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1 Introduction
Gaussian process models (a.k.a. Kriging models) are one of the preferred choices for meta-
modeling nowadays [1], competing with a few others like polynomials, splines, generalized
linear models and neural networks [2, 3]. While sometimes similar in prediction accuracy to
the other cited methods, Gaussian processes present among other advantages: (i) the capa-
bility to reproduce complex (and a priori unknown) nonlinear input-output relationships, (ii)
the ability to interpolate the observations, and (iii) the interpretability of predictions which
include an estimation of the uncertainty at each prediction point.

Gaussian process metamodels were originally developed for scalar inputs, but are now also
available for functional inputs. The extension to functional inputs gives rise to a number of
questions about the proper way to represent them in the metamodel: (i) which functional
inputs are worth keeping as predictors, (ii) which dimension reduction method (DR) is ideal
to use (e.g., B-splines, PCA, PLS), (iii) which is a suitable projection dimension, and given
our choice to work with Gaussian process metamodels, also the question of (iv) which is a
convenient distance to measure similarities between functional input points within the kernel
function. Some of these characteristics - hereon called structural parameters - of the model
and some others such as the family of kernel (e.g., Gaussian, Matérn 5/2) are often chosen a
priori, either based on the familiarity of the modeler with certain methods or in the results
of other metamodeling experiences. As one may intuit and has been shown by us through
experiments in [4], the configuration of the structural parameters of the model have a strong
impact on its prediction capability. In this report, we introduce an heuristic optimization
method for the selection of a convenient combination of structural parameters in the context
of functional-input Gaussian process models. The architecture of the algorithm was made
custom to the aforementioned problem, however, its principles are general enough and the
method can be easily extended to other model selection frameworks.

2 The ant colony system
Ant colony optimization (ACO) encompasses a large variety of optimization metaheuristics
derived from the seminal work of Dorigo et al. in the early 90s [5, 6]. Since then, ACO
based heurstics have been proved to give remarkable results in a wide range of optimization
problems, including DNA sequencing [7], scheduling [8], protein-ligand docking [9], assembly
line balancing [10] and packet-switched routing [11]. ACO has been recognized as one of
the most successful research lines in the area of swarm intelligence [12, 13], and always seats
beside evolutionary algorithms, iterated local search, simulated annealing, and tabu search
among the top metaheuristic techniques [14].

2.1 Biological inspiration
ACO algorithms work based on stigmergy, a mechanism for indirect inter-agent communi-
cation through traces left in the environment. Ants employ this type of communication to
find efficient routes during foraging1. The way it works is traditionally explained through
a picture similar the one displayed in Figure 1. The frame sequence in alphabetical order
illustrates the variant of the double bridge experiment performed by Goss et al. in the 80s
[15]. In the experiment, the nest of a colony of ants was connected to a food source by two

1Foraging: searching for wild food resources.

4



paths, one significantly longer than the other (frame A). At first the ants began to explore
the environment by randomly distributing themselves in the two paths (frame B). Along its
way, each ant left pheromone trails noticeable by its mates. As expected, the ants that took
the shortest path met the food before (frame C). Most part of the ants that started first the
way back to the nest, perceived the larger load of pheromones in the shortest path and went
through it. The shortest path kept receiving pheromones at a incrementally higher rate than
the longer one, gradually reducing the chances of an ant taking this last (frame D). After
some time, the whole colony converged to towards the use of the shortest path (frame E).

Figure 1: Stigmergy used by ants to find efficient paths towards a food source. Red ants
represent the ones going back from the food source to the nest.

2.2 The optimization algorithm
In ACO algorithms, a colony of artificial ants evaluate solutions to the optimization problem
at hand. The quality of those solutions is informed to the colony through virtual pheromone
trails which help the algorithm to converge towards a high quality solution. To this day there
is more than a dozen ACO metaheuristics and probably hundreds of ACO based heuristics2.
The algorithm proposed here is inspired in the ant colony system (ACS), introduced by Dorigo
and Gambardella in the late 90s [16]. In this report we proceed directly with the explanation
of our heuristic for model selection. The aforementioned reference is recommended to the
reader interested in the original version of ACS.

The ACS operates over a decision network that must be defined in advance based on the
structure of the solution space. To start, each ant is located on a base spot and the pheromone
value of each link is initialized. Each ant generates a solution to the optimization problem
by adding nodes of the decision network to its path according to a pseudo-random system of
rules biased by the pheromone loads in the network. Each time an ant traverses a link, a local
pheromone update takes place; the pheromone load of the link is slightly reduced in order
to foment the diversification of solutions (principle of exploration). Once all ants have
made a complete solution, the quality of each solution is evaluated and a global pheromone

2Metaheuristic vs. heuristic: a metaheuristic is a generic solution technique that can be applied to a broad
set of problems; an heuristic is a solution technique designed to resolve a particular problem. An heuristic
might be an adaption of an metaheuristic to the particularities of the optimization task at hand.
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update occurs; the pheromone load of the links traversed by the best ants is increased in
proportion to the quality of their corresponding solutions, striving for convergence towards
high quality solutions (principle of exploitation). The process is then iterated until some
stopping conditions are reached. A pseudocode for the ACS is presented in Algorithm 1.

Algorithm 1 Generic ACS structure
1: while <stopping conditions remain unsatisfied> do
2: create a new population of ants
3: for <i=1:Psize> do
4: locate ant i at its base spot
5: tag ant i as partial
6: end for
7: while <there are still partial ants> do
8: randomly pick a partial ant
9: apply transition rule to select next node in its sequence
10: reduce pheromone load of chosen link
11: end while
12: evaluate the solution made by each ant
13: increase pheromone load of links in best solutions
14: P ∗ ← best solution so far
15: end while
16: return P ∗

2.3 Adaption to model selection
Decision network

Considering the framework described in Section 1 for a set of ds scalar inputs and df functional
inputs our optimization problem consists on making the following decisions:

• State of the i-th scalar input, from {inactive, active};

• State of the j-th functional input, from {inactive, active};

• Projection basis for the j-th functional input, from {B1, . . . , Bz};

• Projection dimension for the j-th functional input, from {0, . . . , kj};

• Distance for the j-th functional input, from {D1, . . . , Dw};

• Kernel type, from {K1, . . . , Kx},

with i ∈ {1, . . . ds}, j ∈ {1, . . . df} and kj the original dimension of input j. The sets
{B1, . . . , Bz}, {D1, . . . , Dw} and {K1, . . . , Kx} correspond to the basis, distance and kernel
families to be considered, in that order. The projection dimension 0 denotes no projection.
In order to find a suitable combination of the parameters listed above, we let our artificial
ants to move through a network with a structure similar to the one depicted in Figure 2.
Such a structure prevents the constitution of senseless solutions (e.g., an input being both,
inactive and active) and helps to keep the network data structures considerably simple by
only defining strictly necessary links.
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Figure 2: Prototype of the network used in our ACO heuristic.

Transition rules

ACO is an iterative algorithm. At each iteration, a group of artificial ants are located at a
base spot. Each ant builds a feasible model structure by walking from node to node, always
respecting the direction of the links. At each step, an ant selects the next node based on a
pseudo-stochastic mechanism defined by (1):

rule =

Rule 1 if q ≤ q0,

Rule 2 otherwise,
(1)

with q0 a parameter ∈ [0, 1] and q a random value from U(0, 1). For ant r located at node a,
our transition rules are defined as follows:

Rule 1. Move to the feasible neighbor node with greater pheromone load. Mathemat-
ically, it is to move to the node s specified by

s = arg max
b∈Jr(a)

τab, (2)

with Jr(a) the set of feasible neighbor nodes for ant r located at node a, and τab the
pheromone load of link (a, b).

Rule 2. Pick the next node based on a probability distribution proportional to the
pheromone load of the feasible neighbor nodes. Formally, this can be expressed as
moving to node b with probability

P (b) = τab∑
b∈Jr(a)

τab

, (3)

with Jr(a) and τab interpreted as in rule 1.

Note that the proposed algorithm does not make use of the heuristic visibility value considered
in [16] and often present in ACO algorithms. The role of this value, typically denoted ηab for
the link (a, b), is to introduce a priori information about the potential benefit of including each
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link in the solution. For many optimization problems like routing-oriented and scheduling-
oriented ones, the visibility of a link is naturally set to be a function of its inverse generalized
cost (see e.g., [17] and [18]). For optimization problems involving categorical variables (such
as model selection problem at hand), this set up is often less intuitive since the order of
preferences over different levels of the same factor and the relative degree of preference of
each level are hard to estimate. For instance, consider the questions of: (i) what would be the
order of preference over a set of 5 types of basis families, and (ii) how preferred each basis
family should be. Since there is no published evidence of the superiority of certain basis
family over the others irrespective of the regression problem at hand, it could be hard to
answer these two questions. In order to include ηab in the algorithm, the same two questions
would have to be answered for the distance and the kernel family, and every other feature
of the regression model. Hence, we decided to remove the visibility from our model, while
keeping in mind that a priori information can also be introduced in the algorithm through
the initial pheromone load. This possibility will be discussed later, at the end of this section.

Pheromone update

As explained in Section 2.2, ACS implements two pheromone update mechanisms – local
and global – responsible for the diversification of solutions and the exploitation of acquired
knowledge about the structure of high quality solutions. The local pheromone update is
triggered each time an ant ads a note to its sequence. The pheromone load of the traverse
link is slightly reduced and as a consequence, other ants are less motivated to use the same
link in further decisions. In the proposed algorithm, the local pheromone update operates
on the link (a, b) based on the assignment

τab ← (1− ρl) · τab + ρl · τ0, (4)

where τab is the current pheromone load of the link, τ0 is its initial pheromone load, and
ρl ∈ [0, 1] is a parameter that can be interpreted as the pheromone evaporation rate.

On the other hand, global pheromone update takes place each time that a colony becomes
complete, i.e., each time all ants in a colony complete a solution. This time, the pheromone
load of links belonging to the best ants is increased in proportion to the quality of the
corresponding solutions. For each high quality ant, the global pheromone pheromone operates
on the link (a, b) based on the assignment

τab ← (1− ρg) · τab + ρg · ψ, (5)

where τab is interpreted as in (4), ψ is a measure of the quality of the solution, and ρg ∈ [0, 1]
is a parameter that can be interpreted as the learning reinforcement rate. If multiple ants
are used in the global update, (4) is applied in an iterated manner over the set of best ants.

Initial pheromone load

The ACS initiates with a base pheromone load on every link. This quantity is modified by the
virtual ants during the optimization to communicate actions and learning with their peers.
The initial pheromone load must be set with caution, since this value will be determinant on
the proper functioning of the algorithm;
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• If it is set too low, the heuristic will be prematurely and irreversibly biased towards the
best solution of the first iteration, breaking down the learning capability of the system.
In addition, the first iteration does not count with any learned information. Thus, the
solution at which the system would get stuck might be of regular quality.

• If it is conversely set too high, the system will struggle to converge (if it manages to do
so). High quality solutions will not drag the attention they deserve and ants will not
be able to focus their exploration around them.

In the proposed algorithm, pheromones are implicitly configured to take values exclusively
in [0, 1]. Thanks to the structure of the updating queries (4) and (5), this is easily achieved
by just setting the initial pheromone load of every link in the range [0, 1] and using a quality
measure ψ for the solutions in that same range. For the model selection problem, one can pick
for instance the Leave-one-out (LOO) cross-validated squared correlation coefficient Q2

loocv

(6), or alternatively its hold-out analogous, the predictive squared correlation coefficient
Q2

hout (see e.g., [19]).

Q2
loocv :=

1−

n.tr∑
i=1

(yi − ŷi,−i)2

n.tr∑
i=1

(yi − ȳ)2


0

, (6)

with (yi)i=1,...,n.tr the vector of observed output values, ȳ the average of that vector, ŷi,−i the
LOO estimation of yi, and the operator b·cl defined as:

bxcl =

x if x ≥ l,

l otherwise.

Several numerical trials allowed us to identify an initial pheromone load of 0.1, combined with
populations of size 10, as a suitable configuration taking into account the setup described in
the previous paragraphs. During those trials, we observed the affectation of the pheromone
level and the overall behavior of the algorithm along the iterations. In addition, we were
able to corroborate the drawbacks associated to excessively low or high τ0 values, explained
in the introductory paragraph of this subsection.

A special treatment for the assignment of the initial pheromone load was given to the links
connecting a distance type with a projection dimension (see Figure 2). The framework
presented here is general enough to account for any number and type of distance families,
however, for practical purposes we adopted the norms ‖·‖D,θf and ‖·‖S,θ̇f

defined in [4] as
a baseline. The selection of one of these two norms not only might have a relevant impact
on the predictability of the model, but also on its tractability. The norm ‖·‖D,θf requires a
single length-scale parameter per functional input, indifferently of its projection dimension. In
contrast, for each functional input, the norm ‖·‖S,θ̇f

requires as many length-scale coefficients
as projection terms. That means that the optimization of the hyperparameters of the model
will almost always involve a larger number of decisions variables when using the norm ‖·‖S,θ̇f

.
This norm must be considered as an option as it could be the optimal choice in terms of
predictability. However, if the projection dimension is allowed to take too high values, the
norm ‖·‖S,θ̇f

may imply substantially harder and more time consuming hyperparameters
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learning sessions than the norm ‖·‖D,θf . As a mechanism of regularization, we set up the
initial pheromone load for the links pointing out to the norm ‖·‖S,θ̇f

, based on a loss function
of the form

τf (x; kj, τ0, δj, wj) =



τ0 exp
(
−|kj − 1| − δj

2σ2

)
if x = 0,

τ0 if 0 < x ≤ δj,

τ0 exp
(
−|x− 1| − δj

2σ2

)
otherwise,

(7)

where kj is the original dimension of input j, x takes integer values corresponding to its
possible projection dimensions, τ0 denotes the general initial pheromone load of the heuristic,
and

σ2 = −
w2

j

2 log(.5) .

The parameters δj and wj draw the shape of the loss function by specifying the extension of
its flat section and the smoothness of its decreasing section (see Figure 3).

Figure 3: Loss function used for regularization in dimension reduction for functional inputs
using the norm ‖·‖S,θ̇f

. Illustrated for an hypothetical functional input of dimension 10.

The first condition in (7) controls the case where the projection dimension is equal to zero,
which as stated earlier in the document denotes no projection. For every functional input,
the values of δj and wj can be tuned by observing the normalized loss curve with sum equal
to 1. This curve matches the values of the probability pie defined in transition rule 2 (see
(3)), and will be used by the ants during the first iteration of the algorithm, each time that
this rule is implemented. Some examples of the normalized loss function are provided in
Figure 4, where we illustrate the effect of w and δ on the shape of the curve. Suitable w
and δ values will vary depending on particularities of the regression task. For instance, if
there are many candidate functional inputs, both values could be set relatively low in order
to prevent the heuristic from building too heavy models.

As a closing remark, the initial pheromone value can be used to induce preferences on the
behavior of the ants. Whenever there is some hint that one level of some feature will perform
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(a) Effect of δ on the normalized loss function. (b) Effect of w on the normalized loss function.

Figure 4: Normalized loss function for hypothetical input of dimension 10.

better than the others, this information can be directly placed in the initial pheromone loads
of that feature. By doing so, the ants will be stimulated to test more often configurations
including the expected best performing level of the feature. The advantage of specifying this
information through the pheromones and not through a visibility value (see the discussion
on the transition rules) is that in case the induced bias was erroneous, the ants will be able
to systematically remove it through the local pheromone update. Conversely, the ants will
be able to reinforce the bias through the global pheromone update if they find it fruitful.

3 Analytic test cases
Let us now check the performance of the heuristic. We set ourselves in a metamodeling
framework where an expensive-to-evaluate computer code is to be substituted by a light-to-
run statistical model (see e.g., [20] or [4] for more details on the metamodeling problem). We
consider three analytic black-box functions and we undertake the model selection problem
for each of them. We proceed below with the definition of our black-box functions.

3.1 Black-box functions
Let F be the set of continuous functions from [0, 1] to R. Let x = (x1, x2) ∈ [0, 1]2 and
f = (f1, f2) ∈ F2 be the vectors of scalar and continuous functional inputs in that order.
Then, consider the black-box computer codes specified by the following analytic functions:

• Analytic black-box 1

G1 : [0, 1]2 ×F2 → R,

(x,f) 7→ x1 sin(x2) + x1

1∫
0

f1dt1 − x2
2

(
(max

T2
f2)− (min

T2
f2)
)
. (8)

• Analytic black-box 2

G2 : [0, 1]2 ×F2 → R,

(x,f) 7→ x1 sin(x2) +
1∫

0

exp(x1t1)f1dt1 − x2
2

1∫
0

f2t2dt1. (9)
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• Analytic black-box 3

G3 : [0, 1]2 ×F2 → R,

(x,f) 7→ x1 − 2x2 + 4
1∫

0

t1f1dt1 +
1∫

0

f2dt2. (10)

Note that the three functions above are totally independent and the only purpose of resolv-
ing the model selection problem for all of them is to check the robustness of our proposed
algorithm to variations on the structure of the underlying input-output true model.

3.2 Data generation and heuristic setup
Here, we focus on the solution of the model selection problem and we keep the generation
of synthetic input data (the experimental design) very simple. For all the three analytic
functions we use the same input and output data. We generate the scalar part of the design
from a grid over [0, 1]2. We assume that the functional inputs f1 and f2 are represented by
vectors of size 10 and 22, respectively. We made this choice in order to include functional
inputs with heterogeneous discretization in the experiment. We sampled all the values of
each function randomly from U(0, 1). In total, we generated an arbitrary number of 100
input points. For each point, we computed the corresponding output values using (8), (9)
and (10).

As mentioned earlier in the discussion about the initial pheromone load (Section 2.3), a
series of numerical trials allowed us to identify the combination τ0 = 0.1 with a population
of size 10 to work properly for our application. During these tests, we also allowed the
decision probability boundary q0, the evaporation rate ρl and the learning reinforcement rate
ρg vary. More specifically, we tried values in the vicinity of (0.9, 0.1, 0.1), the values used for
those parameters (in the corresponding order) by Dorigo et al. in [16]. We found the triple
(0.95, 0.1, 0.1) to offer a good trade-off between solution discovery and convergence. Finally,
we fixed the regularization parameters δ and w at 2 and 1.4, respectively for both functional
inputs. This setup produces the normalized loss functions displayed in Figure 5.

Figure 5: Normalized loss functions used for the analytic cases.
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3.3 Results
In this section we check the performance of our algorithm from three different perspectives:

1) the absolute quality of the selected model;
2) the relative quality of the selected model;
3) the evolution of the solutions found throughout the iterations.

Each of them is better described in the corresponding subsection. An ideal general number of
iterations that will work well for any model selection problem may likely not exist. Since our
purpose is merely to show the performance of the heuristic, we used and arbitrary number of
20 iterations. For actual applications where the interest is to find the best possible solution
the algorithm can give, we recommend instead using a stopping condition based on processing
time. This way, we will have the best possible solution given our time constraints.

Absolute model quality

The absolute quality of the model refers to its predictability, regardless of the quality of
the other explored models. This dimension of quality can be assessed, for instance, by
means of the Q2

loocv or Q2
hout statistics (see the discussion about the initial pheromone load in

Section 2.3). Those are conveniently interpretable measures thanks to the fact that they get
values in [0, 1] (for any worthwhile model), with a value of 1 indicating perfect fitting and
0 indicating a very poor one. Here we optimize the model structure in terms of the Q2

loocv.
Figure 6 displays the calibration plot and the Q2

loocv for the model selected for each of the
black-box functions.

(a) Black-box 1. (b) Black-box 2. (c) Black-box 3.

Figure 6: Calibration plot for selected models.

Based on the calibration plots, all the models are good in terms of accuracy and precision.
No evident fitting problems (e.g., skewness, heavy tails) are present in any of the models.

Relative model quality

The relative quality of the selected model is assessed by comparing it to the other explored
models. This dimension of quality allows to see how special our model is. For instance, a
Q2

loocv of 0.95 is not that especial if the vast majority of models had a metrics over 0.92, and
similarly, a Q2

loocv of 0.58 is not that bad if most of the models had metrics below 0.35. In
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Figure 7 we display the Q2
loocv of all the models explored during the optimization for each of

the black-box functions.

(a) Black-box 1. (b) Black-box 2. (c) Black-box 3.

Figure 7: Relative quality of selected models.

In the three cases an important portion of the explored models reported a Q2
loocv that fell

well below that of the selected model. Two important takeaways from these plots are:

• the arbitrary selection of the structural parameters is an unsafe move that may be the
difference between a poorly performing model and a model of high prediction quality;

• even if there are multiple relatively good models (as for black-boxes 1 and 2), the
proposed heuristic will go one step forward and deliver simply the best one.

Evolution

Finally, the analysis of the evolution of the solutions found by the algorithm along the
iterations helps to verify that its learning mechanism is working properly. In Figure 8 we
plot theQ2

loocv of the models explored at each iteration of the heuristic during the optimization
for each black-box function, along with the per-iteration maximum and median Q2

loocv values.

(a) Black-box 1. (b) Black-box 2. (c) Black-box 3.

Figure 8: Evolution of the heuristic.

In all cases, the maximum and median Q2
loocv progressively improve, and the models gradually

converge towards the best solution found. The sporadic drops of the median are just an effect
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of the randomness and the degree of exploration requested via the parameter q0 (see (1)).
This phenomenon is by no means a bad thing, since it prevents the algorithm from getting
trapped in local optima and allows it to keep improving the best solution as we see in the
plots. The optimizations presented here ran in 77.7, 30.4 and 25.8 seconds, for black-boxes
1, 2 and 3, respectively.

4 Conclusions
This technical report introduces an ant colony based algorithm for model selection, specially
oriented to the treatment of functional inputs. After almost 30 decades of their introduction
to the scientific community, the ant colony algorithms remain as powerful optimization tools
for concurrent research problems of notable relevance. In this report, we validated the ability
of our algorithm to develop high quality regression models through three analytic test cases.
In all of them the results were satisfactory. It is important to note that the absence of a smart
exploration tool like this, does not leave one exposed to the possibility of selecting exclusively
one of the other high quality model structures. As evidenced through the plots on the relative
quality of the models, in all the three test cases, a large number of models had regular to
bad quality. Thus, the absence of this type of tool actually leaves one vulnerable to end up
with a low quality model, or at least one much inferior to the one that a smart method could
have found. We have already done some tests with the RISCOPE data (see [4] and [21] for
more details on the data) and the results seem promising as well. An R package for Gaussian
process regression with scalar and functional inputs is currently under implementation in the
frame of the RISCOPE project. The proposed ant colony based algorithm is expected to be
one of the main components of the package, allowing the user not only to make individual
particular models, but also to find high quality model structures.
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