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In this paper, we built a new nonparametric regression estimator with the local linear method by using the mean squared relative error as a loss function when the data are subject to random right censoring. We establish the uniform almost sure consistency with rate over a compact set of the proposed estimator. Some simulations are given to show the asymptotic behavior of the estimate in different cases.

Introduction

When it comes to analyzing the dependence between two random variables (r.v.), regression models have appeared as a common and flexible tool in various disciplines, such as biology, medicine, economics, insurance. Consider a random vector (T, X) taking values in R + * × R where T is the interest r.v. with unknown distribution function (d.f.) F and X is the covariate considered having a density function f (•). In practice, it is well-known that we have to study the association between covariates and responses according to the following relation:

T = µ(X) + ε
where µ(X) = E[T |X] denotes the regression function which appears as a quantity that contains all the information about the dependence structure and ε is the unobservable error term independent of X. Generally µ(X) is obtained by the minimization of E[(Tµ(X)) 2 |X]. The resulting estimator enjoys some important optimality, such as simplicity, flexibility, and consistency. However, this last loss function is inefficient to the presence of outliers in data, which is a common case in practical situations. The aim of the present paper is to propose a new approach which reduce these drawbacks. Relative error estimation has been recently used in regression analysis as an alternative to the restrictions imposed by the classical regression approach, which consist by considering the estimation of the regression function µ by minimizing the following mean squared relative error loss function, that is, for T > 0

E        (T -µ(X)) T 2 X        . (1.1)
This criterium has been widely studied for parametric models, we refer to [START_REF] Chen | Least absolute relative error estimation[END_REF] for a discussion about the previous works and [START_REF] Hirose | Robust relative error estimation[END_REF] for a real example on the electricity consumption. When the first two conditional inverse moments of T given X are finite, [START_REF] Park | Relative error prediction[END_REF] showed that the solution of (1.1), for any fixed x, is given by the following ratio

µ(x) = E[T -1 |X = x] E[T -2 |X = x] =: µ 1 (x) µ 2 (x) (1.2)
where µ ℓ (x) = r ℓ (x)/ f (x) and r ℓ (x) = R t -ℓ f T,X (t, x)dt for ℓ = 1, 2 with f T,X (•, •) and f X (•) are the joint and marginal density of the couple (T, X) and X respectively. For recent works, there have been some literature devoted to the relative error regression (RER) methods for complete data. [START_REF] Chahad | Functional local linear estimate for functional relative error regression[END_REF] considered the estimation of the regression function for a functional explanatory variable while [START_REF] Attouch | Nonparametric relative error regression for spatial random variables[END_REF] have looked to the case where the data are from a strictly stationary spacial process. [START_REF] Thiam | Relative error prediction in nonparametric deconvolution regression model[END_REF] constructed an estimator based in a deconvolution problem. [START_REF] Hu | Local least product relative error estimation for varying coefficient multiplicative regression model[END_REF] established the consistency and the asymptotic normality of the regression function based on a least product relative error.

It is well-known that the local linear method has several advantages over the classical kernel smoothing. In particular, it allows to reduce the bias term and avoid the boundary effects. The local linear smoother is not only superior to the popular kernel regression estimator, but also it is the best among all linear smothers, including those produced by orthogonal series and spline methods. A detailed introduction on the importance of the local linear approach can be found in [START_REF] Fan | Design adaptative nonparametric regression[END_REF], [START_REF] Fan | Local polynomial modeling and its applications[END_REF] for the univariate case and [START_REF] Fan | Nonlinear time series: nonparametric and parametric methods[END_REF] for the multivariate case. For recent works on local linear method, we refer to [START_REF] Jones | Relative error prediction via kernel regression smoothers[END_REF] for independent data and El Ghouch andVan Keilegom (2008, 2009) for regression and quantile regression respectively in the dependent framework. All these works concern the complete data except the last two articles. In many situations, the data can not be observed completely. Important examples are the survival time of patients or the unemployment time and many others in different fields. A frequent problem in survival analysis is right-censoring, which may be due to different causes: the loss of some subjects under study, the end of the follow up period. Examples of situations where this kind of data occur can be found in [START_REF] Klein | Survival analysis: techniques for censored and truncated data[END_REF].

In this paper, we suggest a new estimator based on the local linear method of the nonparametric relative error regression (LLRER) estimator when the data are censored. We extend the work of [START_REF] Jones | Relative error prediction via kernel regression smoothers[END_REF] to the censoring framework by stating a strong result. We point out that in the last paper, only a pointwise of the bias and variance terms have been investigated. We establish that the new estimator is uniformly almost sure consistent with rate over a compact set under appropriate conditions. Simulation experiments emphasize that the LLRER, is highly competitive to the existing estimators for regression function. To the best of our knowledge, this problem is open up to now and there is no analogous result. This paper is organized as follows. The general idea of the local linear fit of the mean squared relative error regression function in the censoring framework is described in Section 2. Assumptions and theoretical results are given in Section 3 and some simulation results that illustrates the performance of the proposed procedure are given in Section 4. Finally, Section 5 is devoted to auxiliary results and technical details. From now on, we will always make the following assumption:

(T, X) and C are independent.

(2.1)

This assumption is required to make the estimation of the censoring distribution easier; However, it is reasonable only when the censoring is not associated to the characteristic of the individuals under study. Let {(Y i , δ i , X i ), i = 1, . . . , n} be n independent and identically distributed vectors as (Y, δ, X). Our main aim is to estimate the RER function defined in (1.2) using the local linear fit. The extension of nonparametric local linear procedures to the censored framework requires to replace the unavailable data by a suitable construction of the observed data given by

T ⋆,-ℓ i = δ i Y -ℓ i G(Y i ) for 1 ≤ i ≤ n (2.2)
where G(•) = 1 -G(•) denotes the survival function of the r.v. C. The later are called "synthetic data" and permits to consider the effect of censoring in the distribution (for more details, we refer to [START_REF] Carbonez | Partitioning estimates of a regression function under random censoring[END_REF] and [START_REF] Kohler | Prediction from randomly right censored data[END_REF]). In this spirit, based on this construction of the data, using the conditional expectation property and under the Assumption (2.1), for ℓ = 1, 2 we have

E[T ⋆,-ℓ 1 |X 1 ] = E       δ 1 Y -ℓ 1 G(Y 1 ) X 1       = E       T -ℓ 1 G(T 1 ) E 1 {T 1 ≤C 1 } |T 1 X 1       = E[T -ℓ 1 |X 1 ].
Modeling by the local linear method (see [START_REF] Fan | Design adaptative nonparametric regression[END_REF]), assumes that the twice derivative of µ(x) at the point x exists and is continuous, so that µ(X) can be approximated by a linear function that is, µ(X)

≈ µ(x) + µ ′ (x)(X -x) =: β 1 + β 2 (X -x).
Then, the RER function (1.2) is estimated as the solution of the following optimization problem : arg min

β 1 ,β 2        n i=1 T ⋆,-2 i (T ⋆ i -β 1 -β 2 (X i -x)) 2 K h (X i -x)        (2.3)
where K h (•) := K • h is a kernel function appropriately chosen (Epanechnicov, Gaussian, . . . ) and h := h n is a sequence of positive real numbers which converges to 0 when n goes to infinity. By elementary calculus, the solution of the least squares problem (2.3) yields to

µ(x) = n i, j=1 w i, j (x)T ⋆ j n i, j=1 w i, j (x) =: µ 1 (x) µ 2 (x) (2.4)
where

w i, j (x) = (X i -x) (X i -x) -(X j -x) K h (X i -x)K h (X j -x)T ⋆,-2 i T ⋆,-2 j .
(2.5)

Of course in data analysis, the survival function G(•) is unknown and needs to be estimated. This can be done via Kaplan-Meier (KM) as an estimator of G(•) (see: [START_REF] Kaplan | Nonparametric estimation from incomplete observations[END_REF])

G n (t) =            n i=1 1 - 1 -δ i n -i + 1 1 {Y i ≤t} if t < Y (n) , 0 otherwise (2.6)
where

Y (1) ≤ Y (2) ≤ • • • ≤ Y (n)
are the order statistics of the Y i and δ i is the indicator of noncensoring. The properties of G n (t) have been studied by many authors. So, (2.2) becomes, for

1 ≤ i ≤ n, T * ,-ℓ i = δ i Y -ℓ i G n (Y i )
.

(2.7)

Replacing (2.7) in (2.4) and (2.5) we get a feasible local linear estimator of the relative error regression function (LLRER) expressed as

µ(x) = n i, j=1 w i, j (x) T ⋆ j n i, j=1 w i, j (x) =: µ 1 (x) µ 2 (x) (2.8)
where

w i, j (x) = (X i -x) (X i -x) -(X j -x) K h (X i -x)K h (X j -x) T ⋆,-2 i T ⋆,-2 j .
(2.9)

Remark 1 In what follows, we will adopt the convention 0/0 = 0 in such a case that if, for example, µ 1 (•) = 0 and µ 2 (•) = 0, the ratio µ 1 (•)/ µ 1 (•) in (2.8) will be interpreted as zero.

Throughout this paper, we denote by τ F := sup{x : F(x) > 0} and τ G := sup{x : G(x) > 0} be the right support endpoints of F and G, respectively. We assume that τ F < ∞, G(τ F ) > 0 that implies 0 < τ F ≤ τ G , which were also assumed in [START_REF] Guessoum | On nonparametric estimation of the regression function under random censorship model[END_REF].

Remark 2 In the simulation part, we will compare our estimator with the classical regression estimator using the local linear method (LLCR). The later is the solution of the following minimization problem:

arg min α, β        n i=1 T ⋆ i -α -β(X i -x) 2 K h (X i -x)        for T ⋆ in (2.7), which gives m n (x) = n i, j=1 v i, j (x) T ⋆ j n i, j=1 v i, j (x) (2.10)
where

v i, j (x) = (X i -x) (X i -x) -(X j -x) K h (X i -x)K h (X j -x).
Remark 3 1) We point out that for complete data, i.e. we replace T ⋆ by T in (2.8) and (2.9), we obtain the estimator defined in [START_REF] Jones | Relative error prediction via kernel regression smoothers[END_REF]. 2) Likewise, if we replace T ⋆ by T in (2.10), we obtain the estimator defined in [START_REF] Nadaraya | On estimating regression[END_REF] and [START_REF] Watson | Smooth regression analysis[END_REF].

Remark 4 A crucial point in censored regression is to extend the identifiability assumption on the independence of T and C defined in (2.1) to the case where the explanatory variables are present. In this spirit of KM estimator, one may impose that T and C are independent conditionally to X. Then, (2.7) becomes

T * i = δ i Y i G n (Y i |X i ) (2.11)
where G n (Y i |X i ) is Beran's estimator of the survival conditional function of the r.v. C given X, for more details see [START_REF] Beran | Nonparametric regression with randomly censored survival data[END_REF]. The property of this estimator has been studied by [START_REF] Dabrowska | Nonparametric regression with censored survival data[END_REF] and [START_REF] Dabrowska | Uniform consistency of the kernel conditional Kaplan-Meier estimate[END_REF]. Replacing (2.11) in (2.8) and (2.9) we obtain a feasible estimator of the LLRER function µ(•).

Remark 5 A frequently used bandwidth selection technique is the cross-validation method, which choose h to minimize

n i=1 T ⋆ i -µ -i (X i )

Hypotheses and main results

We will use the following notation C to refer to a compact set of C 0 where

C 0 = {x ∈ R + / f (x) > 0}
is an open set. Furthermore, when no confusion is possible, we will denote by C any generic positive constant and we assume that

∀T > 0, ∃ C, such that |T | -ℓ ≤ C. (3.1)
H1 The bandwidth h satisfies lim

n→∞ h = 0, lim n→∞ nh = +∞, lim n→∞ log n nh = 0. H2 The kernel K(•) is bounded, symmetric non-negative function on C. i. t j K(t)dt < ∞, for j = 2, 3. ii. t j K 2 (t)dt < ∞ for j = 2, 3. H3 The density function f (•) is continuously differentiable and sup x∈C | f ′ (x)| < +∞. H4 The function r ̺ (x) = t -̺ f T,X (t, x)dt for ̺ = 1, 2, 3, 4 is continuously, differentiable and sup x∈C |r ′ ̺ (x)| < +∞. H5 The function υ ℓ,k (x) = t -ℓk f T,X (t, x)dt, ℓ = 1, 2 and 0 ≤ k ≤ ν is continuously differentiable and sup x∈C |υ ′ ℓ,k (x)| < +∞.

Comments on the Hypotheses:

The hypothesis H1 concern the bandwidth and is very common in nonparametric estimation.

The hypothesis H2 regards the Kernel K and are needed for the convergence of the estimator. Analogous hypotheses on the kernel has been also made by [START_REF] Fan | Design adaptative nonparametric regression[END_REF]. The hypothesis H3 deals with the density function f (•). The hypothesis H4 and H5 are regularity conditions for r ̺ (•) and υ ℓ,k (•) respectively for different value of ℓ, ̺ and k.

Theorem 3.1 Under Hypotheses H1-H5, for n large enough, we have

sup x∈C | µ(x) -µ(x)| = O h 3 + O a.s.        log n nh        .
The proof of the Theorem 1 is made up on the following decomposition:

µ(x) -µ(x) = 1 µ 2 (x) µ 1 (x) -µ 1 (x) + µ 1 (x) -E[ µ 1 (x)] + E[ µ 1 (x)] -r 1 (x)r 2 (x) + µ(x) r 2 2 (x) -E[ µ 2 (x)] + E[ µ 2 (x)] -µ 2 (x) + µ 2 (x) -µ 2 (x) .
Remark that by Hypothesis H4 and condition (3.1), there exists η > 0 such that sup

x∈C |r 2 (x)| ≤ η.
Then, by triangle inequality, we have

sup x∈C µ(x) -µ(x) ≤ 1 η 2 -sup x∈C µ 2 (x) -r 2 2 (x) sup x∈C µ 1 (x) -µ 1 (x) + sup x∈C µ 1 (x) -E[ µ 1 (x)] + sup x∈C E[ µ 1 (x)] -r 1 (x)r 2 (x) + sup x∈C µ(x) sup x∈C E[ µ 2 (x)] -r 2 2 (x) + sup x∈C µ 2 (x) -E[ µ 2 (x)] + sup x∈C µ 2 (x) -µ 2 (x) .
The proof will be achieved with the following propositions.

Proposition 3.2 Under Hypotheses H1, H2 i), H3 and H4, for ℓ = 1, 2, for n large enough, we have

sup x∈C µ ℓ (x) -µ ℓ (x) = O a.s.        log log n n        .
Proposition 3.3 Under Hypotheses H1, H2 i), H3, H4 and H5, for ℓ = 1, 2, for n large enough, we have

sup x∈C µ ℓ (x) -E[ µ ℓ (x)] = O a.s.        log n nh        .
Proposition 3.4 Under Hypotheses H1, H2 and H4, for ℓ = 1, 2, for n large enough, we have

sup x∈C |E[ µ ℓ (x)] -r ℓ (x)r 2 (x)| = O h 3 .

Numerical study

To evaluate the quality of this method, we perform several simulations of the proposed estimator µ(•) with different level of censoring. For that, we generate the data as follows:

Inputs: Generate n i.i.d. {X i N(0, 1), C i N(3 + c, 1
) and ǫ i N(0, 1)} for 1 ≤ i ≤ n where c is a constant that adjusts the percentage of censoring (C.P.).

Step 1 : Calculate the interest variable T i = 2X i + 1 + 0.2 ǫ i where X i and ε i are independent.

Step 2 : Compute the observed data {T ⋆ i , 1 ≤ i ≤ n} from (2.7) with the KM estimator from (2.6).

Step 3 : We employ the Gaussian Kernel. Furthermore, we apply the cross-validation method (see : Remark 2.5) to choose the bandwidth. For a predetermined sequence of h's from a wide range (0.01 to 2) with an increment 0.01, we choose the optimal bandwidth (h opt ) that minimize the cross-validation criterium (2.12). Ouputs: Compute the LLRER estimator from (2.8) for x ∈ [1, 4] and h opt .

In all the simulation study, we use the following proposition of [START_REF] Port | Theoretical Probability for Applications[END_REF] which permit to calculate the theoretical RER function (see formula (4.1) below). Proposition 4.1 Let q 1 (X) and q 2 (X) be two random variable with means: µ 1 and µ 2 and vari-ances: v 1 and v 2 respectively, and covariance v 12 . Let (X i ) 1≤i≤n be an i.i.d. sequence of r.v. and defined by

Σ 1 = 1 n n i=1 q 1 (X i ) and Σ 2 = 1 n n i=1 q 2 (X i ) and R = Σ 1 Σ 2 then the second order approximation of E[ R] is E[ R] ≈ µ 1 µ 2 + 1 n       µ 1 v 2 µ 3 2 - v 12 µ 2 2       .
In the following figures, the solid line represent the theoretical curve (TC) of the RER function which is generated according to the following formula:

m(x) = 2x + 1 + 0.04(2x + 1) -1 for x ∈ [1, 4] (4.1)
Furthermore, a comparative study with other existing kernel methods: the classical regression (CR) estimator defined in [START_REF] Guessoum | On nonparametric estimation of the regression function under random censorship model[END_REF] by

m(x) = n i=1 T ⋆ i K h (X i -x) n i=1 K h (X i -x)
and the local linear classical regression (LLCR) estimators defined in (2.10) was carried out.

Effect of sample size:

We plot the true RER curve (TC) together with the LLRER estimator in Figure 1. We can see that the quality of fit is better when n rises. 4.2. Effect of C.P.:

From Figure 2, it can be seen for a fixed sample size that the LLRER estimator quality is a little bit affected by the percentage of observed data. 

Effect of outliers:

In order to assess the robustness to outliers of our new estimator, we generate samples of size n = 300 and multiply the values of 15 among them by a multiplying coefficient (M.C.). We can observe that the quality of fit decreases as the value of M.C. increases but remains consistent. The proposed estimate shows an improvement over the CR estimate near the right tail where the data points are sparse and mostly uncensored. Figure 4 shows that the LLRER estimator is much more robust to censoring than the CR, in particular for larger samples. 

Effect of outliers:

We compare the two models when the data contains outliers in the observed response value and we note that there is a significant difference between the two estimators for a fixed C.P. and sample size. As expected, when there are outliers, the relative regression estimator performs better than the Nadaraya-Watson and local linear estimators m n (•) with respect to the number of outliers (see Figure 5). 

LLCR vs LLRER

Effect of C.P.:

We observe from Figure 6 that there is no meaningful difference between the LLCR and LL-RER when the C.P. is low. The two predictors are basically equivalent and both show the good behavior. However for high censorship rate our estimator remains resistant unlike its competitor which moves away from the edges. 

Effect of outliers:

Figure 7 shows clearly that the curve of the LLCR estimator is moves away from the TC when the M.C. increases which reflect the effectiveness of the procedure in presence of outliers. 

LLRER versus CR ans LLCR

Finally, in this figure, we can clearly see that in the presence of outliers, the new estimator obtained by combining the RER and LL methods is much more efficient compared to the two methods treated separately as that has been treated by many authors. 

Proofs and auxiliary results

Proof of the Proposition 1. Let introduce some notations for ℓ = 1, 2 and γ = 0, 1, 2:

S ℓ,γ (x) = 1 nh n i=1 T ⋆,-ℓ i (X i -x) γ K h (X i -x) and S ℓ,γ (x) = 1 nh n i=1 T ⋆,-ℓ i (X i -x) γ K h (X i -x).
We use the following decomposition:

µ ℓ (x) -µ ℓ (x) = S 2,2 (x) S ℓ,0 (x) -S 2,1 (x) S ℓ,1 (x) -S 2,2 (x) S ℓ,0 (x) -S 2,1 (x) S ℓ,1 (x) = S 2,2 (x) S ℓ,0 (x) -S 2,2 (x) S ℓ,0 (x) -S 2,1 (x) S ℓ,1 (x) -S 2,1 (x) S ℓ,1 (x) =: B ℓ,1 (x) -B ℓ,2 (x).
On the one hand, for ℓ = 1, 2, we get

B ℓ,1 (x) = S 2,2 (x) -S 2,2 (x) S ℓ,0 (x) -S ℓ,0 (x) + S ℓ,0 (x) -E[ S ℓ,0 (x)] S 2,2 (x) -S 2,2 (x) + E[ S ℓ,0 (x)] S 2,2 (x) -S 2,2 (x) + S 2,2 (x) -E[ S 2,2 (x)] S ℓ,0 (x) -S ℓ,0 (x) + E[ S 2,2 (x)] S ℓ,0 (x) -S ℓ,0 (x) .
(5.1)

On the other hand, for ℓ = 1, 2, we get

B ℓ,2 (x) = S 2,1 (x) -S 2,1 (x) S ℓ,1 (x) -S ℓ,1 (x) + S 2,1 (x) -E[ S 2,1 (x)] S ℓ,1 (x) -S ℓ,1 (x) + E[ S 2,1 (x)] S ℓ,1 (x) -S ℓ,1 (x) + S ℓ,1 (x) -E[ S ℓ,1 (x)] S 2,1 (x) -S 2,1 (x) + E[ S ℓ,1 (x)] S 2,1 (x) -S 2,1 (x) .
(5.

2)

It remains to study each term of the decomposition (5.1) and (5.2). For this, we will state and proof the following three Lemma 5.1-5.3.

Lemma 5.1 Under hypotheses H2 i) and H3, for ℓ = 1, 2, γ = 0, 1, 2, and n large enough, we have

sup x∈C S ℓ,γ (x) -S ℓ,γ (x) = O a.s.        log log n n        .
Proof of Lemma 5.1. For ℓ = 1, 2, γ = 0, 1, 2, we have

sup x∈C S ℓ,γ (x) -S ℓ,γ (x) = sup x∈C 1 nh n i=1 T ⋆,-ℓ i (X i -x) γ K h (X i -x) - 1 nh n i=1 T ⋆,-ℓ i (X i -x) γ K h (X i -x) = sup x∈C 1 nh        n i=1 δ i Y -ℓ i G n (Y i ) (X i -x) γ K h (X i -x) - n i=1 δ i Y -ℓ i G(Y i ) (X i -x) γ K h (X i -x)        = sup x∈C 1 nh n i=1 δ i T -ℓ i (X i -x) γ K h (X i -x) 1 G n (Y i ) - 1 G(Y i ) ≤ 1 G 2 (τ F ) sup t≤τ F G n (t) -G(t) × sup x∈C 1 nh n i=1 T -ℓ i (X i -x) γ K h (X i -x) =: sup t≤τ F D 1 (t) × sup x∈C D 2 (x) .
From Lemma 4.2. in [START_REF] Deuheuvels | Functional limit laws for the increments of Kaplan-Meier product limit processes and applications[END_REF], the first term of the right hand side is equal to:

sup t≤τ F D 1 (t) = O a.s.        log log n n        as n → ∞.
(5.3)

For the second term and using the strong law of large numbers we have

sup x∈C |D 2 (x)| ≤ C sup x∈C E h -1 (X 1 -x) γ K h (X 1 -x) .
By a change of variable, Taylor expansion and with the condition (3.1), we get

E h -1 (X 1 -x) γ K h (X 1 -x) = h -1 (u -x) γ K h (u -x) f (u)du = h -1 (vh) γ K(v) f (x + vh)hdv = h γ f (x) v γ K(v)dv + h γ+1 v γ+1 K(v) f ′ (ξ))dv.
Under the kernel hypothesis H2 i) and the regularity hypothesis H3, we get

sup x∈C |D 2 (x)| = O h γ .
(5.4)

Combining the results (5.3) and (5.4), the proof of Lemma 5.1 is achieved. Lemma 5.2 Under hypotheses H1, H2 i), H3 and H4 for ℓ = 1, 2, γ = 0, 1, 2, and n large enough, we have

sup x∈C S ℓ,γ (x) -E[ S ℓ,γ (x)] = O a.s.        log n nh        . Proof of Lemma 5.2. Let C n = {x i -b n , x i + b n , 1 ≤ i ≤ d n }
is the intervals extremities grid where b n = n -1/2q for q > 0 and cover the compact set C by

∪ d n i=1 x i -b n , x i + b n with d n = O n 1/2q . sup x∈C S ℓ,γ (x) -E[ S ℓ,γ (x)] ≤ max 1≤i≤d n max x∈C n S ℓ,γ (x) -E[ S ℓ,γ (x)] + 2 q Cb q n . using b n = n -1/2q then b q n = O        log n nh        .
For this, observe that for all ε > 0,

P max x∈C n S ℓ,γ (x) -E[ S ℓ,γ (x)] > ε ≤ x∈C n P S ℓ,γ (x) -E[ S ℓ,γ (x)] > ε .
Let us write for ℓ = 1, 2, γ = 0, 1, 2 and

x ∈ C n S ℓ,γ (x) -E[ S ℓ,γ (x)] = 1 nh n i=1 T ⋆,-ℓ i (X i -x) γ K h (X i -x) -E        1 nh n i=1 T ⋆,-ℓ i (X i -x) γ K h (X i -x)        = 1 n n i=1 T ⋆,-ℓ i (X i -x) γ K h (X i -x) -E T ⋆,-ℓ i (X i -x) γ K h (X i -x) h =: 1 n n i=1 A ℓ γ,i (x). 
In view of Corollary A.8. (see Appendix), we focus on the absolute moments of order ν of A ℓ γ,i (x)

E|A ℓ γ,i (x)| ν = E h -ν T ⋆,-ℓ i (X i -x) γ K h (X i -x) -E T ⋆,-ℓ i (X i -x) γ K h (X i -x) ν = h -ν E ν k=0 c k,ν T ⋆,-ℓ i (X i -x) γ K h (X i -x) k E T ⋆,-ℓ i (X i -x) γ K h (X i -x) ν-k ≤ h -ν ν k=0 c k,ν E T ⋆,-ℓ 1 (X 1 -x) γ K h (X 1 -x) k E T ⋆,-ℓ 1 (X 1 -x) γ K h (X 1 -x) ν-k .
On the one hand, using the conditional expectation property, Taylor expansion and under H2 i) and H5, we have

E T ⋆,-ℓ 1 (X 1 -x) γ K h (X 1 -x) k = E T ⋆,-kℓ 1 (X 1 -x) γk K k h (X 1 -x) = E (X 1 -x) γk K k h (X 1 -x)E[T ⋆,-kℓ 1 |X 1 ] = (u -x) γk K k h (u -x)E[T ⋆,-kℓ 1 |X 1 = u] f (u)du ≤ 1 G k-1 (τ F ) (u -x) γk K k h (u -x) t -ℓk f T |X (t|u)dt f (u)du = 1 G k-1 (τ F ) (u -x) γk K k h (u -x)υ ℓ,k (u)du = h γk+1 G k-1 (τ F ) s γk K k (s)υ ℓ,k (x + sh)ds = h γk+1 G k-1 (τ F ) υ ℓ,k (x) s γk K k (s)ds + h γk+2 G k-1 (τ F ) s γk+1 K k (s)υ ′ ℓ,k (ξ)ds.
On the other hand, using the same arguments as previously and under H2 i), H4 we have

E T ⋆,-ℓ 1 (X 1 -x) γ K h (X 1 -x) ν-k = (u -x) γ K h (X 1 -x)E T ⋆,-ℓ 1 |X 1 = u f (u)du ν-k = (hv) γ K(v)µ ℓ (u) f (u)du ν-k = h γ+1 v γ K(v)r ℓ (x + vh)dv ν-k = h γ+1 r ℓ (x) v γ K(v)dv + h γ+2 v γ+1 K(v)r ′ ℓ (ξ)dv ν-k .
Then, for ℓ = 1, 2, γ = 0, 1, 2 and for all ν ≥ 2, we get easily

E|A ℓ γ,1 (x)| ν ≤ O(h -ν ) × O(h γk+1 ) × O(h (γ+1)(ν-k) ) = O(h γν-k+1 ) = O(max 1≤k≤ν h -k+1 ) = O(h -ν+1
). Now, we can apply the exponential inequality in Corollary A.8. by choosing a 2 = h -1 , we get

P S ℓ,γ (x) -E[ S ℓ,γ (x)] > ε = P        n i=1 A ℓ γ,i (x) > εn        ≤ 2 exp - ε 2 nh 2(1 + ε) .
Hence, for a fixed ε 0 , choosing

ε = ε 0 log n nh 1/2
, we get

P S ℓ,γ (x) -E[ S ℓ,γ (x)] > ε ≤ 2 exp                  - ε 2 0 log n 2 1 + ε 0 log n nh                 
and for n large enough, we have

P S ℓ,γ (x) -E[ S ℓ,γ (x)] > ε ≤ 2 exp       - ε 2 0 4 log n       = 2n - ε 2 0 4
which gives

x∈C n P S ℓ,γ (x) -E[ S ℓ,γ (x)] > ε ≤ 4d n n - ε 2 0 4 + ν 2 .
Finally, an appropriate choice of ε 0 yields to an upper bound of order n -3/2 and by Borel-Cantelli's lemma we get the result.

Lemma 5.3 Under Hypotheses H1, H2 i) and H4, for ℓ = 1, 2 and γ = 0, 1, 2, we have

sup x∈C E[ S ℓ,γ (x)] = O (h γ ) .
Proof of Lemma 5.3. Using the conditional expectation property, Taylor expansion, under Hypotheses H1, H2 i) and H4 and using the fact that E[T ⋆,-ℓ

1 |X 1 = u] = µ ℓ (u) with µ ℓ (u) = r ℓ (u)/ f (u), we get E[ S ℓ,γ (x)] = 1 nh E        n i=1 T ⋆,-ℓ i (X i -x) γ K h (X i -x)        = 1 h E T ⋆,-ℓ 1 (X 1 -x) γ K h (X 1 -x) = 1 h (u -x) γ K h (u -x)r ℓ (u)du = (vh) γ K(v)r ℓ (x + vh)dv = h γ v γ K(v){r ℓ (x) + vhr ′ ℓ (ξ)}dv ≤ h γ r ℓ (x) v γ K(v)dv + h γ+1 v γ+1 K(v)r ′ ℓ (ξ)dv . = O (h γ ) .
Now, combining on the one hand Lemma 5.1 and Lemma 5.3 and on the other hand Lemma 5.2 and Lemma 5.3, we conclude the proof of Proposition 1

Proof of Proposition 2. Let remark the decomposition for ℓ = 1, 2:

µ ℓ (x) -E[ µ ℓ (x)] = S 2,2 (x) S ℓ,0 (x) -S 2,1 (x) S ℓ,1 (x) -E S 2,2 (x) S ℓ,0 (x) -S 2,1 (x) S ℓ,1 (x) = S 2,2 (x) S ℓ,0 (x) -E S 2,2 (x) S ℓ,0 (x) -S 2,1 (x) S ℓ,1 (x) -E S 2,1 (x) S ℓ,1 (x) =: E ℓ,1 (x) -E ℓ,2 (x).
On the one side {E ℓ,1 , for ℓ = 1, 2}, we have

E ℓ,1 (x) = S 2,2 (x) -E S 2,2 (x) S ℓ,0 (x) -E S ℓ,0 (x) + E S 2,2 (x) S ℓ,0 (x) -E S ℓ,0 (x) + E S ℓ,0 (x) S 2,2 (x) -E S 2,2 (x) -Cov S ℓ,0 (x), S 2,2 (x) . (5.5)
On the other side {E ℓ,2 , for ℓ = 1, 2}, we have

E ℓ,2 (x) = S 2,1 (x) -E S 2,1 (x) S ℓ,1 (x) -E S ℓ,1 (x) + E S 2,1 (x) S ℓ,1 (x) -E S ℓ,1 (x) + E S ℓ,1 (x) S 2,1 (x) -E S 2,1 (x) -Cov S 2,1 (x), S ℓ,1 (x) . (5.6)
It remains to study each term of the decomposition (5.5) and (5.6). We want to mention that most of the terms are studied in Lemma 5.2 and Lemma 5.3. The covariance terms are studied in the two following Lemmas.

Lemma 5.4 Under Hypotheses H1, H2 and H4, for ℓ = 1, 2 and n large enough, we have

Cov S ℓ,0 (x), S 2,2 (x) = o        log n nh        .
Proof of Lemma 5.4. By definition for ℓ = 1, 2, we have

Cov S ℓ,0 (x), S 2,2 (x) = E S ℓ,0 (x) S 2,2 (x) -E S ℓ,0 (x) E S 2,2 (x) .
The proof will be made in three steps.

Step 1. It is easy to see that under H2 and H4 for ℓ = 1, 2 and using Lemma 5.3, we get E S ℓ,0 (x) = O(1). Similarly, under H2 i) and H4 for ℓ = 2 we have E S 2,2 (x) = O(h 2 ). Now, it remains to study the quantity E S ℓ,0 (x) S 2,2 (x) . For that, it suffices to remark that

E S ℓ,0 (x) S 2,2 (x) = 1 (nh) 2 E         n j=1 T ⋆,-ℓ j K h (X j -x) n i=1 T ⋆,-2 i (X i -x) 2 K h (X j -x)         = 1 (nh) 2 nE T ⋆,-ℓ-2 1 (X 1 -x) 2 K 2 h (X 1 -x) +n(n -1)E T ⋆,-ℓ 1 K h (X 1 -x) E T ⋆,-2 1 (X 1 -x) 2 K h (X 1 -x) .
Step 2. Here after denote by ̺ = ℓ + 2, for ℓ = 1, 2. First, we have to calculate

E T ⋆,-̺ 1 |X 1 = u = E        δ 1 Y -̺ 1 G 2 (Y 1 ) |X 1 = u        = E        T -̺ 1 G 2 (T 1 ) E[1 {T 1 ≤R 1 } |T 1 ]|X 1 = u        = E       T -̺ 1 G(T 1 ) |X 1 = u       ≤ 1 G(τ F ) t -̺ f T 1 |X 1 (t|u)dt.
(5.7)

Step 3. Then, using the conditional expectation property, Taylor expansion and under H2 ii) and H4, we have

E T ⋆,-̺ 1 (X 1 -x) 2 K 2 h (X 1 -x) = E (X 1 -x) 2 K 2 h (X 1 -x)E T ⋆,-̺ 1 |X 1 = (u -x) 2 K 2 h (u -x)E T ⋆,-̺ 1 |X 1 = u f (u)du ≤ 1 G(τ F ) (u -x) 2 K 2 h (u -x) t -̺ f T 1 |X 1 (t|u)dt f (u)du = 1 G(τ F ) (u -x) 2 K 2 h (u -x)r ̺ (u)du = h 3 G(τ F ) v 2 K 2 (v)r ̺ (x + vh)dv = h 3 G(τ F ) v 2 K 2 (v)r ̺ (x)dv + h 4 G(τ F ) v 3 K 2 (v)r ′ ̺ (ξ)dv.
Finally, combining the three steps, we get

Cov S ℓ,0 (x), S 2,2 (x) = O h n
which is negligible with respect to log n nh .

Lemma 5.5 Under Hypotheses H1, H2 i) and H4, for ℓ = 1, 2 and n large enough, we have

Cov S ℓ,1 (x), S 2,1 (x) = o        log n nh        .
Proof of Lemma 5.5. In the same way, for ℓ = 1, 2, write Cov S ℓ,1 (x), S 2,1 (x) = E S ℓ,1 (x) S 2,1 (x) -E S ℓ,1 (x) E S 2,1 (x) .

We will use the following steps:

Step 4. It is easy to see that from Lemma 5.3 under H2 and H4 for ℓ = 1, 2 we have E S ℓ,1 (x) = O(h).

Similarly, under H2 i) and H4 for ℓ = 2 we have E S 2,1 (x) = O(h). Now, it remains to study the quantity E S ℓ,1 (x) S 2,1 (x) . To do that, Let us remark that

E S ℓ,1 (x) S 2,1 (x) = 1 (nh) 2 E         n j=1 T ⋆,-ℓ j (X j -x)K h (X j -x) n i=1 T ⋆,-2 i (X i -x)K h (X i -x)         = 1 (nh) 2 nE T ⋆,-ℓ-2 1 (X 1 -x) 2 K 2 h (X 1 -x) +n(n -1)E T ⋆,-ℓ 1 (X 1 -x)K h (X 1 -x) × E T ⋆,-2 1 (X 1 -x)K h (X 1 -x) .
Step 5. We use the same notation ̺ = ℓ + 2 to avoid any confusion and by (5.7) we have

E T ⋆,-̺ 1 (X 1 -x) 2 K 2 h (X 1 -x) = E (X 1 -x) 2 K 2 h (X 1 -x)E T ⋆,-̺ 1 |X 1 = (u -x) 2 K 2 h (u -x)E T ⋆,-̺ 1 |X 1 = u f (u)du = 1 G(τ F ) (u -x) 2 K 2 h (u -x) t -̺ f T 1 ,X 1 (t, u)dtdu = 1 G(τ F ) (u -x) 2 K 2 h (u -x)r ̺ (u)du = h G(τ F ) (vh) 2 K 2 (v)r ̺ (x + vh)dv = h 3 G(τ F ) v 2 K 2 (v)r ̺ (x + vh)dv, under H2 
ii) and H4, we get O(h 3 ).

Combining steps 4 and 5 we have

Cov S ℓ,1 (x), S 2,1 (x) = O h n
which is negligible with respect to log n nh .

Finally, combining Lemma 5.2 and Lemma 5.3 in the proof of Proposition 1 with Lemma 5.4 and Lemma 5.5, we get the result of the Proposition 2.

Proof of Proposition 3. Using the conditional expectation property for ℓ = 1, 2 we get

E[T ⋆,-2 1 T ⋆,-ℓ 2 |X 1 , X 2 ] = µ 2 (X 1 )µ ℓ (X 2 ). Then we have E[ µ ℓ (x)] -r ℓ (x)r 2 (x) = E S 2,2 (x) S ℓ,0 (x) -S 2,1 (x) S ℓ,1 (x) -r ℓ (x)r 2 (x) = 1 (nh) 2 E                n i=1 (X i -x) 2 T ⋆,-2 i K h (X i -x)                n j=1 T ⋆,-ℓ j K h (X j -x)         -        n i=1 (X i -x)T ⋆,-2 i K h (X i -x)                n j=1 T ⋆,-ℓ j (X j -x)K h (X j -x)                 -r ℓ (x)r 2 (x) = h -2 E (X 1 -x) 2 T ⋆,-2 1 K h (X 1 -x) T ⋆,-ℓ 2 K h (X 2 -x) -(X 1 -x)T ⋆,-2 1 K h (X 1 -x) T ⋆,-ℓ 2 (X 2 -x)K h (X 2 -x) -r ℓ (x)r 2 (x) = h -2 K(u -x)K(v -x) (u -x) 2 -(u -x)(v -x) × E[T ⋆,-2 1 T ⋆,-ℓ 2 |X 1 = u, X 2 = v] f (u) f (v)dudv -r ℓ (x)r 2 (x) = h -2 K(u -x)K(v -x) (u -x) 2 -(u -x)(v -x) r 2 (u)r ℓ (v)dudv -r ℓ (x)r 2 (x).
By a change of variable, we get = K(t)K(s) (th) 2 -(th)(sh) r 2 (x + th)r ℓ (x + sh)dtdsr ℓ (x)r 2 (x)

= h 2 (t 2ts)K(t)K(s)r 2 (x + th)r ℓ (x + sh)dtdsr ℓ (x)r 2 (x)

= h 2 (t 2ts)K(t)K(s){r 2 (x + th)r ℓ (x + sh)r ℓ (x)r 2 (x)}dtds

Using Taylor expansion, it is easy to see for ℓ = 1, 2 r 2 (x + th)r ℓ (x + sh)r ℓ (x)r 2 (x) = (r 2 (x + th)r 2 (x))(r ℓ (x + sh)r ℓ (x)) + r ℓ (x)(r 2 (x + th)r 2 (x)) + r 2 (x)(r ℓ (x + sh)r ℓ (x))

= h 2 tsr ′ 2 (ξ 1 )r Under the hypotheses H2 i) and H4 for ℓ = 1, 2, the result can be deduced directly from the last equality O(h 3 ).

Appendix

Corollary A.8. in [START_REF] Ferraty | Nonparametric functional data analysis: theory and practice[END_REF] p. 234 . Let U i be a sequence of independent r.v. with zero mean.

If ∀ m ≥ 2, ∃ C m > 0, E[|U m 1 |] ≤ C m a 2(m-1) , we have ∀ε > 0, P        n i=1 U i > nε        ≤ 2 exp - ε 2 n 2a 2 (1 + ε)
.

Conclusion

In this paper we establish the uniform strong consistency with rate for the local linear relative error regression estimator over a compact set, when the variable of interest is subject to random right censoring. A large simulation study was conducted through which our estimator performance was highlighted in spite of well known boundary effects of kernel estimation. On the one hand, for a practical point of view the results indicate the lack of flexibility in estimating a function using traditional approaches. On the other hand, the proposed estimates are closest to the true curve. In conclusion, the LLRER method has more advantage than the CR and LLCR such as the efficiency in presence of outliers and censorship compared to the two other methods. Finally, we point out that the bias term appears to inhabit, however the combination of the two methods LL and RER has revealed several terms which do not allow to obtain a standard result of order one or two. Conversely, we can say that the reduction of the bias is highlighted.

  According to the right-censoring model, instead of observing T we only observe (Y, δ) where Y = min(T, C) and δ = 1 {T ≤C} , here 1(•) is the indicator function. The r.v. C represent the censoring time which is independent of T and with d.f. G. The observed data becomes (Y, δ, X).
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 1 Figure 1. µ(•), µ(•) with C.P.≈ 65% for n = 100, 300, and 500 respectively.

Figure 2

 2 Figure 2. µ(•), µ(•) with n = 300 for C.P.≈ 35, 50, and 70% respectively.

Figure 3

 3 Figure 3. µ(•), µ(•) with n = 300 for C.P.≈ 50% and M.C.= 25, 50, and 100 respectively.
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 4 Comparison to other kernel estimators: 4.4.1. CR vs LLRER: Effect of C.P.:

Figure 4

 4 Figure 4. µ(•), µ(•) and m(•) with n = 300 for C.P.≈ 35, 50 and 70% respectively.

Figure 5 .

 5 Figure 5. µ(•), µ(•) and m(•) with n = 300 for C.P.≈ 35% and M.C.= 25, 50, 100 respectively.

Figure 6

 6 Figure 6. µ(•), µ(•) and m n (•) with n = 300 for C.P.≈ 35, 50 and 66% respectively.

Figure 7

 7 Figure 7. µ(•), µ(•) and m n (•) with n = 300 for C.P.≈ 35% and M.C.= 25, 50, 100 respectively.

Figure 8

 8 Figure 8. µ(•), m(•), µ(•) and m n (•) with n = 300 for C.P.≈ 35% and M.C.= 25, 50, 100 respectively.

  ′ ℓ (ξ 2 ) + thr ′ 2 (ξ 1 )r ℓ (x) + shr ′ ℓ (ξ 2 )r 2 (x)whereξ ′ 1 ∈]x, x + th[ and ξ ′ 2 ∈]x, x + sh[. Then, we have E[ µ ℓ (x)]r ℓ (x)r 2 (x) = h 2 (t 2ts)K(t)K(s){h 2 tsr ′ 2 (ξ 1 )r ′ ℓ (ξ 2 ) + thr ′ 2 (ξ 1 )r ℓ (x) + shr ′ ℓ (ξ 2 )r 2 (x)}dtds

	= h 4	ts(t 2 -ts)K(t)K(s)r ′ 2 (ξ 1 )r ′ ℓ (ξ 2 )dtds + h 3	t(t 2 -ts)K(t)K(s)r ′ 2 (ξ 1 )r ℓ (x)dtds
	+ h 3	s(t 2 -ts)K(t)K(s)r ′ ℓ (ξ 2 )r 2 (x)dtds		
	= h 4	t 3 K(t)r ′ 2 (ξ 1 )dt	sK(s)r ′ ℓ (ξ 2 )ds -	t 2 K(t)r ′ 2 (ξ 1 )dt	s 2 K(s)r ′ ℓ (ξ 2 )ds
	+ h 3 r ℓ (x) t 3 K(t)r ′ 2 (ξ 1 )dt	K(s)ds -r ℓ (x) sK(s)ds	t 2 K(t)r ′ 2 (ξ 1 )dt
	+ h 3 r 2 (x) t 2 K(t)dt	sK(s)r ′ ℓ (ξ 2 )ds -r 2 (x) tK(t)dt	s 2 K(s)r ′ ℓ (ξ 2 )ds .

(2.12) where µ -i (•) is the LLRER estimator defined in (2.8) without using the i th observation (X i , T i ).