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Abstract. To improve the understanding of trends in extreme
flows related to flood events at the global scale, historical and
future changes of annual maxima of 7 d streamflow are inves-
tigated, using a comprehensive streamflow archive and six
global hydrological models. The models’ capacity to charac-
terise trends in annual maxima of 7 d streamflow at the con-
tinental and global scale is evaluated across 3666 river gauge
locations over the period from 1971 to 2005, focusing on four
aspects of trends: (i) mean, (ii) standard deviation, (iii) per-
centage of locations showing significant trends and (iv) spa-
tial pattern. Compared to observed trends, simulated trends
driven by observed climate forcing generally have a higher
mean, lower spread and a similar percentage of locations
showing significant trends. Models show a low to moderate
capacity to simulate spatial patterns of historical trends, with
approximately only from 12 % to 25 % of the spatial vari-

ance of observed trends across all gauge stations accounted
for by the simulations. Interestingly, there are statistically
significant differences between trends simulated by global
hydrological models (GHMs) forced with observational cli-
mate and by those forced by bias-corrected climate model
output during the historical period, suggesting the important
role of the stochastic natural (decadal, inter-annual) climate
variability. Significant differences were found in simulated
flood trends when averaged only at gauged locations com-
pared to those averaged across all simulated grid cells, high-
lighting the potential for bias toward well-observed regions
in our understanding of changes in floods. Future climate
projections (simulated under the RCP2.6 and RCP6.0 green-
house gas concentration scenarios) suggest a potentially high
level of change in individual regions, with up to 35 % of
cells showing a statistically significant trend (increase or de-
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crease; at 10 % significance level) and greater changes in-
dicated for the higher concentration pathway. Importantly,
the observed streamflow database under-samples the percent-
age of locations consistently projected with increased flood
hazards under the RCP6.0 greenhouse gas concentration sce-
nario by more than an order of magnitude (0.9 % compared
to 11.7 %). This finding indicates a highly uncertain future
for both flood-prone communities and decision makers in the
context of climate change.

1 Introduction

Global hydrological models (GHMs) are critical tools for di-
agnosing factors of rising trends in flood risk (Munich Re,
2015; Swiss Re, 2015; Miao, 2018; Smith, 2003; Guha-Sapir
et al., 2015; CRED, 2015) and can help identify the con-
tribution of changing flood hazard characteristics relative to
the changing exposure of human assets to floods. GHMs are
also used to project future changes in flood hazard, owing
to their ability to simulate streamflow under projected at-
mospheric forcing. Using GHM simulations, several studies
have found more regions showing increasing trends than de-
creasing trends in flood hazards at the global scale and have
attributed these changes to anthropogenic climate change
(Dankers et al., 2014; Arnell and Gosling, 2016; Alfieri et al.,
2015; Kettner et al., 2018; Willner et al., 2018; Asadieh and
Krakauer, 2017). The pattern of increasing trends obtained
from GHM simulations is consistent with observations of in-
creases in precipitation extremes (Westra et al., 2013, 2014;
Donat et al., 2013; Guerreiro et al., 2018) that have been used
by a number of studies as a proxy to suggest that flood haz-
ard may increase as a result of climate change (Alfieri et al.,
2017; Pall et al., 2011; IPCC, 2012; Forzieri et al., 2016).

The inference of changes in flood hazard following the
same direction as extreme precipitation may be appropriate
over regions where rainfall plays the dominant role in flood
occurrence (Hoegh-Guldberg et al., 2018; Mallakpour and
Villarini, 2015; Mangini et al., 2018), but recent evidence
based on instrumental trends in flood hazard suggests it is
not necessarily globally applicable (Ivancic and Shaw, 2015;
Blöschl et al., 2019). This is due to a “dichotomous relation-
ship” between trends exhibited in extreme precipitation and
extreme streamflow (Sharma et al., 2018), highlighted in re-
cent observation-based studies of trends in streamflow mag-
nitudes (Wasko and Sharma, 2017; Do et al., 2017; Hodgkins
et al., 2017; Gudmundsson et al., 2019). The hypothesised
reason for this potentially inconsistent relationship is the
complexity of the drivers of flood risk (Johnson et al., 2016;
Blöschl et al., 2017; Do et al., 2019; Berghuijs et al., 2016),
with the implication that historical and future changes to
flood hazard at the global scale are unlikely to be reflected
by changes to a single proxy variable alone, such as an-
nual maximum rainfall. For example, even though trends in

extreme flows are highly correlated to changes in extreme
rainfall when rainfall plays the dominant role (Mallakpour
and Villarini, 2015; Blöschl et al., 2017), snowmelt-related
flood magnitude has been found to decrease in a warmer cli-
mate, potentially due to a shift in snowmelt timing (Burn and
Whitfield, 2016; Cunderlik and Ouarda, 2009). The sign of
change is also unclear for locations where antecedence soil
moisture plays an important role (Woldemeskel and Sharma,
2016; Sharma et al., 2018), owing to the combined influences
of seasonal and annual precipitation, potential evaporation,
and extreme precipitation (Bennett et al., 2018; Ivancic and
Shaw, 2015; Leonard et al., 2008; Wasko and Nathan, 2019).
The sensitivity of changes in streamflow to anthropogenic in-
fluences such as urbanisation, dams and reservoir operations,
or river morphology (FitzHugh and Vogel, 2011; Slater et al.,
2015) further suggests that it is not possible to use trends in
extreme precipitation alone to infer changes in flood hazards.

To better understand historical and future trends in stream-
flow, the emphasis has therefore moved to analysing trends
directly in streamflow measurements. Investigations using
streamflow observations at global, continental and regional
scales (see Do et al., 2017, and references therein) have gen-
erally detected a mixed pattern of trends, with some global-
scale studies finding more stations having decreasing trends
than increasing trends (Do et al., 2017; Hodgkins et al., 2017;
Kundzewicz et al., 2004). These conclusions appear prima
facie to be inconsistent with model-based evidence, which
generally suggests the opposite (more locations showing in-
creasing trends). However, varying sampling strategies, sta-
tistical techniques and reference periods make it difficult to
derive a common perspective of trends in global flood haz-
ards from a composite of observational and modelling stud-
ies. In addition, data coverage limitations (Hannah et al.,
2011; Gupta et al., 2014; Do et al., 2018a) remain a barrier
to reliably benchmarking trends over some areas such as the
flood-prone regions of South and East Asia.

GHMs, with the advantage of better spatial coverage, re-
main an important line of evidence about historical and fu-
ture trends. GHMs also enable the possibility to explore the
individual roles of atmospheric forcing, land use change and
other drivers of change on streamflow trends by including
or excluding a specific factor from simulation setting. How-
ever, no study has evaluated the performance of GHMs in
terms of reproducing trends of streamflow indices, includ-
ing flood indicators. To date, GHMs have been assessed ex-
tensively on their capacity to represent physical features of
the hydrological regime, such as streamflow percentiles, the
seasonal cycle or the timing of peak discharge (Gudmunds-
son et al., 2012a; Zaherpour et al., 2018; Beck et al., 2017;
Zhao et al., 2017; Veldkamp et al., 2018; Pokhrel et al., 2012;
Biemans et al., 2011; Giuntoli et al., 2018). Nevertheless,
streamflow variability can be subject not only to long-term
changes in atmospheric forcing, but also to climate variabil-
ity (e.g. inter-annual, inter-decadal) as well as human activi-
ties across the drainage basin (Zhang et al., 2015; Zhan et al.,
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2012). Thus, the GHMs’ capacity to represent physical fea-
tures of a hydrological regime is not necessarily sufficient to
determine their performance in simulating characteristics of
trends. The absence of a holistic understanding of GHMs’ ca-
pacity to simulate trends implies that model-based inferences
on changes in flood hazards are highly uncertain (Dankers et
al., 2014), limiting the usefulness of GHMs in developing
flood adaptation policy in a warming climate.

To address this limitation and further improve GHMs’ ap-
plicability, this study provides the first comprehensive eval-
uation of GHMs’ capacity in simulating historical trends
of a flood hazard indicator. This study also explores the
uncertainty in developing projected changes in flood haz-
ards using an ensemble with GHMs and general circu-
lation models (GCMs). Specifically, we used the Global
Streamflow Indices and Metadata (GSIM) archive (Do et
al., 2018b; Gudmundsson et al., 2018a), to date the largest
possible global streamflow database, to identify observed
changes in annual maxima of 7 d streamflow (MAX7 index)
over the 1971–2005 period. Streamflow simulations, avail-
able through the Inter-Sectoral Impact Model Intercompar-
ison Project ISIMIP phase 2a and 2b (Warszawski et al.,
2014), were used to derive historical (1971–2005) and pro-
jected (2006–2099) changes in the MAX7 index simulated
by GHMs. Observed and simulated trends were then anal-
ysed to achieve three research objectives.

– Objective 1: to evaluate the capacity of GHMs to re-
produce observed trends of an indicator of flood haz-
ard (MAX7). Of particular interest is the reconciling
model- and observation-based inferences of historical
changes in flood hazard at the global and continental
scale.

– Objective 2: to determine the representativeness of ob-
servation locations (streamflow gauges) in GHM simu-
lations. This objective is motivated by the sparse cov-
erage of streamflow observations over several regions
(e.g. South and East Asia), which could lead to biased
inferences of observation-based studies over large spa-
tial domains wherever gauges are not a representative
sample.

– Objective 3: to assess the implication of model uncer-
tainty for projections of flood hazard, focusing on the
uncertainty of the mean or the spread of trends together
with the spatial pattern of trends in annual maximum
streamflow. We are also curious about whether the re-
gions consistently projected with an increase in flood-
ing have been adequately observed by the global obser-
vation networks.

2 Data and methods

This section summarises the workflow to achieve three objec-
tives of this study (Fig. 1). Observed and simulated stream-

flow (Sect. 2.1) were used to estimate the magnitude and
significance of changes in an indicator of flood hazards
(Sect. 2.3). To enable an observation–model comparison, a
procedure was developed to extract streamflow for a sub-
set of observed catchments that meet data quality criteria
(Sect. 2.2). A range of statistical techniques were then ap-
plied to trends of an indicator of flood magnitude (Sect. 2.4)
to assess (i) the capacity of GHMs to reproduce characteris-
tics of observed trends, (ii) the representativeness of observa-
tion locations in GHM simulations and (iii) the implication
of simulation uncertainty on projected trends (results are dis-
cussed in Sect. 3.1–3.3).

2.1 Observed and simulated streamflow datasets

The GSIM archive is used as daily observational discharge
for this analysis. Daily streamflow simulations available
through the ISIMIP are used, with historical simulations
(forced with observational climate in ISIMIP2a and bias-
corrected climate model outputs in ISIMIP2b) spanning
from 1971 to 2005 (Gosling et al., 2019) and future simu-
lations (ISIMIP2b) covering the 2006–2099 period (Frieler
et al., 2017). Six GHMs are considered: H08 (Hanasaki et
al., 2008a, b), LPJmL (Schaphoff et al., 2013), MPI-HM
(Stacke and Hagemann, 2012), ORCHIDEE (Guimberteau
et al., 2014, 2018), PCR-GLOBWB (Wada et al., 2014; Su-
tanudjaja et al., 2018) and WaterGAP2 (Müller Schmied et
al., 2014, 2016). These models were selected as they have
provided discharge data within phases 2a and 2b of ISIMIP at
the time this study began (June 2018). A summary of the sim-
ilarities and differences across participating GHMs is pro-
vided in Sect. 1.2 in the Supplement.

To assess the model structural uncertainty across GHMs,
trends in streamflow extremes simulated under observational
atmospheric forcing, available through the Global Soil Wet-
ness Project Phase 3 (GSWP3) reanalysis (Kim, 2017), were
compared to observed trends. The influence of the high un-
certainty in climate models (Kumar et al., 2013; Kiktev et
al., 2003) on streamflow simulations was assessed by com-
paring observed trends and trends simulated when using at-
mospheric forcing from four GCMs for the historical period
(“hindcast” simulations; hereafter referred to GCMHIND at-
mospheric forcing). These GCMs were bias-corrected but
their simulations have different sub-monthly, inter-annual
and decadal variability, and thus the hindcast simulations re-
flect both GHM and GCM uncertainty. To quantify the im-
plication of model uncertainty for future projections of flood
hazard, trends simulated under projected climate change by
the end of this century (using the same four GCMs) were
also assessed for two greenhouse gas concentration scenar-
ios, RCP2.6 (hereafter referred to GCMRCP2.6 atmospheric
forcing) and RCP6.0 (hereafter referred to GCMRCP6.0 at-
mospheric forcing). As a result, four simulation settings were
used in this study, denoted by the atmospheric forcing; an
overview is given in Table 1. These settings comprise two
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Figure 1. Flowchart of the datasets and methodologies used to achieve three research objectives of this study.

historical runs (GSWP3 and GCMHIND runs) and two future
runs (GCMRCP2.6 and GCMRCP6.0), collectively amount-
ing to a total of 69 simulations (see Table S3 with full list of
simulations).

For GSWP3 simulations, a preliminary analysis (see
Sect. 4 in the Supplement) shows that both “naturalised
runs” (i.e. human water management not taken into ac-
count) and “human impact runs” (i.e. human water man-
agement inputs were used) exhibit similar characteristic of
trends in MAX7 index. Some potential reasons for negli-
gible impacts of human water management are the spatial
distribution of stream gauges (may be biased toward re-
gions with insignificant changes in water management dur-
ing the 1971–2005 period), or the inclusion of small catch-
ments (more that 3000 catchments with reported area less
than 9000 km2); thus, floods are more sensitive to changes
in climate forcing relative to the accumulated basin-wide in-
fluence of human impacts. Naturalised runs were therefore
chosen, since this setting is available for more GHMs (six)
when compared to the human impact setting (four). Although
significant efforts were made by ISIMIP to keep the set-
ting across simulations as consistent as possible, there were
some differences in model versions and input data (e.g. Wa-
terGAP2.2 (ISIMIP2a) was used in ISIMIP2a while Water-
GAP2.2c was used in ISIMIP2b; ORCHIDEE (Guimberteau
et al., 2014) was used in ISIMIP2a while ORCHIDEE-MICT

(Guimberteau et al., 2018), with improvements on high lati-
tude processes, was used in ISIMIP2b). Although the influ-
ence of versioning is minor for WaterGAP2, the potential ef-
fects of technical discrepancies cannot be checked in the con-
text of this study, as not all required simulations are readily
available (see our discussion in Sect. 3.3 in the Supplement).
In addition, owing to technical requirements across GHMs,
different models do not have the same set of coastal cells,
which may lead to some minor effect to the statistics when
averaged across all simulation grid cells.

2.2 Catchment selection and simulated streamflow
extraction for observation–model comparison

To enable an observation–model comparison, simulated dis-
charge needs to be extracted from gridded model output.
Large-scale hydrological models, however, generally do not
simulate discharge accurately over small-to-medium size
catchments due to the coarse resolution of river network
datasets in their routing schemes (Hunger and Döll, 2008).
To address this limitation, previous GHM evaluations usu-
ally selected large catchments (a threshold of 9000 km2 was
adopted, approximating the size of a 1◦ longitude–latitude
grid cell), and routed discharge (unit: m3 s−1) at the outlet of
the catchment was used as simulated streamflow for a spe-
cific catchment (Zhao et al., 2017; Veldkamp et al., 2018;
Zaherpour et al., 2018, 2019; Liu et al., 2017). For evalua-
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Table 1. Summary of streamflow observation and simulation datasets used in this study. GSIM was used as the observed streamflow database.
Streamflow simulations were obtained from six GHMs (H08, LJPmL, MPI-HM, ORCHIDEE, PCR-GLOBWB and WaterGAP2). One ob-
servational atmospheric forcing dataset (GSWP3) and outputs of four GCMs were used as input for streamflow simulations.

Reference Streamflow No. of Description Note
window obs./sim. GCM–GHM

combinations

Historical GSIM – Observational streamflow selected from Streamflow daily
(1971–2005) GSIM archive observations for 3666

unique locations

GSWP3 6 Historical simulation forced by Model did not use human
(ISIMIP 2a) observational atmospheric forcing water management input

GCMHIND 21 Historical simulation using atmospheric
(ISIMIP 2b) forcing from four GCMs: GFDL-ESM2M,

HadGEM2-ES, IPSL-CM5A-LR and
MIROC5 No HadGEM2-ES

Projection GCMRCP2.6 21 Future simulation forced by projected simulation for MPI-HM
(2006–2099) (ISIMIP 2b) atmospheric forcing under greenhouse gas

concentration scenario RCP2.6. Four GCMs
were used: GFDL-ESM2M, HadGEM2-ES,
IPSL-CM5A-LR and MIROC5 No HadGEM2-ES and

GCMRCP6.0 21 Future simulation forced by projected MIROC5 simulations for
(ISIMIP 2b) atmospheric forcing under greenhouse gas ORCHIDEE

concentration scenario RCP6.0. Four GCMs
were used: GFDL-ESM2M, HadGEM2-ES,
IPSL-CM5A-LR and MIROC5

tion studies that used relatively small catchments (e.g. area
less than 9000 km2), the un-routed runoff simulation (unit:
mm d−1) was extracted while observed discharge was con-
verted to runoff using catchment area prior to comparison
(Gudmundsson et al., 2012b; Beck et al., 2017). To increase
the sample size for the model–observation comparison (the
first objective), the present study used both (i) daily un-
routed runoff for small catchments and (ii) daily routed dis-
charge simulations for large ones, and thus two extraction
procedures were adopted. A summary of these extraction
procedures is provided below while detailed technical de-
scriptions are provided in Sect. 2 in the Supplement.

– For catchments with an area from 0 to 9000 km2: un-
routed runoff (mm d−1) was extracted and then con-
verted into discharge (m3 s−1) by multiplying averaged
runoff with catchment area reported in the station meta-
data. Specifically, catchment boundaries were superim-
posed on the GHM grid to obtain the weighted-area ta-
bles, which were then used to derive averaged runoff
from the un-routed runoff simulation. To avoid double-
counting runoff from the same grid points, runoff
for catchments that share similar weighted-area tables
(i.e. similar simulated streamflow would be extracted –
see Sect. 2 in the Supplement for a detailed description)
was averaged (using catchment areas as weights) and a

single “averaged time series” was used in place of the
runoff from the component catchments.

– For catchments with an area greater than 9000 km2: the
“discharge output” approach (Zhao et al., 2017) was
adopted to extract routed discharge (m3 s−1) from the
GHM cell corresponding to the outlet of each catch-
ment.

To ensure sufficient data are available for historical trend
analysis, only GSIM stations with at least 30 years of
data available during the 1971–2005 period were considered
(each year having at least 335 d of available records, imply-
ing that annual maximum of a specific year is identified only
when more than 90 % of the daily record is available). These
relatively strict selection criteria also enable a comparison
between this study and preceding observation-based investi-
gations (Gudmundsson et al., 2019; Hodgkins et al., 2017).
As catchment boundary shapefiles (Do et al., 2018a) were
used to extract simulated streamflow for small catchments,
stations were further filtered using two criteria: (i) availabil-
ity of reported catchment area and (ii) catchment boundary
being accompanied by a “high” or “medium” quality flag
(i.e. the discrepancy between reported and estimated catch-
ment area is less than 10 %).

A total of 4595 stations satisfied the quality selection
criteria, of which large catchments (i.e. area greater than
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Figure 2. Locations of 3666 streamflow observations (blue dots: 3024 non-averaged time series; yellow dots: 624 averaged time series, where
geographical coordinates were averaged from all component gauging coordinates) selected from GSIM archive for the model–observation
comparison. Grey dots indicate GSIM time series that were removed due to insufficient data availability or quality.

9000 km2) where no suitable grid cell could be identified
were further removed (11 catchments). For cases of two
or more small catchments (i.e. area less than or equal to
9000 km2) with similar weighted-area tables, the “averaged
time series” (using catchment areas as weights) was calcu-
lated. A total number of 1542 time series fell in this category
and were aggregated into 624 “averaged time series”. Fig-
ure 2 shows the spatial distribution of the final dataset for
model–observation comparison, containing data for 3666 lo-
cations (3042 non-averaged time series and 624 averaged
time series). The majority of available catchments are located
in North America and Europe, with some regions over Asia,
Oceania and South America also covered.

2.3 Detecting trends in annual maximum streamflow

For each streamflow dataset, daily discharge was smoothed
to 7 d averages to reduce variability in simulated stream-
flow, which can arise from the coarse routing parameters of
GHMs (Dankers et al., 2014). The annual maximum time
series of 7 d averaged discharge (labelled as the MAX7 in-
dex in the GSIM archive) was then derived to represent peak
flow events. For gridded datasets, the “centre averaged ap-
proach” (e.g. averaged streamflow of 7 January is the mean
value of 4–10 January) was used (the common setting of the
CDO software, freely available at https://code.mpimet.mpg.
de/projects/cdo, last access: 1 March 2020), and the MAX7
time series was therefore derived for each GSIM station us-
ing this same approach. As a result, the derived value of the
MAX7 index is slightly different to the value available in the

online version of GSIM (Gudmundsson et al., 2018b), which
applied a “backward-moving average” technique (e.g. aver-
aged streamflow of 7 January is the mean value of 1–7 Jan-
uary). Our preliminary analysis (not shown), however, indi-
cated that this difference did not lead to substantial changes
in the key findings (i.e. similar spatial composition between
increasing and decreasing trends).

The magnitude of trends in the MAX7 index at a specific
catchment or grid cell was quantified using the normalised
Theil–Sen slope (Gudmundsson et al., 2019; Stahl et al.,
2010), and the results are expressed in percentage change per
decade. The significance of the local trend was assessed us-
ing a Mann–Kendall test at the 10 % two-sided significance
level (Wilks, 2011). The null hypothesis (no trend) is rejected
if the two-sided p value of the test statistic (Kendall’s τ ) is
lower than 0.1, while the direction of the trend (i.e. increas-
ing or decreasing) was determined using the sign of τ .

2.4 Statistical techniques

To explore GHMs’ capacity to simulate observed trends and
the implication of model uncertainty for projected trends,
trends in streamflow extremes obtained from GSIM (ob-
served trends) and ISIMIP simulations (simulated trends) are
analysed. The observed trends were available for 3666 ob-
servation locations. Simulated trends were available for all
59 033 GHM grid cells (estimated from routed discharge of
each grid cell; Antarctica and Greenland were removed). To
enable a model–observation comparison, we also extract a
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subset of simulated trends over the 3666 observation loca-
tions (described in Sect. 2.2).

2.4.1 A hypothesis-test approach for comparison of
trend characteristics

A range of hypothesis tests (summarised in Table 2; GSWP3
simulations were used to assess GHM uncertainty while
GCMHIND simulations were used to assess the combined
GCM–GHM uncertainty) was applied to address the first two
objectives, which require comparing trend characteristics ex-
hibited from different streamflow datasets. Four characteris-
tics of trends were assessed.

– Trend mean: the mean (percentage change per decade)
of trends in streamflow extremes across all gauge- or
cell-based time series over a spatial domain. A hy-
pothesis test was adopted to assess whether the trend
means exhibited from two specific streamflow datasets
(e.g. model vs. observed) are significantly different
from each other.

– Trend standard deviation: the standard deviation (per-
centage change per decade) of trends in streamflow ex-
tremes across all gauge- or cell-based time series over a
spatial domain. A hypothesis test was adopted to assess
whether the trend standard deviations exhibited from
two specific streamflow datasets are significantly differ-
ent from each other.

– Percentage of significant trends (%): the percentage of
trends in a domain that are statistically significant, with
gauge- or cell-based significance calculated using the
Mann–Kendall test at the 10 % significance level. To as-
sess whether the percentage of significant (increasing or
decreasing) trends exhibited from a specific streamflow
dataset is produced by random chance, a field signifi-
cance test (Do et al., 2017) was adopted (described in
Table 2).

– Trend spatial pattern: the spatial distribution of trends
in streamflow extremes over a spatial domain. Pear-
son’s correlation (r statistic) (Galton, 1886; Kiktev et
al., 2003) between trends of MAX7 index obtained from
two datasets was used as a measure of similarity in the
trend spatial structure. The hypothesis test (pattern sim-
ilarity test) was adopted to assess whether (i) the corre-
lation between simulated trends introduced by GHMs
and observed trends is significantly higher than zero,
and (ii) the correlation between trends simulated un-
der hindcast atmospheric forcing and observed trends is
significantly lower than that between trends simulated
under observational atmospheric forcing and observed
trends.

2.4.2 Estimating uncertainty of trend characteristics
across ensemble members

The third and final objective, which focused on the impli-
cations of GCM–GHM uncertainty on projected changes in
flood hazard, was addressed by quantifying the spread of
trend characteristics (i.e. trend mean, trend standard devi-
ation and percentage of significant trends) exhibited from
routed discharge projections under two representative con-
centration pathways.

The spatial uncertainty of projected trends (GCMRCP2.6
and GCMRCP6.0) was also quantified by calculating intra-
and inter-model correlation of the trend patterns across all en-
semble members available under the two projections. Intra-
model correlation represents spatial uncertainty introduced
by the GCM and was calculated from simulated trends in-
troduced by the same GHM (using different simulated atmo-
spheric forcing). Inter-model correlation represents the com-
bined GCM–GHM spatial uncertainty and was calculated for
each pair of simulated trends that were (i) introduced by the
different GHMs and (ii) forced with different projected at-
mospheric forcing.

To assess the robustness of GHMs in projecting changes
in flood hazard, each grid cell available in the discharge sim-
ulation grid was then categorised into one of the five “flood-
risk” (here “flood-risk” level is defined as the number of
ensemble members projecting significant increasing trends)
groups based on the number of GCMRCP2.6 and GCM-
RCP6.0 simulation members projecting a significant increas-
ing trend (Group 1: no members, Group 2: from 1 to 5 mem-
bers, Group 3: from 6 to 10 members, Group 4: from 11 to
15 members and Group 5: from 16 to 18 members).

Finally, to assess whether locations projected with an in-
creasing trend by the majority simulations are adequately
monitored, each GSIM gauge was sorted into one of these
five groups based on the gauge’s geographical coordinates.
The allocation of gauges to these groups was then analysed to
determine whether the most comprehensive global database
of daily streamflow records to-date was evenly distributed
across the five “flood risk regions”. An inadequate cover-
age of stream-gauge networks over high-risk regions indi-
cates potentially high vulnerability to future changes in flood
hazards, as insufficient data are available to inform decision
makers.

3 Results and discussion

3.1 Capacity of GHMs to reproduce observed trends in
flood hazards

Visual inspection of the normalised Theil–Sen slope across
the GSIM time series (Fig. 3a; regional maps provided in
Fig. S4) shows a spatial pattern that is consistent with recent
findings on trends in observed flood magnitude (Mangini et

www.hydrol-earth-syst-sci.net/24/1543/2020/ Hydrol. Earth Syst. Sci., 24, 1543–1564, 2020
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Figure 3. Normalised Theil–Sen slope for historical trends in flood magnitude (MAX7 index) exhibited over 3666 locations across three
streamflow datasets (a: GSIM; b: GSWP3; c: GCMHIND). Multi-model average is shown for simulated trends. Trend is expressed in
percentage change per decade. Scatter plots between trends obtained from GSIM and GSWP3/GCMHIND simulated streamflow are provided
in (d) and (e).

al., 2018; Do et al., 2017; Mallakpour and Villarini, 2015;
Gudmundsson et al., 2019; Burn and Whitfield, 2018; Ishak
et al., 2013). Specifically, decreasing trends tend to domi-
nate Asia (most stations located in Japan and India), Aus-
tralia, the Mediterranean, the western and north-eastern US,
and northern Brazil, while increasing trends appear mostly
over central North America, southern Brazil and the northern

part of western Europe (including the UK). Note that the ob-
servation locations are not evenly distributed (86 % in North
America and Europe), and thus the confidence of this assess-
ment varies substantially across continents.

The multi-model average of GSWP3 simulated trends
(trends simulated under observational atmospheric forcing;
Fig. 3b and d) has generally good capacity to reproduce spa-
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Table 3. Characteristics of trends in the MAX7 index over the 1971–2005 period across 3666 locations for GSIM observed trends and
GSWP3 simulated trends (six GHMs available). Trend mean and trend standard deviation are expressed in percentage change per decade.
Correlation was obtained from GSIM observed trends and GSWP3 simulated trends for each GHM. Boldface texts represent values that
reject the null hypotheses outlined in Table 2 (hypothesis 1 to 4).

GHM Trend Trend Percentage of Percentage of Corr.
mean SD sig. inc. sig. dec. obs.

trends trends trend

H08 –1.9 8.3 4.8 6.7 0.42
LPJmL −2.2 7.1 4.5 7.3 0.37
PCR-GLOBWB 0.1 7.7 9.6 6.1 0.46
WaterGAP2 –0.3 8.2 8.5 4.2 0.49
MPI-HM −2.1 8.7 5.6 7.5 0.50
ORCHIDEE –1.4 8.6 7 8.2 0.35
GSIM (observation) −2.4 9.9 7.5 12.1 –

tial patterns of observed trends. The multi-model average of
GCMHIND simulated trends (trends simulated under hind-
cast atmospheric forcing; Fig. 3c and e), however, could not
reproduce some spatial agglomerations of trends in stream-
flow maxima (e.g. the decreasing trends in south-eastern
Australia, increasing trends over north-eastern Europe). This
feature indicates the inconsistent climate variability between
GCMs and the real world, suggesting GCM climate forcing
cannot account for observed trends at sub-continental scale.
In addition, GCMs uncertainty can potentially contribute to
this inconsistency. Interestingly, the multi-model average of
both GSWP3 and GCMHIND simulations generally exhibits
a lower magnitude of changes (i.e. closer to “zero change”)
compared to the observed trends. This feature is more promi-
nent in GCMHIND (21 simulations available) compared to
GSWP3 (six simulations available) and can be explained by
two possibilities. The first possible explanation is the na-
ture of averaging, which tends to smooth out variability in
trend magnitude across ensemble members, leading to a rel-
atively “close to zero” change across the globe (given that
each GCM has stochastic decadal climate variability, so that
averaging results forced by GCMs tends to cancel trends).
An alternative explanation is that individual simulations also
exhibit a lower magnitude of change relative to observation.
As Fig. 3 is not sufficient to evaluate the latter possibility, a
more detailed comparative analysis between observed trends
and individual simulated trends using both historical climate
forcings (via GSWP3) and GCM hindcasts was conducted.
Specifically, four characteristics of trends in extreme flows
(i.e. trend mean, trend standard deviation, percentage of sig-
nificant trends and trend spatial structure) were assessed for
individual simulations and the results are reported in follow-
ing sections. At the global scale, GSIM observed trends ex-
hibit a mean and standard deviation of −2.4 % and 9.9 %
change per decade over the 1971–2005 historical period. Fur-
thermore, there are 7.5 % (12.1 %) stations showing signifi-
cant increasing (decreasing) trends (detected by the Mann–

Kendall test at the 10 % significance level). These numbers,
however, are not statistically significant at the global scale.

Table 3 shows the results of the global model–observation
comparison using GSWP3 simulated trends across the six
GHMs. Compared to observed trends, most simulated trends
have a significantly higher global trend mean at the observed
locations and lower trend standard deviation. The percentage
of locations showing significant trends varies substantially
across simulations, but the values were not statistically sig-
nificant. All GHMs demonstrate low-to-moderate capacity in
simulating the spatial pattern of trends (spatial correlation
coefficients range from 0.35 to 0.50, indicating that GSWP3
simulated trends account for between 12 % and 25 % of the
cross-location variability in the observed trend signal). There
is, however, a notable difference in terms of the overall sign
of trends simulated by each GHM. This feature indicates that
using different GHMs can lead to different interpretations
about the overall change in flood hazard at the global scale,
despite having a common boundary forcing. Therefore, the
“closer to zero” trends of ensemble averages (illustrated in
Fig. 3) likely reflect the implication of averaging rather than a
systematic bias of GHMs toward a low magnitude of change.
As an implication, ensemble averages, though useful, should
not be used as the sole reason to infer changes in floods, as it
may undermine the actual magnitude of simulated trends. As
a result, the following analyses will report the full range (and
mean) of each trend characteristic estimated across all en-
semble members to communicate the uncertainty underlying
the results.

Table 4 provides the results of the model–observation
comparison using GCMHIND simulated trends (intra-model
averages are shown while results of individual simulations
are reported in Sect. 4 in the Supplement). Similar to GSWP3
trends, intra-model averages (i.e. calculated from simulations
of one GHM) of GCMHIND trends tend to have a higher
global mean and lower trend standard deviation than ob-
served. The composition between the percentages of loca-
tions showing significant trends varies substantially across
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Table 4. Characteristics of trends in the MAX7 index over the 1971–2005 period across 3666 locations for GCMHIND simulated trends.
Trend mean and trend standard deviation are expressed in percentage change per decade. Intra-model averages of trend characteristics are
shown for each GHM. Values in the parentheses show the number of simulations rejecting the null hypothesis (from 1 to 4) outlined in Table 2
(out of four GCMs). Multi-model minimum, maximum, and average values together with those exhibited from GSIM are also provided.

GHM Trend Trend Percentage of Percentage of Corr.
mean SD sig. inc. sig. dec. obs.

trends trends trend

H08 −1.7 (4) 8.5 (4) 4.9 (0) 8.8 (0) 0.03 (2)
LPJmL −2.3 (4) 7.9 (4) 4.2 (0) 12.6 (2) 0.09 (3)
PCR-GLOBWB −1.1 (2) 7.4 (4) 7.5 (0) 9.4 (0) 0.06 (3)
WaterGAP2 −1.3 (4) 8.4 (4) 5.4 (0) 8.0 (0) 0.02 (2)
MPI-HM −1.8 (3) 8.7 (3) 5.7 (0) 9.9 (1) 0.05 (2)
ORCHIDEE −0.4 (2) 8.6 (2) 6.9 (0) 7.0 (0) 0.04 (1)

Multi-model min −4.2 7.0 2.2 4.1 −0.06
Multi-model max 0.6 9.5 12.2 17.3 0.18
Multi-model average −1.5 8.2 5.6 9.5 0.05
GSIM (observation) −2.4 9.9 7.5 12.1 –

simulations and statistical significance was found only for
decreasing trends in 3 out of 21 simulations (2 LPJmL simu-
lations and 1 MPI-HM simulation). The multi-model ranges
encapsulate the observed trend mean and percentage of sig-
nificant trends, while the observed trend standard deviation is
clearly above the range exhibited from all GCMHIND simu-
lations. The significantly lower simulated trend standard de-
viation can be partially attributable to the coarse resolution
of GHMs’ atmospheric and land surface inputs, which may
not sufficiently reflect the variation of hydrological processes
across small-to-medium catchments.

Among 21 GCMHIND simulations, the “zero similar-
ity” hypothesis (hypothesis 5) was rejected over 13 simula-
tions, indicating that GCM–GHM ensemble members pos-
sess some capacity to simulate the spatial structure of ob-
served trends in streamflow extremes. The correlation be-
tween GCMHIND simulated trends and GSIM observed
trends, however, is significantly lower than that exhibited
from GSWP3 simulated trends across all GHMs (reported
at Table 3). The results of the similarity assessment are illus-
trated for a single GHM (H08, as the results were similar for
other GHMs) in Fig. 4, where the correlation between ob-
served trends and GSWP3 simulated trends is significantly
different from zero. In contrast, the correlation between ob-
served trends and each of the simulated trends under hind-
cast atmospheric forcing (GCMHIND simulations) is much
lower, with two of the four not being statistically higher than
zero. These results confirm the substantial influence of atmo-
spheric forcing on the simulated trend pattern relative to the
GHM’s structure.

To further quantify changes at the regional scale, a model–
observation comparison (identical to that at the global scale)
was conducted over six continents, and the results are sum-
marised in Table 5 (multi-model averages are shown). The
trend mean exhibited from GSIM ranges from −10.7 %

Figure 4. Model–observation correlation between observed trends
and simulated trends across all simulations (GSWP3 and four
GCMHIND simulations) of a single model (H08; similar results for
other GHMs). Coloured dots indicate actual correlation between a
specific simulated trend pattern and observed trend pattern across
3666 locations. Colour lines represent the PDFs of correlation be-
tween simulated trend pattern and observed trend pattern obtained
through a bootstrap resampling procedure (B = 2000).

(Oceania) to 2.4 % change per decade (Europe), while trend
standard deviation ranges from 8.3 % (Europe) to 15.8 %
change per decade (Oceania). The percentage of significant
increasing (decreasing) trends exhibited from GSIM ranges
from 3.2 % to 22.6 % (from 6.3 % to 29.1 %), and the compo-
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sition of significant trends across the six continents is consis-
tent with a previous investigation (Do et al., 2017). The ob-
served percentage of significant trends is found to be above
random chance for Europe (increasing flood magnitude) and
Australia (decreasing flood magnitude), and this feature is
captured quite well by GSWP3 simulated trends, with at
least half of the simulations confirming field significance de-
tected from GSIM. Trend characteristics simulated by GHMs
at continental scale confirm some important findings from
global-scale assessments, suggesting substantial uncertainty
of trends in streamflow extremes introduced by GHMs at the
continental scale:

– both GSWP3 and GCMHIND simulations generally ex-
hibit a higher trend mean and lower trend standard devi-
ation compared to the observed trend at the continental
scale (see also Sect. 3.1 in the Supplement);

– GCMHIND simulations generally exhibit lower capac-
ity to reproduce trend characteristics relative to GSWP3
simulations due to the combined GCM–GHM uncer-
tainty.

For GSWP3 simulations, the spatial correlation is weakest
in Asia, as no simulation rejects the null hypothesis of “zero
similarity”, while the spatial correlation is strongest in Ocea-
nia (mainly southern Australia; correlation of 0.63). Ocea-
nia, however, exhibits the highest model–observation dis-
crepancy in trend mean and trend standard deviation, indicat-
ing the capacity of a given GHM in terms of the trend spatial
structure is not necessarily consistent with its performance in
terms of the mean and spread of trends.

GCMHIND trends also suggest the opposite composition
between percentages of significant trends compared to GSIM
trends (e.g. simulated trends suggest more locations showing
significant increasing trends while observed trends suggest
the opposite). Among six continents, GCMHIND trends ex-
hibited the lowest correlation (−0.14) in Oceania, whereas
GSWP3 suggested the strongest correlation in this continent.
This assessment further indicates the substantial impact of
atmospheric forcing relative to GHM model structure on the
simulated trends in high flow events. It is informative to note
that this result is expected, as GCMs (despite having been
bias-corrected) generally have low capacity in reproducing
the timing of wet or dry periods or the spatial distribution of
climate extremes (Kiktev et al., 2007), and GHMs are likely
to inherit these limitations when using GCMs’ outputs as cli-
mate forcing data.

3.2 Determining the representativeness of observation
locations in the GHM simulations

To assess the representativeness of observation locations in
GHM grid cells, trend characteristics obtained from all sim-
ulated grid cells were compared to those estimated from
the observation locations (3666 sites globally). For GSWP3
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simulations, the results suggest a significant difference be-
tween trend characteristics from all model grid cells com-
pared to those obtained from the observation locations (Ta-
ble 6; multi-model averages shown). This feature is consis-
tent at both global and continental scales, including North
America and Europe – the continents with the best stream-
gauge density. Specifically, the trend mean tends to get closer
to zero, while the trend standard deviation obtained from all
grid cells tends to be higher than that over observation lo-
cations. The difference between the percentages of signif-
icant increasing and decreasing trends across all grid cells
also gets smaller. For instance, the percentage of observation
locations showing significant increasing (decreasing) trends
over Oceania is 3.7 % (22.1 %) for GSWP3 multi-model av-
erages (reported in Table 5), while the corresponding val-
ues are 10.7 % (15.1 %) when all grid cells are considered
(reported in Table 6). Additionally, field significance for in-
creasing (decreasing) trends is detected in two (four) out of
six simulations over Oceania, while the same feature could
not be detected over the observation locations. These find-
ings confirm that trends exhibited from observation locations
are not a representative sample of trends obtained from all
simulation grid cells, which has also been suggested through
Fig. 2. As a result, a common model–observation picture of
changes in global flood hazard remains elusive. To enable a
holistic perspective of changes in extreme flows, it is there-
fore crucial to improve not only models’ capacity, but also
data accessibility and expand streamflow observational net-
works to ensure unbiased samples are available for large-
scale investigations.

The findings using GCMHIND simulations are similar in
terms of the trend mean (closer to zero) and trend standard
deviation (higher) across all grid cells relative to the obser-
vation locations. Across all land areas, the composition of
the percentages of land mass showing significant trends ex-
hibited by GCMHIND simulations contradicts that obtained
from the GSWP3 simulations for many continents. For ex-
ample, GSWP3 simulations suggest more land areas showing
significant decreasing trends than increasing trends over Asia
and Oceania while GCMHIND simulations indicate an over-
all increasing change in extreme flows over the same conti-
nents. This feature further confirms the importance of uncer-
tainty in atmospheric forcing in driving the spatial structure
of the simulated trends, which will be explored further in the
next section.

3.3 The implication of simulation uncertainty on the
projection of trends in flood hazard

This section focuses on the uncertainty in simulated trends
under projected climate forcing at the global scale. For MPI-
HM (no simulation for HadGEM2-ES forcing), streamflow
was only simulated across the main stream network (approx-
imately 45 % of the global land grid cells), and thus three
simulations of this GHM were removed from the analysis. Ta
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As a result, only 18 ensemble members were used to explore
the uncertainty in projected trends (GCMRCP2.6 and GCM-
RCP6.0 – trends estimated for the 2006–2099 period and all
cells were considered).

Table 7 shows a relatively low spread of the global trend
mean (ranging from −1.3 % to 0.8 % change per decade;
multi-model average of 0.0 % change per decade for both
GCMRCP2.6 and GCMRCP6.0) and trend standard devia-
tion (ranging from 1.8 % to 4.1 % change per decade) across
ensemble members. LPJmL and ORCHIDEE generally sug-
gest a decreasing trend at the global scale, evident through
the negative global mean and more grid cells showing sig-
nificant decreasing trends. The standard deviation of trends
in future simulations is substantially lower than the historical
run (reported in Table 6). This feature is potentially due to the
capacity of longer time series in capturing the inter-decadal
variability of the streamflow regimes, with both dry and wet
periods being considered (Hall et al., 2014). Projected trends
under the RCP2.6 scenario generally have lower mean and
lower standard deviation closer to zero compared to those in-
troduced by the RCP6.0 scenario, reflecting the nature of an
ambitious “low-end warming” scenario, when anthropogenic
climate change reaches its peak in the middle of the 21st cen-
tury followed by a generally stable condition.

Interestingly, although most models suggest relatively
moderate changes in the global trend mean, the composition
between percentages of grid cells showing significant trends
varies substantially, ranging from 7.5 % (7.1 %) to 30.1 %
(35.0 %) for significant increasing (decreasing) trends at the
10 % level, with RCP6.0 generally exhibiting higher values.
This finding indicates that inferences of changes focusing
on global averages may mask significant regional trends, as
there was a substantially high percentage of locations ex-
hibiting significant increasing and decreasing trends exhib-
ited in individual models.

Uncertainty in the spatial structure of trends in stream-
flow extremes is further investigated using both intra-model
(to reflect GCM uncertainty) and inter-model correlations (to
reflect the combined GCM–GHM uncertainty). A more ro-
bust spatial pattern of projected trends under RCP6.0 was
found, indicated through generally higher intra- and inter-
model correlation compared to those exhibited from trends
simulated under RCP2.6 across all GHMs. This feature po-
tentially reflects the less contrasted regional climate change
of RCP2.6 relative to RCP6.0. The inter-model correlation
is consistently lower than intra-model correlation due to the
combined uncertainty of both GHMs and GCMs.

To quantify the robustness in terms of regions with sig-
nificant trends in streamflow extremes, the number of simu-
lations showing significant increasing and decreasing trends
was counted for each grid cell (values ranging from 0 to 18).
As shown in Fig. 5a and c, the projections under RCP2.6
do not suggest many regions with an increasing trend for
most ensemble members, but consistently suggest decreas-
ing trends over the majority of Africa, Australia and western
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Figure 5. Number of simulations showing statistically significant trends at the 10 % level at each grid cell. Panels (a) and (b) show results
for the assessment of increasing trends, while (c) and (d) show results for significant decreasing trends. (a, c) Results of GCMRCP2.6
simulations; (b, d) results of GCMRCP6.0 simulations.

North America. Although both scenarios suggested a sim-
ilar spatial pattern, projections under the RCP6.0 scenario
(Fig. 5b and d) show a substantially higher robustness in
terms of regions with significant changes over time in stream-
flow extremes. For instance, significant increasing trends are
projected consistently over southern and south-eastern Asia,
eastern Africa, and Siberia, while high agreement of decreas-
ing trends is found over southern Australia, north-eastern Eu-
rope, the Mediterranean and north-western North America.
These findings share some similarity with a previous inves-
tigation that used the ISIMIP Fast Track simulations (pub-
lished before the ISIMIP2a and 2b simulations used here)
to identify regions projected with an increasing magnitude
of 30-year return level of river flow (Dankers et al., 2014).
Specifically, both studies suggest overall (1) an increasing
trend over Siberia and South-East Asia and (2) a decreas-
ing trend over north-eastern Europe and north-western North
America. The present study, however, additionally highlights
a dominant decreasing trend over Australia, which was not
shown previously. The different numbers of ensemble mem-
bers (45 in Dankers et al., 2014, and 18 in the present
study) and greenhouse gas concentration scenario (RCP8.5 in
Dankers et al., 2014, and RCP2.6 and RCP6.0 in the present
study) between two studies indicate that the choice of GCM–
GHM ensemble and greenhouse gas concentration scenarios
could lead to substantially different projections of changes in
flood hazard at the regional scale.

These results suggest the key role of GCM uncertainty in
projections of changes in flood hazards, emphasising the im-
portance of a flexible adaptation strategy at the regional scale
that can take this uncertainty into account (Dankers et al.,
2014) such as increasing flexibility in reservoir operations,
focusing on improved infrastructure resilience and prepar-
ing for uncertain changes in flood hazards. Such a strategy is
achievable only through a reliable and robust understanding
of the change in flood hazards. The assessment of the rep-
resentativeness of streamflow observations (Sect. 3.2), how-
ever, demonstrated that the observation locations selected for
this assessment are not a representative sample of the entire
land mass. As a result, inference of changes in flood hazard
may be biased toward well-observed regions. To further high-
light the potential impact of limitations in observed stream-
flow datasets, the proportion of available stream gauges lo-
cated in regions with different levels of projected “flood risk”
was assessed. We first categorised each simulation grid cell
into one of the five “flood-risk” groups. Note that in this anal-
ysis, “risk” is defined as the number of simulations project-
ing a significant increasing trend, rather than the prominent
definition of risk as the combination of hazard, exposure and
vulnerability (Kron, 2005). In this analysis, the RCP6.0 sce-
nario was chosen as it yielded a higher global “risk” of flood
hazard relative to the RCP2.6 scenario.

Figure 6 presents the percentage of all simulated grid cells
(a) categorised in each of the five groups, and of GSIM sta-
tions located in each group (b). As can be seen, 11.7 % of grid
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Figure 6. Percentage of grid cells (“Landmass”) grouped by the
number of simulations projecting a significant increasing trend un-
der the RCP6.0 scenario, and the percentage of streamflow stations
(“GSIM”) assigned into each group. The range of possible simula-
tions is from 0 to 18 and binned into five groups (Group 1: no mem-
bers, Group 2: from 1 to 5 members, Group 3: from 6 to 10 mem-
bers, Group 4: from 11 to 15 members and Group 5: from 16 to
18 members). To identify which group a specific station belongs to,
the geographical coordinates of that station was superimposed on
top of the global “flood-risk” map.

cells fell into the “high-risk” groups (8.9 % from Group 4
with 11–15 ensemble members, and 1.8 % in Group 5 with
16–18 ensemble members), while 68.9 % of grid cells fell
into the “low-risk” groups (22.0 % for Group 1 with no en-
semble members, and 46.9 % for Group 2 with 1–5 ensem-
ble members). Of all GSIM stations, only 0.9 % are located
in high-risk grid cells (no station located in Group 5 grid
cells) compared to 89.5 % of stations located in low-risk grid
cells (35.4 % for Group 1 and 54.1 % for Group 2). The un-
even distribution of stream gauges indicates potential diffi-
culties in using observational records to provide an assess-
ment of global or regional changes in flood hazard, which
in part arises from data caveats associated with the spatio-
temporal coverage and quality of observed gauge records
across the globe. This finding further suggests the urgent
demand for ongoing efforts to make streamflow observation
more accessible. In addition, new innovations in remote sens-
ing (Gouweleeuw et al., 2018) or development of runoff re-
analysis (Ghiggi et al., 2019) should also be supported to
complement the understanding of changes in floods for lo-
cations that were not observed by stream gauges.

4 Summary and conclusions

To explore the appropriateness of GHMs in simulating
changes in flood hazards, this study evaluated the capacity of
six GHMs to reproduce the characteristics of historical trends

in 7 d annual maximum streamflow over the 1971–2005 pe-
riod. The study also explored the implications of simulation
uncertainty to projected changes in flood hazards over the
2006–2099 period. The findings of these investigations are
summarised as follows.

1. Using observations from the Global Streamflow Indices
and Metadata (GSIM) archive, this study confirms pre-
vious findings about changes in flood hazard over data-
covered regions (Do et al., 2017), in which significant
decreasing trends were found mostly in Australia, the
Mediterranean region, the western US, eastern Brazil
and Asia (Japan and southern India), while significant
increasing trends were more common over the cen-
tral US, southern Brazil and the northern part of western
Europe.

2. Trends simulated by GHMs, when using an observa-
tional climate forcing, show moderate capacity to re-
produce the characteristics of observed trends (i.e. the
mean and standard deviation of trends, the percentage
of stations showing significant increasing and decreas-
ing trends, and the spatial structure of trends).

3. Climate variability and climate model uncertainty (i.e.
the effect of using different GCMs to simulate the his-
torical climate) significantly reduced the extent to which
the GHMs’ captured the observed spatial structure of
trends. This was evident through significantly lower cor-
relation between observed trends and simulated trends,
when GCMs were used for the climate forcing, than
when climate observations were used.

4. The simulated trends over observed areas inadequately
represented spatially averaged trends simulated for
wider spatial areas from all GHM grid cells at the conti-
nental and global scales. This was evident in most simu-
lations for trend mean and trend standard deviation, in-
dicating a potential bias toward well-observed regions
of observation-based inferences about changes in flood
hazard.

5. Under the RCP2.6 and RCP6.0 greenhouse gas con-
centration scenarios, simulated trends in 7 d maximum
streamflow across ensemble members have relatively
low uncertainty in terms of the global trend mean (rang-
ing from −1.3 % to 0.8 % change per decade) and trend
standard deviation (ranging from 1.8 % to 4.1 % change
per decade).

6. Projected trends have wide spread of the percentage of
land mass showing significant changes, ranging from
7.5 % (7.1 %) to 30.1 % (35.0 %) for significant increas-
ing (decreasing) trends. This result indicates that limited
changes to the global mean flood hazard could poten-
tially mask out significant regional changes.
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7. Projected trends in flood hazards show low inter-model
spatial correlations (ranging from −0.18 to 0.21), indi-
cating high uncertainty in future changes in flood haz-
ards at the global scale. Under the RCP6.0 scenario,
some regions, e.g. south-eastern Asia, eastern Africa
and Siberia, were consistently projected with significant
increasing trends, which has some similarity to previ-
ous findings that used ISIMIP Fast Track simulations
(Dankers et al., 2014).

8. High-risk regions (consistently projected with a signif-
icant increase in floods) of future changes in floods are
sparsely sampled, covered by less than 1 % of all avail-
able stream gauges listed in the catalogue of GSIM.
Data coverage, as a result, remains the key limitation
of this study, which could potentially lead to an er-
roneous conclusion of our understanding of historical
trends in flood hazard globally. Specifically, substantial
changes, although having occurred, might not be cap-
tured by available streamflow records.

Our findings also show that individual models may provide
a contradictory signal of changes in flood hazards for a spe-
cific region, indicating high uncertainty in model-based in-
ferences of changes in flood hazards. As a result, alterna-
tives for the conventional approach in estimating changes in
streamflow extremes at the global and regional scale (i.e. un-
weighted mean across all grid points) should be investigated.
For instance, the spatial weighted averages (e.g. using inverse
distance relative to observed locations as weights) could be
used to compute global means of changes. Regional analysis
using homogenised regions as the basis of reporting spatial
domains (Zaherpour et al., 2018; Gudmundsson et al., 2019)
could be a potential alternative for continental-scale assess-
ment.

The substantial discrepancy of trends simulated by dif-
ferent GHMs, despite having a common forcing boundary,
represents another challenge in using the GHM ensemble,
as there are a wide range of factors that could contribute to
these discrepancies. This study provides a (non-exhaustive)
list of key differences across participating GHMs (Sect. 1
in the Supplement) that could individually or collectively
lead to different model outputs. Diagnosing the influence of
these factors on models’ capacity in simulating trends is still
under-represented in the literature and is an important re-
search agenda for future investigations. For instance, the im-
pact of different methods to simulate snow dynamic could be
assessed by investigating model performances across catch-
ments where snowmelt plays an (in)significant role in flood
generations.

Improved performance of GHMs in terms of simulating
changes in flood hazard, considering the many factors influ-
encing model capacity, is achievable only through the com-
bined efforts of many communities. The spread of trends
in streamflow extremes (trend standard deviation) could be

simulated more accurately by finer spatio-temporal resolu-
tion GHMs. Such an improvement in GHMs, however, is
highly dependent on the quality of input datasets (e.g. dam
operations, historical irrigation databases, land use and land
cover, in addition to atmospheric forcing), which are driven
by advances in other geophysical disciplines (Bierkens et al.,
2015; Wood et al., 2011). The moderate capacity of GHMs in
terms of simulating the spatial structure of trends in stream-
flow extremes indicates the need for improved representa-
tion of runoff generation at the global scale (e.g. to better re-
flect rainfall-runoff relationship and the contribution of snow
dynamics), which is also a focus of large-sample hydrol-
ogy (Gupta et al., 2014; Addor et al., 2017). Uncertainty in
GCMs, a long-standing challenge for the climate community,
should also be addressed to enable robust projections of flood
hazard in a warmer climate. One possibility is through con-
straining model performance using historical observations
(to prevent climate models projecting an unrealistic state of
the future climate system such as atmosphere energy balance
or cloud feedbacks), which could potentially reduce the un-
certainties of atmospheric forcing projections (Greve et al.,
2018; Lorenz et al., 2018; He and Soden, 2016; Padrón et
al., 2019). In addition, future development of GHMs should
also pay attention to model’s capacity to simulate flood tim-
ing, an important metric to represent flood generation pro-
cesses (Blöschl et al., 2017; Hall and Blöschl, 2018; Do et
al., 2019). Integrating more sophisticated and effective rout-
ing schemes into future generations of GHM should also be
emphasised to ensure runoff is accurately converted into river
discharge (Zhao et al., 2017).

This study presents a comprehensive investigation of his-
torical and future changes in flood hazard using a hybrid
model–observation approach. The results highlighted a sub-
stantial difference between trend characteristics simulated
by GHMs and those obtained from the GSIM archive. Our
findings, therefore, suggest more attention should be paid
to investigating GHMs performance in the context of his-
torical and future flood hazard, which is important not only
for the scientific community but also for stakeholders when
using the results of GHM simulations (Krysanova et al.,
2018). This is particularly important to determine the appro-
priateness of GHMs in specific investigations, as model per-
formance may vary substantially across different variables
(e.g. moderate capacity in simulating the spatial structure of
trends may be accompanied by a low performance in terms
of simulating the trend mean).

Large-sample evaluations, however, are highly dependent
on data availability, which is one of the key barriers to a
holistic perspective of changes in floods. In this study, the
unevenly distributed GSIM stations, partially due to the con-
straint in data accessibility, do not provide representative
samples at both global and continental scale. Sustained and
collective efforts from the broad hydrology community (Ad-
dor et al., 2019), therefore, are required to make streamflow
data become more FAIR (findable, accessible, interoperable
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and reusable; see Wilkinson et al., 2016) and ultimately com-
plement our limited understanding of flood hazards. Data
providers, considering their tremendous investments in main-
taining and making streamflow observations publicly avail-
able, remain key agencies to enhance the evidence base of
the global terrestrial water cycle and changes in flood haz-
ard. The important contribution of these agencies should be
acknowledged appropriately when streamflow data are be-
ing used. Centralised organisations such as GRDC or WMO
should also push forward the movement of making stream-
flow data accessible to the research community. More initia-
tives based on citizen science (Paul et al., 2018) should be
adopted, as this is a potential option to crowdsource water
data and offset the limitation of a traditional observation sys-
tem. Finally, attention should also be paid to stream-gauge
maintenance, data housekeeping and data sharing to ensure
ongoing flood monitoring is available to the present and fu-
ture generations.

Data availability. The GSIM database is available at
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