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1. Introduction

When it comes to analyzing the dependence between two random variables (r.v.), regression

models have appeared as a common and flexible tool in various disciplines, such as biology,

medicine, economics, insurance. Consider a random vector (T, X) taking values in R+∗ ×R where

T is the interest r.v. with unknown distribution function (d.f.) F and X is the covariate considered

having a density function f (·). In practice, it is well-known that we have to study the association

between covariates and responses according to the following relation:

T = µ(X) + ε

where µ(X) = E[T |X] denotes the regression function which appears as a quantity that con-

tains all the information about the dependence structure and ε is the unobservable error term
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independent of X. Generally µ(X) is obtained by the minimization of E[(T − µ(X))2|X]. The

resulting estimator enjoys some important optimality, such as simplicity, flexibility, and consis-

tency. However, this last loss function is inefficient to the presence of outliers in data, which is a

common case in practical situations.

The aim of the present paper is to propose a new approach which reduce these drawbacks.

Relative error estimation has been recently used in regression analysis as an alternative to the

restrictions imposed by the classical regression approach, which consist by considering the es-

timation of the regression function µ by minimizing the following mean squared relative error

loss function, that is, for T > 0

E


(
(T − µ(X))

T

)2 ∣∣∣∣X
 . (1.1)

This criterium has been widely studied for parametric models, we refer to Chen et al. (2010)

for a discussion about the previous works and Hirose and Masuda (2018) for a real example on

the electricity consumption. When the first two conditional inverse moments of T given X are

finite, Park and Stefanski (1998) showed that the solution of (1.1), for any fixed x, is given by

the following ratio

µ(x) =
E[T−1|X = x]

E[T−2|X = x]
=:
µ1(x)

µ2(x)
(1.2)

where µℓ(x) = rℓ(x)/ f (x) and rℓ(x) =

∫

R

t−ℓ fT,X(t, x)dt for ℓ = 1, 2 with fT,X(·, ·) and fX(·) are

the joint and marginal density of the couple (T, X) and X respectively. For recent works, there

have been some literature devoted to the relative error regression (RER) methods for complete

data. Chahad et al. (2017) considered the estimation of the regression function for a functional

explanatory variable while Attouch et al. (2017) have looked to the case where the data are from

a strictly stationary spacial process. Thiam (2018) constructed an estimator based in a decon-

volution problem. Hu (2019) established the consistency and the asymptotic normality of the

regression function based on a least product relative error.

It is well-known that the local linear method has several advantages over the classical kernel

smoothing. In particular, it allows to reduce the bias term and avoid the boundary effects. The

local linear smoother is not only superior to the popular kernel regression estimator, but also it

is the best among all linear smothers, including those produced by orthogonal series and spline

methods. A detailed introduction on the importance of the local linear approach can be found

in Fan (1992), Fan and Gijbels (1996) for the univariate case and Fan and Yao (2003) for the

multivariate case. For recent works on local linear method, we refer to Jones et al. (2008) for

independent data and El Ghouch and Van Keilegom (2008, 2009) for regression and quantile re-

gression respectively in the dependent framework.

All these works concern the complete data except the last two articles. In many situations, the

data can not be observed completely. Important examples are the survival time of patients or the

unemployment time and many others in different fields. A frequent problem in survival analysis

is right-censoring, which may be due to different causes: the loss of some subjects under study,

the end of the follow up period. Examples of situations where this kind of data occur can be

found in Klein and Moeschberger (2006).

In this paper, we suggest a new estimator based on the local linear method of the nonparametric

relative error regression (LLRER) estimator when the data are censored. We extend the work

of Jones et al. (2008) to the censoring framework by stating a strong result. We point out that

in the last paper, only a pointwise of the bias and variance terms have been investigated. We

2



April 5, 2020 Journal of Nonparametric Statistics BOS˙LLRERCS˙JNPS1

establish that the new estimator is uniformly almost sure consistent with rate over a compact

set under appropriate conditions. Simulation experiments emphasize that the LLRER, is highly

competitive to the existing estimators for regression function. To the best of our knowledge, this

problem is open up to now and there is no analogous result.

This paper is organized as follows. The general idea of the local linear fit of the mean squared

relative error regression function in the censoring framework is described in Section 2. Assump-

tions and theoretical results are given in Section 3 and some simulation results that illustrates

the performance of the proposed procedure are given in Section 4. Finally, Section 5 is devoted

to auxiliary results and technical details.

2. The model

According to the right-censoring model, instead of observing T we only observe (Y, δ) where

Y = min(T,C) and δ = 1{T≤C}, here 1(·) is the indicator function. The r.v. C represent the

censoring time which is independent of T and with d.f. G. The observed data becomes (Y, δ, X).

From now on, we will always make the following assumption:

(T, X) and C are independent. (2.1)

This assumption is required to make the estimation of the censoring distribution easier; However,

it is reasonable only when the censoring is not associated to the characteristic of the individuals

under study. Let {(Yi, δi, Xi), i = 1, . . . , n} be n independent and identically distributed vectors

as (Y, δ, X). Our main aim is to estimate the RER function defined in (1.2) using the local linear

fit. The extension of nonparametric local linear procedures to the censored framework requires

to replace the unavailable data by a suitable construction of the observed data given by

T
⋆,−ℓ

i
=
δiY
−ℓ
i

G(Yi)
for 1 ≤ i ≤ n (2.2)

where G(·) = 1 −G(·) denotes the survival function of the r.v. C. The later are called ”synthetic

data” and permits to consider the effect of censoring in the distribution (for more details, we refer

to Carbonez et al. (1995) and Kohler et al. (2002)). In this spirit, based on this construction of

the data, using the conditional expectation property and under the Assumption (2.1), for ℓ = 1, 2

we have

E[T⋆,−ℓ
1
|X1] = E


δ1Y−ℓ

1

G(Y1)

∣∣∣∣X1



= E


T−ℓ

1

G(T1)
E

[
1{T1≤C1}|T1

]
X1



= E[T−ℓ1 |X1].

Modeling by the local linear method (see Fan (1992)), assumes that the twice derivative of µ(x)

at the point x exists and is continuous, so that µ(X) can be approximated by a linear function that

is, µ(X) ≈ µ(x) + µ′(x)(X − x) =: β1 + β2(X − x). Then, the RER function (1.2) is estimated as

3
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the solution of the following optimization problem :

arg min
β1,β2


n∑

i=1

T
⋆,−2
i

(T⋆i − β1 − β2(Xi − x))2Kh(Xi − x)

 (2.3)

where Kh(·) := K
( ·
h

)
is a kernel function appropriately chosen (Epanechnicov, Gaussian, . . . )

and h := hn is a sequence of positive real numbers which converges to 0 when n goes to infinity.

By elementary calculus, the solution of the least squares problem (2.3) yields to

µ̃(x) =

n∑

i, j=1

wi, j(x)T⋆j

n∑

i, j=1

wi, j(x)

=:
µ̃1(x)

µ̃2(x)
(2.4)

where

wi, j(x) = (Xi − x)
(
(Xi − x) − (X j − x)

)
Kh(Xi − x)Kh(X j − x)T⋆,−2

i
T
⋆,−2
j
. (2.5)

Of course in data analysis, the survival function G(·) is unknown and needs to be estimated. This

can be done via Kaplan-Meier (KM) as an estimator of G(·) (see: Kaplan and Meier (1958))

Gn(t) =



n∏

i=1

(
1 −

1 − δi

n − i + 1

)1{Yi≤t}

if t < Y(n),

0 otherwise

(2.6)

where Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) are the order statistics of the Yi and δi is the indicator of non-

censoring. The properties of Gn(t) have been studied by many authors. So, (2.2) becomes, for

1 ≤ i ≤ n,

T̂
∗,−ℓ

i
=
δiY
−ℓ
i

Gn(Yi)
. (2.7)

Replacing (2.7) in (2.4) and (2.5) we get a feasible local linear estimator of the relative error

regression function (LLRER) expressed as

µ̂(x) =

n∑

i, j=1

wi, j(x)T̂⋆j

n∑

i, j=1

wi, j(x)

=:
µ̂1(x)

µ̂2(x)
(2.8)

where

wi, j(x) = (Xi − x)
(
(Xi − x) − (X j − x)

)
Kh(Xi − x)Kh(X j − x)T̂⋆,−2

i
T̂
⋆,−2
j
. (2.9)

Remark 1 In what follows, we will adopt the convention 0/0 = 0 in such a case that if, for

example, µ̂1(·) = 0 and µ̂2(·) = 0, the ratio µ̂1(·)/̂µ1(·) in (2.8) will be interpreted as zero.

4
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Throughout this paper, we denote by τF := sup{x : F(x) > 0} and τG := sup{x : G(x) > 0} be

the right support endpoints of F and G, respectively. We assume that τF < ∞, G(τF) > 0 that

implies 0 < τF ≤ τG, which were also assumed in Guessoum and Ould Saı̈d (2008).

Remark 2 In the simulation part, we will compare our estimator with the classical regression

estimator using the local linear method (LLCR). The later is the solution of the following mini-

mization problem:

arg min
α, β


n∑

i=1

(
T̂⋆i − α − β(Xi − x)

)2
Kh(Xi − x)



for T̂⋆ in (2.7), which gives

mn(x) =

n∑

i, j=1

vi, j(x)T̂⋆j

n∑

i, j=1

vi, j(x)

(2.10)

where

vi, j(x) = (Xi − x)
(
(Xi − x) − (X j − x)

)
Kh(Xi − x)Kh(X j − x).

Remark 3 1) We point out that for complete data, i.e. we replace T̂⋆ by T in (2.8) and (2.9), we

obtain the estimator defined in Jones et al. (2008).

2) Likewise, if we replace T̂⋆ by T in (2.10), we obtain the estimator defined in Nadaraya (1964)

and Watson (1964).

Remark 4 A crucial point in censored regression is to extend the identifiability assumption on

the independence of T and C defined in (2.1) to the case where the explanatory variables are

present. In this spirit of KM estimator, one may impose that T and C are independent condition-

ally to X. Then, (2.7) becomes

T̂ ∗i =
δiYi

Gn(Yi|Xi)
(2.11)

where Gn(Yi|Xi) is Beran’s estimator of the survival conditional function of the r.v. C given X,

for more details see Beran (1981). The property of this estimator has been studied by Dabrowska

(1987) and Dabrowska (1989). Replacing (2.11) in (2.8) and (2.9) we obtain a feasible estimator

of the LLRER function µ(·).

Remark 5 A frequently used bandwidth selection technique is the cross-validation method,

which choose h to minimize

n∑

i=1

(
T̂⋆i − µ̂−i(Xi)

)2
(2.12)

where µ̂−i(·) is the LLRER estimator defined in (2.8) without using the ith observation (Xi,Ti).
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3. Hypotheses and main results

We will use the following notation C to refer to a compact set of C0 where C0 =

{x ∈ R+/ f (x) > 0} is an open set. Furthermore, when no confusion is possible, we will denote

by C any generic positive constant and we assume that

∀T > 0,∃ C, such that |T |−ℓ ≤ C. (3.1)

H1 The bandwidth h satisfies lim
n→∞

h = 0, lim
n→∞

nh = +∞, lim
n→∞

log n

nh
= 0.

H2 The kernel K(·) is bounded, symmetric non-negative function on C.

i.
∫

t jK(t)dt < ∞, for j = 2, 3.

ii.
∫

t jK2(t)dt < ∞ for j = 2, 3.

H3 The density function f (·) is continuously differentiable and sup
x∈C

| f ′(x)| < +∞.

H4 The function r̺(x) =
∫

t−̺ fT,X(t, x)dt for ̺ = 1, 2, 3, 4 is continuously, differentiable and

sup
x∈C

|r′̺(x)| < +∞.

H5 The function

υℓ,k(x) =

∫
t−ℓk fT,X(t, x)dt, ℓ = 1, 2 and 0 ≤ k ≤ ν

is continuously differentiable and sup
x∈C

|υ′ℓ,k(x)| < +∞.

3.1. Comments on the Hypotheses:

The hypothesis H1 concern the bandwidth and is very common in nonparametric estimation.

The hypothesis H2 regards the Kernel K and are needed for the convergence of the estimator.

Analogous hypotheses on the kernel has been also made by Fan (1992). The hypothesis H3 deals

with the density function f (·). The hypothesis H4 and H5 are regularity conditions for r̺(·) and

υℓ,k(·) respectively for different value of ℓ, ̺ and k.

Theorem 3.1 Under Hypotheses H1-H5, for n large enough, we have

sup
x∈C

|̂µ(x) − µ(x)| = O
(
h3

)
+ Oa.s.



√
log n

nh

 .

The proof of the Theorem 1 is made up on the following decomposition:

µ̂(x) − µ(x) =
1

µ̂2(x)

{̂
µ1(x) − µ̃1(x) + µ̃1(x) − E[̃µ1(x)] + E[̃µ1(x)] − r1(x)r2(x)

+ µ(x)
{
r2

2(x) − E[̃µ2(x)] + E[̃µ2(x)] − µ̃2(x) + µ̃2(x) − µ̂2(x)
}}
.

Remark that by Hypothesis H4 and condition (3.1), there exists η > 0 such that sup
x∈C

|r2(x)| ≤ η.

6
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Then, by triangle inequality, we have

sup
x∈C

∣∣∣̂µ(x) − µ(x)
∣∣∣ ≤ 1

η2 − sup
x∈C

∣∣∣̂µ2(x) − r2
2(x)

∣∣∣

{
sup
x∈C

∣∣∣̂µ1(x) − µ̃1(x)
∣∣∣ + sup

x∈C

∣∣∣̃µ1(x) − E[̃µ1(x)]
∣∣∣

+ sup
x∈C

∣∣∣E[̃µ1(x)] − r1(x)r2(x)
∣∣∣ + sup

x∈C

∣∣∣µ(x)
∣∣∣
{

sup
x∈C

∣∣∣E[̃µ2(x)] − r2
2(x)

∣∣∣

+ sup
x∈C

∣∣∣̃µ2(x) − E[̃µ2(x)]
∣∣∣ + sup

x∈C

∣∣∣̂µ2(x) − µ̃2(x)
∣∣∣
}}
.

The proof will be achieved with the following propositions.

Proposition 3.2 Under Hypotheses H1, H2 i), H3 and H4, for ℓ = 1, 2, for n large enough, we

have

sup
x∈C

∣∣∣̂µℓ(x) − µ̃ℓ(x)
∣∣∣ = Oa.s.


√

log log n

n

 .

Proposition 3.3 Under Hypotheses H1, H2 i), H3, H4 and H5, for ℓ = 1, 2, for n large enough,

we have

sup
x∈C

∣∣∣̃µℓ(x) − E[̃µℓ(x)]
∣∣∣ = Oa.s.


√

log n

nh

 .

Proposition 3.4 Under Hypotheses H1, H2 and H4, for ℓ = 1, 2, for n large enough, we have

sup
x∈C

|E[̃µℓ(x)] − rℓ(x)r2(x)| = O
(
h3

)
.

4. Numerical study

To evaluate the quality of this method, we perform several simulations of the proposed estimator

µ̂(·) with different level of censoring. For that, we generate the data as follows:

Inputs: Generate n i.i.d. {Xi { N(0, 1), Ci { N(3 + c, 1) and ǫi { N(0, 1)} for 1 ≤ i ≤ n

where c is a constant that adjusts the percentage of censoring (C.P.).

Step 1 : Calculate the interest variable Ti = 2Xi + 1 + 0.2 ǫi where Xi and εi are inde-

pendent.

Step 2 : Compute the observed data {T⋆
i
, 1 ≤ i ≤ n} from (2.7) with the KM estimator

from (2.6).

Step 3 : We employ the Gaussian Kernel. Furthermore, we apply the cross-validation

method (see : Remark 2.5) to choose the bandwidth. For a predetermined sequence

of h’s from a wide range (0.01 to 2) with an increment 0.01, we choose the optimal

bandwidth (hopt) that minimize the cross-validation criterium (2.12).

Ouputs: Compute the LLRER estimator from (2.8) for x ∈ [1, 4] and hopt.

In all the simulation study, we use the following proposition of Port (1994) which permit to

calculate the theoretical RER function (see formula (4.1) below).

Proposition 4.1 Let q1(X) and q2(X) be two random variable with means: µ1 and µ2 and vari-

7
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ances: v1 and v2 respectively, and covariance v12. Let (Xi)1≤i≤n be an i.i.d. sequence of r.v. and

defined by

Σ̂1 =
1

n

n∑

i=1

q1(Xi) and Σ̂2 =
1

n

n∑

i=1

q2(Xi)

and R̂ =
Σ̂1

Σ̂2

then the second order approximation of E[R̂] is

E[R̂] ≈
µ1

µ2

+
1

n


µ1v2

µ3
2

−
v12

µ2
2

 .

In the following figures, the solid line represent the theoretical curve (TC) of the RER function

which is generated according to the following formula:

m(x) = 2x + 1 + 0.04(2x + 1)−1 for x ∈ [1, 4] (4.1)

Furthermore, a comparative study with other existing kernel methods: the classical regression

(CR) estimator defined in Guessoum and Ould Saı̈d (2008) by

m̂(x) =

n∑

i=1

T̂⋆i Kh(Xi − x)

n∑

i=1

Kh(Xi − x)

and the local linear classical regression (LLCR) estimators defined in (2.10) was carried out.

4.1. Effect of sample size:

We plot the true RER curve (TC) together with the LLRER estimator in Figure 1. We can see

that the quality of fit is better when n rises.

1 1.5 2 2.5 3 3.5 4

2

3

4

5

6

7

8

9

10
TC

LLRER

1 1.5 2 2.5 3 3.5 4

2

3

4

5

6

7

8

9

10

TC

LLRER

1 1.5 2 2.5 3 3.5 4

2

3

4

5

6

7

8

9

10
TC

LLRER

Figure 1. µ(·), µ̂(·) with C.P.≈ 65% for n = 100, 300, and 500 respectively.
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4.2. Effect of C.P.:

From Figure 2, it can be seen for a fixed sample size that the LLRER estimator quality is a little

bit affected by the percentage of observed data.

1 1.5 2 2.5 3 3.5 4

2
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5
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9

10
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LLRER

1 1.5 2 2.5 3 3.5 4

2
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9

10

TC

LLRER

1 1.5 2 2.5 3 3.5 4

2

3

4

5

6

7

8

9

10

TC

LLRER

Figure 2. µ(·), µ̂(·) with n = 300 for C.P.≈ 35, 50, and 70% respectively.

4.3. Effect of outliers:

In order to assess the robustness to outliers of our new estimator, we generate samples of size

n = 300 and multiply the values of 15 among them by a multiplying coefficient (M.C.). We can

observe that the quality of fit decreases as the value of M.C. increases but remains consistent.
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10
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LLRER

1 1.5 2 2.5 3 3.5 4
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4

5

6

7

8

9

10
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LLRER

Figure 3. µ(·), µ̂(·) with n = 300 for C.P.≈ 50% and M.C.= 25, 50, and 100 respectively.
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4.4. Comparison to other kernel estimators:

4.4.1. CR vs LLRER:

Effect of C.P.:

The proposed estimate shows an improvement over the CR estimate near the right tail where the

data points are sparse and mostly uncensored. Figure 4 shows that the LLRER estimator is much

more robust to censoring than the CR, in particular for larger samples.
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10
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14

16
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CR

LLRER

Figure 4. µ(·), µ̂(·) and m̂(·) with n = 300 for C.P.≈ 35, 50 and 70% respectively.

Effect of outliers:

We compare the two models when the data contains outliers in the observed response value and

we note that there is a significant difference between the two estimators for a fixed C.P. and

sample size. As expected, when there are outliers, the relative regression estimator performs

better than the Nadaraya-Watson and local linear estimators mn(·) with respect to the number of

outliers (see Figure 5).
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Figure 5. µ(·), µ̂(·) and m̂(·) with n = 300 for C.P.≈ 35% and M.C.= 25, 50, 100 respectively.

4.4.2. LLCR vs LLRER

Effect of C.P.:

We observe from Figure 6 that there is no meaningful difference between the LLCR and LL-
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RER when the C.P. is low. The two predictors are basically equivalent and both show the good

behavior. However for high censorship rate our estimator remains resistant unlike its competitor

which moves away from the edges.
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Figure 6. µ(·), µ̂(·) and mn(·) with n = 300 for C.P.≈ 35, 50 and 66% respectively.

Effect of outliers:

Figure 7 shows clearly that the curve of the LLCR estimator is moves away from the TC when

the M.C. increases which reflect the effectiveness of the procedure in presence of outliers.
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Figure 7. µ(·), µ̂(·) and mn(·) with n = 300 for C.P.≈ 35% and M.C.= 25, 50, 100 respectively.

4.4.3. LLRER versus CR ans LLCR

Finally, in this figure, we can clearly see that in the presence of outliers, the new estimator

obtained by combining the RER and LL methods is much more efficient compared to the two

methods treated separately as that has been treated by many authors.
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Figure 8. µ(·), m̂(·), µ̂(·) and mn(·) with n = 300 for C.P.≈ 35% and M.C.= 25, 50, 100 respectively.

5. Proofs and auxiliary results

Proof of the Proposition 1. Let introduce some notations for ℓ = 1, 2 and γ = 0, 1, 2:

Ŝ ℓ,γ(x) =
1

nh

n∑

i=1

T̂
⋆,−ℓ

i
(Xi − x)γKh(Xi − x) and S̃ ℓ,γ(x) =

1

nh

n∑

i=1

T
⋆,−ℓ

i
(Xi − x)γKh(Xi − x).

We use the following decomposition:

µ̂ℓ(x) − µ̃ℓ(x) = Ŝ 2,2(x)Ŝ ℓ,0(x) − Ŝ 2,1(x)Ŝ ℓ,1(x) −
(
S̃ 2,2(x)S̃ ℓ,0(x) − S̃ 2,1(x)S̃ ℓ,1(x)

)

= Ŝ 2,2(x)Ŝ ℓ,0(x) − S̃ 2,2(x)S̃ ℓ,0(x) −
(
Ŝ 2,1(x)Ŝ ℓ,1(x) − S̃ 2,1(x)S̃ ℓ,1(x)

)

=: Bℓ,1(x) − Bℓ,2(x).

On the one hand, for ℓ = 1, 2, we get

Bℓ,1(x) =
(
Ŝ 2,2(x) − S̃ 2,2(x)

) (
Ŝ ℓ,0(x) − S̃ ℓ,0(x)

)
+

(
S̃ ℓ,0(x) − E[S̃ ℓ,0(x)]

) (
Ŝ 2,2(x) − S̃ 2,2(x)

)

+ E[S̃ ℓ,0(x)]
(
Ŝ 2,2(x) − S̃ 2,2(x)

)
+

(
S̃ 2,2(x) − E[S̃ 2,2(x)]

) (
Ŝ ℓ,0(x) − S̃ ℓ,0(x)

)

+ E[S̃ 2,2(x)]
(
Ŝ ℓ,0(x) − S̃ ℓ,0(x)

)
. (5.1)

On the other hand, for ℓ = 1, 2, we get

Bℓ,2(x) =
(
Ŝ 2,1(x) − S̃ 2,1(x)

) (
Ŝ ℓ,1(x) − S̃ ℓ,1(x)

)
+

(
S̃ 2,1(x) − E[S̃ 2,1(x)]

) (
Ŝ ℓ,1(x) − S̃ ℓ,1(x)

)

+ E[S̃ 2,1(x)]
(
Ŝ ℓ,1(x) − S̃ ℓ,1(x)

)
+

(
S̃ ℓ,1(x) − E[S̃ ℓ,1(x)]

) (
Ŝ 2,1(x) − S̃ 2,1(x)

)

+ E[S̃ ℓ,1(x)]
(
Ŝ 2,1(x) − S̃ 2,1(x)

)
. (5.2)

It remains to study each term of the decomposition (5.1) and (5.2). For this, we will state and

proof the following three Lemma 5.1-5.3.

Lemma 5.1 Under hypotheses H2 i) and H3, for ℓ = 1, 2, γ = 0, 1, 2, and n large enough, we

have

sup
x∈C

∣∣∣∣Ŝ ℓ,γ(x) − S̃ ℓ,γ(x)
∣∣∣∣ = Oa.s.



√
log log n

n

 .

12
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Proof of Lemma 5.1. For ℓ = 1, 2, γ = 0, 1, 2, we have

sup
x∈C

∣∣∣Ŝ ℓ,γ(x) − S̃ ℓ,γ(x)
∣∣∣ = sup

x∈C

∣∣∣∣
1

nh

n∑

i=1

T̂
⋆,−ℓ

i
(Xi − x)γKh(Xi − x) −

1

nh

n∑

i=1

T
⋆,−ℓ

i
(Xi − x)γKh(Xi − x)

∣∣∣∣

= sup
x∈C

∣∣∣∣
1

nh


n∑

i=1

δiY
−ℓ
i

Gn(Yi)
(Xi − x)γKh(Xi − x) −

n∑

i=1

δiY
−ℓ
i

G(Yi)
(Xi − x)γKh(Xi − x)


∣∣∣∣

= sup
x∈C

∣∣∣∣
1

nh

n∑

i=1

δiT
−ℓ
i (Xi − x)γKh(Xi − x)

(
1

Gn(Yi)
−

1

G(Yi)

) ∣∣∣∣

≤
1

G
2
(τF)

sup
t≤τF

∣∣∣Gn(t) −G(t)
∣∣∣ × sup

x∈C

∣∣∣∣
1

nh

n∑

i=1

T−ℓi (Xi − x)γKh(Xi − x)
∣∣∣∣

=: sup
t≤τF

D1(t) × sup
x∈C

∣∣∣D2(x)
∣∣∣.

From Lemma 4.2. in Deuheuvels and Einmahl (2000), the first term of the right hand side is

equal to:

sup
t≤τF

D1(t) = Oa.s.


√

log log n

n

 as n→ ∞. (5.3)

For the second term and using the strong law of large numbers we have

sup
x∈C

|D2(x)| ≤ C sup
x∈C

∣∣∣∣E
[
h−1(X1 − x)γKh(X1 − x)

]∣∣∣∣ .

By a change of variable, Taylor expansion and with the condition (3.1), we get

E

[
h−1(X1 − x)γKh(X1 − x)

]
= h−1

∫
(u − x)γKh(u − x) f (u)du

= h−1

∫
(vh)γK(v) f (x + vh)hdv

= hγ f (x)

∫
vγK(v)dv + hγ+1

∫
vγ+1K(v) f ′(ξ))dv.

Under the kernel hypothesis H2 i) and the regularity hypothesis H3, we get

sup
x∈C

|D2(x)| = O
(
hγ

)
. (5.4)

Combining the results (5.3) and (5.4), the proof of Lemma 5.1 is achieved. �

Lemma 5.2 Under hypotheses H1, H2 i), H3 and H4 for ℓ = 1, 2, γ = 0, 1, 2, and n large

enough, we have

sup
x∈C

∣∣∣S̃ ℓ,γ(x) − E[S̃ ℓ,γ(x)]
∣∣∣ = Oa.s.



√
log n

nh

 .

Proof of Lemma 5.2. Let

Cn = {xi − bn, xi + bn, 1 ≤ i ≤ dn}

13
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is the intervals extremities grid where bn = n−1/2q for q > 0 and cover the compact set C by

∪
dn

i=1

[
xi − bn, xi + bn

]
with dn = O

(
n1/2q

)
.

sup
x∈C

∣∣∣S̃ ℓ,γ(x) − E[S̃ ℓ,γ(x)]
∣∣∣ ≤ max

1≤i≤dn

max
x∈Cn

∣∣∣S̃ ℓ,γ(x) − E[S̃ ℓ,γ(x)]
∣∣∣ + 2qCb

q
n.

using bn = n−1/2q then

b
q
n = O



√
log n

nh

 .

For this, observe that for all ε > 0,

P

(
max
x∈Cn

∣∣∣S̃ ℓ,γ(x) − E[S̃ ℓ,γ(x)]
∣∣∣ > ε

)
≤

∑

x∈Cn

P

(∣∣∣S̃ ℓ,γ(x) − E[S̃ ℓ,γ(x)]
∣∣∣ > ε

)
.

Let us write for ℓ = 1, 2, γ = 0, 1, 2 and x ∈ Cn

S̃ ℓ,γ(x) − E[S̃ ℓ,γ(x)] =
1

nh

n∑

i=1

T
⋆,−ℓ

i
(Xi − x)γKh(Xi − x) − E


1

nh

n∑

i=1

T
⋆,−ℓ

i
(Xi − x)γKh(Xi − x)



=
1

n

n∑

i=1

T
⋆,−ℓ

i
(Xi − x)γKh(Xi − x) − E

[
T
⋆,−ℓ

i
(Xi − x)γKh(Xi − x)

]

h

=:
1

n

n∑

i=1

Aℓγ,i(x).

In view of Corollary A.8. (see Appendix), we focus on the absolute moments of order ν of

Aℓ
γ,i

(x)

E|Aℓγ,i(x)|ν = E
∣∣∣∣h−ν

(
T
⋆,−ℓ

i
(Xi − x)γKh(Xi − x) − E

[
T
⋆,−ℓ

i
(Xi − x)γKh(Xi − x)

])ν∣∣∣∣

= h−νE

∣∣∣∣∣∣∣

ν∑

k=0

ck,ν

(
T
⋆,−ℓ

i
(Xi − x)γKh(Xi − x)

)k
E

[
T
⋆,−ℓ

i
(Xi − x)γKh(Xi − x)

]ν−k

∣∣∣∣∣∣∣

≤ h−ν
ν∑

k=0

ck,ν

∣∣∣∣∣E
[(

T
⋆,−ℓ

1
(X1 − x)γKh(X1 − x)

)k
]
E

[
T
⋆,−ℓ

1
(X1 − x)γKh(X1 − x)

]ν−k
∣∣∣∣∣ .

On the one hand, using the conditional expectation property, Taylor expansion and under H2 i)

and H5, we have

E

[(
T
⋆,−ℓ

1
(X1 − x)γKh(X1 − x)

)k
]
= E

[
T
⋆,−kℓ

1
(X1 − x)γkKk

h(X1 − x)
]

= E
[
(X1 − x)γkKk

h(X1 − x)E[T⋆,−kℓ

1
|X1]

]

=

∫
(u − x)γkKk

h(u − x)E[T
⋆,−kℓ

1
|X1 = u] f (u)du

14
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≤
1

G
k−1

(τF)

∫
(u − x)γkKk

h(u − x)

∫
t−ℓk fT |X(t|u)dt f (u)du

=
1

G
k−1

(τF)

∫
(u − x)γkKk

h(u − x)υℓ,k(u)du

=
hγk+1

G
k−1

(τF)

∫
sγkKk(s)υℓ,k(x + sh)ds

=
hγk+1

G
k−1

(τF)
υℓ,k(x)

∫
sγkKk(s)ds +

hγk+2

G
k−1

(τF)

∫
sγk+1Kk(s)υ′ℓ,k(ξ)ds.

On the other hand, using the same arguments as previously and under H2 i), H4 we have

E

[
T
⋆,−ℓ

1
(X1 − x)γKh(X1 − x)

]ν−k
=

(∫
(u − x)γKh(X1 − x)E

[
T
⋆,−ℓ

1
|X1 = u

]
f (u)du

)ν−k

=

(∫
(hv)γK(v)µℓ(u) f (u)du

)ν−k

=

(
hγ+1

∫
vγK(v)rℓ(x + vh)dv

)ν−k

=

(
hγ+1rℓ(x)

∫
vγK(v)dv + hγ+2

∫
vγ+1K(v)r′ℓ(ξ)dv

)ν−k

.

Then, for ℓ = 1, 2, γ = 0, 1, 2 and for all ν ≥ 2, we get easily

E|Aℓγ,1(x)|ν ≤ O(h−ν) × O(hγk+1) × O(h(γ+1)(ν−k))

= O(hγν−k+1)

= O(max
1≤k≤ν

h−k+1)

= O(h−ν+1).

Now, we can apply the exponential inequality in Corollary A.8. by choosing a2 = h−1, we get

P

(∣∣∣S̃ ℓ,γ(x) − E[S̃ ℓ,γ(x)]
∣∣∣ > ε

)
= P



∣∣∣∣∣∣∣

n∑

i=1

Aℓγ,i(x)

∣∣∣∣∣∣∣
> εn

 ≤ 2 exp

(
−
ε2nh

2(1 + ε)

)
.

Hence, for a fixed ε0, choosing ε = ε0

(
log n

nh

)1/2
, we get

P

(∣∣∣S̃ ℓ,γ(x) − E[S̃ ℓ,γ(x)]
∣∣∣ > ε

)
≤ 2 exp


−

ε2
0

log n

2

(
1 + ε0

√
log n

nh

)



and for n large enough, we have

P

(∣∣∣S̃ ℓ,γ(x) − E[S̃ ℓ,γ(x)]
∣∣∣ > ε

)
≤ 2 exp

−
ε2

0

4
log n

 = 2n−
ε2
0
4

15
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which gives

∑

x∈Cn

P

(∣∣∣S̃ ℓ,γ(x) − E[S̃ ℓ,γ(x)]
∣∣∣ > ε

)
≤ 4dnn−

ε2
0
4
+ ν

2 .

Finally, an appropriate choice of ε0 yields to an upper bound of order n−3/2 and by Borel-

Cantelli’s lemma we get the result. �

Lemma 5.3 Under Hypotheses H1, H2 i) and H4, for ℓ = 1, 2 and γ = 0, 1, 2, we have

sup
x∈C

∣∣∣∣E[Ŝ ℓ,γ(x)]
∣∣∣∣ = O (hγ) .

Proof of Lemma 5.3. Using the conditional expectation property, Taylor expansion, under Hy-

potheses H1, H2 i) and H4 and using the fact that E[T⋆,−ℓ
1
|X1 = u] = µℓ(u) with µℓ(u) =

rℓ(u)/ f (u), we get

∣∣∣∣E[Ŝ ℓ,γ(x)]
∣∣∣∣ =

∣∣∣∣∣∣∣
1

nh
E


n∑

i=1

T
⋆,−ℓ

i
(Xi − x)γKh(Xi − x)



∣∣∣∣∣∣∣

=

∣∣∣∣∣
1

h
E

[
T
⋆,−ℓ

1
(X1 − x)γKh(X1 − x)

]∣∣∣∣∣

=

∣∣∣∣∣
1

h

∫
(u − x)γKh(u − x)rℓ(u)du

∣∣∣∣∣

=

∣∣∣∣∣
∫

(vh)γK(v)rℓ(x + vh)dv

∣∣∣∣∣

= hγ
∣∣∣∣∣
∫

vγK(v){rℓ(x) + vhr′ℓ(ξ)}dv

∣∣∣∣∣

≤ hγrℓ(x)

∣∣∣∣∣
∫

vγK(v)dv

∣∣∣∣∣ + hγ+1

∣∣∣∣∣
∫

vγ+1K(v)r′ℓ(ξ)dv

∣∣∣∣∣ .

= O (hγ) .

�

Now, combining on the one hand Lemma 5.1 and Lemma 5.3 and on the other hand Lemma 5.2

and Lemma 5.3, we conclude the proof of Proposition 1 �

Proof of Proposition 2. Let remark the decomposition for ℓ = 1, 2:

µ̃ℓ(x) − E[̃µℓ(x)] = S̃ 2,2(x)S̃ ℓ,0(x) − S̃ 2,1(x)S̃ ℓ,1(x) − E
[
S̃ 2,2(x)S̃ ℓ,0(x) − S̃ 2,1(x)S̃ ℓ,1(x)

]

= S̃ 2,2(x)S̃ ℓ,0(x) − E
[
S̃ 2,2(x)S̃ ℓ,0(x)

]
−

{
S̃ 2,1(x)S̃ ℓ,1(x) − E

[
S̃ 2,1(x)S̃ ℓ,1(x)

]}

=: Eℓ,1(x) − Eℓ,2(x).

On the one side {Eℓ,1, for ℓ = 1, 2}, we have

Eℓ,1(x) =
(
S̃ 2,2(x) − E

[
S̃ 2,2(x)

]) (
S̃ ℓ,0(x) − E

[
S̃ ℓ,0(x)

])
+ E

[
S̃ 2,2(x)

] (
S̃ ℓ,0(x) − E

[
S̃ ℓ,0(x)

])

+ E
[
S̃ ℓ,0(x)

] (
S̃ 2,2(x) − E

[
S̃ 2,2(x)

])
− Cov

(
S̃ ℓ,0(x), S̃ 2,2(x)

)
. (5.5)
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On the other side {Eℓ,2, for ℓ = 1, 2}, we have

Eℓ,2(x) =
(
S̃ 2,1(x) − E

[
S̃ 2,1(x)

]) (
S̃ ℓ,1(x) − E

[
S̃ ℓ,1(x)

])
+ E

[
S̃ 2,1(x)

] (
S̃ ℓ,1(x) − E

[
S̃ ℓ,1(x)

])

+ E
[
S̃ ℓ,1(x)

] (
S̃ 2,1(x) − E

[
S̃ 2,1(x)

])
− Cov

(
S̃ 2,1(x), S̃ ℓ,1(x)

)
. (5.6)

It remains to study each term of the decomposition (5.5) and (5.6). We want to mention that

most of the terms are studied in Lemma 5.2 and Lemma 5.3. The covariance terms are studied

in the two following Lemmas.

Lemma 5.4 Under Hypotheses H1, H2 and H4, for ℓ = 1, 2 and n large enough, we have

Cov
(
S̃ ℓ,0(x), S̃ 2,2(x)

)
= o



√
log n

nh

 .

Proof of Lemma 5.4. By definition for ℓ = 1, 2, we have

Cov
(
S̃ ℓ,0(x), S̃ 2,2(x)

)
= E

[
S̃ ℓ,0(x)S̃ 2,2(x)

]
− E

[
S̃ ℓ,0(x)

]
E

[
S̃ 2,2(x)

]
.

The proof will be made in three steps.

Step 1. It is easy to see that under H2 and H4 for ℓ = 1, 2 and using Lemma 5.3, we get E
[
S̃ ℓ,0(x)

]
=

O(1). Similarly, under H2 i) and H4 for ℓ = 2 we have

E

[
S̃ 2,2(x)

]
= O(h2). Now, it remains to study the quantity E

[
S̃ ℓ,0(x)S̃ 2,2(x)

]
. For that, it suf-

fices to remark that

E

[
S̃ ℓ,0(x)S̃ 2,2(x)

]
=

1

(nh)2
E


n∑

j=1

T
⋆,−ℓ

j
Kh(X j − x)

n∑

i=1

T
⋆,−2
i

(Xi − x)2Kh(X j − x)



=
1

(nh)2

{
nE

[
T
⋆,−ℓ−2
1

(X1 − x)2K2
h (X1 − x)

]

+n(n − 1)E
[
T
⋆,−ℓ

1
Kh(X1 − x)

]
E

[
T
⋆,−2
1

(X1 − x)2Kh(X1 − x)
]}
.

Step 2. Here after denote by ̺ = ℓ + 2, for ℓ = 1, 2. First, we have to calculate

E

[
T
⋆,−̺

1
|X1 = u

]
= E


δ1Y

−̺

1

G
2
(Y1)
|X1 = u



= E


T
−̺

1

G
2
(T1)
E[1{T1≤R1}|T1]|X1 = u



= E


T
−̺

1

G(T1)
|X1 = u



≤
1

G(τF)

∫
t−̺ fT1 |X1

(t|u)dt. (5.7)

Step 3. Then, using the conditional expectation property, Taylor expansion and under H2 ii) and H4,

we have
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E

[
T
⋆,−̺

1
(X1 − x)2K2

h(X1 − x)
]
= E

[
(X1 − x)2K2

h(X1 − x)E
[
T
⋆,−̺

1
|X1

]]

=

∫
(u − x)2K2

h (u − x)E
[
T
⋆,−̺

1
|X1 = u

]
f (u)du

≤
1

G(τF)

∫
(u − x)2K2

h(u − x)

∫
t−̺ fT1 |X1

(t|u)dt f (u)du

=
1

G(τF)

∫
(u − x)2K2

h(u − x)r̺(u)du

=
h3

G(τF)

∫
v2K2(v)r̺(x + vh)dv

=
h3

G(τF)

∫
v2K2(v)r̺(x)dv +

h4

G(τF)

∫
v3K2(v)r′̺(ξ)dv.

Finally, combining the three steps, we get

Cov
(
S̃ ℓ,0(x), S̃ 2,2(x)

)
= O

(
h

n

)

which is negligible with respect to

√
log n

nh
. �

Lemma 5.5 Under Hypotheses H1, H2 i) and H4, for ℓ = 1, 2 and n large enough, we have

Cov
(
S̃ ℓ,1(x), S̃ 2,1(x)

)
= o



√
log n

nh

 .

Proof of Lemma 5.5. In the same way, for ℓ = 1, 2, write

Cov
(
S̃ ℓ,1(x), S̃ 2,1(x)

)
= E

[
S̃ ℓ,1(x)S̃ 2,1(x)

]
− E

[
S̃ ℓ,1(x)

]
E

[
S̃ 2,1(x)

]
.

We will use the following steps:

Step 4. It is easy to see that from Lemma 5.3 under H2 and H4 for ℓ = 1, 2 we haveE
[
S̃ ℓ,1(x)

]
= O(h).

Similarly, under H2 i) and H4 for ℓ = 2 we have E
[
S̃ 2,1(x)

]
= O(h). Now, it remains to study

the quantity E
[
S̃ ℓ,1(x)S̃ 2,1(x)

]
. To do that, Let us remark that

E

[
S̃ ℓ,1(x)S̃ 2,1(x)

]
=

1

(nh)2
E


n∑

j=1

T
⋆,−ℓ

j
(X j − x)Kh(X j − x)

n∑

i=1

T
⋆,−2
i

(Xi − x)Kh(Xi − x)



=
1

(nh)2

{
nE

[
T
⋆,−ℓ−2
1

(X1 − x)2K2
h(X1 − x)

]

+n(n − 1)E
[
T
⋆,−ℓ

1
(X1 − x)Kh(X1 − x)

]
× E

[
T
⋆,−2
1

(X1 − x)Kh(X1 − x)
]}
.
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Step 5. We use the same notation ̺ = ℓ + 2 to avoid any confusion and by (5.7) we have

E

[
T
⋆,−̺

1
(X1 − x)2K2

h(X1 − x)
]
= E

[
(X1 − x)2K2

h(X1 − x)E
[
T
⋆,−̺

1
|X1

]]

=

∫
(u − x)2K2

h(u − x)E
[
T
⋆,−̺

1
|X1 = u

]
f (u)du

=
1

G(τF)

∫
(u − x)2K2

h(u − x)

∫
t−̺ fT1,X1

(t, u)dtdu

=
1

G(τF)

∫
(u − x)2K2

h(u − x)r̺(u)du

=
h

G(τF)

∫
(vh)2K2(v)r̺(x + vh)dv

=
h3

G(τF)

∫
v2K2(v)r̺(x + vh)dv,

under H2 ii) and H4, we get O(h3).

Combining steps 4 and 5 we have

Cov
(
S̃ ℓ,1(x), S̃ 2,1(x)

)
= O

(
h

n

)

which is negligible with respect to

√
log n

nh
. �

Finally, combining Lemma 5.2 and Lemma 5.3 in the proof of Proposition 1 with Lemma 5.4

and Lemma 5.5, we get the result of the Proposition 2. �

Proof of Proposition 3. Using the conditional expectation property for ℓ = 1, 2

we get E[T
⋆,−2

1
T
⋆,−ℓ

2
|X1, X2] = µ2(X1)µℓ(X2). Then we have

E[̃µℓ(x)] − rℓ(x)r2(x) = E
[
S̃ 2,2(x)S̃ ℓ,0(x) − S̃ 2,1(x)S̃ ℓ,1(x)

]
− rℓ(x)r2(x)

=
1

(nh)2
E




n∑

i=1

(Xi − x)2T
⋆,−2
i

Kh(Xi − x)




n∑

j=1

T
⋆,−ℓ

j
Kh(X j − x)



−


n∑

i=1

(Xi − x)T
⋆,−2
i

Kh(Xi − x)




n∑

j=1

T
⋆,−ℓ

j
(X j − x)Kh(X j − x)



 − rℓ(x)r2(x)

= h−2
E

[(
(X1 − x)2T

⋆,−2

1
Kh(X1 − x)

) (
T
⋆,−ℓ

2
Kh(X2 − x)

)

−
(
(X1 − x)T

⋆,−2

1
Kh(X1 − x)

) (
T
⋆,−ℓ

2
(X2 − x)Kh(X2 − x)

)]
− rℓ(x)r2(x)

= h−2

∫ ∫
K(u − x)K(v − x)

(
(u − x)2 − (u − x)(v − x)

)

× E[T⋆,−2
1

T
⋆,−ℓ

2
|X1 = u, X2 = v] f (u) f (v)dudv − rℓ(x)r2(x)

= h−2

∫ ∫
K(u − x)K(v − x)

(
(u − x)2 − (u − x)(v − x)

)
r2(u)rℓ(v)dudv − rℓ(x)r2(x).
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By a change of variable, we get

=

∫ ∫
K(t)K(s)

(
(th)2 − (th)(sh)

)
r2(x + th)rℓ(x + sh)dtds − rℓ(x)r2(x)

= h2

∫ ∫
(t2 − ts)K(t)K(s)r2(x + th)rℓ(x + sh)dtds − rℓ(x)r2(x)

= h2

∫ ∫
(t2 − ts)K(t)K(s){r2(x + th)rℓ(x + sh) − rℓ(x)r2(x)}dtds

Using Taylor expansion, it is easy to see for ℓ = 1, 2

r2(x + th)rℓ(x + sh) − rℓ(x)r2(x) = (r2(x + th) − r2(x))(rℓ(x + sh) − rℓ(x))

+ rℓ(x)(r2(x + th) − r2(x)) + r2(x)(rℓ(x + sh) − rℓ(x))

= h2tsr′2(ξ1)r′ℓ(ξ2) + thr′2(ξ1)rℓ(x) + shr′ℓ(ξ2)r2(x)

where ξ′
1
∈]x, x + th[ and ξ′

2
∈]x, x + sh[. Then, we have

E[̃µℓ(x)] − rℓ(x)r2(x) = h2

∫ ∫
(t2 − ts)K(t)K(s){h2tsr′2(ξ1)r′ℓ(ξ2) + thr′2(ξ1)rℓ(x) + shr′ℓ(ξ2)r2(x)}dtds

= h4

∫ ∫
ts(t2 − ts)K(t)K(s)r′2(ξ1)r′ℓ(ξ2)dtds + h3

∫ ∫
t(t2 − ts)K(t)K(s)r′2(ξ1)rℓ(x)dtds

+ h3

∫ ∫
s(t2 − ts)K(t)K(s)r′ℓ(ξ2)r2(x)dtds

= h4

((∫
t3K(t)r′2(ξ1)dt

) (∫
sK(s)r′ℓ(ξ2)ds

)
−

(∫
t2K(t)r′2(ξ1)dt

) (∫
s2K(s)r′ℓ(ξ2)ds

))

+ h3

((
rℓ(x)

∫
t3K(t)r′2(ξ1)dt

) (∫
K(s)ds

)
−

(
rℓ(x)

∫
sK(s)ds

) (∫
t2K(t)r′2(ξ1)dt

))

+ h3

((
r2(x)

∫
t2K(t)dt

) (∫
sK(s)r′ℓ(ξ2)ds

)
−

(
r2(x)

∫
tK(t)dt

) (∫
s2K(s)r′ℓ(ξ2)ds

))
.

Under the hypotheses H2 i) and H4 for ℓ = 1, 2, the result can be deduced directly from the last

equality O(h3). �

6. Appendix

Corollary A.8. in Ferraty and Vieu (2006) p. 234 .

Let Ui be a sequence of independent r.v. with zero mean. If ∀ m ≥ 2, ∃ Cm > 0, E[|Um
1
|] ≤

Cma2(m−1), we have

∀ε > 0, P



∣∣∣∣∣∣∣

n∑

i=1

Ui

∣∣∣∣∣∣∣
> nε

 ≤ 2 exp

{
−

ε2n

2a2(1 + ε)

}
.

7. Conclusion

In this paper we establish the uniform strong consistency with rate for the local linear relative

error regression estimator over a compact set, when the variable of interest is subject to random
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right censoring. A large simulation study was conducted through which our estimator perfor-

mance was highlighted in spite of well known boundary effects of kernel estimation. On the

one hand, for a practical point of view the results indicate the lack of flexibility in estimating a

function using traditional approaches. On the other hand, the proposed estimates are closest to

the true curve. In conclusion, the LLRER method has more advantage than the CR and LLCR

such as the efficiency in presence of outliers and censorship compared to the two other methods.

Finally, we point out that the bias term appears to inhabit, however the combination of the two

methods LL and RER has revealed several terms which do not allow to obtain a standard result

of order one or two. Conversely, we can say that the reduction of the bias is highlighted.
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