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Fractional BV solutions for 2× 2 systems of
conservation laws with a genuinely nonlinear field

and a linearly degenerate field

Boris Haspot *, Stéphane Junca �

Abstract: The class of 2 × 2 nonlinear hyperbolic systems with a genuinely
nonlinear field and one linearly degenerate field are considered. Existence of global
weak solutions for small initial data in fractional BV spaces BV s is proved. The
exponent s is related to the usual fractional Sobolev derivative. Riemann invari-
ants w and z corresponding respectively to the genuinely nonlinear field and to the
linearly degenerate field play different key roles in this work. We obtain the exis-
tence of a global weak solution provided that the initial data written in Riemann
coordinates (w0, z0) are small in BV s × L∞, 1/3 ≤ s < 1. The restriction on the
exponent s is due to a fundamental result of P.D. Lax, the variation of the Riemann
invariant z on the Lax shock curve depends in a cubic way on the variation of the
other Riemann invariant w.
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1 Introduction

In this paper, we study general 2× 2 hyperbolic systems of the form:{
∂tU + ∂xF (U) = 0

U(0, ·) = U0(·)
(1.1)

with U(t, x) ∈ Ω ⊂ R2 an open set, (t, x) ∈ R+ × R, U0 = U0(x) is the initial
data. F is the flux of the system and it is regular from R2 to R2. We assume
that the system is strictly hyperbolic on Ω, it means that DF (U) has two different
eigenvalues λ1 and λ2. Without any restriction we can assume that

λ1 < 0 < λ2, (1.2)

reducing if necessary the open set Ω. It implies in particular that we have a basis
of eigenvectors of unit norm (r1(U), r2(U)) for any U ∈ Ω ⊂ R2. In the sequel we
will only be interested in the case of a 1 genuinely nonlinear field and a 2 linearly
degenerate field. In particular, it means that for every U ∈ Ω ⊂ R2 we have

∇λ1(U) · r1(U) 6= 0 and ∇λ2(U) · r2(U) = 0. (1.3)

Examples We wish now to give some examples of strictly hyperbolic system with
a genuinely nonlinear field and a linearly degenerate field.

1. The classical chromatography system [10, 23] when the velocity is known
which is the case for the liquid chromatography.

2. A thin-film model of a perfectly soluble anti-surfactant solution when the
capillarity and the diffusion are neglected [35, 51].

3. The Keyfitz-Krantzer system [39] has this structure, it is maybe the first and
the most famous known. It is related to some problem of nonlinear elasticity.

4. The 2 × 2 Baiti-Jenssen system [2] with a genuinely nonlinear field. The
Baiti-Jenssen systems arise in models for porous media, traffic and gas flows.
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5. The Aw-Rascle system is well known for traffic flow [1].

The five first examples are Temple systems [52, 55, 56]. Such systems satisfy
a maximum principle which is not generally true for systems of conservation
laws. Now the following list provides examples that are not Temple systems.

6. Colombo and Corli consider the class of 2×2 system with genuinely nonlinear
field and a Temple field [20]. They prove existence of solutions for large BV
data associated to the Temple component. A linear degenerate field is an
example of Temple field, the rarefaction and shock curve coincide [10]. Such
assumption is not enough to have a Temple system. One interest of our work
is to prove existence in BV s, so, with possible infinite total variation in BV .

7. The chromatography system with a sorption effect [6] is a chromatography
system with a non constant and unknown velocity. This system is generally
not a Temple system [7].

8. There are some triangular systems with a transport equation [5]. This class
of systems generalizes the previous one when it is written in Lagrangian
coordinates [9].

9. We mention also a system arising in biology [50, 57].

In this paper we would like to extend, for 2× 2 systems with a genuinely nonlinear
filed and a linearly degenerate one, the famous result of Glimm [32] concerning
the existence of global weak solution for the strictly hyperbolic system with small
initial data u0 in BV . Indeed we would like to enlarge the set of initial data by
working with u0 belonging to BV s with 0 < s < 1, BV 1 = BV . We are now
going to give a definition of the fractional BV spaces called BV s. We refer also to
Bruneau [15] for more details.

Definition 1 (TV s variation) We say that a function u is in BV s(R) with 0 <
s ≤ 1 and p = 1/s ≥ 1 if TV su < +∞ with:

TV su := sup
n∈N, x1<···<xn

n∑
i=1

|u(xi+1)− u(xi)|p (1.4)

The associated semi-norm of the TV s variation is,

|u|BV s := (TV su)s (1.5)

and a norm is
‖u‖BV s := ‖u‖L∞ + |u|BV s (1.6)

3



In the same way, TV su(I) is defined as the TV s variation of the function u on
the set I. We note that it is clear that for any s ∈]0, 1], BV s(R) ⊂ L∞(R) [49].
Moreover, if u belongs to L1(R) then the semi-norm BV s is a norm. This is due
to the fact that a BV s function has limits at ±∞ and, for a L1(R) function, these
limits are 0. For 0 < s1 < s2 ≤ 1, we also have BV s2 ⊂ BV s1 [8]. The TV s

variation was called the p−variation with p = 1/s in [49]. We prefer to use the
notation TV s since it is related to the Sobolev exponent “s”. Indeed, BV s

loc is
close from W s,p

loc but remains different [8], indeed the BV s functions are regulated
functions [49] as BV functions.

Proposition 1 (BV s functions are regulated functions [49]) If u ∈ BV s with
0 < s ≤ 1 then u admits only a countable set of discontinuities. Futhermore for
every x ∈ R, u admits a limit on the left and on the right in x.

We would like now to motivate the use of the BV s spaces for the study of hyper-
bolic systems. Actually the most results on the existence of global weak solution
for 2× 2 hyperbolic systems concerned the L∞ space and the BV space. In order
to tackle this problem, there exists essentially two different approaches, the first
one was developed by Glimm in the 60s [32]. He proved for a general n×n strictly
hyperbolic system with genuinely nonlinear fields or linearly degenerate fields the
existence of global weak entropy solution provided that the initial data is small
in BV . The main difficulty of the proof consists in controlling the BV norm of
the solution all along the time, indeed Glimm has observed that the BV norm can
increase after each interaction between the nonlinear waves. In order to estimate
this gain in BV norm after each interaction, Glimm has introduced a quadratic
functional which described the interactions between the nonlinear waves and which
allows to evaluate the BV norm of the solution all along the time. This result has
been extended in the 90s by Bressan and his collaborators [10, 12, 13] where they
proved the uniqueness of Glimm solution (provided that U0 belongs also to L1(R))
in a suitable class of solutions which takes into account in particular the Lax condi-
tions for the shocks. The main ingredient to do this is to prove that the wave-front
tracking algorithm (we refer to [10] for the definition of the wave-front tracking for
general n× n systems ) generates a Lipschitz semi-group in L1 [10, 11]. We recall
in particular that the solutions resulting from the wave-front tracking method and
which are determined via a compactness argument are the same as the solution
coming from the Glimm scheme [10].
The second approach was initiated by Di Perna [26, 27] at the beginning of the
80s using the so called compensated compactness which was introduced by Tartar
[54]. Roughly speaking this method can be applied for 2 × 2 strictly hyperbolic
systems with two genuinely nonlinear fields (see also Serre [52]) when the initial
data U0 is assumed to belong to L∞(R). The case of the isentropic Euler system
has been particularly studied and we refer to [25, 44, 45, 43]. We observe then that
this method allows to deal with more general initial data as U0 ∈ BV , however
there is generally no result of uniqueness for these solutions. In particular it seems
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complicated to select the solution via the Lax conditions on the shocks since we
cannot give any sense of traces along a shock for such solutions since they belong
only to L∞t,x.
In the 2× 2 case, Glimm in [32] has obtained a better result of existence of global
weak solution inasmuch as he can deal with large initial data U0 in BV provided
that the L∞ norm of U0 is sufficiently small. It is due to the fact that after an in-
teraction between waves the variation of the BV norm has a cubic order in terms of
the incoming strengths of the waves which interact (in the general case n ≥ 3, this
order is only quadratic). This result is a consequence of the existence of Riemann
invariants for 2 × 2 systems. Later on, this result has been extended by Glimm
and Lax in [33] to the case of small L∞ initial data when the fields are genuinely
nonlinear. We refer also to the recent work of Bianchini, Colombo and Monti [4].
To do this, the authors use new Glimm functionals to control the L∞ norm com-
bined with the method of backward characteristics. In addition they proved a new
Oleinik inequality (which is generally restricted to the scalar conservation law with
genuinely nonlinear flux) for this 2 × 2 system which gives sufficient compactness
informations in order to pass to the limit in the wave-front tracking.

BV s spaces are intermediate spaces between L∞ and BV spaces, see [8] or the
definition 1. We note in particular that the BV s spaces admit functions with
shocks, from this point of view these spaces are more suitable than Sobolev spaces
for dealing with hyperbolic systems of conservation laws [8, 16]. Indeed it is well
known that the solution of an hyperbolic system can admit shock in finite time even
if the initial data is arbitrary regular. In addition (see [49] and the proposition 1
below), BV s functions admit a notion of “traces” as for BV functions (this is of
course not the case for L∞ functions). This notion of trace is essential in the result
of uniqueness of Bressan et al [10, 12, 13]. Indeed, it gives a sense to the notion of
the Lax entropy criterion which enables to select a unique solution (in the results
of Bressan et al. a tame oscillation condition is also required). It would be then
interesting to prove the existence and the uniqueness of global weak solution for
initial data U0 in BV s with 0 < s < 1 for strictly hyperbolic systems. It would
improve in particular the results of existence of Glimm [32] inasmuch as the initial
data U0 would be less regular as BV . In addition, working with BV s gives a chance
to extend the results of uniqueness of Bressan et al. [10, 12, 13] since the notion
of trace remains relevant.

In this paper, we will only focus our attention on the existence of global weak solu-
tions for small initial data in BV s. Before giving and describing our main results,
we would like now to recall some results using the BV s space in the framework of
conservation laws. For scalar conservation law, the entropy solution corresponding
to an initial data belonging in BV s remains in BV s for all time [8]. Moreover, this
result is sharp [30]. We would like to point out that the BV s space is also naturally
used to describe the regularizing effects of scalar conservation laws. From [40], it is
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known that there exists unique global solution for scalar conservation laws when U0

belongs to L∞. The most famous regularizing effect concerns the uniformly convex
flux where the solution becomes instantaneously BVloc, this is a direct consequence
of the so called Oleinik inequality. For a convex flux with a power law degeneracy,
the authors in [8] show an optimal regularizing effects on the solution u inasmuch
as the solution u becomes instantaneously BV s

loc with s depending on the power law
of the flux. For a nonlinear convex flux, non necessary C1, the solution belongs for
positive time in a generalized BV space related to the nonlinearity of the flux, see
[34]. These results have been extended for a nonlinear non convex flux, at least C3,
in a generalized BV space, and for a more regular flux with polynomial degeneracy
in the optimal BV s space by Marconi in [46, 47].

The most results dealing with BV s initial data concern scalar conservation laws.
Indeed it is a priori delicate to prove the stability of the BV s norm all along the
time, the BV s norm is indeed more complicated to compute than the BV norm.
Indeed when we apply to a Glimm scheme, in order to know the BV norm after
an interaction between waves, it is sufficient to estimate locally the strength of the
new outgoing waves since we recover the complete BV norm by summing the ab-
solute value of the different strength on all the euclidean space. In particular using
the triangular inequality, we do not need to select subdivisions of the euclidean
space in a accurate way in order to control the BV norm. It is not the case for
the BV s norm which is reached for particular optimal subdivisions. It implies in
particular that for computing the BV s norm after a waves interaction, it is not
sufficient to know only the values of the outcoming strength. In the scalar case,
after each interactions, there exist some zones of monotonicity for the Riemann
problem making the analysis simpler to compute the BV s norm [8, 37].

In this paper, we would like to extend the analysis of [8] to the case of 2 × 2
strictly hyperbolic system with a genuinely nonlinear field and a linearly degener-
ate field which corresponds to the case described in (1.3). This case is a particular
case of the theory of Glimm [32] on the existence of global weak solution for initial
data U0 in (BV (R))2 with a large BV norm provided that the L∞ norm is suffi-
ciently small. We would like also to mention that others authors have yet obtained
existence of weak entropy solution for small L∞ data and large BV norm when an
eigenvalue is linearly degenerate [4, 24] or a Temple eigenvalue [20]. We extend the
results of Glimm by proving the existence of global weak solution for small initial
data with (w0, z0) belonging in BV s × L∞ with 1

3
≤ s < 1. Here (w, z) are the

solution of the system (1.1) that we consider in Riemann coordinates respectively
in terms of the 1 genuinely nonlinear field and the 2 degenerate field. To do this,
we follow the classical method which consists in introducing a wave-front tracking
with (wν , zν) corresponding to the approximate solutions (Uν) of the wave-front
tracking written in Riemann coordinates and ν → +∞ the parameter associated to
the wave-front tracking. We are then interested in proving that (Uν)ν>0 converges
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to U a solution of the system (1.1). The main difficulty consists in proving uniform
BV s estimates on (wν , zν) and next in verifying that the wave-front tracking is well
defined for any time t > 0. The end of the proof requires to establish compactness
argument in order to verify that Uν converges to U a solution of the system (1.1)
(here Uν is the approximated solution associated to the wave-front tracking written
in physical coordinates and not in Riemann coordinates).
More precisely we show that the BV s norm of wν is uniformly conserved all along
the time essentially because the waves interactions do not increase the BV s norm
for wν . The proof is reminiscent of the scalar case for a convex flux. However it
is more complicated to control uniformly the L∞ norm of zν . Indeed the norm
of zν can increase after two types of interactions, interaction between 1-shocks
and interaction between a 1-shock and a 2-contact discontinuity. To do this, we
consider the L∞ norm of zν along any forward generalized 2-characteristic and we
observe that this L∞ norm depends on the BV

1
3 norm of w0. Indeed the L∞ norm

of zν along a forward generalized 2-characteristic increases only when the forward
generalized 2-characteristic meets a 1-shock, furthermore this increase depends on
the cubic strength in the variation of wν on this 1-shock ( it is important to point
out that this increase is directly related to the regularity of the Lax shock curve).
It suffices then to follow these 1-shock in a backward manner in order to esti-
mate the L∞ norm of zν in terms of ‖w0‖BV 1

3
. It explains why we need to assume

that w0 is in BV s with s at least equal to 1
3
. The last step of the proof consist

in proving that zν converges to z up to a subsequence in L1
loc,t,x. This part is a

priori delicate since we have only a uniform control of the L∞ norm of zν . We ob-
serve however that we have additional regularity property if we study the unknown
zνL(t, x) = zν(t, γν2 (t, x)) with γν2 (t, x) the forward generalized 2-characteristic such
that γν2 (0, x) = x. Here zνL is the value of z in Lagrangian coordinates, following
the same idea as for the control of the L∞ norm of zν , we can prove that zνL is
uniformly bounded in L∞x (BVt) and that the speed of propagation is finite. It is
then sufficient to prove that zνL converges up to a subsequence strongly in L1

loc,t,x,
we prove next that the Lagrangian transformation (t, γν2 (t, x)) is a uniformly bi-
Lipschitz homeomorphism in ν that is sufficient to ensure that zν converges also
strongly in L1

loc,t,x. It allows to conclude that the solution (Uν) converges to a
solution of (1.1).

2 Presentation of the results

We would like to state now our main result. For this purpose we use a distinguished
coordinate system called Riemann invariants, which in general exists only for 2× 2
systems (chapter 20, [53]). This allow to perform a nonlinear diagonalization of
the hyperbolic system for smooth solutions. This diagonalization is not valid for
discontinuous solutions but the Riemann invariants have still some advantages.
The Riemann problem and the interaction of waves is also simpler to study in
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these coordinates than in the initial coordinates. The following notations (w, z) are
chosen for the Riemann invariants [53]. Indeed, there exists a change of coordinates
U 7→ (w, z) = (w(U), z(U)) (here (w, z) = (w(U), z(U)) is a standard abuse of
notations), reducing the open set Ω if necessary, such that

∇w · r2 = 0, ∇z · r1 = 0. (2.7)

In all the sequel, U is written in this system of coordinates. In particular, the initial
data U0 of the system 1.1 reads w0 = w(U0) and z0 = z(U0). Our main theorem
states as follows.

Theorem 2.1 (Existence in BV 1/3 × L∞) Let w0 ∈ BV s(R) with 1
3
≤ s ≤ 1

and z0 ∈ L∞(R) then there exists ε0 > 0 such that if:

‖w0‖BV s + ‖z0‖L∞ ≤ ε0

then there exists a bounded global weak entropy solution U for the system (1.1).
The Riemann coordinates (w, z) belong to L∞(R+, BV s × L∞).
Moreover, the Riemann invariant z can be decomposed in the Lagrangian coordi-
nates associated to the linearly degenerate field as follows:

z(t, γ2(t, x)) = z0(x) + η(t, x) (2.8)

where λ2 is the linearly degenerate eigenvalue which depends only on w and γ2

represents the generalized 2-characteristics,
dγ2

d t
(t, x) = λ2(w(t, γ2(t, x)))

γ2(0, x) = x

with η ∈ L∞x (R, BVt(R+)) ∩ Lipx(R, L1
loc,t(R+)).

Remark 1 (Fractional exponent s = 1/3) The exponent s = 1/3 corresponds
to the classic cubic variation of a Riemann invariant through the Lax curve [41].
It is also related to cubic variation of the entropy through a shock wave. This
important fact was first pointed out in hydrodynamics studies at least one century
ago [28].

Remark 2 (Wave front tracking algorithm) The usual method to obtain the
existence of a solution is too build a sequence of approximate solutions via a wave
front tracking algorithm (WFT) [10]. The compactness of the sequence with less
regularity than BV needs different estimates than the usual ones. Moreover the
convergence toward a weak entropy solution usually needs BV estimates to control
the error in the weak formulation and in the entropy inequalities [10, 24, 36]. Here
a simplified and more accurate WFT is proposed to handle all these difficulties.
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Remark 3 (Large data) The theorem can be extended for large data which val-
ues in a domain Ω if three conditions are fulfilled in Ω namely, a strong strictly
hyperbolicity, a solvability of the Riemann and the existence of Riemann invari-
ants. The strong strictly hyperbolicity assumption is a strengthened transversal-
ity condition on the characterics fileds, if λ1 < λ2 are the two wave speeds then,
supΩ λ1(U) < infΩ λ2(U). For instance, in almost all examples cited in introduc-
tion, Theorem 2.1 can be extended for larger data.

Remark 4 (Optimality) The existence result is optimal. That means the frac-
tional regularity s ≥ 1/3 is mandatory. For a subclass of such systems it is proven
in [5] that a blow up in L∞ can occur if s < 1/3.

Remark 5 In this Theorem, we assume that (w0, z0) ∈ BV s × L∞, 1
3
≤ s < 1. A

sufficient condition on the initial physical coordinates U0 to ensure such regularity
is to take U0 ∈ BV s.

Remark 6 The decomposition of z in (2.8) provides also a stability results in BV σ

for all 0 ≤ σ ≤ 1. This means that z is in L∞(R+, BV σ) if z0 ∈ BV σ.

This decomposition (2.8) has already been obtained in a different form as a factor-
ization of the gas velocity for a chromatography system (Theorem 7.2 in [7]).

Up to our knowledge, Theorem 2.1 is the first general result concerning the sta-
bility of the BV s norm in the framework of strictly hyperbolic systems, except
for some particular physical systems [5, 9, 38]. It extends in particular the re-
sults of Glimm [32] since the initial data are not necessary BV . Furthermore if
we compare this result with the works of Glimm, Lax [33] and Bianchini,Colombo,
Monti [4] which deal with initial data in L∞, we can only say that the framework
is different. Indeed in [33, 4] the two fields are genuinely nonlinear, in particular
the authors extend the Oleinik inequality to their case that allows them to obtain
sufficient information in terms of compactness to pass to the limit respectively in
their scheme and their wave-front tracking. In our case, the methods are quite
different especially on the arguments of compactness which enables us to consider
the limit of the approximated solutions (wν , zν) which are issue of the wave-front
tracking. Indeed, an observation is to remark that the solution zν can be splitted
into z0 the initial data and a function ηη which is more regular as zν itself. We can
then pass to the limit in ν for ην in the wave-front tracking.

Remark 7 For 2×2 Temple system with a genuinely nonlinear field and a linearly
degenerate field, these results improve the classical existence in BV . The existence
for L∞ data in [12] needs that all fields are genuinely nonlinear.

Remark 8 Since the BV s norm has a notion of trace it would be interesting to
prove the uniqueness of the solution.
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In Section 4, the Lax curve and the different interactions between 1-waves and
2-waves are described. Furthermore a simplified wave-front tracking well adapted
to our case which concerns a genuinely nonlinear field and a linearly degenerate is
proposed. In Section 5 the compactness of the approximate sequences build by the
WFT is performed. The main existence Theorem 2.1 is finally proven in Section
6. This section deals with the consistency error in the WFT without BV bounds.
In Appendix A, a self-contained discussion and a useful Lemma to compute the
generalized total variation are given.

3 On the Riemann problem

In this section, the wave-front tracking algorithm (WFT) used is presented to
solve the initial value problem (1.1). Simplifying the (WFT) is useful to simplify
the estimates on the approximate solutions [3]. Taking advantage of the linearly
degenerate field, we present a simpler wave-front tracking algorithm (WFT) as
the one used by Bressan and Colombo in [11] for general 2 × 2 systems. For this
purpose, the Riemann problem and the interaction of waves is first studied.
In the sequel, we denote by A(U) the 2× 2 hyperbolic matrix DF (U) and without
loss of generality by λ1 < 0 < λ2 its eigenvalues and by l1, l2 (respectively r1, r2)
its left (respectively right) eigenvectors, normalized so that:

‖ri(U)‖ = 1, 〈lj(U); ri(U)〉 = δi,j, i, j = 1, 2.

Furthermore we recall that for all U ∈ Ω(1.3):

∇λ1(U) · r1(U) 6= 0 and ∇λ2(U) · r2(U) = 0. (3.9)

In the sequel we assume that we have∇λ1(U)·r1(U) > 0 for all U in Ω. Furthermore
for Ω = B(0, r) sufficiently small, we have.

sup
U∈B(0,r)

λ1(U) < 0 < inf
U∈B(0,r)

λ2(U). (3.10)

3.1 Riemann invariants and Lax curves

An important feature for 2× 2 systems is the existence (at least locally) of coordi-
nates in the state space, the Riemann invariants. All properties of the solutions U
are stated in the Riemann invariants coordinates. We call w and z the Riemann
invariant associated to genuinely nonlinear (GNL) eigenvalue λ1 and the linearly
degenerate one λ2. More precisely we have∇w(U)·r2(U) = 0 and∇z(U)·r1(U) = 0
for any U ∈ Ω ⊂ R2. When U is a solution of system (1.1), (w(t, x), z(t, x))) denotes
(w(U(t, x)), z(U(t, x))). With this usual notation, where the solution U is smooth,
the Riemann invariants satisfy with here by abuse of notation λ1(w, z) = λ1(U)
and λ2(w, z) = λ2(U): {

∂tw + λ1(w, z)∂xw = 0

∂tz + λ2(w)∂xz = 0.
(3.11)
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Figure 1: Lax waves curves where the state on the left of the wave U− = (w−, z−)
is fixed. U+ is the right state connected by a 1-wave when w varies, w+ 6= w−, or
a 2-wave when w+ = w− is constant.

Remark 9 Notice that ∂wλ1 > 0, since the first field is GNL, and λ2 is independent
on z since the second field is linearly degenerate (see Theorem 8.2.5 [24]). That is
∂zλ2 = 0 and λ2 depends only on w.

The map U → (w(U), z(U)) is a local diffeomorphism and we can assume that
the origin in U coordinates corresponds to the origin in (w, z) coordinates. We
are going now to define the Lax curves in these new coordinates (w, z). For a
fixed state U−, the Lax curves describe the set of state U+ such that the Riemann
problem with the left state U− and the right state U+ is a simple wave [53]. For
each U− fixed there are two Lax curves, one for the 1-waves and another one for
the 2-waves.

Lax Curves The picture (see the figure 1) of the Lax curves L(U−) will be used
systematically throughout the paper. The same convexity of the shock curves is
fixed for all the figures. It simplify the study of waves interactions. However, with
a linearly degenerate field, the convexity of shock curves can not be fixed. Thus,
below, for the estimates in Section 3.3 the convexity is not used.
For the rarefaction R1 we have:{

w = w− + σ with σ ≥ 0

z = z−
(3.12)
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For the S1 shock we have: {
w = w− + σ with σ ≤ 0

z = z− +O(σ3)
(3.13)

Notice, with the choice of the convexity for the shock curve, z increases through a
shock wave. (For the concave case, z decreases).

For the 2-wave there is only a contact discontinuity (CD):{
w = w−

z = z− + σ, σ ∈ R
(3.14)

3.2 The Riemann problem

The solution of the Riemann problem is given in the plane (w, z) in figure 2. The
initial data is U(0, x) = U±, ±x ≥ 0. U0 is the intermediate constant state
between U− and U+ when we solve the Riemann problem (do not confuse U0 with
the initial data).

Figure 2: Solutions of the Riemann problems for a left state U− fixed and all the
possible configurations for U+. The solutions are represented in the plane (w, z) of
Riemann invariants

3.3 Exact interactions

Next we consider the different interactions that we can have. We will note CD
for the 2-contact discontinuity wave, S1 for the 1-shock wave and R1 for the 1
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rarefaction wave. We recall that the only possible interactions are:

CD −R1, CD − S1, R1 − S1, S1 −R1, S1 − S1,

where L− R means the interaction between a left wave an a right wave. The left
wave is a 2-wave, a contact discontinuity (CD), or a 1-wave, a rarefaction (R) or
a shock (S) wave. The right wave is always a 1-wave since a 2-wave is a contact
discontinuity and goes to the right with the speed λ2 > 0 and cannot interact with
a left 1-wave which goes to the left with the speed λ1 < 0 or a contact discontinuity
which moves with the same speed λ2.

We study all the possible interactions in this section. The strength of an i-wave
is quantified by the variation of associated Riemann invariant through the wave:
∆w for a 1-wave and ∆z for a 2-wave.

Let us summarize important features of such interactions where the 1-wave
can be only a rarefaction or a shock wave and the 2-wave can be only a contact
discontinuity. The following list of claims are verified just after by the exhaustive
study of all possible interactions.

1. When two waves interact then there are two resulting waves which are a
1-wave on the left and a 2-wave on the right.

2. The strength of a 1-wave does not change after an interaction with a 2-wave.

3. Assume that two 1-waves interact with respectively the strength σ1 and σ̃1

then the outgoing 1-wave has the strength σ′1 = σ1 + σ̃1.

4. The variation of w after an interaction behaves like the variation of the so-
lution of a scalar conservation law. It means that TV w and TV sw is not
increasing as for a scalar conservation laws.

5. The L∞ norm of z can increase only whenthere is an interaction with a
shock The increase of ‖z‖∞ is at most the cube of the strength of the shock,
O(w+ − w−)3.

In all the following pictures,

� U− = (w−, z−) is the left state,

� U+ = (w+, z+) is the right state,

� U0 = (w0, z0) is the intermediate state before the interaction,

� Um = (wm, zm) is the intermediate state after the interaction.

All the previous claims can be checked on the pictures. However, the pictures
assume that the shock curves are convex. The convexity assumption of shock curves
is not used in the computations to deal with the general case.

To study the possible increase of the total variation or the L∞ norm of z such
notations are introduced.

13



Figure 3: Interaction of a contact discontinuity with a rarefaction. The interacting
waves are represented by full lines, a 2-wave or a 1-wave followed by a 1-wave.
The dotted lines represent the resulting waves, a 1-wave (horizontal) followed by a
2-wave (vertical).

� The local total variation of z just before the interaction is ,
TV beforez = |z+ − z0|+ |z0 − z+|.

� The local total variation of z just after the interaction is ,
TV afterz = |z+ − zm|+ |zm − z+| ≤ TV beforez + 2|zm − z0|.

� The L∞ norm of z just before the interaction is denoted by ‖z‖before∞ and just
after by ‖z‖after∞ ≤ ‖z‖before∞ + |zm − z0|.

An important point is the control of the BV or BV s norm of w after an in-
teraction. There are two cases. First case, after the interaction, the solution has

Figure 4: Interaction of a contact discontinuity with a shock

14



only three different values the state U−, Um, U
+. This is true if the 1 outgoing

wave is a 1-shock. Second case, there is a is a 1 rarefaction outgoing wave, so the
solution has a continuum of values (when we will deal with the wave-front tracking
this continuum of values will be split in a finite number of values depending on
the parameter ν with ν goes to +∞). However since the 1 rarefaction wave create
a zone of monotonicity in w, using the Lemma 5 it does not change all the argu-
ments which are related to estimating the BV or BV s norm of w (we can apply
the Lemma 5 because the wave-front tracking will have a finite number of values).

CD −R1. Let us consider the simplest interaction CD − R1, figure 3, which gen-
erate waves R1 − CD. We observe that:

w− = w0 < w+, z− < z0 = z+ and w− < wm = w+, z− = zm < z+.

In particular the functions w(t, ·) and z(t, ·) have the same values before and after
the interaction and these values are in the same order, it implies then that BV
and BV s norm does not change for this interaction both for z and w. Furthermore
we have w+−w0 = wm−w− then the strength of the 1-wave is invariant after this
interaction with this 2-wave. Notice also that ‖z‖after∞ = ‖z‖before∞ and TV beforez =
TV afterz.

CD − S1. Now, consider the interaction CD−S1 , figure 4 and 5, which generates
waves S1 − CD. We observe that:

w− = w0 > w+ and w0 > wm = w+

In particular it implies again that the BV and the BV s norm of w does not change
after this type of interaction. Furthermore the strength of the 1 outgoing wave is

Figure 5: Interaction between a contact discontinuity and a shock with an aug-
mentation of ‖z‖∞.
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Figure 6: Interaction of a rarefaction with a shock wave: two cases depending on
the relative strength of the waves

Figure 7: Interaction of a shock wave with a rarefaction: two cases depending on
the relative strength of the waves

the same as the strength of the 1 incoming wave. We observe however that the
L∞ norm of z can increase in the figure 5, |zm| is larger than |z−|, |z0| and |z+|.
Similarly the BV norm can increase for z. Thus, there is no maximum principle
for z. However, the increase of ‖z‖∞ is controlled as in the last case, the shock-
shock interaction. To be more precise and without using the convexity of the shock
curves in the figure we always have zm− z− = O(wm−w−)3 = O(w+−w−)3, thus
‖z‖after∞ ≤ ‖z‖before∞ + O(w+ − w−)3. For the local total variation we proceed as
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follows,

TV afterz = (|z+ − zm|) + |zm − z−|
≤ (|z+ − z0|+ |z0 − z−|+ |z− − zm|) + |zm − z−|
≤ TV beforez + 2|zm − z−| ≤ TV beforez +O(w+ − w−)3,

which concludes these interaction estimates.

R1 − S1. The interaction of 1-waves R1−S1 generates R1−CD or S1−CD, figure
6, and we have in each case wm = w+. It implies in particular that w(t, ·) has
the same values after the interaction excepted the value w0 and some values of the
incoming 1 rarefaction. Furthermore the values are in the same order, we deduce
then that the BV and the BV s norm decreases since we restrict in some sense the
number of possible subdivision. We can observe that for this interaction the L∞

norm of z does not increase.
For the general cases, without the convexity assumption, the following general

inequalities are used,

TV afterz ≤ TV beforez + 2|zm − z0|,
‖z‖after∞ ≤ ‖z‖before∞ + |zm − z0|.

Thus, all the point is to control |zm − z0|. If the interaction R1 − S1 produces
CD−R1 then zm = z+ and z0 = z+ +O(w+−w−)3, thus zm−z0 = +O(w+−w−)3

and

TV afterz ≤ TV before +O(w+ − w−)3,

‖z‖after∞ ≤ ‖z‖before∞ +O(w+ − w−)3.

The case when the interaction produces a shock is similar because zm = z+ +
O(w+ − w−)3 and the similar estimates follow.

S1 −R1. The interaction S1−R1 is similar to the previous case, figure 7, and yields
to the same estimates.

S1 − S1. We finish with the interaction S1−S1 which generate the waves S1−CD,
figure 8. This is the most interesting case with a non-scalar type interaction.

Here, w continues to behave like a solution for a convex scalar conservation law
since w(t, ·) has the same values after the interaction except w0, the order of local
minimal and local maximal values of w does not change then the BV and BV s

norms do not increase for w. z is not monotonous after the shock interactions in
particular the L∞ and BV norm can increase. We ue again (3.13) one obtain (see
also the Glimm estimate in [24] for a 2 × 2 system). Um is connected to U− by a
shock wave thus, zm = z− +O(w+ − w−)3. U0 is also connected to U− by a shock
wave, z0 = z−+O(w+−w−)3. Thus, zm− z0 = O(w+−w−)3 and we can conclude
as for the case CD − S1.
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Figure 8: Interaction of two shock waves

In conclusion in all cases, w always behaves like a solution of a convex scalar
law (in particular the BV and the BV s norms decrease) and the estimates on z
can only increase when at least one shocks interacts. The estimates are,

‖w‖after∞ ≤ ‖w‖before∞ , ‖z‖after∞ ≤ ‖z‖before∞ +O(w+ − w−)3, (3.15)

TV afterw ≤ TV beforew, TV afterz ≤ TV beforez +O(w+ − w−)3. (3.16)

4 A wave-front tracking algorithm

In this section, the wave-front tracking algorithm (WFT) used is presented to solve
the initial value problem (1.1). Simplifying the WFT is useful to simplify the
estimates on the approximate solutions [3]. Taking advantage of the linearly de-
generate field, we present a simpler WFT as the one used by Bressan and Colombo
in [11] for general 2× 2 systems.

Morevover, the classical proof of convergence towards a weak solution uses
uniform BV estimates [10][7.4, 143-146], [24][14.7, 535]. To work only with less
regularity, w ∈ BV 1/3, z ∈ L∞, a more accurate scheme is necessary to prove the
consistency of the scheme in Section 6. We define now the wave-front tracking
that we will use in the sequel. First we shall work with initial data (w0,ν , z0,ν)
which are piece-wise constant approximation of (w0, z0) such that:

‖(w0, z0)− (w0,ν , z0,ν)‖L1 ≤ ν−1,

Osc(w0,ν) ≤ Osc(w0).
(4.17)
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with ν > 0 and ν goes to +∞. Here Osc(w0) = supx,y∈R |w0(x)−w0(y)| denote the
oscillation of w0. Furthermore we assume that:

w0,ν ∈ ν−1Z and z0,ν ∈ R. (4.18)

We define now Nν as the number of discontinuities that the initial data (w0,ν , z0,ν)
has. We start the wave-front tracking by solving the Nν first Riemann problems.

4.1 Approximate Riemann solver

We would like to explain how we describe the solution of a Riemann problem
between (w−, z−) and (w+, z+) in our algorithm of wave-front tracking (for the
beginning we assume that (w−, z−) and (w+, z+) are some values of (w0,ν , z0,ν)).
The Riemann problem is the combination of a 1-shock or a 1 rarefaction with a
2-contact discontinuity. If we get a 1-shock and a contact discontinuity the so-
lution is the exact solution of the Riemann problem with respectively the speed
λ1((z−, w−); (zm, wm)), λ2(w−, w+) where λ1((z−, w−); (zm, wm)) to the speed de-
fined by the Rankine Hugoniot relation. (zm, wm) corresponds here to the interme-
diate state and we know that wm = w+ because the value of w is constant along
the 2 contact discontinuity. Notice that the shocks and the contact discontinuities
are solved exactly with the exact speeds.

To stay with piece-wise constant solutions, an approximate solver is needed only
for rarefaction waves. If the solution of the Riemann problem is a combination of
a 1 rarefaction wave and a 2-contact discontinuity, we have to define the solution
corresponding to the rarefaction. We note again (zm, wm) the intermediate state of
the exact solution. We observe using (3.12) and (3.14) that wm = w+, it implies in
particular that since w+ is in ν−1Z that wm is again in ν−1Z. We have in particular:

wm = w− + k+ ν
−1,

with k+ ∈ N since w increases through a rarefaction wave. The approximate
rarefaction is no longer a continuous rarefaction but a sequence of consecutive con-
stant states separated by non-entropic jumps. Shortly speaking such a non-entropic
jump is called a jump. To distinguish this jump from a contact-discontinuity jump
of the second family, this jump is also called a 1-jump.

We define now the intermediate state wk = w− + k ν−1 with 0 ≤ k ≤ k+. The
solution of the rarefaction for our wave-front tracking at time t > 0 with the initial
discontinuity at time t = 0 in y is:

(w, z)t, x) =


(w−, z−) if x < x1(t)
(wk, zk) if xk(t) < x < xk+1(t)
(wm, zm) if x > xk+(t)

(4.19)

Notice that z is not constant along the approximate rarefaction wave. This error
is done to obtain a weak solution of the exact system (1.1) for the approximate
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solution Uν . Thus, (wk, zk) are on the non entropic part of the exact Rankine-
Hugoniot of the first family which correponds to the genuinely nonlinear field. This
method has already been used for a subclass of System (1.1) in [5]. Now ẋk, the
speed of the front, has to be defined. Again, to get a weak solution, the Rankine-
Hugoniot’ speed is chosen, ẋk = λ1(wk−1, wk). But this jump is not an entropic
jump, thus an error occurs in the entropy inequalities. Hopefully this error is cubic
due to the classical theorem of the variation of the production of the entropy near
a weak shock [24][Thm 8.5.1, 314]. Again the space BV 1/3 appears naturally to
study the sharp error of consistency of the WFT. This point will be discussed later
in Section 6 to prove the convergence towards an entropy solution. In conclusion
the front chosen is the line xk(t) = y + tλ1(wk−1, wk) before an interaction with
another wave.

The approximate solution u can be prolonged until a time t1 when the first
interaction between two or more waves front takes place.

Remark 10 It is important to observe that for t ∈]0, t1[, the solution w(t, x) take
his values in ν−1Z.

Since u(t1, ·) is still a piece-wise constant function, the corresponding Riemann
problem can again be approximately solved. The solution (z, w) is then continued
up to a time t2 when the second set of wave interactions takes place, and so on.

4.2 No three-wave interaction

An important feature of the classical Bressan’s WFT [10] is to avoid too much
interactions at the same time, in order to simplify the study of interacting waves.
For this purpose Bressan uses the unstability of the event of the interaction of three
waves at the same time and the stability of the interaction of only two waves. In
this section, these properties are used for the modified WFT used here.

The front-speed is the exact Rankine-Hugoniot’ speed, so, it is possible that an
interaction with three waves or more can occur at the same time. There are at least
two ways to handle this difficulty. The first one is to not avoid the interaction with
three waves or more. Since such interactions are only between the first family and
at most only one wave for the second family it is possible to study all this case as
for scalar conservation laws as in [36]. This is a particularity of System (1.1) that
the waves of the first family behaves (almost) like in the scalar case. Nevertheless,
a second method keeps the nice property that interactions occur only between two
fronts.

Instead of modifying slightly the speeds as Bressan [10] to avoid the interaction
of three waves, the initial data can be slightly modified. The initial data is slightly
modified such that the two fundamental requirements (4.18) are satisfied. The
approximate initial data becomes a control variable to obtain polygonal fronts
which should only interact in pairs. For instance, the initial data can be modified
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as follows. Let
U0,ν(x) =

∑
k

χk(x)Uk
0,ν ,

be the piece-wise constant initial data where χk is the indicatrix of the interval
Ik = (ak, ak+1) and Uk

0,ν is the mean value of U0 on the interval Ik. Consider a
slight modification of the interval by replacing ak by bk = ak + ek where

|ek| < min
j
|aj+1 − aj|/2, ‖e‖ :=

∑
k

|ek| ≤ 1/ν.

Now the Ik are replaced by Jk = (bk, bk+1) and the new piece-wise constant initial
data keeps the value Uk

0,ν on Jk. Since U0,ν is unformly bounded in L∞ such
modification of the initial data implies an error in L1 of order 1/ν.

It turns to prove that there exists such a vector e = (ek)k such that there is
never three waves interacting at the same time. An algorithm is proposed to build
e by a sequences of vector e0, e1, . . .. The initial vector is simply the null vector
e0 = (0, . . . , 0).

The fronts are at the beginning before the first interaction a finite numbers of
segments, xi(t) = xi(0) + s1

i t, where t ∈ (0, t1), xi(0) is equal to one ak and t1 > 0
is the first interaction time.

If three waves interact at the first interaction time t1. That means that at least
three initial Riemann problems interact. Such event is unstable with respect to
initial points of the wave fronts (t, x) = (0, ak). So there exists a small modification
parameterized by the non null vector e1, ||e1|| > 0, e1 belongs in the ball

B(e0, 1/ν) = { e, ‖e− e0‖ < r0}, r0 = 1/ν,

such that there are only two waves interacting for the first time t1(e1) which is a
slight modification of t1 = t1(e0).

Moreover the property to have only one interaction with only two waves at time
t1 is a stable property. That means there exists an open ball around e1 such that
for all e ∈ B(e1, r1), r1 > 0, only two waves interact at the first interaction time
t1(e) when e1 is replaced by e. Moreover, with r0 = 1/ν, it can be assumed that
B(e1, r1) ⊂ B(e0, r0).

Now, the second interaction time t2(e1) is considered. At most two curves
supported the fronts become polygonal lines and stay lines in the the interval
(t1(e1)), t2(e1)), issuing from the points xi(t1(e1))). If there are only two waves
interacting, nothing is changed, e2 = e1, r2 = r1. Else, the values (xi(t1(e1))))i are
two be modified in order to forbid the interaction of three waves. These is again
possible due to the unstability of such event by modifying e1 by e2 ∈ B(e1, r1).
The inital values (xi(0))i are slightly modified to have only two waves interacting
at time t2 and also at time t1 since e2 belongs to B(e1, r1).

Again, the nice property at time t2 is stable, all the picture depend continuously
of the initial data, so a small positive r2 can be chosen such that for all e ∈ B(e2, r2)
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the non interaction of three waves is still true at time t2(e). Moreover, r2 is chosen
small enought to satisfies B(e2, r2) ⊂ B(e1, r1) in such way no no interaction of
three waves remains also true at time t1(e) .

The process can be continued for consecutives interaction times t3, . . . , tn such
sthat B(en, rn) ⊂ B(en−1, rn−1).

An important fact proven below in the next Section 4.4 is that such WFT has
a finite number of interactions for all time. Thus the process stops in finite number
of iterations, at n = n# and e = en

#
is chosen. Therefore, it is assumed in all the

sequel that at most two waves can interact at the same time.

4.3 Interactions in the WFT

The study of interactions proceeds as for the exact solutions in Section 3.3 except
for one kind of waves, the rarefactions. There are no rarefaction waves in the
WFT. Each rarefaction is replaced by a successive series of weak non entropic
jumps. Thus, the previous interactions in Section 3.3 involving a rarefaction has
no now to be considered with an interaction with a weak non entropic jump. Such
jump is exactly computed on the Rankine-Hugoniot curve. More precisely the
half part of the Rankine-Hugoniot curve which is not admissible for the entropy
criterium. The Rankine-Hugoniot curve is a smooth curve [10, 52]. Hence, the
cubic contact of the Rankine-Hugoniot curve with the rafecation curve is still true.
That means that for such interaction the same computations hold as for the case
with an interaction with a real shock. That means that z does not remain constant
as for a real rarefaction. Thus, z has a cubic jump through such non entropic jump
wave. All the others estimates in Section 3.3 remains the same so there are not
repeated here.

To summarize the estimates on the L∞ norm (3.15) and the total variation
(3.16) after an interaction are still valid for the WFT. That is to say the L∞ norm
and the variation of wν cannot increase after an interaction. For zν the increase is
possible but at the most of the cubic order of the variation of w.

4.4 Finite number of interactions for all time

We are going to prove in the sequel that there is a finite number of interactions so
that we can define the wave-front tracking on the time interval (0,+∞). Assume
for the moment that we can only define the wave-front tracking on a time interval
(0, T ∗) with T ∗ < +∞ such that there is an infinite number of wave interactions.
We will prove in fact that necessary T ∗ = +∞.

Remark 11 It is important to verify that (w, z)(t, ·) remains bounded in a ball
B(0, r) with r > 0 sufficiently small for all time t ∈ (0, T ∗). Indeed using the Lax
Theorem, we can solve the Riemann problem only if the oscillation between two
states (w−, z−) and (w+, z+) is sufficiently small.

22



We define now N1(t) as:

N1(t) = number of 1-wave at the time t.

We observe easily that for t ∈]0, t1[, we have from (3.12):

N1(t) ≤ ν Nν Osc(w0) +Nν .

The first term on the right hand side corresponds to the maximal number of rar-
efaction and Nν to the maximal number of 1-shock. Let us estimate N1(t) after an
interaction at the time tk. We start by recalling that if we have a 1 rarefaction wave
by definition of the Riemann problem (see (4.19)), his strength is necessary of size
1
ν
. Assume now that we have an interaction between a 1 rarefaction and a 1-shock

then the strength of the 1 rarefaction is 1
ν

and the strength of the 1-shock is k
ν

with
k ∈ −N∗ then we have seen in the section 3.3 that the 1-wave has the strength
σ′1 = 1

ν
+ k

ν
≤ 0. It implies in particular that the outgoing 1-wave disappears or is

a shock. In particular after such interactions the number of 1-waves decreases of 1
or 2 units. Similarly if we have an interaction between two shocks, we know that
the strength of the outgoing 1-wave is the sum of the two strength of the incoming
waves, then this strength is negative and the outgoing 1-wave is a shock. It implies
in particular that after such interactions the number of 1-waves decreases of 1 unit.
If we have an interaction between a 2-wave and a 1-wave since this interaction is
transparent the outgoing wave is a unique rarefaction if the incoming one is also
a rarefaction and otherwise a 1-shock. It implies in particular that N1(t) does not
change after such interactions. We have then proved that N1(t) is a decreasing
function of the time and then that:

N1(t) ≤ ν Nν Osc(w0) +Nν ,

for all t ∈ (0, T ∗). We define now N ′1 as:

N ′1 = Number of interactions between 1-waves on (0, T ∗)

We have seen that, when we have an interaction between 1-waves, the number of
1-waves decreases, at least of one unit. It implies then that N ′1 is inferior to the
maximal number of 1-waves:

N ′1 ≤ ν Nν Osc(w0) +Nν . (4.20)

We define now N ′2(t) as:

N ′2 = Number of interactions between 1-waves and 2-waves on (0, T ∗)

For a one wave we can define a 1 polygonal line which is an extension of the one
wave. Indeed the one wave are created at the time t = 0+ and after each interaction
it can be prolongated by a unique 1-wave (or even the one wave can disappear, in
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this case the polygonal line is stopped). We can then define a polygonal 1-wave line.
We note that two different 1 polygonal lines merge after an interaction time corre-
sponding to an interaction between 1-waves if they meet us. Their number is finite
and bounded by ν Nν Osc(w0) + Nν . Similarly we can define some polygonal lines
for 2-waves. At the difference with the 1 polygonal line, we can create a 2 polygonal
line after an interaction between 1-waves. Their number is finite and bounded by
Nν+(Nν Osc(w0)+Nν), Nν corresponds to the number of polygonal line issued from
the time t = 0 and (Nν Osc(w0)+Nν) is the maximal number of interaction between
1-waves and then the maximum number of 2 polygonal lines that we can create.
Since λ1(w, z) < 0 < λ2(w, z) for any (w, z) ∈ B(0, r) we deduce by transversality
that a polygonal 2-wave can interact with a polygonal 1-wave only one time. It
implies in particular that the number of interaction on (0, T ∗) between polygonal
1-wave and polygonal 2-wave is at most (2Nν + νNν Osc(w0))(ν Nν Osc(w0) +Nν).
It implies in particular that:

N ′2 ≤ (2Nν + νNν Osc(w0))(ν Nν Osc(w0) +Nν). (4.21)

From (4.20) and (4.21), we deduce that the number of interaction on (0, T ∗) is
finite and then T ∗ = +∞.

Remark 12 The only point to verify is to ensure that all along the algorithm of
wave-front tracking, (w(t, ·), z(t, ·)) must remains in a set [−r′, r′]2 with r′ > 0
sufficiently small such that we are able to solve any Riemann problem. It will be
verified in the sequel when we will prove the Theorem 2.1. We mention however that
the L∞ norm of w(t, ·) is not increasing. After each interaction, we have proved
that the L∞ norm of w does not increase. It is not the case for z since after the
interaction betwenn two 1-shocks or the interaction between a contact discontinuity
and a 1-shock, the L∞ norm of z can increase.

5 Uniform estimates and compactness for (wν, zν)

In this section we are going to obtain key estimates to prove the Theorem 2.1 with
the initial data (w0, z0) belonging to BV s × L∞ with s ≥ 1/3. We consider again
the solution of the wave-front tracking (wν , zν) defined in the section 4 on a time
interval (0, T ∗ν ) with T ∗ν > 0. In addition we construct (w0,ν , z0,ν)ν>0 verifying (4.17)
and such that for any ν > 0 we have:

‖(w0,ν , z0,ν)‖BV s×L∞ ≤ ‖(w0, z0)‖BV s×L∞ . (5.22)

5.1 Control of ‖wν(t, ·)‖BV s

We are now going to obtain uniform estimate in ν in BV s for the solution wν .
More precisely we wish to prove that for any t ∈ (0, T ∗ν ):

‖wν(t, ·)‖BV s(R) ≤ ‖w0‖BV s .
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The point is that wν behaves (almost) like the entropy solution of a scalar
conservation law. The Riemann invariant w is monotonic for the solution of the
Riemann problem and not affected by the other Riemann invariant, except only
for the velocity of the 1-waves which does not affect the strength of the 1-waves.
These properties remain valid for wν , Section 4.1. The decay of the BV s variation
is well known for scalar conservation laws [8, 37]. The point is the monotonicity of
w through elementary waves to compute the BV s variation, see Appendix A.

Now, let us explain in detail the decay of TV swν . Assume that t1 ∈ (0, T ∗ν ) is
the first time where we have a wave interaction in our wave-front tracking. Let us
prove now that for any t ∈ (0, t1) we have:

‖wν(t, ·)‖BV s(R) = ‖w0,ν‖BV s(R). (5.23)

If we come back to the estimate (5.23), it suffices to observe that the solution
wν(t, ·) for t ∈ (0, t1) is the combination of the solutions of different Riemann prob-
lems which deal with all the initial discontinuities. We obtain then a combination
of a 1-wave and a 2-CD wave. If we have a 1-shock and a 2-CD wave the val-
ues of wν(t, ·) do not change compared with wν(0, ·) and conserve the same order,
then the BV s norm remains the same, Lemma 5 in Appendix A. It the 1-wave is
an approximate rarefaction, we get different 1-jump fronts and wν(t, ·) takes new
values. For example if we have a discontinuity in xα at the time t = 0 with the
values w0,ν(x

−
α ) and w0,ν(x

+
α ) then the 1-jump fronts produce the following new

values at time t ∈ (0, t1) which are w0,ν(x
−
α ) + k/ν with k ∈ {0, · · · , k+} and with

w0,ν(x
+
α ) = w0,ν(xα−) + k+/ν. However even if we have new values for wν(t, ·) we

have a zone of monotonicity for the 1-jump fronts and using again Lemma 5, we
conclude again that the BV s norm does not change. It proves the estimate (5.23).
Next we would like to understand how the BV s norm varies after each interactions.
Assume that we have an interaction at a time tk with U−, U0, U

+ the incoming
states and U−, Um, U

+ the outgoing states (here for simplicity of notation we have
skipped the index ν), we can observe that the number of different values in wν de-
creases or remains constant after the interaction. Indeed even when the outcoming
1-wave is one approximated rarefaction, we recall that there is no more that one
jump front (see statements 2 and 3 in Section 3.3), furthermore we have:

U− = (w−, z−), Um = (w+, zm) and U+ = (w+, z+).

If we note tk the time of interaction, it implies in particular that the value w0

disappears at the time t+k and that the values of wν(t
+
k , ·) have the same order as

the values of wν(t
−
k , ·). We deduce then that for any interaction, we have:

‖wν(t+k , ·)‖TV s ≤ ‖wν(t
−
k , ·)‖TV s . (5.24)

We have then two possibilities the outcoming waves are a 1-shock wave and a
2-CD wave or a 1-jump front and a 2-CD wave. In both cases, wν(t

+
k , ·) has the
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same values as wν(t
−
k , ·) excepted the value w0, furthermore these values have the

same order. It implies again (5.24). We deduce from (5.23), (5.24) and (5.22) that
the norm ‖wν(t, ·)‖BV s(R) is decreasing all along the time and in particular we have
for any t ∈ (0, T ∗ν ):

‖wν(t, ·)‖BV s(R) ≤ ‖w0,ν‖BV s(R) ≤ ‖w0‖BV s(R). (5.25)

5.2 Control of ‖zν(t, ·)‖L∞

We are now going to bound uniformly zν(t, ·) in ν in L∞ norm for any t ∈ (0, T ∗ν ).
For smooth solution z satisfies a transport equation (3.11), thus z is constant along
2-characteristic. The main idea to control the L∞ norm of zν is to follow any gen-
eralized 2-characteristic where zν is essentially constant as for the smooth solution
except when the characteristic crosses a 1-wave. In this case, the variation of zν
increases at most by the cubic order of the strength of the 1-wave. Thus the total
variation of zν along a generalized 2-characteristic is of the order of the BV 1/3 semi-
norm of wν on the same curve. This curve is space-like [21, 33] (transverse) for the
characteristics of the first family, so such BV 1/3 semi-norm is essentially TV 1/3w0,ν .
The purpose of this section is to detail and prove precisely these previous assertion.

We recall in particular that this is important to control the L∞ norm of zν
in order to prove that the wave-front is well defined, i.e. Uν stays in Ω (we can
solve Riemann problem only if the oscillation of zν and wν are sufficiently small, we
refer to the Remark 12). To do this, we define γν2 (t, x0) the forward generalized 2-
characteristic (see [24]) which is an absolutely continuous solution of the differential
inclusion:

d

dt
γν2 (t, x0) ∈ [min(λ2((wν , zν)(t, γ

ν
2 (t, x0)+), λ2((wν , zν)(t, γ

ν
2 (t, x0)−))

,max(λ2((wν , zν)(t, γ
ν
2 (t, x0)+), λ2((w, z)(t, γ2(t, x0)−))],

and such that γν2 (0, x0) = x0. In the sequel, in order to simplify the notation, we just
will denote by γν2 (t) a forward generalized 2-characteristic. Now we are interested in
estimating the L∞ norm of zν along a forward generalized 2-characteristic such that
γν2 (0) 6= xα with xα the points where (w0,ν , z0,ν) is discontinuous. In order to follow
the evolution of the L∞ norm of zν along a forward generalized 2-characteristic,
it is important to understand how the L∞ norm of zν can vary. It is the case
only when the forward generalized 2-characteristic meets a 1-wave, a 2-wave or an
interaction point. We recall that since λ2 > 0 and λ1 < 0 a forward generalized
2-characteristic and a 1-wave are necessary transversal. In Section 4.3 it was shown
that the variation of zν across a 1-wave is of cubic order in the strength of the shock
(3.15), (3.16),

z+
ν − z−ν = O(w+

ν − w−ν )3.

Now it is important to mention that a generalized forward 2-characteristic cannot
meet a 2-CD wave-front. Indeed since the second wave is degenerate, we know that
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λ2 does not depends on z. In particular using (3.14) we deduce that λ2((w−ν , z
−
ν )) =

λ2((w+
ν , z

+
ν )) along a 2-CD, it implies that 2 generalized forward characteristic

cannot meet a 2-CD wave (indeed they should be parallel to the 2-CD front). Now
let us deal with the last case when the forward generalized 2-characteristics meets
an interaction point. The only case is when the interaction point is between a
1-jump front and a 1-shock front, or between two 1-shock fronts. Let us start
with the case of two 1-shock fronts, we define then by σ1 and σ̃1 the strength
of the 2 incoming wave fronts with U−, U0, U

+ the incoming states such that for
U− = (w−, z−):

U0 = (w− + σ1, z
− + 0(σ3

1)), U+ = (w− + σ1 + σ̃1, z
− +O(σ3

1) +O(σ̃3
1)). (5.26)

We know that the outcoming intermediate state is:

Um = (w− + σ′1, z
m) = (w− + σ1 + σ̃1, z

− +O((σ1 + σ̃1)3).

Now since λ2 does not depend on z, we deduce that the forward 2-characteristic
follows the outcoming 2-CD wave after the interaction.

Remark 13 By convention, we assume that the value of zν on the 2-CD wave-front
corresponds to z+

ν the value on the right of the 2-CD wave-front.

It implies then that after the interaction point the value of zν has increased on γν2
and is such that:

z+
ν − z−ν = O(σ3

1) +O(σ̃3
1). (5.27)

Here z+
ν is the value of zν on γν2 just after the interaction point and z−ν the value

of zν just before. Let us consider the case now of an interaction between a 1-jump
front and a 1-shock front (the case of an interaction between a 1-shock front and a
1-jump front is similar), we have then:

U− = (w−, z−), U0 = (w− + σ1, z
−), U+ = (w− + σ1 + σ̃1, z

− +O(σ̃3
1)). (5.28)

We know that the outcoming intermediate state is:

Um = (w− + σ′1, z
m) = (w− + σ1 + σ̃1, z

− +O((σ1 + σ̃1)3)). (5.29)

Again we deduce that the forward 2-characteristic follows the outcoming 2-CD
wave-front after the interaction. And we have in addition:

z+
ν − z−ν = O(σ̃3

1). (5.30)

In conclusion zν has a variation of order (∆w)3 when the forward 2-characteristic
meets an interaction point and that we have (5.27) or (5.30).
Assume now that γν2 (0) = xα, then γν2 is the 2-wave polygonal front which is issued
from xα. If γν2 meets 1-jump front then the conclusion is similar as meeting a 1-
shock front with a cubic variation for zν .
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Here zν0 is the intermediate state before the interaction and σ1 is the strength of
the 1-shock wave. We recall that the value of zν on γ2 before the interaction is by
convention z0

ν since we consider the value on the right for a 2 CD wave-front. We
observe then that if tk is the interaction point we have:

zν(t
+
k , γ

ν
2 (t+k )) = z(t−k , γ

ν
2 (t−k )) +O(σ3

1).

Remark 14 If γν2 (0) 6= xα and that the 2 forward characteristic γν2 becomes after
meeting an interaction point a 2-CD polygonal wave-front, we can estimate the
evolution of the L∞ norm of zν as in the case where γν2 (0) = xα.

We can now calculate the value of zν at the point (T, γν2 (T )) with T > 0. We
have seen using the fact that along γν2 (t), zν has a variation of O(σ3

1) after each
interaction with a 1-shock front, 1-jump front or an interaction point, we obtain
then from (5.27) and (5.30):

zν(T, γ
ν
2 (T )) = zν(0, γ

ν
2 (0)) +

∑
α∈J

O(σ3
α). (5.31)

Here J corresponds to the set of 1-wave fronts which have met γν2 on the time inter-
val [0, T ] including the interaction points. In particular it exists C > 0 independent
on ν such that: ∑

α∈J

O(σ3
α) ≤ C TV swν(·, γν2 (·))([0, T ]) +O

(
ν−3
)
, (5.32)

with s = 1/3 (we deal always in the sequel with s = 1/3).

Remark 15 It is important to point out that if γν2 (0) 6= xα then the forward 2-
characteristic γν2 can meet only one time an interaction point. Indeed after this
interaction the forward 2-characteristic becomes a 2 polygonal line and we have
constructed a wave-front tracking where the interactions concern only two fronts.
It means that the forward 2-characteristic after the meeting with an interaction
point can cross after only 1-jump fronts and 1-shock fronts. Similarly if γν2 (0) = xα
then the forward 2-characteristic γν2 which is a 2 polygonal front will meet only
1-jump fronts and 1-shock fronts.

In order to prove (5.32), we only consider the case where γν2 (0) 6= xα and the
case where the forward generalized 2-characteristic γν2 meets one interaction point.
The other case are simple to treat. Let us start with the case where γν2 meets an
interaction point with two 1-shock wave fronts at the time tk, from (5.26), (5.27)
we deduce that:

|zν(t+k , γ
ν
2 (t+k ))− z(t−k , γ

ν
2 (t−k ))| ≤ O(σ3

1) +O(σ̃3
1) ≤ O(|σ1 + σ̃1|3).
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And in particular it says that:

|zν(t+k , γ
ν
2 (t+k ))− z(t−k , γ

ν
2 (t−k ))| ≤ O(|wν(t+k , γ

ν
2 (t+k ))− wν(t−k , γ

ν
2 (t−k )|3). (5.33)

Let us deal now with the more tricky case of the cross of γν2 with an interaction
point comprising 1-jump front and 1-shock front at the time t′k, we have obtained
from (5.28), (5.30) that:

|zν((t′k)+, γν2 ((t′k)
+))− z((t′k)

−, γν2 ((t′k)
−))| ≤ O(σ̃3

1). (5.34)

We recall that we have:

σ̃1 = wν((t
′
k)

+, γν2 ((t′k)
+))− wν((t′k)−, γν2 ((t′k)

−)− σ1 ≤ 0. (5.35)

It is important to note that σ1 = 1/ν, indeed our wave-front tracking ensures that
all the rarefaction fronts have the strength 1/ν. Similarly we know from (5.29)
that the intermediate outcoming state is Um = (w+, zm) and that the 1 outcoming
wave is a 1-shock or is canceled out. For the moment assume that the 1 outcoming
wave-front is not canceled out, in particular since Um = (w+, zm), it implies that
w+ < w−. But wν(t′k, ·) takes only values in ν−1Z, thus:

wν((t
′
k)

+, γν2 ((t′k)
+))− wν((t′k)−, γν2 ((t′k)

−) = −k
ν
, (5.36)

with k ∈ N∗. From (5.35) and (5.36), we have:

|σ̃|3 =

(
k + 1

ν

)3

≤ 23

(
k

ν

)3

= 23|wν((t′k)+, γν2 ((t′k)
+))− wν((t′k)−, γν2 ((t′k)

−)|3.

(5.37)
We again deduce then using (5.34) and (5.37) that:

|zν((t′k)+, γν2 ((t′k)
+))− z((t′k)

−, γν2 ((t′k)
−))|

≤ O(|wν((t′k)+, γν2 ((t′k)
+))− wν((t′k)−, γν2 ((t′k)

−)|3).
(5.38)

We finish now with the case where the 1 outcoming wave is canceled out, it corre-
sponds to the following situation:

U− = (w−, z−), U0 = (w− + σ1, z
−), U+ =

(
w−, z− +O

(
σ3

1

))
. (5.39)

In this case since the strengh of a 1-jump σ1 = 1/ν because this is the strength of
a 1-jump front, we have:

|zν((t′k)+, γν2 ((t′k)
+))− z((t′k)

−, γν2 ((t′k)
−))| ≤ O

(
ν−3
)
. (5.40)

We proceed similarly for an interaction between a 1-shock wave and a 1-jump wave.
From the Remark 15, we know that the forward generalized 2-characteristic γν2 can
meet only one time an interaction point then combining (5.33), (5.38) and (5.40)
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allows to prove the estimate (5.32).

We wish now to estimate TV swν(·, γν2 (·))([0, T ]) in terms of the BV
1
3 norm of

wν(0, ·). To do this we are going to consider a zone of dependence of the forward
generalized 2-characteristic γν2 . We now choose the 1 minimal backward general-
ized characteristic issued from (γν2 (T ), T ) that we note γν1 (note that γν1 is defined
on [0, T ], we refer to [24] Chapter X for the notion of minimal backward general-
ized characteristics). We now define the sequence of following functions γν2,α with
α ∈ [0, 1] as follows with τ ∈ [0, T ] (here τ does not correspond to the physical
time t),

γν2,α(τ) = αγν2 (τ) + (1− α)γν2 (0) + Cν
ατ,

with

Cν
α =

γν1 (αT )− αγν2 (T )− (1− α)γν2 (0)

T
≥ 0

since γν1 (αT ) ≥ γν1 (T ) = γν2 (T ) ≥ αγν2 (T )+(1−α)γν2 (0) for any α ∈ [0, 1] (indeed we
recall that the backward generalized characteristic goes on the right since λ1 < 0).
We observe also that:

γν2,α(T ) = γν1 (αT ) and (γν2,α)′(t) ≥ 0 for t ∈ [0, T ].

The derivative of γν2,α is in fact defined on the point where γν2 is differentiable.

Remark 16 It is important to note that the forward generalized 2-characteristic
is defined in a unique way. The second point is that the domain delimited by the
curves {(γν2 (t), t), t ∈ [0, T ]}, {(γν1 (t), t), t ∈ [0, T ]} and {(y, 0), y ∈ [γν2 (0), γν1 (0)]}
is the union of all the curves {(γν2,α(t), αt), t ∈ [0, T ]} with α ∈ [0, 1]. We denote
by Γ2 this domain. There is no 1-wave-front which enters in Γ2 on the right since
we have taken the minimal backward 1-characteristic.

We define now (x1, t1) as the point where there is for the first time an interaction
between wave fronts inside the domain Γ2 with t1 ∈]0, T ] . We denote now by t1,1
the first time where there is an interaction in our wave-front tracking, it implies in
particular that 0 < t1,1 ≤ t1. Furthermore we know that for α such that αT < t1
there is no interaction point on the curve {(γν2,α(t), αt), t ∈ [0, T ]}. We denote now
by α0 the first α where the curve {(γν2,α(t), αt), t ∈ [0, T ]} meets an interaction
point (xk, tk) inside Γ2. In particular it implies that there is no interaction point in
the open domain Γ0 delimited by {(γν2,α0

(t), α0t), t ∈ [0, T ]}, {(γν1 (t), t), t ∈ [0, T ]}
and {(y, 0), y ∈ [γν2 (0), γν1 (0)]}. We know that the values of w change on the curve
{(γν2,α(t), αt), t ∈ [0, T ]} only when this curve meets a 1-wave-front. Furthermore,
the only 1-wave-front which can cross {(γν2,α(t), αt), t ∈ [0, T ]} for 0 < α < α0 are
the 1-wave-front which are issued from the set {(y, 0), y ∈ [γν2 (0), γν1 (0)]}. Indeed,
there is no interaction point in the open domain Γ0 and the 1-wave which are outside
from Γ0 cannot enter in Γ0. It implies then, since the curve {(γν2,α(t), αt), t ∈ [0, T ]}
are transversal to the 1-wave-front, that the values of w on {(γν2,α(t), αt), t ∈ [0, T ]}
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Figure 9: The wave-front Tracking and the dependence zone delimited by the 2-
characteristic Γ2 on the left, and the 1-characteristic Γ1 on the right

for α ∈]0, α0[ are included in the set of the values of wν(t, ·) at the time t = 0+ (or
in other word t ∈ (0, t1,1) and that they are ranged in the same order. In particular
it implies, using (5.25), that for any α ∈ (0, α0) we have:

TV swν(α·, γν2,α(·))([0, T ]) ≤ TV swν(t, ·)(R) ≤ TV sw0,ν(R) ≤ ‖w0‖
1
s
BV s , (5.41)

with t ∈ (0, t1,1).
Next we wish to estimate the BV s norm of wν along {(γ2,α(t), αt), t ∈ [0, T ]}
for α = α+

0 . We note that the interaction point (xk, tk) on {(γ2,α0(t), α0t), t ∈
[0, T ]} is by definition inside Γ2. In any case of interaction, if we have incoming
states (U−, U0, U

+) and outgoing states (U−, Um, U
+) then the values of wν around

(xk, t
−
k ) are (w−, w0, w+) and the the values of wν around (xk, t

+
k ) are (w−, w+). It

means that there is one value wν in less w0 on the curves {(γν2,α(t), αt), t ∈ [0, T ]} for
α = α+

0 compared with the values of wν on the curves {(γν2,α(t), αt), t ∈ [0, T ]} for
α = α−0 . Furthermore the order of the values of wν on the curves {(γν2,α(t), αt), t ∈
[0, T ]} with α = α+

0 and on the curves {(γν2,α(t), αt), t ∈ [0, T ]} with α = α−0 does
not change. It implies that the BV s norm is decreasing after the interaction along
the curves {(γν2,α(t), αt), t ∈ [0, T ]} with α−α0 > 0 sufficiently small. It gives then
using (5.41) that:

TV swν(α
+
0 ·, γν2,α+

0
(·))([0, T ]) ≤ TV swν(α

−
0 ·, γν2,α−0 (·))([0, T ]) ≤ ‖w0‖

1
s
BV s , (5.42)

with t ∈ (0, t1,1). The previous argument is again true if there is more than 1
interaction on the curve {(α0t, γ

ν
2,α0

(t)), t ∈ [0, T ]} . Now we define α1 > α0 the next
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α where there is an interaction inside Γ2 on the curve {(α1t, γ
ν
2,α1

(t)), t ∈ [0, T ]} and
we define by Γ1 the open domain delimited by the curves {(α1t, γ

ν
2,α1

(t)), t ∈ [0, T ]},
{(α0t, γ

ν
2,α0

(t)), t ∈ [0, T ]} and {(γν1 (t), t), t ∈ [0, T ]}. We observe then that all
the 1-waves which meet a curve {(αt, γν2,α(t)), t ∈ [0, T ]} with α ∈ (α0, α1) are
issued from the curve {(α0t, γ

ν
2,α0

(t)), t ∈ [0, T ]}. It implies that the values of
wν on {(αt, γν2,α(t)), t ∈ [0, T ]} are included in set of values of wν on the curve
{(α′t, γν2,α′(t)), t ∈ [0, T ]} with α′ = α+

0 , furthermore by transversality the values
keep the same order. We deduce then that for any α ∈ (α0, α1) we have using in
addition (5.42):

TV swν(α·, γν2,α(·))([0, T ]) ≤ TV swν(α
+
0 ·, γν2,α+

0
(·))([0, T ]) ≤ ‖w0‖

1
s
BV s . (5.43)

Repeating the argument, we deduce finally that the function:

α→ ‖w(α·, γν2,α(·))‖BV s([0,T ]) (5.44)

is decreasing in α. It implies from (5.32) and (5.22) since γν2 = γν2,α with α = 1
that it exists C > 0 such that for any ν > 0 we have:∑

α∈J

O(σ3
α) ≤ C‖w0‖

1
s

BV s(R) +O
(
ν−3
)
, (5.45)

with s = 1
3
. From (5.31) and (5.45), we deduce that it exists C > 0 independent

on ν such that for any T ∈ (0, T ∗ν ) and any forward generalized 2-characteristic γν2 :

|zν(T, γν2 (T ))| ≤ |zν(0, γν2 (0))|+ C‖w0‖
1
s

BV s(R) +O
(
ν−3
)
. (5.46)

By the way, a BV bound for zν along the generalized 2-characteristic is also ob-
tained,

TV (zν(., γ
ν
2 (.))([0, T ]) ≤ O

(
‖w0‖

1
s

BV s(R)

)
+O

(
ν−3
)
. (5.47)

Since the forward generalized 2-characteristics describe all the space (0, T ∗ν )×R,
we deduce from (5.46) and (5.22) that for any t ∈ (0, T ∗ν ) we get for C > 0
independent on ν:

‖zν(t, ·)‖L∞ ≤ ‖z0‖L∞ + C‖w0‖3

BV
1
3 (R)

+ o(1).

We deduce now that the L∞ norm of zν is uniformly bounded in ν all along the
time interval (0, T ∗ν ) and remains small for large ν, then using the Remark 12 we
deduce that T ∗ν = +∞. The wave-front tracking is then globally defined in time.
To summarize we have obtained uniform bounds in ν on zν in L∞t (L∞) and on wν
in L∞t (BV

1
3 (R)), we wish now to develop some compactness argument in order to

pass to the limit when ν goes to +∞. The difficulty is to prove in particular that
zν converges strongly to z in L1

loc,t,x since we cannot directly use Helly Theorem as
it is the case for wν .
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5.3 Compactness argument for (zν)ν>0

We consider now the Lipschitz homeomorphism:

φν(t, x) = (t, γν2 (t, x)),

with γν2 (t, x) the forward generalized 2-characteristic such that γν2 (0, x) = x. Fur-
thermore we define ηνL and zνL as follows:

ην(t, x) = zν(t, γ
ν
2 (t, x))− z0(x) and zνL(t, x) = zν(t, γ

ν
2 (t, x)).

We observe in particular that:

zν(t, x) = zνL((φν)−1(t, x)),

with (φν)−1 the inverse of the Lipschitz homeomorphism φν (see [18, 19] for the
notion of a Lipschitz homeomorphism and bi-Lipschitz homeomorphism, when the
inverse is also Lipschitz, in geometric measure theory see [31, 48]). We are going
now to prove a succession of different Lemmas.

Lemma 1 Up to a subsequence, we have:

lim
ν→+∞

zνL = zL in L1
loc,t,x.

Proof: We have seen that zν is BV along the curve {(t, γν2 (t, x)), t ∈ [0, T ]} (5.47).
It implies that zνL is uniformly bounded in ν in L∞x (BV ([0, T ])) for any T > 0. Now
we know that the speed of propagation of zνL in the plane (x, t) is finite, indeed the
speed is bounded by:

sup
(t,x)∈S1

∣∣∣∣ 1

λ1((wν(t, x), zν(t, x))−, (wν(t, x), zν(t, x))+)

∣∣∣∣ < M, (5.48)

with S1 the set of the 1-shock and λ1((wν(t, x), zν(t, x))−, (wν(t, x), zν(t, x))+) the
speed of the shock defined by the Rankine Hugoniot relation. Here M does not
depend on ν and (5.48) is true because on a small square [−r, r]2 with r > 0
sufficiently small we have:

sup
x∈[−r,r]2

λ1(x) < 0.

It is well known [53, 34] that it implies that zνL is uniformly bounded in Lipx(L
1
loc,t).

Using the Kolmogorov theorem, we deduce that up to a subsequence in ν zνL con-
verges to z in L1

loc,t,x:

lim
ν→+∞

zνL = zL in L1
loc,t,x.

�

Next we use the following lemma.
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Lemma 2 Let ψν a homeomorphism uniformly Lipschitz in ν from R+ × R to
R+×R such that there exists M > 1 verifying for any ν > 0 and almost everywhere:

0 ≤ 1

M
≤ | detDt,xψ

ν | ≤M, 0 ≤ ‖Dt,xψ
ν‖ ≤M. (5.49)

We assume that

lim
ν→+∞

yν = y in L1
t,x,loc, and lim

ν→+∞
ψν = ψ in L∞t,x,loc (5.50)

then,

lim
ν→+∞

yν(ψν) = y(ψ) in L1
t,x,loc.

Proof: Let ϕ ∈ C∞c (R+×R) a positive regular function with compact support
and with values in [0, 1]. For ε > 0 we take ỹ a continuous function in L1

t,x such
that:

‖ỹ − y‖L1
t,x(Kϕ) ≤ ε. (5.51)

with Kϕ a compact of R+ × R sufficiently large such that for any ν > 0 we have
supp ϕ ((ψν)−1) which is included in Kϕ. Using (5.49) and (5.51) we have:∫

R+

∫
R
ϕ|yν ◦ ψν − y ◦ ψ|dxdt

≤
∫
R+

∫
R
ϕ|yν ◦ ψν − y ◦ ψν |dxdt+

∫
R+

∫
R
ϕ|y ◦ ψν − ỹ ◦ ψν |dxdt

+

∫
R+

∫
R
ϕ|ỹ ◦ ψν − ỹ ◦ ψ|dxdt+

∫
R+

∫
R
ϕ|ỹ ◦ ψ − y ◦ ψ|dxdt

≤2εM +M‖y − yν‖L1
t,x(Kϕ) +

∫
R+

∫
R
ϕ|ỹ ◦ ψν − ỹ ◦ ψ|dxdt.

Using dominated convergence we can deal with the last integral and prove that for
any positive ϕ ∈ C∞c (R+ × R) , we have ϕyν ◦ ψν → ϕy ◦ ψ in L1

t,x. We deduce
then that yν ◦ ψν → y ◦ ψ in L1

t,x,loc �

Lemma 3 φν and (φν)−1 verify the assumption (5.49) of the Lemma 2.

Proof: It suffices to verify that there exist M > 1 such that:

0 ≤ 1

M
≤ | detDt,xφ

ν | ≤M, 0 ≤ ‖Dt,xφ
ν‖ ≤M. (5.52)

We observe that:

Dt,xφ
ν(t, x) =

(
1 0

∂tγ
ν
2 (t, x) ∂xγ

ν
2 (t, x)

)
(5.53)
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and:

Dt,x(φ
ν)−1(φν(t, x)) =

 1 0

− ∂tγ
ν
2 (t, x)

∂xγν2 (t, x)

1

∂xγν2 (t, x)

 (5.54)

We know that:

∂tγ
ν
2 (t, x) ∈ [min

±
(λ2(wν(t, γν2 (t, x)±))),max

±
(λ2(wν(t, γν2 (t, x)±)))]

It implies in particular that ∂tγ
ν
2 is uniformly bounded in ν since we have seen

that wν is uniformly bounded in L∞t,x. Similarly for ∂xγ
ν
2 (t, x), we observe that

vν(t, x) = ∂xγ
ν
2 (t, x) verifies:

∂tvν(t, x) = ∂x(λ2(wν))(t, γ
ν
2 (t, x))vν(t, x), vν(0, x) = x.

Indeed we can observe in fact that γν2 verify except at the point where γν2 meets a
1-wave-front:

∂tγ
ν
2 (t, x) = λ2(wν(t, γ

ν
2 (t, x))).

We deduce that:

vν(t, x) = exp

(∫ t

0

∂x(λ2(wν))(s, γ
ν
2 (s, x))ds

)
. (5.55)

and:
detDt,xφ

ν = vν(t, x). (5.56)

We have now: ∫ t

0

∂x(λ2(wν))(s, γ
ν
2 (s, x))ds =

∑
α∈J1

[λ2(wα,ν)]. (5.57)

J1 is the set of point where a 1-wave-front meets the curve {(αt, γν2,α(t)), t ∈ [0, T ]}.
Since in (5.57), we have a telescopic sum, we deduce that:

− 2‖λ2(wν(·, ·))‖L∞t,x ≤
∫ t

0

∂x(λ2(wν))(s, γ
ν
2 (s, x))ds ≤ 2‖λ2(wν(·, ·))‖L∞t,x (5.58)

From (5.55) and (5.58) we deduce that ∂xγ
ν
2 and 1

∂xγν2
is uniformly bounded in ν.

Furthermore it implies also that the determinant of Dx,tφ
ν and Dx,t(φ

ν)−1 satisfies
the assumption (5.52) using (5.56). Since ∂tγ

ν
2 is uniformly bounded in ν we deduce

finally that φν and (φν)−1verifies uniformly in ν (5.52) using the formula (5.53) and
(5.54). �

Lemma 4 ((φν)−1)ν>0 converges up to a subsequence to φ−1 in L∞t,x,loc.
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Proof: Indeed for any compact K of R+×R we observe that (φν)−1 is a continuous
function from K to R+ ×R because (φν)−1 is Lipschitz using the Lemma 3. Since
the sequence ((φν)−1)ν>0 is uniformly Lipschitz in C(K,R+ ×R) from the Lemma
3, using the Ascoli Theorem up to a subsequence ((φν)−1)ν>0 converges uniformly
to φ−1 on K. Using a standard argument of diagonal process we obtain that
((φν)−1)ν>0 converges up to a subsequence to (φ)−1 in L∞t,x,loc. �

Using the Lemmas 1, 2, 3 and 4 we deduce that zνLo(φ
ν)−1 = zν converges strongly

to z = zL(φ−1) in L1
loc,t,x up to a subsequence. It implies that up to a subsequence

zν converges almost everywhere up to a subsequence to z = zL(φ−1) when ν goes to
+∞. Concerning the convergence of the sequel (wν)ν>0, the proof is more simple

since (wν)ν>0 is uniformly bounded in L∞(R+, BV
1
3 ). Thus, as in [8, 37] for the

scalar case or [5, 9] for a 2×2 system wν is also bounded in Lipst([0,+∞[, Lploc(R,R))
with p = 1/s and the compactness follows.
We deduce then that the sequence uν = (w, z)−1(wεν , zεν ) with (w, z)−1 the inverse
of the local diffeomorphism (w, z) converges also almost everywhere to u with uν
uniformly bounded in L∞t,x.

5.4 Additive decomposition of z

Finally, the decomposition of z (2.8) in Theorem 2.1 for the weak solution can be
proved as the direct consequence of the structure of zν to get the compactness in
previous Section 5.3. The Riemann invariant z associated to the linearly degen-
erate field is decomposed as a sum of a BV function and the initial data. This
representation of z allowq to get more informations on z with only an L∞ bound
on the initial data. Such decomposition in a multiplicative form is used to get
stability results for a subclass of systems with a genuinely nonlinear field and a
linearly degenerate one in [7]. This is also the key point to get compactness in
the previous subsection 5.3 where this additive decomposition for the approximate
sequence (zν)ν>0 is in the approximate lagrangian coordinates,

zν(t, γ
ν
2 (t, x)) = z0,ν(x) + ην(t, x).

The 2-characteristics (γν2 ) are equi-Lipschitz. Thus, up to a subsequence, we can
pass to the limit when ν → +∞. At the limit, γ2 satisfies the differential equation
for the generalized 2-characteristics [23, 29]. Moreover, z0,ν and ην converge in
L1
loc, the whole sequence for (z0,ν) and only a subsequence for (ην). Now, we can

pass to the limit in zν(t, x) using the bi-Lipschitz homeomorphism, as previously
with Lemma 2, to obtain the decomposition (2.8). The proof of Theorem (2.1) is
achieved.
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6 Convergence towards a weak entropy solution

It is classical in BV framework to verify that u is a global weak solution of the
system (1.1) using BV bounds and dominated convergence (see [10, 24, 36, 53] for
more details). In the BV 1/3 framework it is done in [5, 9] for less nonlinear systems.
In this section the fundamental difference with the BV framework is explained.

The BV 1/3 framework needs to use a simpler and more precise scheme than
the general Bressan scheme [10].First the convergence towards a weak solution is
proven and then that such solution is entropic. For this purpose the approximate
solution Uν appears to be a weak solution, but not an entropic one , for the system
(1.1) when U0 is replaced by the approximate initial data U0,ν .

More precisely, the consistency error in the weak formulation of system (1.1)
with the piece-wise initial data U0,ν and the smooth test vectorial function Φ is,

CEν :=

∫ ∞
0

∫
R
UνΦt + F (Uν)Φx dx dt+

∫
R
U0,ν(x)Φ(0, x)dx

Strictly speaking the consistency error is usually defined in the textbooks with U0

instead of U0,ν . For our purpose, it is better to use the approximate piece-wise-
constant initial data as in [22]. Else, there is simply an error of consistency due to
the approximation of the initial data.

Due to the continuity in time in L1
loc in space of Uν , the initial data is recovered

strongly. Then, it can be assumed that the test function vanishes at t = 0. Thus,
the last integral term in CEν is now 0.

Now, Applying the green formula, [24][sec 14.7, p. 534, equation (14,7.1)] or
[10][p. 143-144], the consistency error becomes,

CEν :=

∫ ∞
0

∑
fronts

Eν Φ(t, y(t)) dt, Eν := (ẏ(t)[Uν ]− [F (Uν)]) (t, y(t)),

where the sum runs over all jump discontinuities which are polygonal lines x = y(t),
Eν is the local consistency error and the jumps are

[U ] = U(t, y(t)+)− U(t, y(t)−), [F (U)] = F (U(t, y(t)+))− F (U(t, y(t)−)).

Now, the speed are the exact speed of the jump discontinuities in our wave front
tracking algorithm, thus CEν = 0 as in [22]. With our WFT, the approximate
solution Uν is a weak solution of system (1.1) with the approximate initial data as
in [22]. Thus the convergence towards a weak solution is proved.

However, Uν is not an entropy solution. It is due to the approximation of
rarefaction waves by non entropic jumps in the approximate Riemann solver. Let
η be a convex entropy of the system and q the associated entropy flux, φ be a scalar
test function with support in (0,∞), now the consistency error is

CE ′ν :=

∫ ∞
0

∫
R
η(Uν)φt + q(Uν)φx dx dt.
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It has to be proven that lim
ν→+∞

CE ′ν ≤ 0. For this purpose the global consistency

error is rewrittent with the Green’s formula and the local consistency error E ′ν ,

CE ′ν :=

∫ ∞
0

∑
fronts

E ′ν φ(t, y(t)) dt, E ′ν := (ẏ(t)[η(Uν)]− [q(Uν)]) (t, y(t)).

The local consistency error for the entropy inequality needs more work. E ′ν 6= (0, 0)
when the exact continuous rarefaction is replaced by piece-wise constant sates [10,
p. 126], [36, p. 305].

For an approximate rarefaction, let U0 be the left state, Um the right one and
ui the intermediary states, i = 1, . . . ,m − 1 with Ui = (wi, zi). Localizing the
error at a non entropic jump front i between Ui and Ui+1, we see that Eν =
O
(
|wi+1 − wi|3

)
= O (ν−3), due to the fundemantal Lax’ cubic estimate [41] for

the entropy [24][Thm 8.5.1 p. 314]. Adding all these local errors for any fixed time
yield the estimate ∑

fronts

E ′ν ≤ O (1) � TV 1/3w0.

It shows that the consistency error in the WFT is naturally related to BV 1/3

estimates. This is not enought to prove that limCE ′ν ≤ 0 when ν → +∞. To
prove that the consistency error goes to zero two cases are considered, the case
s > 1/3 which is handle in a similar way as the case s = 1 (BV ) in textbooks, and
the critical and more complicate case s = 1/3.

If w0 ∈ BV s with s > 1/3, then we can split the local error term as

|wi+1 − wi|3 = |wi+1 − wi|p |wi+1 − wi|η = |wi+1 − wi|p ν−η,

where p = 1/s = 3− η, η > 0. Therefore∑
fronts

E ′ν ≤ O(1) ·
∑

non entropic jumps

|wi+1 − wi|p ν−η ≤ O(1)ν−ηTV sw0.

The sum is taken over all non entropic jumps. Thus the right hand side converges
towards zero when ν → +∞ and yields limCE ′ν ≤ 0.

Now, consider the case s = 1/3. Let m̄ denote the number of consecutive non
entropic jumps to approximate a rarefaction wave. Then m̄ ≤ O (νM + 1) , where
M = ‖w0‖∞ and for any such block of approximate rarefaction wave, we have∑

|wi+1 − wi|3 ≤ m̄ν−3 ≤ O (νM + 1) ν−3 = O(ν−2). (6.59)

The number of such blocks is not increasing with time and is bounded by the
number Nν of initial Riemann problems at t = 0 in the WFT. Therefore∑

fronts

E ′ν ≤ O(1)
∑

blocks

2 (νM + 1) ν−3 ≤ 2N0 (νM + 1) ν−3 · O(1) . (6.60)

Therefore if we choose Nν = ν to begin with, we see that the entropy error
consistency becomes nonpositive as ν tends to +∞ which concludes this section.
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A Local monotonicity and computation of TV su

The computation of the TV s variation can be more complicate than the usual TV
variation [8]. In this appendix, we explain the difference with the classic BV case,
s = 1,and also how to easily obtain the decay of TV swν in the wave front tracking
algorithm. For this purpose, considering only finite sequence is enough.

For a sequence (un)1≤n≤N , N > 1 , a subdivision σ is considered as a subset of
{1, . . . , N} or as an increasing application from {1, · · · , |σ|} to {1, . . . , N} where
2 ≤ |σ| ≤ N is the cardinal of the subdivision. This means that the subdivision σ
can be written in terms of the bijection σ on the ordered set {σ(1), . . . , σ(|σ|)}. In
short, we note σ = {σ(1), . . . , σ(|σ|)}. Let p = 1/s ≥ 1, the p-variation of a finite
sequence is [14, 15],

p-TV u = TV su := max
σ⊂{1,...,N}

∑
1≤i<|σ|

|uσ(i+1) − uσ(i)|p,

where the maximum is taken on all subdivisions of the ordered set {1, . . . , N}.
The number of subdivisions is quite big, O(2N), but finite so p-TV u is really a
maximum. A subdivision where the maximum is achieved is called and optimal
subdivision for the sequence u. Let TV su[σ] the p-variation of u on σ,

p-TV u[σ] = TV su[σ] :=
∑

1≤i<|σ|

|uσ(i+1) − uσ(i)|p. (1.61)

The subdivision σ is optimal reads TV su = TV su[σ].
For p = 1, this maximum is easy to compute, it suffices to take the biggest

partition σ = {1, . . . , N}. For p > 1, i.e. s < 1, this is rarely so simple. It is due
to the convex inequality, p > 1, a > 0, b > 0,

(a+ b)p > ap + bp.

In other words, if for some k, 1 < k < N , uσ(k−1) < uσ(k) < uσ(k+1) then

|uσ(k+1) − uσ(k−1)|p > |uσ(k+1) − uσ(k)|p + |uσ(k) − uσ(k−1)|p.

Thus, a bigger p-variation is achieved on a smaller subdivision,
τ = σ − {σ(k)}, TV su[σ] < TV su[τ ]. For an increasing sequence, and repeating
the previous argument, there is only one optimal subdivision, σ = {1, N}, |σ| = 2.

The previous discussion gives the following useful lemma where some values are
added in a sequence u in a monotonic order without increasing the p-variation.

Lemma 5 (No increase of the p-variation) Let u = (un)1≤n≤N a finite se-
quence. Let 1 ≤ k < N such that uk ≤ uk+1 and 1 ≤ j. Consider v = (vn)1≤n≤N+j

a sequence such that,

� vn = un for n ≤ k,
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� uk ≤ vn ≤ vn+1 ≤ uk+1 for k < n < k + j

� vn+j = un for k + 1 ≤ n ≤ N ,

then TV sv = TV su.

If j = 1 only one value vk+1 is added between uk and uk+1.
The same result holds if uk ≥ uk+1 and uk ≥ vn ≥ vn+1 ≥ uk+1 for k < n < k+j.

Application to bound TV swν After each interaction in the WFT, a new Rie-
mann problem is solved. The new values appearing for wν are ordered between two
values of wν so TV swν is not increasing. For the details, see Section 5.1.

Proof of Lemma 5: It suffices to prove the lemma for j = 1. The case j > 1
is easily done by induction. The inequality TV sv ≥ TV su is clear, v has already
all the values of u in the same order than u except one more value (j = 1). The
point is to prove that for all subdivision σ ∈ {1, . . . , N + 1}, TV sv[σ] ≤ TV su. If
k + 1 does not belong to σ then v restricted on σ is identical to u restricted on σ
and TV sv[σ] = TV su[σ]. So, the only problematic case is when k+ 1 belongs to σ.
In this case, a subdivision τ is now built such that TV sv[σ] ≤ TV su[τ ]. For this
purpose, consider all the four following cases. Let i be defined by σ(i) = k + 1,
vσ(i−1) = uσ(i−1) and vσ(i+1) = uσ(i+1)−1. To have a subdivision related to u, let us
define σ̃ = σ − {k + 1}, so

vσ(i−1) = uσ(i−1) = uσ̃(i−1), vσ(i+1) = uσ(i+1)−1 = uσ̃(i+1)

For each case, uk ≤ vk+1 ≤ uk+1 and we have only to bound,

V := |vσ(i+1) − vσ(i)|p + |vσ(i) − vσ(i−1)|p = |uσ̃(i+1) − vk+1|p + |vk+1 − uσ̃(i−1)|p.

1. uσ̃(i−1) ≤ uk and uk+1 ≤ uσ̃(i+1), it suffices to take τ = σ̃ since,

V ≤|uσ̃(i+1) − uσ̃(i−1)|p.

2. uσ̃(i−1) ≥ uk and uk+1 ≤ uσ̃(i+1), it suffices to take τ = {k} ∪ σ̃ since,

V ≤ |uσ̃(i+1) − uk|p + |uk − uσ̃(i−1)|p.

3. uσ̃(i−1) ≤ uk and uk+1 ≥ uσ̃(i+1), it suffices to take τ = {k + 1} ∪ σ̃ since,

V ≤ |uσ̃(i+1) − uk+1|p + |uk+1 − uσ̃(i−1)|p.

4. uσ̃(i−1) ≥ uk and uk+1 ≥ uσ̃(i+1), it suffices to take τ = {k, k + 1} ∪ σ̃ since,

V ≤ |uσ̃(i+1) − uk+1|p + |uk+1 − uk|p + |uk − uσ̃(i−1)|p.

�
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[14] M. Bruneau. Etude et généralisation d’une classe de fonctions lipschitziennes
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