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Isochronous oscillatory motions and the quantum

spectrum

Abd Raouf Chouikha *

Abstract

We had proposed necessary and su�cient conditions for isochrony
of oscillatory motions. Thanks to the WKB perturbation method we
derived expressions for the corrections to the equally spaced valid for
analytic isochronous potentials [1]. In this paper, we bring some im-
provements of these results and we suggest another quantization of the
quantum spectrum.
Key Words and phrases: oscillatory motions, isochronicity, WKB
method, quantum spectrum.1

1 Isochronous oscillatory motions

These is a link between classical and quantum transformations. This fact
has been established by Eleonskii and al. [2]. They show that the classical
limit of the isospectral transformation for the Schrodinger equation is pre-
cisely the isochronicity preserving the energy dependence of the oscillation
frequency. In quantum mechanics, the energy levels of a parabolic well are
regularly spaced by a certain quantity. Moreover, it is possible to construct
potentials, essentially di�erent from the parabolic well, whose spectrum is
exactly harmonic.

The semiclassical WKB method is one of powerful approximations for
computing the energy eigenvalues of the Schrodinger equation. The �eld
of its applicability is larger than standard perturbation theory which is re-
stricted to perturbing potentials with small coupling constants. In particular,
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it permits to write the quantisation condition as a power series in h̄ (such
series are generally non convergent). The solvable potentials are those whose
series can be explicitly summed.

Consider the scalar equation with a center at the origin 0

ẍ+ g(x) = 0 (1)

or its planar equivalent system

ẋ = y, ẏ = −g(x) (2)

where ẋ = dx
dt , ẍ = d2x

dt2
and g(x) = dG(x)

dx is analytic on R where G(x) is
the potential of (1).

Suppose system (2) admits a periodic orbit in the phase plane with energy
E and g(x) has bounded period for real energies E. Given G(x), Let T (E)
denotes the minimal period of this periodic orbit. Its expression is

T (E) = 2

∫ b

a

dx√
2E − 2G(x)

. (3)

T (E) is well de�ned and there is a neighborhood of the real axis for which
T (E) is analytic.

We suppose that the potential G(x) has one minimum value which, for

convenience locate at the origin 0 and d2G(x)
dx2 (0) = 1. The turning points a, b

of this orbit are solutions of G(x) = E.
Then the origin 0 is a center of (2). This center is isochronous when the
period of all orbits near 0 ∈ R2 are constant (T = 2π√

g′(0)
= 2π). The corre-

sponding potential G(x) is also called isochronous.

Since the potential G(x) has a local minimum at 0, then we may consider
an involution A by

G(A(x)) = G(x) and A(x)x < 0

for all x ∈ [a, b]. So, any closed orbit is A-invariant and A exchanges the
turning points: b = A(a).

We proved the following results in [1]
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Theorem A Let g(x) be an analytic function and G(x) =
∫ x
0 g(s)ds

and A be the analytic involution de�ned by G(A(x)) = G(x). Suppose that

for x ̸= 0, xg(x) > 0. Then the equation

ẍ+ g(x) = 0 (1)

has an isochronous center at 0 if and only if the function

d

dx
[G(x)/g2(x)]

is A-invariant i.e. d
dx [G/g

2](x) = d
dx [G/g

2](A(x)) in some neighborhood of 0.

Theorem B Let G(x) =
∫ x
0 g(s)ds be an analytic potential. Suppose

that for x ̸= 0, xg(x) > 0. Then the equation

ẍ+ g(x) = 0 (1)

has an isochronous center at 0 if and only if

x− 2G

g
= F (G) (4)

where F is an analytic function de�ned in some neighborhood of 0.

As consequences we prove the following

Theorem 1-1 Let G(x) =
∫ x
0 g(s)ds be an analytic potential de�ned

in a neighborhood of 0. Suppose equation

ẍ+ g(x) = 0 (1)

has an isochronous center at 0. Let g(n)(x) be the n-th derivative of the po-

tential (with respect to x): g(n)(x) = dn

dxnG(x), n ≥ 1 then these derivatives

may be expressed under the form

g(n)(x) = an(G)x+ bn(G), n ≥ 0 (5)

where an and bn are analytic functions with respect to G.

In fact, as we had see in [1], the functions an and bn are only dependent
on G1 the odd part of G = G(x).
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Proof of Theorem 1-1 By Proposition 3-4 of [1], condition
x(G) =

√
2G+P (G) with P = P (G) is a non-zero analytic function implies

that equation (1) has an isochronous center at 0. Deriving with respect to
G one obtains

dx

dG
=

1

x
+ P ′(G) =

1

g

or equivalently
g

x
=

1

1 + xP ′(G)
= a1(G) +

b1(G)

x

with

a1(G) =
−1

2GP ′2 − 1
and b1(G) =

2GP ′

2GP ′2 − 1
.

Notice that by hypothesis G is de�ned de�ned in a neighborhood of 0 then
2GP ′2 − 1 is necessary non zero.
The functions a1(G) and b1(G) are analytic since P and P ′ they are too.
Derive now g′(x) it yields

g′(x) =
dg

dx
=

d

dx
a1 (G)x+ a1 (G) +

d

dx
b1 (G) =

d

dG
a1 (G) gx+

d

dG
b1 (G) g + a1(G).

g′(x) =

((
d

dG
a1

)
x+

d

dG
b1

)
(a1x+ b1) + a1(G)

where the symbol prime ′ means d
dG and a1 or b1 stands for a1(G) or b1(G).

After replacing g(x) = a1(G)x+ b1(G) one obtains

2Ga′1a1 + a′1xb1 + a1
2 + 1/2

a1
√
2b1√
G

+ b′1a1x+ b′1b1

By simplifying one �nd the expression of g′(x) = a2(G)x+ b2(G) with

a2(G) = a′1b1 +
a1b1
2G

+ b′1a1

b2(G) = 2Ga1a
′
1 + a21 + b1b

′
1

Here
a1b1
2G

=
P ′

(2GP ′2 − 1)2

which is analytic. Then the functions a2(G) and b2(G) are analytically de-
pendent on the functions a1(G), b1(G) and their derivatives.
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By recurrence we easily prove that

g(p)(x) = ap(G)x+ bp(G)

where the function ap(G) and bp(G) are analytic with respect to G. Thank
to Maple we are able to carry out the calculations.

Theorem 1-2 Let G(x) =
∫ x
0 g(s)ds be an analytic potential and ϕ(x) a

function de�ned in a neighborhood of 0. A be the analytic involution de�ned

by G(A(x)) = G(x). Then for a < 0 < b = A(a) and G(a) = G(b) = E the

following integrals equality holds∫ b

a

ϕ(x)√
E −G(x)

g(x)dx =

∫ b

0

ϕ(x)− ϕ(A(x))√
E −G(x)

g(x)dx

In particular, if we may expressed ϕ(x) = u(G)x+ v(G) then∫ b

a

ϕ(x)√
E −G(x)

g(x)dx =

∫ b

0

2u(G)x√
E −G(x)

g(x)dx

Proof of Theorem 1-2 It su�ces to split the integral∫ b

a

ϕ(x)√
E −G(x)

g(x)dx =

∫ 0

a

ϕ(x)√
E −G(x)

g(x)dx+

∫ b

0

ϕ(x)√
E −G(x)

g(x)dx

Recall that a < 0 < b. By de�nition when x ∈ [a, 0] then A(x) ∈ [0, b] and
conversely. By a change of variable x = A(y) the integral becomes∫ 0

a

ϕ(x)√
E −G(x)

g(x)dx = −
∫ b

0

ϕ(A(y))√
E −G(y)

g((A(y))A′(y)dy = −
∫ b

0

ϕ(A(y))√
E −G(y)

g(y)dy

since g((A(y))A′(y) = g(y). Therefore∫ b

a

ϕ(x)√
E −G(x)

g(x)dx =

∫ b

0

ϕ(x)√
E −G(x)

g(x)dx−
∫ b

0

ϕ(A(y))√
E −G(y)

g(y)dy = .

On the other hand, suppose ϕ(x) = u(G)x + v(G). Then the following
integral may be written∫ b

a

ϕ(x)√
E −G(x)

g(x)dx =

∫ b

a

u(G)x+ v(G)√
E −G(x)

g(x)dx =

∫ b

a

u(G)x√
E −G(x)

g(x)dx+

∫ b

a

v(G)√
E −G(x)

g(x)dx
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The last integral can be written∫ b

a

v(G)√
E −G(x)

g(x)dx =

∫ E

0

v(G)√
E −G

dG = 0

since v(G) is analytic. The other integral can be written∫ b

a

u(G)x√
E −G(x)

g(x)dx =

∫ 0

a

u(G)x√
E −G(x)

g(x)dx+

∫ b

0

2u(G)x√
E −G(x)

g(x)dx

=

∫ b

0

u(G)y√
E −G(y)

g(A(y))A′(y)dy =

∫ b

0

−u(G)y√
E −G(y)

g(y)dy =

∫ b

0

u(G)y√
E −G(y)

g(y)dy

since y = A(x). Finally,∫ b

a

ϕ(x)√
E −G(x)

g(x)dx =

∫ b

0

u(G)x√
E −G(x)

g(x)dx+

∫ b

0

u(G)x√
E −G(x)

g(x)dx

We may also derive

Corollary 1-3 Under hypotheses of Proposition C, consider the deriva-

tives of g : g(j)(x) = djg
dxj Then the analytic function

Vm,ν(x) =
m∏
j=1

(
djg

dxj

)ν

j

may be expressed under the form :

Vm,ν(x) = um,ν(G)x+ vm,ν(G) (6)

where ν = (ν1, ν2, ...., νm) and um,ν and vm,ν are analytic functions with

respect to G.

Proof By Proposition 1-1 any derivative of g may be written when G
is isochronous

g(n)(x) = an(G)x+ bn(G), n ≥ 0

where an and bn being analytic functions. It is easy to realize that it is
the same for any power of any derivative (g(n)(x))νn. We may prove that by
recurrence

(g(n)(x))νn = an,ν(G)x+ bn,ν(G).
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More generally, we may also prove by recurrence that a product of power of
derivatives have the similar expression

(g(n)(x))ν1(g
(p)(x))ν2 = an,p,ν(G)x+ bn,p,ν(G).

Thus we may write for any product

Vm,ν(x) =
m∏
j=1

(
djg

dxj

)ν

j

= um,ν(G)x+ vm,ν(G)

2 Application: The quantum spectrum and WKB

quantization

Consider the Schrodinger equation[
− h̄

2

2

d2

dx2
+G(x)

]
ψ(x) = Eψ(x). (7)

The Hamiltonian of the system is given by

H =
p2

m
+G(x)

where the mass m = 1.
This Hamiltonian is a constant of motion, whose value is equal to the total
energy E.
The wave function can always be written as

ψ(x) = exp(
i

h
σ(x))

The WKB expansion for the phase is a power series in h̄ :

σ(x) =
∞∑
0

(
h̄

i
)kσk(x).

Following [1], [2] rewrite the quantisation condition as

∞∑
0

I2k(E) = (n+
1

2
)h̄, n ∈ N

1where

I2k(E) =
1

2π
(
h̄

i
)2k
∫
γ
dσ2k, k ∈ N. (8)
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WhenG(x) is analytic and xg(x) > 0, it has been proved that the contour
integrals can be replaced by equivalent Rieman integrals between the two
turning points. More precisely,

I2(E) = − h̄2

24
√
2π

∂2

∂E2

∫ b

a

g2(x)√
E −G(x)

dx

and

I4(E) = − h̄4

4
√
2π

[
1

120

∂3

∂E3

∫ b

a

g′2(x)√
E −G(x)

dx

− 1

288

∂4

∂E4

∫ b

a

g2(x)g′(x)√
E −G(x)

dx]

One establishes the following∮
γ
dσm = 2

∑
L(ν)=m

2
m
2
−1+|ν|i

(m− 3 + 2 | ν |)!!
∂

m
2
−1+|ν|

∂E
m
2
−1+|ν|

∫ b

a

UνG
(ν)

√
E −G

dx (9)

where

G(ν)(x) =
m∏
j=1

(
djG

dxj

)ν

j

Coe�cients Uν are de�ned by a recurrence equation.
Notice that higher order corrections quickly increase in complexity and we
know only few cases where a WKB expansion can be worked to all orders.
Which resulting in a convergent series whose sum is identical to the exact
spectrum.

It is known, the spectrum of a potential is generally not strictly regularly
spaced, except for the harmonic G(x) = 1

2x
2 and the isotonic ones:

G(x) =
1

8α2
[αx+ 1− 1

αx+ 1
]2

There are isochronous potentials with a strictly equally spaced (harmonic)
spectrum.

By Theorem 1-1, we may write g = dG
dx = a(G)x+ b(G) . Writing

I2(E) =
−h̄2

24
√
2π

∂2

∂E2

∫ b

a

g2(x)√
E −G(x)

dx =
−h̄2

24
√
2π

∂2

∂E2

∫ b

a

g(x)√
E −G(x)

g(x)dx
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and by Theorem 1-2 we may express

− h̄2

24
√
2π

∂2

∂E2

∫ b

0

2a(G)x√
E −G(x)

g(x)dx = − h̄2

24
√
2π

∂2

∂E2

∫ E

0

2a(v)
√
x(v)√

E − v
dv.

Then making the change of variables u = v
E (we suppose here ω = 1)

I2(E) = − h̄2

24π

∂2

∂E2
[E

∫ 1

0

2a(uE)x(u)√
1− u

du].

A similar calculation gives the fourth order correction

I4(E) = − h̄4

4
√
2π

[
1

120

∂3

∂E3

∫ b

a

g′2(x)

g(x)
√
E −G(x)

g(x)dx

− 1

288

∂4

∂E4

∫ b

a

g(x)g′(x)√
E −G(x)

g(x)dx].

By Theorem 1-1 one gets g = dG
dx = a(G)x+ b(G)

and g′ = dg
dx = a1(G)

√
2G+ b1(G). However, we may easily prove

g′2

g
= a1,2(G)x+ b1,2(G)

where a1,2(G) and b1,2(G) are analytic functions. As well as

g(x)g′(x) = c1,2(G)x+ d1,2(G)

where c1,2(G) and c1,2(G) are analytic functions. Similar to I2, I4 may be
expressed through Abel integrals :

I4(E) = − h̄
4

4π
[
E−3

120

∫ E

0

(x(v))5√
E − v

∂3

∂v3
a1,2(v) dv

−E
−4

288

∫ E

0

(x(v))7√
E − v

∂4

∂v4
c1,2(v) dv].

Thus one can choose I2(E) and deduce the corresponding analytic isochronous
potential such that, its asymptotic decay is faster than the asymptotic decay
of I4(E). Therefore, I2(E) and I4(E) grow exponentially fast as E grows to
∞. We will get the similar for higher order corrections.
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Turn now to upper order WKB correction. Following [1], [3] the explicit
expression for I2n(E) is given by

I2n(E) = −
√
2

π
h̄2n

∑
L(ν)=2n

2|ν|

(2n− 3 + 2 | ν |)!!
Jν(E) (10)

where

Jν(E) =
∂n−1+|ν|

∂En−1+|ν|

∫ b

a

UνG
(ν)

√
E −G

dx

where

G(ν)(x) =
2n∏
j=1

(
djG

dxj
)νj

and where ν = (ν1, ν2, ..., ν2n), νj ∈ N,L(ν) =
∑2n

j=1 jνj and | ν |=
∑2n

j=1 νj .
The coe�cients Uν satisfy a certain recurrence relation.

By Corollary 1-2 G(ν) may be expressed under the form

G(ν)(x) =
n∏

j=1

(
djG

dxj

)ν

j

= un,ν(G)x+ vn,ν(G)

where un,ν and vn,ν are analytic functions with respect to G. Therefore,

Jν(E) =
∂n−1+|ν|

∂En−1+|ν|

∫ b

a

Uνun,ν(G)x√
E −G

g(x)dx

By Corollary 1-1, we can write

Jν(E) =
∂n−1+|ν|

∂En−1+|ν|

∫ b

0

2Uνun,ν(G)x√
E −G

g(x)dx

Jν(E) =
∂n−1+|ν|

∂En−1+|ν|

∫ E

0

2Uνun,ν(v)x(v)√
E − v

dv

Another equivalent formulation via Abel integrals

Jν(E) = 2UνE
−n+1−|ν|

∫ E

0

(x(v))n−2+|ν|
√
E − v

∂n−1+|ν|

∂En−1+|ν|un,ν(v)dv

Similar to I2 and I4 the nth correction I2n swill be expressed through
Abel integrals :
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I2n(E) =
−h̄2n

π

∑
L(ν)=2n

2|ν|+1UνE
−n+1−|ν|

(2n− 3 + 2 | ν |)!!

∫ E

0

(x(v))n−2+|ν|
√
E − v

∂n−1+|ν|

∂En−1+|ν|un,ν(v)dv

where un,ν(G) is such that

G(ν)(x) =
m∏
j=1

(
djG

dxj

)ν

j

= un,ν(G)x+ vn,ν(G).

Concluding remarks We have therefore highlighted another no less
complicated expression of I2n(E) in the general case. The natural question
is which of the two is more appropriate to use. In fact, it will depend on
the type of isochronous potentials. In some situations, it may be easier
to use either of these formulas. As we remarked higher order corrections
quickly increase in complexity. Here too the WKB corrections I2n(E) grow
exponentially fast as E grows to ∞. The WKB series should be summed for
any isochronous potential and would be �nite as E grows to ∞.
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