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ABSTRACT

Although galaxies are found to follow a tight relation between their star formation rate and stellar mass, they are expected to exhibit
complex star formation histories (SFH) with short-term fluctuations. The goal of this pilot study is to present a method that identifies
galaxies that undergo strong variation in star formation activity in the last ten to some hundred million years. In other words, the
proposed method determines whether a variation in the last few hundred million years of the SFH is needed to properly model
the spectral energy distribution (SED) rather than a smooth normal SFH. To do so, we analyzed a sample of COSMOS galaxies
with 0.5 < z < 1 and log M∗ > 8.5 using high signal-to-noise ratio broadband photometry. We applied approximate Bayesian
computation, a custom statistical method for performing model choice, which is associated with machine-learning algorithms to
provide the probability that a flexible SFH is preferred based on the observed flux density ratios of galaxies. We present the method
and test it on a sample of simulated SEDs. The input information fed to the algorithm is a set of broadband UV to NIR (rest-frame)
flux ratios for each galaxy. The choice of using colors is made to remove any difficulty linked to normalization when classification
algorithms are used. The method has an error rate of 21% in recovering the correct SFH and is sensitive to SFR variations larger than
1 dex. A more traditional SED-fitting method using CIGALE is tested to achieve the same goal, based on fit comparisons through
the Bayesian information criterion, but the best error rate we obtained is higher, 28%. We applied our new method to the COSMOS
galaxies sample. The stellar mass distribution of galaxies with a strong to decisive evidence against the smooth delayed-τ SFH peaks
at lower M∗ than for galaxies where the smooth delayed-τ SFH is preferred. We discuss the fact that this result does not come from
any bias due to our training. Finally, we argue that flexible SFHs are needed to be able to cover the largest possible SFR-M∗ parameter
space.

Key words. galaxies: evolution – galaxies: fundamental parameters

1. Introduction

The tight relation linking the star formation rate (SFR) and stel-
lar mass of star-forming galaxies, the so-called main sequence
(MS), opened a new window in our understanding of galaxy evo-
lution (Elbaz et al. 2007; Noeske et al. 2007). It implies that the
majority of galaxies are likely to form the bulk of their stars
through steady-state processes rather than violent episodes of
star formation. However, this relation has a scatter of ∼0.3 dex
(Schreiber et al. 2015) that is found to be relatively constant at all
masses and over cosmic time (Guo et al. 2013; Ilbert et al. 2015;
Schreiber et al. 2015). One possible explanation of this scatter
could be its artificial creation by the accumulation of errors in the
extraction of photometric measurements and/or in the determina-
tion of the SFR and stellar mass in relation with model uncertain-
ties. However, several studies have found a coherent variation in
physical galaxy properties such as the gas fraction (Magdis et al.
2012), Sérsic index and effective radius (Wuyts et al. 2011), and
U−V color (e.g., Salmi et al. 2012), suggesting that the scatter
is more strongly related to the physics than to measurement and
model uncertainties. Furthermore, oscillations in SFR resulting
from a varying infall rate and compaction of star formation have
been proposed to explain the MS scatter (Sargent et al. 2014;
Scoville et al. 2016; Tacchella et al. 2016) and en even be sug-
gested by some simulations (e.g., Dekel & Burkert 2014).

To decipher whether the scatter is indeed due to variations
in star formation history (SFH), we must be able to place a
constraint on the recent SFH of galaxies to reconstruct their
path along the MS. This information is embedded in the spec-
tral energy distribution (SED) of galaxies. However, recover-
ing it through SED modeling is complex and subject to many
uncertainties and degeneracies. Galaxies are indeed expected
to exhibit complex SFHs, with short-term fluctuations. This
requires sophisticated SFH parametrizations to model them (e.g.,
Lee et al. 2010; Pacifici et al. 2013, 2016; Behroozi et al.
2013; Leja et al. 2019). The implementation of these models
is complex, and large libraries are needed to model all galaxy
properties. Numerous studies have instead used simple analyt-
ical forms to model galaxies SFH (e.g., Papovich et al. 2001;
Maraston et al. 2010; Pforr et al. 2012; Gladders et al. 2013;
Simha et al. 2014; Buat et al. 2014; Boquien et al. 2014; Ciesla
et al. 2015, 2016, 2017; Abramson et al. 2016). However, SFH
parameters are known to be difficult to constrain from broadband
SED modeling (e.g., Maraston et al. 2010; Pforr et al. 2012; Buat
et al. 2014; Ciesla et al. 2015, 2017; Carnall et al. 2019).

Ciesla et al. (2016) and Boselli et al. (2016) have shown in
a sample of well-known local galaxies benefiting from a wealth
of ancillary data that a drastic and recent decrease in star forma-
tion activity of galaxies can be probed as long as a good UV to
near-IR (NIR) rest frame coverage is available. They showed that
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the intensity in the variation of the star formation (SF) activity
can be relatively well constrained from broadband SED fitting.
Spectroscopy is required, however, to bring information on the
time when the change in star formation activity occurred (Boselli
et al. 2016). These studies were made on well-known sources of
the Virgo cluster, for which the quenching mechanism (ram pres-
sure stripping) is known and HI observations allow a direct veri-
fication of the SED modeling results. To go a step further, Ciesla
et al. (2018) have blindly applied the method on the GOODS-
South sample to identify sources that underwent a recent and
drastic decrease in their SF activity. They compared the qual-
ity of the results from SED fitting using two different SFHs and
obtained a sample of galaxies where a modeled recent and strong
decrease in SFR produced significantly better fits of the broad-
band photometry. In this work, we improve the method of Ciesla
et al. (2018) by gaining in power by applying a custom statisti-
cal method to a subsample of COSMOS galaxies to perform the
SFH choice: the approximate Bayesian computation (ABC, see,
e.g., Marin et al. 2012; Sisson et al. 2018). Based on the observed
SED of a galaxy, we wish to choose the most appropriate SFH in
a finite set. The main idea behind ABC is to rely on many sim-
ulated SEDs generated from all the SFHs in competition using
parameters drawn from the prior.

The paper is organized as follows: Sect. 2 describes the astro-
physical problem and presents the sample. In Sect. 3 we present
the statistical approach as well as the results obtained from a cat-
alog of simulated SEDs of COSMOS-like galaxies. In Sect. 4 we
compare the results of this new approach with more traditional
SED modeling methods, and apply it to real COSMOS galaxies
in Sect. 5. Our results are discussed in Sect. 6.

2. Constraining the recent star formation history of
galaxies using broadband photometry

2.1. Building upon the method of Ciesla et al. (2018)

The main purpose of the study presented in Ciesla et al. (2018)
was to probe variations in SFH that occurred on very short
timescales, that is, within some hundred million years. Large-
number statistics was needed to be able to catch galaxies at the
moment when these variations occurred. The authors aimed at
identifying galaxies that recently underwent a rapid (<500 Myr)
and drastic downfall in SFR (more than 80%) from broadband
SED modeling because large photometric samples can provide
the statistics needed to pinpoint these objects.

To perform their study, they took advantage of the versatil-
ity of the SED modeling code CIGALE1 (Boquien et al. 2019).
CIGALE is a SED modeling software package that has two func-
tions: a modeling function to create SEDs from a set of given
parameters, and an SED fitting function to derive the physi-
cal properties of galaxies from observations. Galaxy SEDs are
computed from UV-to-radio taking into account the balance
between the energy absorbed by dust in the UV-NIR and remit-
ted in IR. To build the SEDs, CIGALE uses a combination of
modules including the SFH assumption, which may be analyti-
cal, stochastic, or outputs from simulations (e.g., Boquien et al.
2014; Ciesla et al. 2015, 2017), the stellar emission from stellar
population models (Bruzual & Charlot 2003; Maraston 2005),
the nebular lines, and the attenuation by dust (e.g., Calzetti et al.
2000; Charlot & Fall 2000).

Ciesla et al. (2018) compared the results of SED fitting in
a sample of GOODS-South galaxies using two different SFHs:
one normal delayed-τ SFH, and one flexible SFH that modeled

1 https://cigale.lam.fr/

a truncation of the SFH. The normal delayed-τ SFH is given by
the equation

SFR(t) ∝ t × exp(−t/τmain), (1)

where SFR is the star formation rate, t is the time, and τmain is the
e-folding time. Examples of delayed-τ SFHs are shown in Fig. 1
for different values of τmain. The flexible SFH is an extension of
the delayed-τ model,

SFR(t) ∝
{

t × exp(−t/τmain), when t ≤ tflex

rSFR × SFR(t = tflex), when t > tflex
, (2)

where tflex is the time at which the star formation is instanta-
neously affected, and rSFR is the ratio between SFR(t > tflex) and
SFR(t = tflex),

rSFR =
SFR(t > tflex)

SFR(tflex)
· (3)

A representation of flexible SFHs is also shown in Fig. 1. The
normal delayed-τ SFH is at first order a particular case of the
flexible SFH for which rSFR = 1.

To distinguish between the two models, Ciesla et al. (2018)
estimated the Bayesian information criterion (BIC, see Sect. 3.2)
that is linked to the two models and placed conservative lim-
its on the difference between the two BICs to select the best-
suited model. They showed that a handful of sources were better
fit using the flexible SFH, which assumes a recent instanta-
neous break in the SFH, compared to the more commonly used
delayed-τ SFH. They discussed that these galaxies have indeed
physical properties that are different from the main population
and characteristic of sources in transition.

The limited number of sources identified in the study of
Ciesla et al. (2018; 102 out of 6680) was due to their choice
to be conservative in their approach and find a clean sample of
sources that underwent a rapid quenching of star formation. They
imposed that the instantaneous decrease of SFR was more than
80% and that the BIC difference was larger than 10. These cri-
teria prevent a complete study of rapid variations in the SFH of
galaxies because many of them would be missed. Furthermore,
only decreases in SFR were considered and not the opposite,
that is, star formation bursts. Finally, their method is time con-
suming because the CIGALE code has to be run twice, once per
SFH model considered, to perform the analysis. To go beyond
these drawbacks and improve the method of Ciesla et al. (2018),
we consider in the present pilot study a statistical approach, the
ABC, combined with a classification algorithm to improve the
accuracy and efficiency of their method.

2.2. Sample

In this pilot work, we use the wealth of data available on the
COSMOS field. The choice of this field is driven by the good
spectral coverage of the data and the large statistics of sources.

We drew a sample from the COSMOS catalog of Laigle et al.
(2016). A first cut was made to restrict ourselves to galaxies with
a stellar mass (Laigle et al. 2016) higher than 108.5 M�. Then
we restricted the sample to a relatively narrow redshift range to
minimize its effect on the SED and focus our method on the
SFH effect on the SED. We therefore selected galaxies with red-
shifts between 0.5 and 1, which ensures sufficient statistics in
our sample. We used the broadbands of the COSMOS catalog
as listed in Table 1. For galaxies with redshifts between 0.5 and
1, Spitzer/IRAC3 probes the 2.9–3.9 µm wavelength range rest
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Fig. 1. Examples of delayed-τ SFHs considered in this work (star
formation rate as a function of cosmic time). Different SFHs using
τmain = 0.5, 1, 5, and 10 Gyr are shown to illustrate the effect of this
parameter (light green and dark green solid lines). An example of a
delayed-τ SFH with flexibility is shown in solid dark green, with the
flexibility as green dashed lines for (ageflex = 1 Gyr and rSFR = 0.3) and
(ageflex = 0.5 Gyr and rSFR = 7).

Table 1. COSMOS broadbands.

Instrument Band λ (µm)

GALEX FUV 0.153
GALEX NUV 0.229
CFHT u′ 0.355
SUBARU B 0.443
SUBARU V 0.544
SUBARU r 0.622
Suprime Cam i′ 0.767
Suprime Cam z′ 0.902
VISTA Y 1.019
VISTA J 1.250
VISTA H 1.639
VISTA Ks 2.142
Spitzer IRAC1 3.6
Spitzer IRAC2 4.5

frame and Spitzer/ IRAC4 probes the 4–5.3 µm range rest frame.
These wavelength ranges correspond to the transition between
stellar and dust emission. To keep this pilot study simple, we
only considered the UV-to-NIR part of the spectrum, which is
not affected by dust emission.

One aspect of the ABC method that is still to be developed is
handling missing data. In our astrophysical application, we iden-
tified several types of missing data. First there is the effect of
redshifting, that is, the fact that a galaxy is undetected at wave-
lengths shorter than the Lyman break at its redshift. Here, the
absence of detection provides information on the galaxy coded in
its SED. Another type of missing data is linked to the definition
of the photometric surveys: the spatial coverage is not exactly
the same in every band, and the different sensitivity limits yield
undetected galaxies because their fluxes are afaint. To keep the
statistical problem simple in this pilot study, we removed galax-
ies that were not detected in all bands. This strong choice is moti-
vated by the fact that the ABC method that we use in this pilot
study has not been tested and calibrated in the case of missing

data such as extragalactic field surveys can produce. The effect
of missing data on this method would require much work of sta-
tistical research, which is beyond the scope of this paper.

As an additional constraint, we selected galaxies with a
signal-to-noise ratio (S/N) equal or greater than 10. However,
given the importance of the near-UV (NUV) band (Ciesla et al.
2016, 2018) and the faintness of the fluxes compared to the other
bands, we relaxed our criteria to an S/N of 5 for this band. The
first motivation for this cut was again to keep our pilot study sim-
ple, but we show in Appendix A that this S/N cut is relevant. In
the following, we consider a final sample composed of 12 380
galaxies for which the stellar mass distribution as a function of
redshift is shown in Fig. 2 (top panel) and the distribution of the
rejected sources in the bottom panel of the same figure.

The stellar mass distribution, from Laigle et al. (2016), of the
final sample is shown in Fig. 3. As a sanity check, we verified
that above 109.5 M�, the stellar mass, star formation rate, and
specific star formation rate distributions are similar. Our selec-
tion criteria mostly affect low-mass galaxies, which is expected
because we made S/N cuts.

The wide ranges of redshift, stellar masses, and SED shapes
we considered create a normalization aspect that needs to be
taken into account. This diversity in galaxy properties translates
into a large distribution of fluxes in a given photometric band
that spans several orders of magnitude: 8 orders of magnitudes
in the FUV band and 6 in the Ks band, for instance. This param-
eter space is very challenging for classification algorithms. To
avoid this problem, we computed flux ratios. First we combined
each flux with the closest one in terms of wavelength. This set
of colors provides information on the shape of the SED, but
effects of the SFH are also expected on wider scales in terms of
wavelength. As discussed in Ciesla et al. (2018), the discrepancy
between the UV and NIR emission assuming a smooth delayed-
τ SFH is the signature that we search for because it indicates
a possible change in the recent SFH. To be able to probe these
effects, we also normalized each photometric band to the Ks flux
and added this set of colors to the previous one. Finally, we set
the flux ratios FUV/NUV and FUV/Ks to be 0 when z > 0.68
to account for the missing FUV flux density due to the Lyman
break at these redshifts.

3. Statistical approach

We present the statistical approach that we used to infer the
most suitable SFH from photometric data. This new approach
is applied to the sample described in Sect. 2.2 as a pilot study,
but it can be applied to other datasets and for testing properties
other than the SFH.

3.1. Statistical modeling

As explained in the previous section, we wish to distinguish
between two SFH models: the first is the smooth delayed-τ SFH,
or SFH model m = 0, and the second is the same with a flexi-
bility in the last 500 Myr, or SFH model m = 1, as presented
in Sect. 2.1. The smooth delayed-τ SFH is thus a specific case
of the flexible SFH that is obtained when there is no burst nor
quenching (rSFR = 1).

Let xobs denote the broadband data collected about a given
galaxy. The statistical problem of deciding which SFH fits the
data better can be seen as the Bayesian testing procedure distin-
guishing between both hypotheses,

H0: rSFR = 1 versus H1: rSFR , 1.
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Fig. 2. Stellar mass from Laigle et al. (2016) as a function of redshift
for the final sample (top panel) and for the rejected galaxies following
our criteria (bottom panel).
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Fig. 3. Distribution of stellar mass for the sample before the S/N cut
(gray) and the final sample (green). The red dotted line indicates the
limit above which our final sample is considered complete. The stellar
masses indicated here are from Laigle et al. (2016).

The procedure decides in favor of a possible change in the recent
history when rSFR is significantly different from 1 based on the
data xobs. Conducting a Bayesian testing procedure based on the
data xobs of a given galaxy is exactly the same as the Bayesian
model choice that distinguishes between two nested statistical
models (Robert 2007).

The first statistical model (m = 0), that is, the delayed-τ SFH,
is composed as follow: let θ0 denote the vector of all parame-
ters necessary to compute the mock SED, denoted SED(θ0). In
particular, θ0 includes the parameters of the SFH. We denote
p(θ0|m = 0) the prior distribution over the parameter space

for this statistical model. Likewise for the second SFH model:
let θ1 = (θ0, rSFR, tflex) be the vector of all parameters for the
delayed-τ+ flex SFH. This vector includes the same parameters
as for the previous SFH, plus two added parameters rSFR and
tflex. Let p(θ1|m = 1) be the prior distribution over the parameter
space for the second model. We furthermore add a prior proba-
bility on the SFH index, p(m = 1) and p(m = 0), which are both
0.5 when we wish to remain noninformative.

Finally, we assumed Gaussian noise. Thus, the likelihood
p(xobs|θm,m) of θm given xobs under the statistical model m is a
multivariate Gaussian distribution, centered on SED(θm) with a
diagonal covariance matrix. The standard deviations were set to
0.1×SED(θm) because of the assumed S/N value in the observa-
tions. In particular, this means that up to constant, the log likeli-
hood is the negative χ2-distance between the observed SED and
the mock SED(θm),

p(xobs|θm,m) ∝ exp
(
−

1
2
χ2

(
xobs,SED(θm)

))
, where

χ2
(
xobs,SED(θm)

)
=

J∑
j=1

(
xobs(λ j) − SED(θm, λ j)

)2

(
0.1SED(θm, λ j)

)2 · (4)

3.2. Bayesian model choice

The Bayesian model choice (Robert 2007) relies on the eval-
uation of the posterior probabilities p(m|xobs) which, using the
Bayes formula, is given by

p(m|xobs) =
p(m)p(xobs|m)∑
m′

p(m′)p(xobs|m′)
, (5)

where

p(xobs|m) =

∫
p(xobs|θm,m)p(θm|m)dθm (6)

is the likelihood integrated over the prior distribution of the mth
statistical model. Seen as a function of xobs, p(xobs|m) is called
the evidence or the integrated likelihood of the mth model.

The Bayesian model choice procedure innately embodies
Occam’s razor. This principle consists of choosing the sim-
plest model as long as it is sufficient to explain the observation
Appendix B. In this study, the two parametric SFHs are nested:
when the parameter rSFR of an SFH m = 1 (flex + delayed-τ) is
set to 1, we have an SFH that is also in the model m = 0 (delayed-
τ). Because of Occam’s razor, if we choose the SFH with highest
posterior probability when analyzing an observed SED xobs that
can be explained by both SFHs, we choose the simplest model
m = 0.

To analyze the dataset xobs, the posterior probabilities remain
to be computed. In our situation, the evidence of the statistical
model m is intractable. This means that it cannot be easily eval-
uated numerically. The function that computes SED(θm) given m
and θm is fundamentally a black-box numerical function.

There are two methods to solve this problem. First, we can
use a Laplace approximation of the integrated likelihood. The
resulting procedure chooses the SFH with the smallest BIC.
Denoting θ̂m the maximum likelihood estimate under the SFH
m, χ2 the non-reduced χ2-distance of the fit, km the degree of
freedom of model m, and n the number of observed photometric
bands, the BIC of SFH m is given by
BICm = −2 max

θm
ln p(xobs|θm,m) + km × ln(n),

= χ2
(
SED(θ̂m), xobs

)
+ km × ln(n). (7)
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Choosing the model with the smallest BIC is therefore an
approximate method to find the model with the highest pos-
terior probability. The results of Ciesla et al. (2018) based on
the BIC are justified on this ground. The Laplace approxima-
tion assumes, however, that the number of observed photometric
bands n is large enough. Moreover, determining the degree of
freedom km of a statistical model can be a complex question.
For all these reasons, we expect to improve the method of Ciesla
et al. (2018) based on the BIC in the present paper.

Clever Monte Carlo algorithms for computing the evidence,
Eq. (6), of each statistical model provide a much sharper approx-
imation of the posterior probabilities of each SFH. We decided
to rely on ABC (see, e.g., Marin et al. 2012; Sisson et al. 2018)
to compute p(m|xobs). We could have considered other methods
(Vehtari & Ojanen 2012) such as bridge sampling, reversible
jump Markov chain Monte Carlo (MCMC), or nested sampling.
these methods require separate runs of the algorithm to analyze
each galaxy, however, and probably more than a few minutes per
galaxy. We expect to design a faster method here with ABC.

Finally, to interpret the results, we relied on the Bayes factor
of the delayed-τ+ flex SFH (m = 1) against the delayed-τSFH
(m = 0) given by

BF1/0(xobs) =
p(xobs|1)
p(xobs|0)

=
p(1|xobs)
p(0|xobs)

=
p(1|xobs)

1 − p(1|xobs)
·

The computed value of the Bayes factor was compared to stan-
dard thresholds established by Jeffreys (see, e.g., Robert 2007) in
order to evaluate the strength of the evidence in favor of delayed-
τ+ flex SFH if BF1/0(xobs) ≥ 1. Depending on the value of the
Bayes factor, Bayesian statisticians are used to say that the evi-
dence in favor of model m = 1 is either barely worth mentioning
(from 1 to

√
10), substantial (from

√
10 to 10), strong (from 10

to 103/2), very strong (from 103/2 to 100), or decisive (higher
than 100).

3.3. ABC method

To avoid the difficult computation of the evidence, Eq. (6), of
model m and obtain a direct approximation of p(m|xobs), we
resorted to the family of methods called ABC model choice
(Marin et al. 2018).

The main idea behind the ABC framework is that we can
avoid evaluating the likelihood and directly estimate a poste-
rior probability by relying on N random simulations (mi, θi

m, x
i),

i = 1, . . . ,N from the joint distribution p(m)p(θm|m)p(x|θm,m).
Here simulated (mi, θi

m, x
i) are obtained as follows: first, we drew

an SFH mi at random, with the prior probability p(mi); then we
drew θi

m according to the prior p(θi
m|m

i); finally, we computed
the mock SED(θi

m) with CIGALE and added a Gaussian noise to
the mock SED to obtain xi. This last step is equivalent to sam-
pling from p(xi|θi

m,m
i) given in Eq. (4). Basically, the posterior

distribution p(m|xobs) can be approximated by the frequency of
the SFH m among the simulations that are close enough to xobs.

To measure how close x is from xobs, we introduced the
distance between vectors of summary statistics d

(
S (x), S (xobs)

)
,

and we set a threshold ε: simulations (m, θm, x) that satisfy
d
(
S (x), S (xobs)

)
≤ ε are considered “close enough” to xobs. The

summary statistics S (x) are primarily introduced as a way to han-
dle feature extraction, whether it is for dimensionality reduction
or for data normalization. In this study, the components of the
vector S (x) are flux ratios from the SED x, chosen for normal-
ization purposes. Mathematically speaking, p(m = 1|xobs) is thus
approximated by

Table 2. Basic ABC model choice algorithm that aims at computing the
posterior probabilities of statistical models in competition to explain the
data.

Input:
− xobs, the observed SED we want to analyse
− p(m), prior probability of the mth statistical model
− p(θm|m), prior distribution of parameter θm of the mth

statistical model
− p(x|θm,m), probability density of a SED x given the

mth statistical model, and the parameter θm, see
Eq. (4)

− N, number of simulations from the prior
− S (x), a function that computes the summary statistics

of a SED x

Output:
An approximation p̂(m|xobs) of the posterior probability
of the mth statistical model given the observed data for
all m.
1 For i = 1 to N
2 Generate mi from the prior p(m)
3 Generate θi

m from the prior p(θm|m)
4 Generate xi from the model p(x|θm,m)
5 Compute S (xi) and store (mi, θi

m, S (xi))
6 End For
7 Compute p̂(m|xobs) with Eq. (8) for all m

p̂(m|xobs) =

∑N

i=1
1{mi = m}1

{
d
(
S (xi), S (xobs)

)
≤ ε

}
∑N

i=1
1
{
d
(
S (xi), S (xobs)

)
≤ ε

} · (8)

The resulting algorithm, called basic ABC model choice, is
given in Table 2. Finally, if k is the number of simulations close
enough to xobs, the last step of Table 2 can be seen as a k near-
estneighbor (k-nn) method that predicts m based on the features
(or covariates) S (x).

The k-nn can be replaced by other machine-learning algo-
rithms to obtain sharper results. The k-nn is known to perform
poorly when the dimension of S (x) is larger than 4. For instance,
Pudlo et al. (2016) decided to rely on the method called random
forest (Breiman 2001). The machine-learning-based ABC algo-
rithm is given in Table 3. All machine-learning models given
below are classification methods. In our context, they separate
the simulated datasets x depending on the SFH (m = 0 or 1) that
was used to generate them. The machine-learning model is fit
on the catalog of simulations (mi, θi

m, x
i), that is to say, it learns

how to predict m based on the value of x. To this purpose, we
fit a function p̂(m = 1|x) and performed the classification task
on a new dataset x′ by comparing the fitted p̂(m = 1|x′) to
1/2: if p̂(m = 1|x′) > 1/2, the dataset x′ is classified as gen-
erated by SFH m = 1; otherwise, it is classified as generated by
SFH m = 0. The function p̂(m = 1|x′) depends on some inter-
nal parameters that are not explicitly shown in the notation. For
example, this function can be computed with the help of a neural
network. A neuron here is a mathematical function that receives
inputs and produces an output based on a weighted combina-
tion of the inputs; each neuron processes the received data and
transmits its output downstream in the network. Generally, the
internal parameters (φ, ψ) are of two types: the coordinates of φ
are optimized on data with a specific algorithm, and the coor-
dinates of ψ are called tuning parameters (or hyperparameters).
For instance, with neural networks, ψ represents the architecture
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of the network and the amount of dropout; φ represents the col-
lection of the weights in the network.

The gold standard machine-learning practice is to split the
catalog of data into three parts: the training catalog and the val-
idation catalog, which are both used to fit the machine-learning
models, and the test catalog, which is used to compare the algo-
rithms fairly and obtain a measure of the error committed by the
models. Each fit requires two catalogs (training and validation)
because modern machine-learning models are fit to the data with
a two-step procedure. We detail the procedure for a simple dense
neural network and refer to Appendix C for the general case. The
hyperparameters we consider are the number of hidden layers,
the number of nodes in each layer, and the amount of dropout.
We fixed a range of possible values for each hyperparameter (see
Table 4). We selected a possible combination of hyperparame-
ters ψ, and trained the obtained neural network on the training
catalog. After the weights φ were optimized on the training cat-
alog, we evaluated the given neural network on the validation
catalog and associated the obtained classification error with the
combination of hyperparameters that we used. We followed the
same training and evaluating procedure for several hyperparam-
eter combinations ψ and selected the one that obtained the lowest
classification error. At the end of the process, we evaluated the
classification error on the test catalog using the selected combi-
nation of hyperparameters ψ̂.

The test catalog was left out during the training and the tun-
ing of the machine-learning methods on purpose. The compar-
ison of the accuracy of the approximation that was returned by
each machine-learning method on the test catalog ensured a fair
comparison between the methods on data unseen during the fit
of p̂ψ̂(m|x).

In this pilot study, we tried different machine-learning meth-
ods and compared their accuracy:

– logistic regression and linear discriminant analysis (Friedman
et al. 2001), which are almost equivalent linear models, and
serve only as baseline methods,

– neural networks with one or three hidden layers, the core
of deep-learning methods that have proved to return sharp
results on various signal datasets (images, sounds)

– classification tree boosting (with XGBoost, see Chen &
Guestrin 2016), which is considered a state-of-the-art
method in many applied situations, and is often the most
accurate algorithm when it is correctly calibrated on a large
catalog.

We did not try random forest because it cannot be run on a
simulation catalog as large as the one we rely on in this pilot
study (N = 4 × 106). The motivation of the method we propose
is to bypass the heavy computational burden of MCMC-based
algorithms to perform a statistical model choice. In this study,
random forest was not able to fulfill this aim, unlike the
classification methods given above.

3.4. Building synthetic photometric data

To compute or fit galaxy SEDs with CIGALE, a list of prior
values for each model’s parameters is required. The comprehen-
sive module selection in CIGALE allows specifying the SFH
entirely, and how the mock SED is computed. The list of prior
values for each module’s parameters specifies the prior distribu-
tion p(θm|m). CIGALE uses this list of values or ranges to sample
from the prior distribution by picking values on θm on a regu-
lar grid. This has the inconvenient of being very sensitive to the
number of parameters (if d is the number of parameters, and if
we assume ten different values for each parameter, the size of the

Table 3. Machine-learning-based ABC model choice algorithm that
computes the posterior probability of two statistical models in competi-
tion to explain the data.

Input and output: same as Table 2

1 Generate N simulations (mi, θi
m, x

i) from the joint distribu-
tion p(m)p(θm|m)p(x|θm,m)

2 Summarize all simulated datasets (photometric SED) xi with
S (xi) and store all simulated (mi, θi

m, S (xi)) into a large cata-
log

3 Split the catalog into three parts: training, validation, and test
catalogs

4 Fit each machine-learning method on the training and vali-
dation catalogs to approximate p(m = 1|S (x)) with p̂ψ̂(m =
1|x)

5 Choose the best machine-learning method by comparing
their classification errors on the test catalog

6 Return the approximation p̂(m = 1|xobs) computed with the
best method

grid is 10d); producing simulations that are generated with some
parameters that are equal. In this study, we instead advocate in
favor of drawing values of all parameters at random from the
prior distribution, which is uniform over the specified ranges or
list of values. The ranges for each model parameter (see Table 4)
were chosen to be consistent with those used by Ciesla et al.
(2018). In particular, the catalog of simulations drawn at line 1
in Table 3 follows this rule. Each SFH (the simple delayed-τ or
the delayed-τ+ flex) was then convolved with the stellar popu-
lation models of Bruzual & Charlot (2003). The attenuation law
described in Charlot & Fall (2000) was then applied to the SED.
Finally, CIGALE convolved each mock SED into a COSMOS-
like set of filters described in Table 1.

4. Application to synthetic photometric data

We first applied our method on simulated photometric data to
evaluate its accuracy. The main interest of such synthetic data is
that we control all parameters (flux densities, colors, and physi-
cal parameters). The whole catalog of simulations was composed
of 4×106 simulated datasets. We split this catalog at random into
three parts, as explained in Sect. 3.3, and added an additional cat-
alog for comparison with CIGALE:

– 3.6 × 106 sources (90%) to compose the training catalog,
– 200 000 sources (5%) to compose the validation catalog,
– 200 000 sources (5%) to compose the test catalog,
– 30 000 additional sources to compose the additional catalog

for comparison with CIGALE.
The size of the additional catalog is much smaller to limit the
amount of computation time required by CIGALE to run its own
algorithm of SED fitting.

4.1. Calibration and evaluation of the machine-learning
methods on the simulated catalogs

In this section we present the calibration of the machine-learning
techniques and their error rates on the test catalog. We then inter-
pret the results given by our method.

As described in Sect. 3.3, we trained and calibrated the
machine-learning methods on the training and validation cata-
log. The results are given in Table 4. Neither logistic regression
nor linear discriminant analysis have tuning parameters that need
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Table 4. Calibration and test of machine-learning methods.

Method Tuning parameter Explored range Best value Error rate (%)

Logistic regression ∅ 30.27

Linear discriminant analysis ∅ 30.43

k nearest-neighbors k [3600, 180 000] 5000 23.79

One-layer neural network Dropout [0.1, 0.5] 0.2 22.51
Nodes in each layer [16, 256] 128 –

Three-layer neural network Dropout [0.1, 0.5] 0.2 21.06
Nodes in each layer [16, 256] 128 –

Tree boosting (XGBoost) Number of trees (nround) [100, 1000] 400 20.98
Depth of each tree (max_depth) [4, 15] 12 –

Learning rate (eta) [0.01, 0.2] 0.1 –

Notes. The best value of each tuning parameter was found by comparing error rates on the validation catalog. The error rate given in the last
column is computed on the test catalog.

Table 5. Prior range of the parameters used to generate the simulation
table of SEDs with redshift between 0.5 and 1.

Parameter Value

Delayed-τ SFH
age (Gyr) [0.5; 9]
τmain (Gyr) [0.1; 10]

Flexible delayed-τ SFH
age (Gyr) [0.5; 9]
τmain (Gyr) [0.1; 10]
ageflex (Myr) 10, 100, 450
log rSFR [−6; 6]

Dust attenuation
AV [0.1; 4]

to be calibrated on the validation catalog. The error rate of
these techniques is about 30% on the test catalog. The mod-
ern machine-learning methods (k-nn, neural networks, and tree
boosting) were calibrated on the validation catalog, however.
The best value of the explored range for ψwas found by compar-
ing error rates on the validation catalog and is given in Table 4.
The error rates of these methods on the test catalog vary between
24% and 20%. The significant gain in using nonlinear methods
is therefore clear. However, we see no obvious use in training a
more complex algorithm (such as a deeper neural network) for
this problem, although it might become useful when the num-
ber of photometric bands and the redshift range are increased.
Finally, we favor XGBoost for our study. While neural networks
might be tuned more precisely to match or exceed its perfor-
mances, we find XGBoost easier to tune and interpret.

Machine-learning techniques that fit p̂ψ̂(m|x) are often
affected by some bias and may require some correction
(Niculescu-Mizil & Caruana 2012). These classification algo-
rithms compare the estimated probabilities of m given x and
return the most likely m given x. The output m can be correct
even if the probabilities are biased toward 0 for low probabilities
or toward 1 for high probabilities. A standard reliability check
shows no such problem for our XGBoost classifier. To this aim,

the test catalog was divided into ten bins: the first bin is com-
posed of simulations with a predicted probability p̂(m = 1|xobs)
between 0 and 0.1, the second with p̂(m = 1|xobs) between 0.1
and 0.2 etc. The reliability check procedure ensures that the fre-
quency of the SFH m = 1 among the kth bin falls within the
range [(k − 1)/10; k/10] because the p̂(m = 1|xobs) predicted by
XGBoost are between (k − 1)/10 and k/10.

We studied the ability of our method to distinguish the SFH of
the simulated test-catalog sources. The top panel of Fig. 4 shows
the distribution of p̂(m = 1|xobs) when x varies in the test catalog.
Naively, a perfect result would have half of the sample with p = 1
and the other half with p = 0. When m = 0, the SFH m = 1 is
also suitable because the models are nested. In this case, Occam’s
razor favors the model m = 0, and p̂(m = 1|xobs) must be lower
than 0.5, see Sect. 3.2. In contrast, for the SEDs that are explained
by the SFH model m = 1 alone, p̂(m = 1|xobs) is close to 1.

The distribution (Fig. 4, bottom left panel) has two peaks,
one centered around p = 0.2 and one between 0.97 and 1.
This peak at 0.2, and not 0, is expected when one of the mod-
els proposed to the choice is included in the second model. In
the distribution of the p̂(m = 1|xobs), 20% of the sources have a
value higher than 0.97 and 52% lower than 0.4. In the right pan-
els of Fig. 4 we show the distribution of rSFR for the galaxies
x with p̂(m = 1|xobs) > 0.97. With a perfect method, galax-
ies with rSFR , 1 should have p̂(m = 1|xobs) = 1. Here we
see indeed a deficit of galaxies around p = 1, but the range of
affected rSFR extends from 0.1 to 10. This shows that the method
is not able to identify galaxies with an SFR variability if this
variability is only 0.1–10 times the SFR before the variability
began. In other words, the method is sensitive to | log rSFR| > 1.
This is confirmed by the distribution of rSFR for galaxies with
p < 0.40 (Fig. 4, bottom panel). However, there are sources
with a | log rSFR| > 1 that is associated with low values of
p̂(m = 1|xobs). The complete distribution of rSFR as a function
of p̂(m = 1|xobs) is shown in Fig. 4.

4.2. Importance of particular flux ratios

We determined which part of the dataset x most influences the
choice of SFH given by our method. The analysis of x relies
entirely on the summary statistics S (x), the flux ratios. We
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Fig. 4. Study of the statistical power of p̂(m = 1|xobs) to detect short-term variations with respect to the value of rSFR. Top left panel: joint
distribution of p̂(m = 1|xobs) and rSFR. Bottom left panel: distribution of p̂(m = 1|xobs) obtained with x coming from the test catalog. Right panels:
marginal distributions of rSFR for mock sources with p̂(m = 1|xobs) > 0.97 (top right panel) and for mock sources with p̂(m = 1|xobs) < 0.4 (bottom
right panel).

therefore tried to understand which flux ratios are most discrim-
inant for the model choice. We wished to verify that the method
is not based on a bias of our simulations and to assess which part
of the data could be removed without losing crucial information.

We used different usual metrics (e.g., Friedman et al. 2001;
Chen & Guestrin 2016) to assess the importance of each flux
ratio in the machine-learning estimation of p̂(m = 1|x). These
metrics are used as indicators of the relevance of each flux ratio
for the classification task. As expected, the highest flux ratios
for our problem involve the bands at shortest wavelength (FUV
at z < 0.68 and NUV above because FUV is no longer avail-
able), normalized by either Ks or u. This is expected because
these bands are known to be sensitive to SFH (e.g., Arnouts et al.
2013). We see no particular pattern in the estimated importance
of the other flux ratios. They were all used for the classification,
and removing any of them decreases the classification accuracy,
except for IRAC1/Ks, whose importance is consistently negligi-
ble across every considered metric.

We also tested whether the UVJ selection we used to classify
galaxies according to their star formation activity (e.g., Wuyts
et al. 2007; Williams et al. 2009) is able to probe the type of
rapid and recent SFH variations we investigate here. We trained
an XGBoost classification model using only u/V and V/J in
order to evaluate the benefits of using all available flux ratios.
This resulted in a severe increase in classification error, which
increased from 21.0% using every flux ratios to 35.8%.

4.3. Comparison with SED fitting methods based on the BIC

In this section we compare the results obtained with the ABC
method to those obtained with a standard SED modeling. The

goal of this test is to understand and quantify the improve-
ment that the ABC method brings in terms of result accuracy.
We used the simulated catalog of 30 000 sources, described
at the beginning of this section, for which we controlled all
parameters.

The ABC method was also used on this additional catalog.
This test is very similar to the training procedure described in
Sect. 4.1. With this additional catalog, the ABC method has an
error rate of 21.2% compared to 21.0% with the previous test
sample.

CIGALE was run on the test catalog as well. The set of mod-
ules was the same as the set we used to create the mock SEDs,
but the parameters we used to fit the test catalog did not include
the input parameters, which were chosen randomly. This test was
intentionally thought to be simple and represent an ideal case
scenario. The error rate that was obtained with CIGALE there-
fore represents the best achievable result.

To decide whether a flexible SFH was preferable to a normal
delayed-τ SFH using CIGALE, we adopted the method of Ciesla
et al. (2018) described in Sect. 2.1. The quality of fit using each
SFH was tested through the use of the BIC.

In detail, the method we used was the following: First, we
performed a run with CIGALE using a simple delayed-τ SFH
whose parameters are presented in Table 6. A second run was
then performed with the flexible SFH. We compared the results
and quality of the fits using one SFH or the other. The two mod-
els have different numbers of degrees of freedom. To take this
into account, we computed the BIC presented in Sect. 3.2 for
each SFH.

We then calculated the difference between BICdelayed and
BICflex (∆BIC) and used the threshold defined by Jeffreys
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Table 6. Input parameters used in the SED fitting procedures with
CIGALE.

Parameter Value

Delayed-τ SFH
age (Gyr) [0.5; 9], 15 values linearly sampled
τmain (Gyr) [0.1; 10], 15 values linearly sampled

Flexible delayed-τ SFH
age (Gyr) [0.5; 9], 15 values linearly sampled
τmain (Gyr) [0.1; 10], 15 values linearly sampled
ageflex (Myr) 10, 100, 450
log rSFR [−6; 6], 12 values linearly sampled

Dust attenuation
AISM

V [0.1; 4], 10 values linearly sampled
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Fig. 5. Error rate obtained with CIGALE as a function of the ∆BIC
chosen threshold. For comparison we show the error rates obtained by
the classification methods tested in Sect. 3.

(Sect. 3.2), which is valid either for the BF and the BIC and
was also used in Ciesla et al. (2018): a ∆BIC larger than 10 is
interpreted as a strong difference between the two fits (Kass &
Raftery 1995), with the flexible SFH providing a better fit of the
data than the delayed-τ SFH.

We applied this method to the sample containing 15k sources
modeled with a delayed-τ SFH and 15k modeled using a
delayed-τ+ flexibility. With these criteria, we find that the error
rate of CIGALE, in terms of identifying SEDs built with a
delayed-τ+ flex SFH, is 32.5%. This rate depends on the ∆BIC
threshold chosen and increases with the value of the threshold,
as shown in Fig. 5. The best value, 28.7%, is lower than the
error rate obtained from a logistic regression or an LDA (see
Table 4) but is significantly higher than the error rate obtained
from our procedure using XGBoost (21.0%). In this best-case
scenario test for CIGALE, a difference of 7.7% is substantial and
implies that the ABC method tested in this study provides better
results than a more traditional one using SED fitting. When con-
sidering sources with ∆BIC> 10, that is, sources for which the
method using CIGALE estimates that there is strong evidence
for the flexible SFH, 95.4% are indeed SEDs simulated with the
flexible SFH. Using our procedure with XGBoost and the Bayes
factor corresponding threshold of 150 (Kass & Raftery 1995),
we find that 99.7% of the source SFHs are correctly identified.
The ABC method provides a cleaner sample than the CIGALE
∆BIC-based method.
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Fig. 6. Distribution of the predictions p̂(m = 1|xobs) produced by our
algorithm on the selected COSMOS data. Sources with a p̂(m = 1|xobs)
close to 1 tend to prefer the delayed-τ+ flex SFH, while sources with
lower p̂(m = 1|xobs) favor a simple delayed-τ SFH. The green regions
numbered from 1 to 5 indicate the Jeffreys scale of the Bayes factor, 1:
barely worth mentioning, 2: substantial, 3: strong, 4: very strong, and 5:
decisive (detailed at the end of Sect. 3.2). The percentage of sources in
each grade is provided in the figure and in Table 7.

Table 7. Jeffreys scale and statistics of our sample.

Grade Evidence against delayed-τ SFH Number %

1 Barely worth mentioning 1187 9.6
2 Substantial 466 3.8
3 Strong 209 1.7
4 Very strong 90 0.7
5 Decisive 77 0.6

5. Application on COSMOS data

We now apply our method to the sample of galaxies drawn from
the COSMOS catalog, whose selection is described in Sect. 2.2.
As a result, we show the p̂(m = 1|xobs) distribution obtained for
this sample of observed galaxies in Fig. 6. We recall that the
0 value indicates that the delayed-τ SFH is preferred, whereas
p̂ = 1 indicates that the flexible SFH is more adapted to fit the
SED of the galaxy. As a guide, we indicate the different grades
of the Jeffreys scale and provide the number of sources in each
grade in Table 7. The flexible SFH models the observations of
16.4% of our sample better than the delayed-τ SFH. However,
this also means that for most of the dataset (83.6%), there is no
strong evidence for a necessity to increase the complexity of the
SFH; a delayed-τ is sufficient to model the SED of these sources.

To investigate the possible differences in terms of physi-
cal properties of galaxies according to their Jeffreys grade, we
divided the sample of galaxies into two groups. The first group
corresponds to galaxies with p̂(m = 1|xobs) < 0.5, galaxies for
which there is no evidence for the need of a recent burst or
quenching in the SFH, a delayed-τ SFH is sufficient to model
the SED of these sources. We selected the galaxies of the sec-
ond group imposing p̂(m = 1|xobs) > 0.75, that is, Jeffreys scale
grades of 3, 4, or 5: from strong to decisive evidence against the
normal delayed-τ. In Fig. 7 (top panel) we show the stellar mass
distribution of the two subsamples. Although the stellar masses
obtained with either the smooth delayed-τ or the flexible SFH
are consistent with each other, for each galaxy we used the most
suitable stellar mass: if the galaxy had p̂(m = 1|xobs) < 0.5, the
stellar mass obtained from the delayed-τ SFH was used, and if
the galaxy had p̂(m = 1|xobs) > 0.75, the stellar mass obtained
with the flexible SFH was used. The stellar mass distribution of
galaxies with a delayed-τ SFH is similar to the distribution of the
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Fig. 7. Top panel: comparison of the stellar mass distribution obtained
with CIGALE for the sample of galaxies with p̂(m = 1|xobs) >= 0.75
(green) and galaxies with p̂(m = 1|xobs) < 0.5 (gray). Middle panel:
comparison of the stellar mass distribution obtained by Laigle et al.
(2016) for the sample of galaxies with p̂(m = 1|xobs) >= 0.75 (green)
and galaxies with p̂(m = 1|xobs) < 0.5 (gray). Bottom panel: compar-
ison of the sSFR distribution for the sample of galaxies with p̂(m =
1|xobs) >= 0.75 (green) and galaxies with p̂(m = 1|xobs) < 0.5 (gray).

whole sample, as shown in the middle panel of Fig. 7. However,
the stellar mass distribution of galaxies needing a flexibility in
their recent SFH shows a deficit of galaxies with stellar masses
between 109.5 and 1010.5 M� compared to the distribution of the
fool sample. We note that at masses hiher than 1010.5 M� the
distribution are identical, despite a small peak at 1011.1 M�. To
verify that this results is not due to our SED modeling procedure
and the assumptions we adopted, we show in the middle panel
of Fig. 7 the same stellar mass distributions, this time using the
values published by Laigle et al. (2016). The two stellar mass
distributions, with the one of galaxies with p̂(m = 1|xobs) > 0.75
peaking at a lower mass, are recovered. This implies that these
differences between the distributions are independent of the SED
fitting method that is employed to determine the stellar mass of
the galaxies. We note that when the algorithm has been trained,
only ratios of fluxes were provided to remove the normalization
factor out of the method, and the mock SEDs from which the
flux ratios were computed were all normalized to 1 M�. The stel-
lar mass is at first order a normalization through, for instance,
the LK−M∗ relation (e.g., Gavazzi et al. 1996). When flux ratios

were used, the algorithm had no information linked to the stellar
mass of the mock galaxies. Nevertheless, applied to real galax-
ies, the result of our procedure yields two different stellar mass
distributions between galaxies identified as having smooth SFH
and galaxies undergoing a more drastic episode (star formation
burst or quenching).

In the bottom panel of Fig. 7 we show the distribution in spe-
cific star formation rate (sSFR, sSFR ≡ SFR/M∗) for the same
two samples. The distribution of galaxies with p̂(m = 1|xobs) <
0.5 is narrow (σ = 0.39) and has one peak at log sSFR =
−0.32 (Gyr−1), clearly showing the MS of star-forming galaxies.
Galaxies with a high probability to have a recent strong variation
in their SFH form a double-peaked distribution with one peak
above the MS that is formed by galaxies with p̂(m = 1|xobs) >
0.75 (log sSFR = 0.66), corresponding to galaxies having expe-
rienced a recent burst, and a second peak at lower sSFRs than
the MS, corresponding to sources having undergone a recent
decrease in their star formation activity (log sSFR = −1.38). In
the sample of galaxies with p̂(m = 1|xobs) > 0.75, 28% of these
sources are in the peak of galaxies experiencing a burst of star
formation activity and 72% seem to undergo a rapid and drastic
decrease of their SFR. One possibility to explain this asymmetry
could be a bias produced by the algorithm, as shown in Fig. 4,
more sources with p̂(m = 1|xobs) > 0.97 tend to be associated
with low values of rSFR than with rSFR > 1. However, in the case
of the additional catalog, this disparity is 47% and 53% for high
and low rSFR, respectively.

The distribution of the two samples in terms of sSFR indi-
cates that to be able to reach the sSFR of galaxies that are outside
the MS, a flexibility in the SFH of galaxies had to be taken into
acount when the SED modeling was performed. This is needed
to recover the parameter space in SFR and M∗ as far as possible.

6. Conclusions

In this pilot study, we proposed to use a custom statistical
method using a machine-learning algorithm, the approximate
Bayesian computation, to determine the best-suited SFH to be
used to measure the physical properties of a subsample of COS-
MOS galaxies. These galaxies were selected in mass (log M∗ >
8.5) and redshift (0.5 < z < 1). Furthermore, we imposed that
the galaxies should be detected in all UV-to-NIR bands with an
S/N higher than 10. We verified that these criteria do not bias the
sSFR distribution of the sample.

To model these galaxies, we considered a smooth delayed-τ
SFH with or without a rapid and drastic change in the recent
SFH, that is, in the last few hundred million years. We built
a mock galaxy SED using the SED-fitting code CIGALE. The
mock SEDs were integrated into the COSMOS set of broadband
filters. To avoid large dynamical ranges of fluxes, which is to be
avoided when classification algorithms are used, we computed
flux ratios.

Different classification algorithms were tested with XGBoost
and provided the best results with a classification error of 20.98%.
As output, the algorithm provides the probability that a galaxy is
better modeled using a flexibility in the recent SFH. The method
is sensitive to variations in SFR that are larger than 1 dex.

We compared the results from the ABC new method with
SED-fitting using CIGALE. Following the method proposed by
Ciesla et al. (2018), we compared the results of two SED fits,
one using the delayed-τ SFH and the other adding a flexibil-
ity in the recent history of the galaxy. The BIC was computed
and compared to determine which SFH provided a better fit. The
BIC method provides a high error rate, 28%, compared to the
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21% obtained with the ABC method. Moreover, because the BIC
method requires two SED fits per analysis of a source, it is much
slower than the proposed ABC method: we were not able to com-
pare them on the test catalog of 200 000 sources, and we had to
introduce a smaller simulated catalog of 30 000 sources to com-
pute their BIC in a reasonable amount of time.

We used the result of the ABC method to determine the stel-
lar mass and SFRs of the galaxies using the best-suited SFH
for each of them. We compared two samples of galaxies: the
first was galaxies with p̂(m = 1|xobs) < 0.5, which are galax-
ies for which the smooth delayed-τ SFH is preferred, the second
sample was galaxies with p̂(m = 1|xobs) > 0.75, that is, galax-
ies for which there is strong to decisive evidence against the
smooth delayed-τ SFH. The stellar mass distribution of these
two samples is different. The mass distribution of galaxies for
which the delayed-τ SFH is preferred is similar to the distri-
bution of the whole sample. However, the mass distribution of
galaxies that required a flexible SFH shows a deficit between
109.5 and 1010.5 M�. Their distribution is similar to that of the
whole sample above M∗ = 1010.5 M�, however. Furthermore, the
results of this study also imply that a flexible SFH is required
to cover the largest parameter space in terms of stellar mass
and SFR, as seen from the sSFR distributions of galaxies with
p̂(m = 1|xobs) > 0.75.
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Appendix A: Effect of flux S/N on the distribution of
p(xobs|m=1)

In Fig. A.1 we show the distribution of the estimated probability
p̂(m = 1|xobs) for the subsample of COSMOS sources described
in Sect. 2.2 before any S/N cuts are applied. In this figure, all
COSMOS sources with M∗ > 108.5 M� and redshift between 0.5
and 1 are used. The 0 value indicates that the delayed-τ SFH
is preferred, whereas p̂ = 1 indicates that the delayed-τ+ flex
SFH is more adapted to fit the SED of the galaxy. To under-
stand what drives the shape of the p̂(m = 1|xobs) distribution,
we show in the same figure the distributions obtained for differ-
ent Ks S/N bins (top panel) and NUV S/N bins (bottom panel).
Galaxies with low S/N in either NUV and Ks photometric band
show flatter p̂(m = 1|xobs) distributions. This means that these
low S/N sources yield intermediate values of p̂(m = 1|xobs),
translating into a difficulty of choosing between the delayed-τ
and the delayed-τ+ flex SFHs.
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Fig. A.1. Distribution of the predictions p̂(m = 1|xobs) as a function of
Ks band S/N (top panel) and NUV S/N (bottom panel). The different
colors are for different selections in S/N in each panel.

Appendix B: Bayesian evidence

The evidence p(xobs|m) is a normalized probability density that
represents the distribution of datasets drawn from the mth model,
regardless of the value of the parameter θm from its prior distri-
bution. If models m = 0 and m = 1 are nested, the region of
the data space of non-negligible probability under model m = 0
has also a non-negligible probability under model m = 1. More-
over, because model m = 1 can fit to many more datasets, the
probability density p(xobs|m = 1) is much more diffuse than the
density p(xobs|m = 0). We therefore expect for datasets x that
can be explained by both models m = 0, 1 that p(x|m = 1) ≤
p(x|m = 0). If the prior probabilities p(m = 0) and p(m = 1) of
both models are equal, it implies that for datasets xobs that can
be explained by both models, p(m = 1|x) ≤ p(m = 0|x).

Appendix C: Parameter tuning for classification
methods

The training catalog was used to optimize the value of φ with a
specific algorithm given ψ, and the validation catalog was used
to fit the tuning parameters ψ. To fit φ to a catalog of simulated
datasets

(
mi, xi), i ∈ I, the optimization algorithm specified with

the machine-learning model maximizes∏
i∈I

L
(
p̂(m = 1|xi); mi

)
,where L(p; m) =

{
p if m = 1,
(1 − p) if m = 0,

given the value of ψ. Generally, this optimization algorithm was
run for several values of ψ. Then, the validation catalog was used
to calibrate the tuning parameters ψ based on data: the accuracy
of p̂ψ(m = 1|x) for many possible values of ψ was computed on
the validation catalog, and we selected the value ψ̂ that led to
the best results on this catalog. The resulting output of this two-
step procedure is the approximation p̂ψ̂(m|x), which can easily
be evaluated for the new dataset x′. The accuracy of p̂(m = 1|x)
can be measured with various metrics. The most common metric
is the classification error rate on a catalog of

(
m j, S (x j)

)
, j ∈ J,

of |J| simulations. We relied on this metric. It is is defined by the
frequency at which the datasets x j are not well classified, that is,

1
|J|

∑
j∈J

1
{
m̂ j , m j

}
,where m̂ j =

{
1 if p̂(m = 1|x j) > 1/2.
0 if p̂(m = 1|x j) ≤ 1/2.
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