it cuts significantly the number of reference points required to
achieve a same PE. For example, in order to achieve a PE of
10 cm, our proposal only uses 8 reference points in the EFP
database, while 7 times more reference points are required for
RSS-FP.

Even though our proposal requires fewer reference points,
the EFP database is more complex than that of RSS-FP. Thus,
we also plot the average PE with respect to the computing
time and the database size in Fig. 11. To get a PE of 10cm,
it is shown that the database size used by RSS-FP algorithm
is almost the twice of that used by our proposal. Thus our
proposal needs a smaller storage space. But we can also
observe that our proposal requires more computing time than
RSS-FP, which however is still in the order of 0.1 ms. Because,
compared to the RSS-FP algorithm, our algorithm needs to do
some additional computation, i.e., compute the estimated LOS
Power and resolve Eqs.(1)-(4) for positioning the target.

V. CONCLUSIONS

In this paper, we propose a novel VLC-based indoor lo-
calization algorithm, namely EFP-RSS-TL. By leveraging a
database to store the line-of-sight light power quality ratios,
our algorithm is able to eliminate the negative impact of light
reflection. The performance of our algorithm is validated by
real experiments on a real VL-IPS testbed. It is shown that our
algorithm is not only able to improve significantly the posi-
tioning accuracy, but also more robust to lighting environment
change compared to its counterparts in the literature.
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