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Odd numbers can be indexed by the map . We first propose a basic primality test using this index function that was first introduced in [8]. Input size of operations is reduced which improves computational time by a constant. We then apply similar techniques to Atkin's prime-numbers sieve which uses modulus operations and finally to Pritchard's wheel sieve, in both case yielding similar results.

Primality test and prime enumeration

An odd number is prime when it is not divisble by any prime lower than or equal to . This basic primality test requires too much computational time for large integers. Faster and more efficient deterministic and probabilistic primality tests have been designed for large numbers [START_REF] René | Four primality testing algorithms[END_REF]. A deterministic polynomial primality test was proposed by M. Agrawal, N. Kayal and N. Saxena in 2002 [START_REF] Manindra | PRIMES is in P[END_REF].

Enumeration of primes up to a given limit can be done by using a primality test but prime number sieves are preferred from a performance point of view. A sieve is a type of fast algorithm to find all primes up to a given number. There exists many such algorithms, from the simple Erastosthenes' sieve (invented more than 2000 years ago), to the wheel sieves of Paul Pritchard ( [START_REF] Paul | A sublinear additive sieve for finding prime numbers[END_REF], [START_REF] Paul | Explaining the Wheel Sieve[END_REF], [START_REF] Paul | Improved Incremental Prime Number Sieves[END_REF]) and the sieve of Atkin [START_REF] Arthur | Prime sieves using binary quadratic forms[END_REF]. In [START_REF] Gabriel | A distributed wheel sieve algorithm using Scheduling by Multiple Edge Reversal[END_REF], Gabriel Paillard, Felipe Franca and Christian Lavault present another version of the wheel sieve and give an overview of all the existing prime-numbers sieves.

In theory, indices are a way to represent odd numbers. By adapting results from [START_REF] Marc | Representation theorem of composite odd numbers indices[END_REF], we show how odd number indices may be used in applied mathematics. In the last part, we apply [START_REF] Marc | Representation theorem of composite odd numbers indices[END_REF] to Pritchard's wheel sieve, which leads to a wheel sieve. Using the linear diophantine equation resolution method first introduced in [START_REF] Marc | Calculation of extended gcd by normalization[END_REF], we introduce an original way of "turning the wheel".

Notation

We will use the following notations:

1. designates the set of odd integers greater than , i.e.: 2. the set of prime numbers, the set of prime numbers not greater than ; 3. the set of composite odd integers, i.e.:

The function is bijective. The inverse function is .

is the index of . The preimage of is denoted by : 4. For and two integers, we denote by the remainder of the Euclidean division of by , which belongs to .

5. and are the subsets of given by: Similarly:

Finally, and designate the set of indices corresponding to elements of and respectively, i.e. and .

2 Basic primality test and primes enumeration 2.1 Two families of infinite sequences with arithmetic difference [START_REF] Marc | Representation theorem of composite odd numbers indices[END_REF] shows that is the union of two families of finite sequences with arithmetic difference. Actually proposition 2-5 says that any composite odd number can be written as a difference of two squares, and more precisely that there exists and such that:

Corollary 2-1: Let . One has: and:

Thus is the union of two families of infinite arithmetic sequences. The indices of first type reference points (or remarkable points, see [START_REF] Marc | Representation theorem of composite odd numbers indices[END_REF]) are the initial terms of sequences ranging in . Similarly, the indices of second type reference points are the initial terms of sequences ranging in .

Proof: We substitute by in relations (1) and (2):

and similarly:

Proposition 2-1: For any there exists , and such that:

Thus, writing , we get:

where:

Proof: Take the smallest prime dividing Thus and if then and is even, and we can write it either or . These two cases clearly correspond respectively to and . Thus the index can be decomposed as in corollary 2-1, but with the index of a prime number, hence in .

Basic primality test

In this section, we describe a basic primality test using the previous infinite sequences.

Definition 2-2:

For any and we let:

1-and .

2-and .

Proposition 2-2: is a prime number when:

is a prime number when:

Proof: This follows from the fact that and likewise for .

Remark 2-2:

In order to reduce computation of and for two consecutive prime numbers, we only decrement the value.

More precisely, if

are two primes, we let and we compute:

These two expressions are independent of .

Primality test with indices

We adapt here the results of the previous section with indices.

Definition 2-3: For any index of a prime number and , we let:

1- , , 2- and , 
Proposition 2-3: is a prime number index when:

is a prime number index when:

Proof: This follows from proposition 2-2 and definition 2-2 because if we let then and .

Remark 2-3:

In order to reduce computation of and for two consecutive prime number indices, we only decrement their values.

More precisely, if

are two prime indices we let and we compute:

These two expressions are independent of .

First algorithms of prime enumeration

In this section, we present prime enumeration algorithms based on propostion 2-2 and 2-3. The first one manipulates numbers and the second one indices.

Primality test using numbers

This first algorithm named PrimeEnumeration consists in two functions:

 The main function which determines primes in up to and returns them in a list, along with its size. 

Primality test using infinite sequences and indices

This second algorithm IndexPrimeEnumeration also consists in two functions, mirroring the previous algorithm:

 The main function which determines primes up to and returns them in a list along with its size.  An auxiliary function which returns whether a number is prime based on precomputed list of primes and values of and . It is called LocalTest. Four zero-based lists are used and built recursively: the list of primes , the corresponding indices (indices of primes), and the lists and respective to .

Only numbers which are not multiple of 2 and 3 are tested, i.e. indices of the form and .

Remark 2-4-2:

To avoid any division in the computation of and we will write or .

Algorithm 2-4-2a Function IndexPrimeEnumeration(

): is an odd integer such that . This function returns the list of primes up to and its size. 

First step : intialisation of variables

Perfomance of the algorithms

In this section, we present the performance of the previous two algorithms of prime enumeration. We first give a theoretical complexity, followed by empirical results.

Proposition 2-5: Time complexity (in terms of number of arithmetic operations) and space complexity are the same for both PrimeEnumeration and IndexPrimeEnumeration algorithms.

Time complexity is:

Space complexity is:

Proof: Any number 's primality is tested with primes in , in operations. There are such primes. We loop over range , time complexity is thus (actually we skip two thirds of the terms in this sum by not testing multiples of 2 and 3, but complexity remains albeit with smaller constant.

The space complexity is related to the lists we keep in memory, which are at most of size .

This space complexity is .

Both algorithms have been implemented in Visual Studio C++ 2012. We measured execution time for various values of and produced a regression using Maple 2017.3. Details of the Maple options used to get the regression are given in appendix 8.1.

On the graph 2-5 below, we represent the computation time in seconds for both algorithms. Curve corresponds to the algorithm PrimeEnumeration and curve to IndexPrimeEnumeration. The correlation coefficient R of each curve is given on the graph. We observe that computation time of both algorithms is consistent with theoretical complexity, although exponent is a bit smaller than 1.5. Both algorithms PrimeEnumeration and IndexPrimeEnumeration have the same number of modulo operations. But the computation of the input of modulus operations is done with larger inputs for the former than for the latter, which allows to marginally save time for large values of .

The sieve of Atkin

The sieve of Atkin [START_REF] Arthur | Prime sieves using binary quadratic forms[END_REF] is a modern and efficient algorithm for primes enumeration. We present two algorithms based on it, one using numbers and the other indices. Both are based on the version which has a complexity in time and space. Modified versions achieve up to in time and in space.

Atkin algorithm

This algorithm is based on the following three results from [START_REF] Arthur | Prime sieves using binary quadratic forms[END_REF].

Proposition 3-1 Let be a square-free integer. Then is prime if and only if one of the three following conditions is true: a.

and there is an odd number of solutions to , b.

and there is an odd number of solutions to , c. and there is an odd number of solutions to .

We observe that the first congruence condition on can also be replaced by or . We also observe the following for an odd integer :

 If

, must be odd.  If or , and must have opposite parity. Furthermore if is square-free, and must be in , with and .

Remark 3-1

We can compute the remainder modulo of depending on remainders modulo of and . This gives us the different cases to check in Atkin sieve. We present them in table 3-1, noting that there is no case for and . We could run the sieve looping through 12x12 blocks of according to this table, but for readability we do not implement this optimization in the algorithms below. We note however that this would save all the modulo operations.

Algorithm 3-1 SieveOfAtkin(

): is an integer. This function returns the list of all prime numbers less than . 

First step : intialisation of variables

Atkin algorithm with indices

We can rewrite proposition 3-1 as:

Corollary 3-2: is the index of a prime number if and only if is square-free and one of the three following conditions is true: a.

and there is an odd number of solutions to , b. and there is an odd number of solutions to , c. and there is an odd number of solutions to with .

The relationships presented in the following remark are used in the next algorithm.

Remark 3-2:

For the fourth step (square multiples elimination), we note that if , the index of is and that the step of translates into a step of for indices.

Algorithm 3-2 IndexSieveOfAtkin(

): is an odd integer. This function returns the list of all prime numbers less than . Also, because we deduce that .

First step : intialisation of variables

Then from the fact that we get that .

Furthermore, for all , by multiplicative property:

Thus, .

This proposition gives us an effective way of building all couples modulo : start from and add it to itself (modulo ) up to times (the last time we will get the couple ).

Corollary 4-2-2:

and have elements.

Proof: Let us proceed by induction on . Complexity is reduced by using indices, due to reduction of input size in the modulo and the multiplication operations (see Remark 4-3-2) and despite a higher number of operations with the algorithm IndexWheelSieve. Moreover, the amount of memory space used with indices is halved, due to the fact that we avoid even numbers completely.

Conclusion

In theory, indices are a way to work with odd numbers only by not representing even numbers. Most mathematical relations must be reformulated for indices, which lead to a higher number of (conversion) operations, but in return the input size of other operations is reduced. In this article, we have shown how this indexing translates into optimized algorithms in applied mathematics. From a basic primality test implementation, to the sieve of Atkin and Pritchard's wheel sieve, indices speeded up these algorithms, not by changing their complexity but by reducing the time cost by a constant factor, and generally also made them more efficient from a memory point of view.

APPENDIX: ALGORITHM OF THE INDEX WHEEL SIEVE

This algorithm enumerates odd primes up to the limit . It is composed of a main function that is called IndexWheelSieve and the following auxilliary other functions: 7-2-DiophantineSolutions( , ) 7-3-WheelTurn( ) 7-4-RemoveMultiples( ) 7-5-GetNewPrimes( ) Some marginal optimizations can still be performed, for instance modulo operations inside a loop can be replaced by substractions, and memory can be managed better. For the sake of readability we leave these optimizations out of scope.

Algorithm 7-1 IndexWheelSieve( ): is an odd integer.

This function returns the list of all prime numbers up to . 
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First step : intialisation of variables 

 variables Dynamic list of primes  Number of primes in the list  Index of

  

  

  Return the list of primes and the number of primes.

	Three zero-based lists are used and built recursively in this algorithm: the list of primes itself , and End If
	the lists of values for	and	respective to  Switch the boolean value (remember it is independent from ). Only
	numbers which are not multiples of 2 and 3 are tested. Thus we restrict to . The congruence of modulo depends on the parity of , i.e. when End While End If	and is even,
	and when is odd, Algorithm 2-4-1a Function PrimeEnumeration( This function returns the list of primes up to Return Second step : iteration  Algorithm 2-4-1b Function LocalTest ( If Do	.	): and its size. is an odd integer such that ): is an odd .
	First step : intialisation of variables integer. stands for or depending on , or is not divisible by . It will also potentially update . This function decides whether for all , Else
	, , , End If	and	which must be passed by reference.  List of primes from 5, initialized with one element
				 Size of the list
	First step : intialisation of variables While Do  Iteration at most up to  About the next two lists, see the remark 2-2  stands for   stands for  If Do  initiate references that might be updated If Do  is a multiple of , division by can be done bitwise
	Return False		 Test is negative
	End If			
	Else End While			
	Return True		 Test is positive
	Second step : iteration		
		False			so
	While End If	Do		 Loop to get odd primes in range
	If LocalTest( If Do			) Do
	Return False		 The cap is a composite number
	End If			
	End If If	Do		 update references because we always want
	If	And LocalTest(		) Do
	If	Do		
	 An auxiliary function which returns whether a number precomputed list of primes and values of and . It is called LocalTest. It is also in is prime, based on 
	End If Else	charge of updating the lists	and	if needed.
				 , using	which must already be updated

Table 3 -1: Atkin sieve cases depending on remainders modulo of and .

 3 

End For Third step : iteration for second and third cases

  

	End If		
	End For		
	End For			 Dynamic list of primes
	For			To	Step	 Number of primes in the list
	For			To	Step	 Index of  case where is even and is odd
	Sieve[			False False	 Array of	entries all initialized to False
	If				And (	) Do
	Sieve[			Sieve	 Bound for
	End If			 Bound for
	If			Do
	Second step : iteration for first case
	For	If	To	And (	) Do
	For	Sieve[	To	Step Sieve	 must be odd
		End If		
	If End If			And (	Or	) Do
	Sieve[ End For			Sieve	 Switch the boolean value Sieve[ ]
	End If		
	End For		
	For			To	Step
	For			To	Step	 case where is odd and even
	If				And (	) Do
		Sieve[			Sieve
	End If		
	If			Do
		If			And (	) Do
			Sieve[		Sieve
		End If		

End For Fourth step : remove multiples of prime squares

  

	For	To	 multiples of 3 are ignored by the previous iterations
	If Sieve[ Do	
	For	To	Step
	Sieve[	False	

End For End If End For Last step : return list of primes from the sieve

  Because andare coprime, existence and unicity of the solution are well-known. In[START_REF] Marc | Calculation of extended gcd by normalization[END_REF] we introduced the concept of normalizer of such a Diophantine equation, and have shown its additive and multiplicative property.

	Proof: Clearly if	then	and as	and	are coprime,
		.			
	For	To			
	If Sieve[ Do			
	End If				
	End For				

Graph 4-4: computation time in seconds for both algorithms (Wheel sieve)

  

		The property is true for	. Assume it is true for a given
	. From proposition 4-2-1,	
	Thus		has exactly
	elements, from which we must remove the indices of multiples of	. For a given	, from
	proposition 4-2-2 there is exactly one couple	such that:
	i.e. there is only one element of	in	. So in
	total there are exactly	elements in	
	, thus		elements in	.
	Proposition 4-2-3:	verifies the following induction property.
	For all	is equal to:	
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Performance of algorithms

In this section, we discuss theoretical complexity and present our results with the two algorithms implementing the sieve of Atkin.

The reference algorithm SieveOfAtkin has less operations index-based IndexSieveOfAtkin, which juggles between numbers and indices. But on the other hand SieveOfAtkin performs Euclidian divisions by 12, whereas IndexSieveOfAtkin does divisions by 6. This is due to the conversion of number into its index . Furthermore, the latter only performs the sieve on odd numbers, which means effectively the memory space for the sieve is twice smaller.

On the graph 3-3 below, we plot the computation time in seconds for both algorithms. The curve corresponds to SieveOfAtkin and the curve to IndexSieveOfAtkin. We observe empirically that computation time of both algorithms looks slightly higher than linear, even though theoretically the number of operations appears to be linear in . Details of the Maple options used to get the regression are given in appendix 8.2.

Graph 3-3: computation time in seconds for both algorithms (Sieve of Atkin)

The second algorithm is faster for larger values of , roughly for . For such values the cost of encoding numbers to indices is offset by the gain on modulo operations and halving the size of the sieve. We note also that memory size is halved for the second algorithm. R =0.9996 R =0.9999

Wheel sieve with indices

We first describe Pritchard's wheel sieve. Then we adapt it to indices and discuss a way to generate the integers of the turning wheel.

Description of Pritchard's wheel sieve

This description is based on [START_REF] Gabriel | A distributed wheel sieve algorithm using Scheduling by Multiple Edge Reversal[END_REF] and [START_REF] Paul | Explaining the Wheel Sieve[END_REF]. The wheel sieve operates by generating a set of numbers that are coprime with the first prime numbers. The second of these is the next prime, multiples of which are then eliminated (by turning the wheel).

More precisely, let

the sequence of prime numbers and let:

The following proposition describes a "turn of the wheel".

Proposition 4-1-1:

We have the following inductive formula for :

Proof: The Chinese theorem ensures that if and only if and . This gives the desired set equality.

Furthermore, induction formula for can also be used to recursively build the sequence of prime numbers: Proposition 4-1-2: The second smallest element of ( ) is the next prime .

Proof: The first element is , which is obviously not prime. For , and from proposition 4-1-1 we can show (see corollary 4-2-2 later on) that has at least elements. The second one must then be the smallest integer coprime with , and thus must be .

The elements of are called pseudo-primes (at order ). Some of them are primes and others are not. However, we have a boundary condition to identify some of the primes: Proposition 4-1-3: All integers in and less than are sure to be primes.

Proof: Any integer less than is either prime or has a divisor among . The latter is impossible by definition of .
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To enumerate primes up to , we thus have to keep turning the wheel as long as .

As grows exponentially (in particular it can be easily proven from Bertrand's postulate that from ), while we are only interested in pseudo-primes up to , we may replace in practice by .

Proposition 4-1-4:

The following inductive formula (or wheel turn) is true for all :

Furthermore, if , then as soon as , .

Proof: By double inclusion (cf. proof of proposition 4-2-3). The second identity comes from the fact that if , implies .

Thus, when we turn the wheel, we remove integers that are, for a given , and integers, of the form:

One way to do that is to remove all multiples of . We will show however in section 4.2 that there is a relationship between the value of , the multiples of which are added to , and the composite numbers which must be removed of the wheel , so that the index to remove can be predicted from or conversely.

Index wheel sieve

Definition 4-2: We note the product of all odd primes up to , i.e. .

We also note:

and, with the index of : the index of .

We let be the set of indices corresponding to , with replaced by (which index is ):

In this section, we describe how we adapt the wheel sieve to work with indices of odd integers. The limit is supposed to be an odd integer of index .

Recurrence relation verified by the index wheel sieve:

The initial index wheels are , , .

Remark 4-2-1:

The first element of is the index of the prime number . is included in .

Proof: Since we remapped to in to define , and because the indexing map is increasing, the first element of is the index of prime from proposition 4-1-2 (we note that it works even for ), and its last element is .

Proposition 4-2-1:

The index wheel sieve is the only sequence of sets verifying:

Furthermore, indices in the wheel up to correspond to all remaining prime numbers up to (on top of ) as soon as:

Proof: This comes from the definition 4-2 of the index wheel sieve, the proposition 4-1-1 and from observing that the index of any odd multiple of is of the form:

If we let , this corresponds to the definition of in [START_REF] Marc | Representation theorem of composite odd numbers indices[END_REF]: . 

Eliminating multiples of the next prime by solving a Diophantine equation:

Wheel sieve algorithms

As per sections 4.1 and 4.2, the wheel sieve algorithms will consist in two steps:

(A) A first step where the wheel will always grow, as long as , or:

(B) A second step where we will no longer grow the wheel, but will have to keep eliminating composite numbers, as long as , or:

This is equivalent to saying that we replace by and similarly by .

During step (B) we do not add new pseudo-primes, only remove those that we rule out as multiples of the next prime. Because grows exponentially, there will generally be more iterations in step (B) than in step (A).

Quick description of the steps of the index wheel sieve algorithm (see appendix for full algorithm):

As for the previous algorithms, we note the list of primes and its number of elements. represents the list of indices of odd primes, and the list of indices of squared odd primes. At step , will contain all primes up to , coming from the wheel , and being filled with the corresponding indices. Proof: Note that and thus:

Similarly:

This last remark is used in steps 2-b. and 3-b. to fill and to perform step 3-a.

Remark 4-3-2:

The index wheel sieve involves operations with reduced input size compared with the number version. This is clear from remark 4-3-1 where is exactly half of , for instance. Similarly is half of so modulo operation input is also reduced.

Performance of algorithms

In this section, we present results from the previous algorithm of index wheel sieve, which we compare with a similar one on numbers (unspecified for to avoid a lengthy duplication). These results are similar to those obtained in the previous sections. As for the sieve of Atkin, we did not go for refinements that give a better time complexity, so theoretical complexity in terms of number of operations is for both algorithms.

On the graph 4-4 below, we plot the computation time in seconds for both algorithms, for up to . The curve corresponds to the the algorithm WheelSieveReference and the curve corresponds to the the algorithm IndexWheelSieve. The correlation coefficient of each regression is given on the graph. Details of the Maple options used to get the regression are given in appendix 8.3. We notice that complexity of both algorithms again seems empirically slightly higher than linear.

Second step : Wheel inflation.

Do

 Compute values of the new wheel from the previous one

WheelTurn( )

GetNewPrimes( )

While

Third step : Wheel deflation. We used again NonlinearFit with empirically determined initial values and : NonlinearFit( , X, Y, n, initialvalues = [ , ], output = [leastsquaresfunction, residuals]).

While

RemoveMultiples( )

GetNewPrimes ( )

We get the following mathematical relationships: , ,