
HAL Id: hal-02532422
https://hal.science/hal-02532422

Preprint submitted on 8 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GetFEM: Automated FE modeling of multiphysics
problems based on a generic weak form language

Yves Renard, Konstantinos Poulios

To cite this version:
Yves Renard, Konstantinos Poulios. GetFEM: Automated FE modeling of multiphysics problems
based on a generic weak form language. 2020. �hal-02532422�

https://hal.science/hal-02532422
https://hal.archives-ouvertes.fr

GetFEM: Automated FE modeling of multiphysics problems based on a

generic weak form language

Yves Renard∗ Konstantinos Poulios†

April 5, 2020

Abstract

This paper presents the major mathematical and implementation features of a weak form language
(GWFL) for an automated finite element (FE) solution of partial differential equation systems. The
language is implemented in the GetFEM framework and strategic modeling and software architecture
choices both for the language and the framework are presented in detail. Moreover, conceptual simi-
larities and differences to existing high level FE frameworks are discussed. Special attention is given
to the concept of a generic transformation mechanism that contributes to the high expressive power of
GWFL, allowing to interconnect multiple computational domains or parts of the same domain. Finally,
the capabilities of the language for expressing strongly coupled multiphysics problems in a compact
and readable form are shown by means of modeling examples.

keywords: Automated FEM, coupled PDEs, symbolic differentiation, weak form language

1 Introduction and aim

Modern numerical modeling tasks often require the solution of multiple coupled nonlinear partial differ-
ential equations (PDEs) possibly also subjected to additional algebraic equality or inequality constraints.
The FE method typically employed for the discretization of such PDE systems relies on well founded
mathematical principles [7], but the increasing complexity of the problems to solve leads to major pro-
gramming challenges.

The repetitive nature of programming new FE formulations has been realized by many FE software
developers and several parallel efforts have occurred for automating this process. The possible gains
in terms of development and debugging time are evident, especially in the context of rigorous implicit
solution schemes that require the derivation of a consistent Jacobian matrix. However, creating a high
level FE modeling framework which is user friendly while at the same time as computationally efficient
and versatile as lower level implementations, is a challenging assignment and many different approaches
have been proposed so far.

∗Université de Lyon, CNRS, INSA-Lyon, ICJ UMR5208, LaMCoS UMR5259, F-69621 Villeurbanne, France,
(yves.renard@insa-lyon.fr)

†Technical University of Denmark, Department of Mechanical Engineering, Nils Koppels Allé, Building 404, Kgs. Lyngby,
2800, Denmark, (kopo@mek.dtu.dk)

1

Historically, the idea of automated FE development is rather old, with the FE system FINGER by
[33] being one of the first implementations, along with the interactive system by [34]. The latter authors
have in fact also highlighted the importance of using weak forms as a neutral mathematical description
appropriate for automated FE modeling purposes. A thorough review of the first efforts in automation of
FE development was given by [18], who also introduced the symbolic mechanics system (SMS), developed
based on the computer algebra system MATHEMATICA® [19]. A similar solution based on the computer
algebra system MAPLE® was made available by [1].

A common characteristic of these solutions is the generation of intermediate code that is compiled
and incorporated into FE software with an otherwise rather classical element centered architecture. The
current trend in FE is towards a more flexible use of finite element spaces, appearing in the late 90s
and early 2000s in software such as FreeFEM [13, 14], GetFEM (http://getfem.org/), deal.II [3], FEniCS
[24, 23], Firedrake [31] and oomph-lib [15], among several others. Both FreeFEM and FEniCS have
early emphasized on modeling automation based on weak forms as user input, following very different
implementation approaches though. FEniCS uses symbolic differentiation for the linearization of the
global system of equations and similar to the solutions reviewed previously it relies on an external compiler
to compile the generated code. FreeFEM implements its own interpreted language instead, which evaluates
provided weak form expressions at runtime, but it lacks automatic linearization capabilities. A third
approach is to extend the syntax of an existing low level language such as C++ to allow expressing weak
forms corresponding to PDEs directly in the source code, as proposed e.g. by [30], [32] and [26, 25].

Addressing an important part of modeling automation, the weak form language GWFL is implemented
in the GetFEM runtime library, which executes provided expressions without intermediate code generation
and compilation. Technically, GWFL expressions are passed as text string arguments to functions of the
available GetFEM APIs in C++, Python, Scilab and Matlab®. The underlying C++ library parses
the provided expressions, allocates the necessary data structure and defines an optimized sequence of
precompiled C++ function calls operating on the built data structure. Repetitive execution of this
sequence of functions evaluates the provided expression efficiently and assembles it into a global residual
vector or Jacobian matrix. Compared to the very modular architecture of FEniCS and Firedrake, GetFEM
has GWFL as its only major level of abstraction. The less modular and pure runtime architecture is more
convenient for implementing and exposing complex features to GWFL, such as inter-domain coupling.

The underlying mathematical formalism and terminology is presented in section 2, along with some
basic syntax of the introduced weak form language. Section 3 describes the overall architecture of GetFEM
that enables the implementation of the language and section 4 describes the core implementation of
the weak form language. The numerical examples presented in section 5 demonstrate the expressive
capabilities of the language for a rapid development of strongly coupled multiphysics models and the last
section summarizes and concludes the work.

2 The generic weak form language

Let Ω ⊂ Rd denote the reference domain of the problem to solve, with the d dimensions typically
representing spatial coordinates but without excluding other kinds of dimensions such as time or frequency.
A set of relevant physical, or also geometric, laws in Ω may be expressed in terms of a certain number
of variables u1, . . . , un lying in function spaces V1, V2, . . . , Vn. In general, each variable ui can be defined
on a subset of Ω or its boundary ∂Ω or some internal interface contained in Ω and it can be a scalar,

2

http://getfem.org/

vector or tensor field with a total number of components equal to qi, e.g. qi = 1 for a scalar field. Each
variable ui may be involved in physical laws valid in one or several subdomains SA, SB, . . . , either in the
interior or on external boundaries or internal interfaces, c.f. Figure 1. Let the multi-index I = {i1, i2, . . . }
denote for convenience some specific subset of {1 . . . n}, so that any quantity indexed with I will be be
constrained accordingly, i.e. uI ≡ {ui1 , ui2 , . . . }.

Figure 1: Possible subdomains in the interior, external boundary and internal interfaces of the problem
domain Ω.

2.1 Zero-order terms, functionals

Many problems in science can be expressed as stationary points of a functional J : Vi1 × Vi2 × · · · → R,
mapping the unknown variables uI to a scalar, defined through an integral on a subdomain S as

F0(uI) =

∫
S
G0(uI ,∇uI ,HuI)dS. (1)

The sought stationary point can be for instance a minimum of a strain energy potential or a saddle
point of a Lagrangian function for a constrained problem. For some scalar variable ui, the spatial gradient
∇ui and Hessian Hui correspond to a vector and a matrix respectively, but for a tensor variable ui in
general, they will just be tensors increased by one and two ranks, respectively.

Functionals in the form of F0 will be referred to as zero order terms, and a problem definition may
include several zero order terms on different subdomains S and with different subsets I of the problem
variables. Of course, it is assumed that all variables uI , represented in I, are defined on S.

2.2 First order terms, residuals

The first variation of a functional F0 with respect to the set of variables uI can be written as

δF0(uI ; δuI) =
∑
i∈I

∫
S

∂G0

∂ui
[δui] +

∂G0

∂∇ui
[∇δui] +

∂G0

∂Hui
[Hδui] dS, (2)

where all involved directional derivatives of G0 are by definition linear with respect to their direction
argument inside the square brackets. For nonlinear problems, these derivatives will also depend on uI ,
∇uI or HuI nonlinearly. The linear form δF0 with respect to the variations δuI can be seen as a special
case of so called first order terms, which are linear forms generally defined as

F1(uI ; δuI) =

∫
S
G1(uI ,∇uI ,HuI ; δuI ,∇δuI ,HδuI) dS. (3)

3

Here, G1 is a function which is linear only with respect to the arguments after the semicolon separator,
i.e. with respect to all listed variations. In a mathematical context, first order terms, defined exclusively
through the integrand G1, correspond to the weak form of some governing equations. In the context of
numerical methods, first order terms are employed directly in the calculation of a residual vector, where
variations δuI are substituted with all relevant test functions.

2.3 Second order terms, Jacobians

One further variation of F1 with respect to uI leads to a second order term

F2(uI ; δuI , ∆uI) =

∫
S
G2(uI ,∇uI ,HuI ; δuI ,∇δuI ,HδuI , ∆uI ,∇∆uI ,H∆uI) dS, (4)

where the function G2 is linear with respect to all arguments listed after the semicolon separator. For
each instance of the fields uI in the space Vi1 ×Vi2 × · · · , the second order term F2 is a bilinear form with
respect to the variations δuI and ∆uI .

In many cases, a second order term F2 is obtained as the differential δF1 of a first order term, through
Gateaux differentiation. If the first order term is itself obtained from a zero order term, then δF1 is the
second derivative of F0, in which case F2 = δF1 = δ2F0. Every piecewise differentiable zero order term
can produce a corresponding first order term and every piecewise differentiable first order term can be
converted to the corresponding second order term. However, not every bilinear form F2 has an underlying
linear form F1, in the same manner as there is not a functional F0 for every linear form F1. In the context
of numerical methods, second order terms are evaluated repeatedly for different test functions substituted
into δuI and ∆uI for assembling the corresponding components in the overall Jacobian matrix.

2.4 Algebraic variables

In addition to field variables defined on a single or different subdomains, covered so far, modeling of
multiphysics problems often requires global scalar, vector, or tensor variables that are available in any
domain. For such algebraic variables the notion of spatial gradient or Hessian obviously does not apply
and the corresponding terms in Eqs. (1)-(4) have to be disregarded.

An algebraic variable u1 can for example be used to apply a constraint on the integral or average
over a volume SA of a quantity that depends e.g. on a field variable u2. If the desired constraint can for
instance be expressed as minimization of a zero order term, it can be defined in the form

F0(u1, u2,∇u2,Hu2) =

∫
SA

G0(u1, u2,∇u2,Hu2) dS. (5)

Alternatively, instead of a zero order term, an appropriate first order weak form expression can be
used for defining the desired constraint as well. Applying the same kind of coupling between the algebraic
variable u1 and another field variable u3 defined on a subdomain SB as between u1 and u2 is an indirect
way of coupling two field variables, possibly defined in different subdomains.

2.5 The generic weak form language

In the above presented framework, the mathematical definition of a model is complete once all governing
physics are expressed through zero or first order integrands, G0 or G1 respectively, on given integration

4

subdomains S for each of the provided integrands. The use of second order integrands G2 in defining
a model is more rare as it lacks the definition of a residual for the governing equations. Beyond the
mathematical description, linearization and discretization are further modeling steps which represent
the most tedious but rather repetitive part of an implementation and they are hence a major subject of
automation. Leaving the discussion about such an automation for later, the present subsection introduces
GWFL as a simple language for defining integrands in form of G0, G1 or G2, which should ideally be the
only input required for creating a new model.

GWFL is mainly meant for transferring formulations from paper to an ASCII text string that can be
parsed and interpreted by the GetFEM software that implements the language. It is strictly limited to the
symbolic definition of integrands G0, G1 and G2 and is not meant to resemble a programming language
or extend an existing programming language as the corresponding solutions in FEniCS, FreeFEM or
Sundance. Compared to these, GWFL is somewhat similar to UFL in FEniCS, but it is even closer to
the mathematical expressions, discretization agnostic and implemented as a runtime module. Its runtime
implementation facilitates the incorporation of interpolate transformations, described in subsection 2.7,
which in combination with a comprehensive set of linear and nonlinear operators, lead to a very high
expressive power and compactness.

The proposed GWFL syntax supports user defined variables which can be scalars, vectors, matrices
or higher rank tensors. Any number and naming of such variables is possible, with the only limitation
of using ASCII characters and avoiding conflicts with predefined operator names. For scalar variables,
the four common math operators +, -, *, / as well as functions such as sqr, sqrt, exp, log, sin, cos, tan,
asin, acos, atan, pow and atan2(y,x) apply. For non-scalar variables, operators +, -, .* and ./ are used
for component-wise operations, operators . and : for single and double contraction between vectors,
matrices or tensors, operator * for matrix-vector and matrix-tensor multiplications and operator @ for
tensor products, usually denoted in math as ⊗. As common in other scripting languages, the operator ’
expresses matrix transposition.

The non-smooth operators pos part and neg part correspond to the ramp functions 〈x〉 and 〈−x〉,
respectively, and the min(x,y) and max(x,y) operators are also available in the language. Since these
operators can only be differentiated once, they only allow derivation and computation of expressions of
up to one order higher than the expression that they are contained in. The language also includes the
non-continuous Heaviside operator. Its use is rather limited though, because it does not allow to derive
any expression of higher order from the provided expression.

Spatial derivatives and variations appearing in the aforementioned integrands of the three kinds, G0,
G1 and G2, are expressed through special operators and prefixes, listed in Table 1. The variation prefixes
apply to both field variables and algebraic variables while spatial derivative operators obviously apply only
to field variables. The gradient and Hessian operators result in a tensor which will be respectively increased
by one and two ranks compared to the original variable. Spatial derivative operators and variation prefixes
can be combined to express for instance quantities like the gradient ∇δu of the variation of a variable u
as Grad(Test u).

The language assumes that the dimension of all variables is provided at their definition, so that the
compatibility of dimensions for all performed operations can be checked for. Syntax checking should
also be able to identify the kind of integrand among the three possibilities G0, G1 and G2, based on the
presence of first variations (Test) and second variations (Test2) in the provided expression. The GWFL
implementation also checks that the provided expression is indeed linear with respect to first variations
δuI for a first order term integrand G1 , or bilinear with respect to first and second variations δuI and

5

Table 1: Spatial derivative operators and test function prefixes used in GWFL.

Grad(u), Hess(u) Spatial gradient and Hessian of a variable u

Div(u) Divergence of a vector variable u

Test , Test2 First and second variation of a variable (symbols δ and ∆
respectively)

∆uI in the case of a G2 integrand.

Although not explicitly stated in Eqs. (1), (3) and (4), the integrands G0, G1 and G2 may also depend
directly on the current location X within the integration domain S ⊂ Ω. Moreover, if S is a boundary or
an internal interface of Ω, it is also very common that an integrand may depend on the normal direction
with respect to S at the current location. In GWFL, the special variable name X is used for the current
location X and the special variable name Normal for the unit normal vector. Both X and Normal are vectors
of size d, hence for syntax checking purposes the language requires the dimension d of the space Ω to be
known. If the integration domain S is in the interior of a domain where a normal direction cannot be
defined, use of the keyword Normal in an expression results in an error message.

Square brackets can be used to define explicit tensors, including vectors and matrices, either using a
nested, comma separated format or using comma and semicolon separators as in a Matlab®. Available
tensors can also be sliced in a Matlab® like manner, using parentheses, the colon symbol and one-
based indexing. The special operator Id(n) is used for defining an n×n identity matrix. In order to
allow a compact writing of integrand expressions and an efficient implementation, GWFL supports a
comprehensive set of linear and nonlinear operators on vectors, matrices and tensors, with the most
important ones listed in Table 2. This includes efficient low level implementations of the derivatives of all
nonlinear operators, including the matrix exponential and logarithm.

Table 2: Commonly used vector and matrix operators.

Linear operators on a symmetric matrix s or general tensor t:
Trace(s), Deviator(s), Sym(s), Skew(s), Reshape(t,m,n,...)

Nonlinear operators on a general matrix or vector x or a symmetric matrix s:
Norm(x), Norm sqr(x), Normalized(x), Det(s), Inv(s), Expm(s), Logm(s)

Regarding scalar functions, GWFL supports user defined one and two argument scalar functions.
Definition of a custom scalar function requires providing a name for the new function, and valid GWFL
expressions for the value and the first derivatives of the function with respect to its arguments. Alterna-
tively, instead of a GWFL expression, a pointer to a compiled C function can also be provided for the
value of the newly defined function.

The basic syntax of GWFL presented in this subsection is complemented by the important Derivative
prefix and Interpolate operator presented respectively in subsections 2.6 and 2.7. Other, less frequently
used, features and operators of the available language implementation in GetFEM are omitted in the
interest of space.

6

2.6 Modeling automation

Providing an appropriate set of zero and first order terms expressed in GWFL, can be seen as a canonical
form for defining a problem based on a minimum amount of information. Moreover, having a complete
mathematical definition of a problem prior to linearization and discretization is a rigorous modeling
approach, compared to enforcing physical laws on an already linearized or discretized system.

Apart from the mathematical definition, a symbolic representation such as GWFL constitutes an
excellent format for describing both the input and output of an automated linearization procedure. The
present section demonstrates how GWFL expressions are employed in a a fully automated computation
of the residual vector and Jacobian matrix for a FE model. The presented example is a relatively simple
coupled heat transfer problem but the procedure is directly applicable to much more complex modeling
scenarios.

With u and T respectively representing displacements and temperature fields, heat transfer in a solid
undergoing large deformations can be expressed in the presented framework by means of a first order
integrand

G1(u, T ; δT) = k |I +∇u| ∇xT · ∇xδT, (6)

where ∇x = (I +∇u)−T∇ is the Eulerian gradient operator and k is the heat conductivity coefficient.

Assuming that corresponding field variables u and T as well as a constant k have been defined by the
user, the aforestated integrand G1 can easily be expressed in GWFL as
k*Det(Id(2)+Grad(u))
*(Inv(Id(2)+Grad(u))’*Grad(T)).(Inv(Id(2)+Grad(u))’*Grad(Test T))

(E1)

This parsable ASCII expression constitutes together with finite element spaces for u and T and a
numerical integration method the only necessary input for assembling a corresponding residual vector for
a discretized model. All necessary computations including evaluation of intermediate quantities like e.g.
∇u, ∇T and (I + ∇u)−T at each integration point can be fully automated, resulting into an execution
sequence of precompiled instructions. Such an execution sequence can then be repetitively called for
different basis functions substituted into δT depending on the current position in the residual vector.

For the numerical solution of a problem, it is often essential to obtain a linearization of the considered
model residual. In case of Eq. (6), the integrand is already linear with respect to T so that the corre-
sponding second order term is obtained by substituting T with the second variation ∆T . The expression
is however nonlinear with respect to u requiring a proper differentiation including the dependence of the
Eulerian gradient operator ∇x on u. In total, the resulting second order term integrand can be written
as

G2(u, T ; δu, δT, ∆u,∆T) = k |I +∇u| ∇x∆T · ∇xδT

+ k

(
∂ |A|
∂A

∣∣∣∣
A=I+∇u

: ∇∆u
)
∇xT · ∇xδT

+ k |I +∇u|

((
∂A−1

∂A

∣∣∣∣
A=I+∇u

: ∇∆u
)T
∇T

)
· ∇xδT

+ k |I +∇u| ∇xT ·

((
∂A−1

∂A

∣∣∣∣
A=I+∇u

: ∇∆u
)T
∇δT

)
,

(7)

7

The derivation of second order terms as the one above and their implementation in the assembly of a
global Jacobian matrix is often one of the major modeling tasks, requiring considerable effort even in semi-
automated FE frameworks. However, these steps can easily be automated if low level implementations for
the derivatives of all involved nonlinear operators and functions are available. In GWFL such derivatives
are accessed through the Derivative prefix. For example, Derivative Det(A) and Derivative Inv(A) can
be used to respectively express the derivatives ∂ |A|

/
∂A and ∂A−1

/
∂A appearing in Eq. (7). For two

argument functions the prefix Derivative 2 represents derivatives with respect to the second argument.
Based on this syntax, the last three terms of Eq. (7) can be written in GWFL as

(Inv(Id(2)+Grad(u))’*Grad(Test T))
.((k*(Derivative Det(Id(2)+Grad(u)):Grad(Test2 u)))*(Inv(Id(2)+Grad(u))’*Grad(T))+

(k*Det(Id(2)+Grad(u)))*((Derivative Inv(Id(2)+Grad(u)):Grad(Test2 u))’*Grad(T)))
+(k*Det(Id(2)+Grad(u))*(Inv(Id(2)+Grad(u))’*Grad(T)))
.((Derivative Inv(Id(2)+Grad(u)):Grad(Test2 u))’*Grad(Test T))

(E2)

This is actually, with minor aesthetic modifications, the expression automatically generated by GetFEM
based on the GWFL expression (E1). Such basic symbolic algebra processing of expressions of zero or
first order to respectively generate first and second order expressions relies essentially on the application
of the chain and product rules for differentiation. Further factorization of the generated expression is
of minor importance since the presence of repeated subexpressions has anyway to be dealt with in the
computational implementation.

In the same manner as an automated assembly of the residual vector for a discretized model relies on
first order GWFL expressions like (E1), the assembly of the global Jacobian matrix can be fully automated
based on second order GWFL expressions like (E2). The contribution of the considered terms to the {k, l}
entry in the global Jacobian matrix is computed by evaluating (E2) at each integration point with δT
and ∆u respectively corresponding to the global k-th and l-th degree of freedom basis functions. A more
in-depth implementation description of an efficient automated assembly of GWFL expressions is provided
in section 4.

Even in the relatively simple example shown here, a GWFL based automated assembly results in a
considerable gain in terms of modeling effort compared to a lower level implementation. More elabo-
rate multiphysics problems with complex nonlinearities and couplings between several unknown fields is
however where the value of the proposed FE automation really becomes evident.

As already explained, the main use of the GWFL is in the definition of zero, first and second order
terms, typically representing PDEs in weak form. However, the same syntax can also be used in the
definition of interpolation expressions, which, similar to a zero order integrand G0, are expressions with-
out any variable variations. In contrast to the latter though, interpolation expressions are not limited to
scalars but can in general evaluate to scalar, vector, matrix or higher rank tensor quantities. They are
used in interpolation operations which often constitute a necessary step within more complex numerical
models or they are just used for preparing post-processing output. As an example, in connection to the
presented heat transfer example, the expression

-k*Det(Id(2)+Grad(u))*(Inv(Id(2)+Grad(u))’*Grad(T)) (E3)

can be used in order to evaluate and export the heat flux vector field.

8

2.7 Interpolate transformations

So far, it has been assumed that integrands in functional, residual or Jacobian terms involve field quan-
tities, defined at the current integration point X, and algebraic variables, defined globally. Nevertheless,
in order to achieve certain couplings in numerical modeling, there are often terms that involve field quan-
tities defined at different points of the same or different subdomains. To cover this need, interpolate
transformations in GWFL provide a generic mechanism that allows to map the current integration point
X to another point Y either in the same or in a different subdomain and access the variables, spatial
derivatives and test functions defined at Y .

Figure 2 illustrates the mapping between two pointsX and Y both conceptually and in terms of specific
applications in numerical modeling. The wide range of numerical methods that can be implemented based
on interpolate transformations in GWFL is indicative of the expressive power of this mechanism in a high
level modeling language.

a) b) c)

d) e) f)

Figure 2: Transformation between different subdomains (a), used e.g. for implementing contact conditions
(b) and interpolation between different dicretizations (c), or within a single domain (d), used e.g. for
imposing periodic boundary conditions (e), and implementing discontinuous Galerkin methods (f).

In most cases, the mapping of point X to a point Y can be defined as

Y = Y(X). (8)

involving only the coordinates of the two points in the reference configuration. In order to support a
wider range of applications though, a more generic form is adopted according to the expression

Y = Y(X,u1, u2, . . .). (9)

with u1, u2, . . . being problem variables. The dependence of the transformation Y on problem variables
allows for instance the implementation of contact conditions between deformable bodies undergoing large
deformations. Another use case is the implementation of advective terms where the point Y can be defined
at a small distance from point X in the upstream or downstream direction with respect to an a priori
unknown velocity field.

Allowing to use variables and test functions at the mapped point Y = Y(X, . . .) when evaluating an
integrand at point X, is a powerful coupling mechanism, even more so for a point Y lying in a different

9

subdomain. GWFL provides this mechanism through the syntax of Table 3, with the user defined names
u and transname respectively representing a variable u and some transformation Y. This syntax allows
to transfer a variable u, a variation δu, or their spatial gradients, from point Y to X. Additionally, the
syntax allows to retrieve the coordinates of the transformed point Y , or the surface unit normal at Y , if
Y lies on a boundary.

It should be noted that the syntax simply denotes evaluation of a quantity at the mapped point Y ,
typically by interpolation in the discretized setting. However, a variation or a spatial derivative of an
interpolated variable at Y are not just equivalent to evaluating its variation or spatial derivative at the
mapped point Y . These quantities also involve the derivatives of the transformation Y = Y(X, . . .) with
respect to its arguments. For example, the variation of u|Y is

δu|Y + ∇u|Y ·
∂Y
∂ui
· δui, (10)

and the spatial gradient of u|Y is

∇u|Y ·
(
∂Y
∂X

+
∂Y
∂ui
· ∇ui

)
, (11)

where i implies summation over all model variables that the transformation Y actually depends on.
Eq. (10) is part of the GWFL implementation, as it is necessary for the automatic differentiation of
zero and first order terms containing interpolate transformation syntax from Table 3. Eq. (11) is also
implemented as part of the Grad() operator, when it acts on a symbolically defined transformation Y.

A symbolic definition of an interpolate transformation in the form of Eq. (9) is possible by using the
GWFL syntax itself through the GetFEM model method add interpolate transformation from expression,
which expects a name for the new transformation, a source and a target mesh, which can possibly be the
same, and a symbolic GWFL expression defining Y(X, . . .). For example, the identity transformation
Y(X) = X, useful for implementing the case of Figure 2c, can easily be defined by providing X as the
transformation expression and two distinct source and target meshes. Slightly more complex than the
case of Figure 2e, imposing a rotational periodicity condition e.g. at 60° is another example that the
transformation defined in GWFL syntax as

Table 3: Interpolate transformation syntax in GWFL.

Interpolate(X,transname) Y(X, . . .)
Interpolate(Normal,transname) Surface unit normal at

Y(X, . . .)

Interpolate(u,transname) u|Y(X,...)

Interpolate(Grad(u),transname) ∇u|Y(X,...)

Interpolate(Hess(u),transname) Hu|Y(X,...)

Interpolate(Test u,transname) δu|Y(X,...)

Interpolate(Grad(Test u),transname) ∇δu|Y(X,...)

Interpolate(Hess(Test u),transname) Hδu|Y(X,...)

10

[cos(pi/3),-sin(pi/3);sin(pi/3),cos(pi/3)]*X (E4)

can be useful for. As a last example, given a displacement field u, a transformation defined as X+u can
be used for implementing data transfer between the Eulerian and Lagrangian settings. An advantage of
such a symbolic definition of an interpolate transformation is that all necessary derivatives appearing in
Eq. (10) can be generated automatically, using the same mechanism as explained in section 2.6. In the
simple case of expression X+u for instance, the derivative of the interpolate transformation with respect to
u, i.e. ∂Y/∂u, will be the identity matrix.

There are, nevertheless, useful interpolate transformations that cannot be defined symbolically. Such
an example is a raytracing transformation as in Figure 2b but based on the deformed bodies according to
corresponding displacement fields. This rather complex transformation is programmed as part of GWFL
in GetFEM and it allows to implement the algorithm for large deformations contact according to [29]
purely with GWFL syntax. In a model with several deformable solids it might be advantageous to define
raytracing transformations between different sets of bodies, hence there is no fixed name for an overall
raytracing transformation, but the user can define and name multiple raytracing transformations with
different source and target meshes and displacement fields. If, for instance, ray12 is a user defined ray-
tracing transformation between mesh 1 and mesh 2 with displacement fields u1 and u2, respectively , the
distance between master and slave points is obtained in GWFL by

Norm(Interpolate(X,ray12)+Interpolate(u2,ray12)-(X+u1)) (E5)

where the transformation ray12 depends on both u1 and u2 through its definition. To account for this
dependence in Eqs. (10) and (11), the derivatives ∂Y/∂u1 and ∂Y/∂u2 are needed. As there is no symbolic
definition of Y in this case, these derivatives are pre-implemented numerically in the language and can be
accessed in GWFL using a special syntax, which for example for ∂Y/∂u1, is

Interpolate derivative(ray12,u1) (E6)

Another important interpolate transformation, which is part of the standard GWFL and is based on a
numerical rather than symbolic definition, is the neighbor element transformation. Mathematically, it
corresponds to the identity transformation Y(X) = X. Numerically, however, for X being a point on
a common face between two elements, the transformation returns the element and face number of the
neighbor element compared to the element that X is defined on. Internally, it also returns the coordi-
nates of the transformed point Y(X) in the reference element corresponding to that neighbor element.
The neighbor element transformation is essential for implementing discontinuous Galerkin methods. If,
for example, u is a user defined variable approximated on a mesh with discontinuous finite elements,
the expressions (E7) and (E8) respectively provide the variable jump and average on the common face
between two elements.

u - Interpolate(u, neighbor element) (E7)

(u + Interpolate(u, neighbor element))/2 (E8)

3 Software architecture

The GWFL syntax, introduced in the previous section, offers a flexible, easy and rather universal way of
defining problems and corresponding systems of PDEs, involving an arbitrary number of field variables.

11

It mainly concerns the continuous setting, with only few features being specific to a discretization with
finite elements. However, automating the assembly of functional, residuals and Jacobians, addresses only
part of the time-consuming and error-prone tasks in numerical modeling. The definition, for instance,
of appropriate finite element spaces and numerical integration methods are other areas that a high level
modeling framework is expected to minimize implementation effort for. In this context, the present section
describes the overall architecture of the GetFEM framework that GWFL has been implemented in.

GetFEM is an object oriented framework implemented in C++, exploiting polymorphism in order to
support extendibility at the C++ level. Most of the framework’s standard functionality is also available
through a common interface to the scripting languages Python, Scilab and Matlab®. The following
subsections highlight good software design choices and describe the major C++ objects that implement
the GWFL functionality.

3.1 Meshes and integration methods

One central idea behind the design of the GetFEM framework is the separation between mesh, finite
element spaces and integration methods. This idea is reflected in the diagram of Figure 3 which shows
the overall software architecture.

Figure 3: GetFEM software architecture diagram.

In the formalism introduced in the previous section, the whole model definition is expressed in terms

12

of integrals over different subdomains. The geometric definition of integration domains is hence essential
for any respective numerical implementation. In GetFEM, integration domains are represented in an
approximate sense through computational meshes, which can either be generated directly in GetFEM
or, for more complex geometries, be imported from mesh files generated with GMSH [11], ANSYS® or
GiD®.

In standard cases, the overall problem domain Ω ⊂ Rd is approximated by several, possibly over-
lapping, computational subdomains Ωi that typically correspond to computational meshes T h

i . The
computational subdomains Ωi do not necessary all need to be of the same dimension, but they can, for
instance in 3D, be a combination of volumes, surfaces and curves. Another possibility for defining a
computational subdomain Ωi is by using a nonconformal mesh in combination with a level-set description
of the boundary of Ωi. In these cases, integration methods adapted to a given level-set are essential.

The discretization of the problem domain into simple elements serves two purposes. It mainly enables
the numerical evaluation of integrals as those discussed in subsections 2.1-2.3 and secondly it provides a
means for defining solution and test function spaces piecewise. This latter role of computational meshes
is an inseparable ingredient of the classical finite element method but not as essential for the construction
of basis functions in other Galerkin-type methods such as meshless methods and XFEM. In GetFEM
terminology, the finite element method is understood in a broad sense that encompasses Galerkin methods
in general.

In that sense, the main role of elements is to allow a simple numerical integration by furnishing a
parametrization of their domain through a mapping from a fixed reference element. The mesh module
included in Figure 3 supports the definition of geometric transformations τT , which map some reference
element T̂ to each real element T through the usual mapping

X = τT (X̂) = G N (X̂), (12)

with points X̂ and X lying in the reference and real elements, respectively. For an element with ng nodes,
G is a d × ng matrix, containing all nodal coordinates in the real element, and N (X̂) is a vector of ng
shape functions. To maintain generality, the reference element T̂ is defined in a possibly different space
Rp than the real element space Rd, with p ≤ d. One consequence of this choice is that the derivative
∂X/∂X̂ of the geometric transformation and its pseudo-inverse are in general non-square d× p matrices,
defined as

K(X̂) = G ∇X̂N (X̂) and B(X̂) = K(X̂)
(
K(X̂)TK(X̂)

)−1
, (13)

where the shape function derivatives matrix ∇X̂N (X̂) has dimensions ng× p. Of course in the usual case
of p = d, matrix K is a square one and its pseudo-inverse B reduces to the regular inverse. For nonlinear
geometric transformations, the interpolation function gradients ∇X̂N (X̂) and consequently also matrices
K and B vary spatially. In this case, mapping a given point from the real element space to the reference
element space requires an iterative solution. Such a solver is employed whenever for example interpolation
or contact between two arbitrary meshes needs to be evaluated, c.f. Figure 2.

Geometric transformations are defined in terms of the reference element’s ng nodes and their connec-
tivity as well as the corresponding shape functions N (X̂). An appropriate naming system in GetFEM,
partially documented in the appendix Table 6, provides access to a set of pre-implemented and tabulated
geometric transformations. In most of these, the components of N (X̂) are typically polynomials with
respect to the p coordinates of X̂, but more complex functions are also used such as rational functions

13

for the implementation of pyramid elements, [12, 5]. In general, it is rather simple to add new element
types in GetFEM by specifying the corresponding geometric transformations. Apart from the nodes of
the reference element it is only necessary to specify the shape functions N (X̂) analytically. The provided
expressions are parsed by a basic symbolic system for polynomials and rational functions, available in
GetFEM. All necessary derivatives ∇X̂N (X̂) are also obtained and evaluated by this system. Moreover,

GetFEM supports so called composite elements where shape functions N (X̂) are piecewise defined within
a single element, facilitating e.g. the implementation of geometric multigrid algorithms.

Apart from the definition of geometric transformations, the mesh module includes objects and methods
for defining the topology of a mesh through node connectivities in elements as well as so called mesh
regions, which are sets of elements or element faces, used for specifying the integration domain S for an
added weak form term. In contrast to first generation finite element codes, where users had to directly
refer to element or node numbers, in high-level frameworks like GetFEM this is rarely the case.

One major role of an element based discretization of the problem domain is the application of numerical
integration methods for calculating the weak form integrals discussed in Section 2. The implementation
of GWFL is very much linked to numerical integration methods as the language itself basically describes
integrands that have to be repeatedly evaluated at every relevant integration point. Integration points
and the corresponding weights are defined as usual in the reference element and area scaling between
the reference and the real element are accounted for through the geometric transformation matrices from
Eq. (10). As the integration domain S of an added weak form term can refer to the interior of a problem
subdomain Ωi or to its surface ∂Ωi, numerical integration methods need to define integration points and
weights not only in the interior of elements but also on their faces.

The MeshIm module in Figure 3 deals with numerical integration, with its main object decorating
a mesh object with selected integration methods per element. An appropriate naming system, partially
covered in the appendix Table 7, provides access to a set of tabulated integration methods and new
methods are easy to define by providing integration points and weights on the reference element. Adaptive
integration for fictitious domain methods is also well supported but not covered here.

3.2 Finite element description

The numerical solution of PDEs by Galerkin methods relies on finite dimensional function spaces for both
solution and test functions. In the proposed weak form language in particular, test functions are assumed
to match the defined solution spaces by prepending the corresponding variable with the Test prefix to
express a virtual variation. GetFEM provides several tools for the construction of function spaces on a
given computational mesh. The main object of the MeshFem module in Figure 3 decorates each element
of a mesh with a finite element object, defining a set of degrees of freedom that can either be associated to
specific nodes or not. From a software architectural point of view, it is very useful to exploit polymorphism
in order to abstract two different mechanisms of either defining the shape functions on an element or as
global functions.

The standard finite element method combines simple elementwise solution spaces, typically defined on
the reference element, to obtain solution spaces for each problem subdomain Ωi. Assuming that solution
spaces are mapped from the reference to the real element T , a finite element is defined by [7] as a triplet
(T, VT ,LT), where

• T is the geometric element,

14

• VT is a N -dimensional vector space of functions over T ,

• LT = {`1, `2, . . . , `N} is a set of N linear forms over VT (the degrees of freedom),

such that LT is unisolvent with respect to VT , i.e. each function of VT is determined by a unique set of
degrees of freedom in LT . Then, the space VT can be written as VT = Span{ϕ1, ϕ2, . . . , ϕN} where ϕi are
the so called shape functions satisfying the condition `i(ϕj) = δij .

The simplest and most common way of constructing the function space VT is by direct mapping from
a corresponding space V̂T = Span{ϕ̂1, ϕ̂2, . . . , ϕ̂N} on the reference element, obtained by

ϕi(τT (X̂)) = ϕ̂i(X̂), (14)

where τT is the geometric transformation from the reference to the real element, which can be affine or
not. In GetFEM terminology, finite element types that can be constructed by Eq. (14), like e.g. all
Lagrange elements, are denoted as τ -equivalent elements.

More complex elements, such as intrinsically vector elements and Hermite elements, are not τ -equivalent
because a transformation of shape functions from the reference element involves a more complex depen-
dence on the geometric transformation τT like for example including its derivatives. Extending Eq. (14)
with a linear transformation matrix MT , which may actually depend on the geometric transformation τT
and hence on the real element, leads to the more general mapping

ϕi(τT (X̂)) =
N∑
j=1

(MT)ijϕ̂j(X̂), (15)

that can facilitate the construction of a wider class of finite elements, still based on a reference element.
This mechanism has been the standard way of defining elements like Hermite, Argyris or Raviart-Thomas
in GetFEM and has independently been proposed by other authors [10, 17]. The use of Eq. (15) in
defining complex elements consists basically in determining the necessary matrix MT and implementing
it efficiently, since it has to be evaluated on each real element. An example of an advanced element type
implemented in this manner in GetFEM is the Argyris triangular element that is made compatible with
both affine and non-affine geometric transformations, also mapped onto a surface element in 3D.

A large set of pre-implemented finite element types are accessible through a corresponding naming
system in GetFEM, with some common of them listed in the appendix Table 8. These also include intrin-
sically vector elements such as Raviart-Thomas and Nedelec elements, widely used in electromagnetism
and mixed formulations, [6]. Otherwise, vector-valued or even tensor-valued fields can also be defined
component-wise based on a finite element with scalar shape functions. Apart from the definition of basis
functions per element it is also possible to define globally indexed basis functions ϕI(X) and assign them
to all elements within their support ϕI(X) 6= 0. This is a useful feature for the implementation of a broad
class of numerical methods like XFEM, but beyond the scope of the present work.

3.3 The model and workspace objects

The purpose of the infrastructure presented in the previous subsections is to construct rather arbitrary
solution spaces and numerical integration schemes serving the computation of weak form terms, discussed
in section 2. The respectively constructed mesh fem and mesh im objects representing different variables

15

and integration methods in one or multiple domains can nevertheless only be useful as building blocks for
an overall model. In the general case of several arbitrarily coupled variables, setting up such a model can
become time consuming and error-prone, when programmed manually.

Other high level finite element frameworks such as FEniCS [23] and FreeFEM [13, 14] define problem
variables directly as objects in their programming environment. A different paradigm is followed here
with the whole model definition encapsulated in the GetFEM object model. This object has a very
extended functionality including e.g. pre-implemented PDE terms, a Newton solver, methods facilitating
the implementation of time integrators, etc. Alternatively, there is also the ga workspace object which is
lighter and strictly limited to the assemblage of zero, first and second order terms. Both objects allow
the definition of variables and data, which can either be scalar or defined on a finite element space or
defined on integration points. The GWFL is implemented as part of these objects, so that any valid
GWFL expression can be added to an instance of these classes, provided that the involved variables and
data names are previously defined. The superposition of all added expressions to a model or ga workspace
object is then evaluated upon each request for the residual vector or the Jacobian matrix.

This setup is suitable for a monolithic solution where all unknowns are addressed at once in a single
Newton loop, which is a very efficient approach for moderate size problems that can be solved with
an efficient direct solver [2]. For problems where a monolithic application of Newton’s method is not
sufficient, the model class facilitates the implementation of staggered solution schemes by allowing to
temporarily disable some of the variables and treat them as data until they are re-enabled. In addition,
problems with instabilities and bifurcated solutions can be treated with numerical continuation algorithms
[8, 21, 22], where the commonly used continuation parameter is simply defined as scalar data in GWFL.
In summary, both model and ga workspace objects can represent complex multiphysics problems easily,
dealing with multiple unknowns on appropriately constructed solution spaces and multiple weak form
terms, describing the different physics and couplings of variables.

4 Implementation aspects

The previous sections have focused on problem formulation and software design choices that aim at a
high level of freedom, flexibility and universality in the intended numerical modeling. For solving real
engineering problems though, performance is also essential because of the often three dimensional and
complex geometries involved, inevitably leading to a large number of degrees of freedom. This section
will hence mainly focus on implementation aspects that are important for achieving a high computational
efficiency.

4.1 Elementary computations and assembly

As the degree of nonlinearities and coupling in a multi-field system of PDEs increases, a computationally
efficient residual vector and Jacobian matrix assembly also becomes increasingly important. These as-
sembly operations involve repeated evaluations of first and second order terms respectively according to
Eqs. (3) and (4), for a large number of variations δuI and ∆uI . Here, the computation of the Jacobian
matrix based on a second order term will be described as the most general case, with the simplification
to first order or even zero order terms being rather obvious.

Let F2(uI ; δuI , ∆uI) be a second order term defined on a geometric entity S according to Eq. (4). One
can define the restriction of F2 to only first variations of variable uα and second variations of variable uβ,

16

as
F2|α,β(uI ; δuα, ∆uβ) = F2(uI ; {0, . . . , 0, δuα, 0, . . . , 0}, {0, . . . , 0, ∆uβ, 0, . . . , 0}), (16)

with zeros denoting zero functions for the variations of the remaining variables. This restriction of F2

describes only the coupling between variables uα and uβ,
Let now jα be the index of one degree of freedom for the discretized variable uα in the global system

and jβ be another global index for a degree of freedom corresponding to variable uβ. Then, let ϕjα
and ϕjβ denote the corresponding basis functions from the finite element spaces V h

α and V h
β used for

the approximation of variables uα and uβ, respectively. Under these definitions, the contribution of the
second order term to the (jα, jβ) entry of the global Jacobian matrix KG is obtained by substituting δuα
and ∆uβ in F2|α,β with ϕjα and ϕjβ , i.e.

F2|α,β(uI ;ϕjα , ϕjβ)→ KG(jα, jβ).

From the definition of F2 in Eq. (4) and its restriction in Eq. (16), the above contribution to KG(jα, jβ)
can be evaluated as

F2|α,β(uI ;ϕjα , ϕjβ) =∑
T∈T h

∫
T∩S

G2|α,β(uI ,∇uI ,HuI ; ϕjα ,∇ϕjα ,Hϕjα , ϕjβ ,∇ϕjβ ,Hϕjβ) dS,
(17)

with G2|α,β denoting the restriction of the weak form integrand G2 to variations of variables uα and uβ
exclusively, equivalent to Eq. (16). The intersection T ∩ S is included for generality to cover cases such
as fictitious domain methods where T may lie only partially in S.

A single element T will contribute to the coupling term between the two variables uα and uβ in KG

for several degrees of freedom jα and jβ. If the corresponding sets of active degrees of freedom in element
T are defined as

Jα|T = {jα : supp(ϕjα) ∩ T 6= ∅} and Jβ|T = {jβ : supp(ϕjβ) ∩ T 6= ∅},

then the contribution of element T to the Jacobian matrix portion related to first variations of variable
uα and second variations of variable uβ can be summarized to an elementary matrix

Kα,β|T = KG(Jα|T , Jβ|T)

=

∫
T∩S

[
G2|α,β(uI ,∇uI ,HuI ; ϕjα ,∇ϕjα ,Hϕjα , ϕjβ ,∇ϕjβ ,Hϕjβ)

]
jα∈Jα|T
jβ∈Jβ|T

dS

≈
∑
p

wp

[
G2|α,β(uI ,∇uI ,HuI ; ϕjα ,∇ϕjα ,Hϕjα , ϕjβ ,∇ϕjβ ,Hϕjβ)

∣∣
X=Xp

]
jα∈Jα|T
jβ∈Jβ|T

(18)

The last approximate evaluation in Eq. (18) represents the actual numerical integration method, with
Xp denoting an integration point and wp the corresponding weight. For computational efficiency, it is
common to calculate the integrand G2|α,β in a vectorized manner, i.e. for all active degrees of freedom
(Jα|T , Jβ|T) in the current element T instead of an individual pair (jα, jβ) at a time. With a slight change
in notation, Eq. (18) can be rewritten as

Kα,β|T ≈
∑
p

wpK
<p>
α,β|T (uI ,∇uI ,HuI ; ϕuα|T ,∇ϕuα|T ,Hϕuα|T , ϕuβ |T ,∇ϕuβ |T ,Hϕuβ |T) (19)

17

with K<p>
α,β|T denoting the contribution of the integration point Xp to the element tangent matrix. The

vectorization has been moved here to the arguments ϕuα|T and ϕuβ |T , respectively representing all basis
functions of the finite element spaces for uα and uβ that are nonzero on T . For the computation of values,
gradients and Hessians of these shape functions use is made of any available precomputations either on
the real or the reference element, depending on the finite element type. In total, the global assembly
procedure is a quite standard one corresponding to Algorithm 1.

Algorithm 1: Assembly procedure

for each sub-domain S do
for each element T of S do

for each integration point with index p in T do

Compute matrices K<p>
α,β|T for all available combinations of α and β

and accumulate the result to Kα,β|T
Apply optional element level transformations on assembled element matrices Kα,β|T
Accumulate all element matrices Kα,β|T to the respective indices Jα|T and Jβ|T in KG

One central point regarding the otherwise conventional algorithm 1 is that the innermost computation
involves all weak form expressions and problem variables. This is in contrast to the alternative approach
of composing stiffness matrices by superposition of pre-implemented PDE terms, which are computed
separately. The approach followed here allows for optimizations across all PDE terms added to a model.
Moreover, the optional element level transformation before the addition to the global matrix, allows for
the implementation of advanced element types, involving local projections depending on the real element,
such as locking-free MITC plate elements and hybrid high-order elements [4, 9].

4.2 Compilation of GWFL expressions and optimization

At this point, it is essential to achieve an efficient calculation at each integration point of the elementary
matrices K<p>

α,β|T , or corresponding vectors in the assembly of first order terms. Performing any kind of text
string interpretation of GWFL expressions at each integration point would of course be very inefficient.
The text based description of a weak forms is therefore initially compiled into a sequence of optimized
basic instructions that are later repeatedly executed for each integration point. Such a compilation step
is implemented in different software projects based on different strategies, as reported e.g. in [13, 14]
and [23, 31]. The compilation procedure implemented in GetFEM can be defined in terms of four steps,
comprising

• parsing of expressions and transformations into an operation tree,

• semantic analysis and simplifications,

• symbolic differentiation of the term when necessary, and

• compilation into a sequence of basic instructions.

A simple single variable example will be considered in order to illustrate this procedure. Letting
u : Ω → R3 denote the displacement field of an elastic solid Ω, the simplest constitutive law for large

18

deformation elasticity is the Saint Venant-Kirchhoff one, defining the second Piola-Kirchhoff stress tensor
S as a linear function of the deformation tensor E , in the form

S(∇u) = λTr(E)I + 2µE with E = (∇u+∇uT +∇uT∇u)/2,

where λ and µ are the Lamé coefficients. The computation of the residual vector for the discretized
problem is based on the first order term

F1(u; δu) =

∫
Ω

((I +∇u)S(∇u)) : ∇δu dΩ

where, the integrand can be expressed in GWFL as
((Id(meshdim)+Grad(u))*
(0.5*lambda*Trace(Grad(u)+Grad(u)’+Grad(u)’*Grad(u))*Id(meshdim)

+mu*(Grad(u)+Grad(u)’+Grad(u)’*Grad(u)))):Grad(Test u)

(E9)

with the special GWFL keyword meshdim denoting the problem space dimension d.

:

+

* *

*

*

+

+ *

’ ’

+

+ *

’ ’

*

+

Grad Test u

0.5 lambda

Trace

Id(meshdim)

Grad u

Grad u Grad u

Grad u

mu

Grad u

Grad u Grad u

Grad u

Grad uId(meshdim)

Figure 4: Operation tree for the elastostatic problem with the Saint Venant-Kirchhoff constitutive law.

The parsing step on this expression will then simply result in the operation tree shown in Figure 4.
The subsequent semantic analysis step will enrich the tree with information needed for checking the
validity of the operations and for carrying out simplifications. The first obvious simplification concerns
the precomputation of subexpressions that only involve constants. In the present example, assuming
a homogeneous material, the Lamé coefficients do not depend on the current integration point and a
repeated evaluation of the product 0.5*lambda is therefore superfluous. In the simplification phase after

19

the semantic analysis, all subtrees depending on constant data will be evaluated and substituted with the
corresponding numerical result in the optimized tree.

Additionally, a hash value is assigned to each node of the tree, which depends on the node itself and its
child nodes. This allows an inexpensive detection of identical parts of the tree based on a simple sorting
of their hash values, [23]. For instance, in the tree of Figure 4, there are multiple occurrences of Grad(u)
and two computations of Grad(u)+Grad(u)’+Grad(u)’*Grad(u). After eliminating all detected redundancies,
the processed tree will be converted to a (single sourced) directed acyclic graph (DAG), [20], shown in
Figure 5 for the considered example. One optimization not visible in this figure but present in the actual
implementation is the use of the basis functions gradients stored in tensor t16

ijk by instruction M also in

the calculation of the spatial gradient of u, computed and stored in t2ij by instruction A.

*

+

*

+

+

’

*

:

*

+

*

Trace

Grad u

Grad Test u

Id(meshdim)

mu

t5ij = t2ji

t7ij = t5ikt
2
kj

t8ij = t6ij + t7ij

t11ij = t10t1ij

t10 = t4t9

t15ij = t3ikt
14
kj

t1ij = δij

t17i = t15jkt
16
ijk

t9 = t8ii

t6ij = t2ij + t5ij

Instruction list:

A: t2ij =
∂ui

∂xj

B: t3ij = t1ij + t2ij
C: t5ij = t2ji
D: t6ij = t2ij + t5ij
E: t7ij = t5ikt

2
kj

F: t8 = t6ij + t7ij
G: t9 = t7ii
H: t10 = t4t9

I: t11 = t10t1ij
J: t13ij = t12t8ij
K: t14ij = t11ij + t13ij
L: t15ij = t3ikt

14
kj

M: t16ijk =
∂(ϕi)j
∂xk

N: t17i = t15jkt
16
ijk

O: Accumulate t17i
P: Assembly operation

at each element end

t3ij = t1ij + t2ij

t2ij =
∂ui

∂xj

t4 = 0.5*lambda

t16ijk =
∂(ϕi)j
∂xk

t14ij = t11ij + t13ij

t12 =

t13ij = t12t8ij

Figure 5: DAG obtained after the elimination of all duplicated subexpressions. The result of each node
is a tensor with implicit summation on repeated indices assumed for brevity.

Some further optimizations would be possible by rearranging terms based on the commutative and
distributive properties of some operations such as additions and multiplications. In the considered exam-
ple one could for instance replace the subexpression

0.5*lambda*Trace(Grad(u)+Grad(u)’+Grad(u)’*Grad(u))*Id(meshdim) (E10)

with

Trace(Grad(u)+Grad(u)’+Grad(u)’*Grad(u))*0.5*lambda*Id(meshdim) (E11)

20

so that the diagonal matrix 0.5*lambda*Id(meshdim) could be precomputed as a constant. Such rearrang-
ing optimizations are not implemented in GetFEM yet, hence the user is expected to provide all relevant
expressions in an adequately factorized form, with constants grouped together, in order to avoid compu-
tational losses.

After the construction of the optimized DAG for a given expression, a symbolic differentiation step
may be necessary if the order of the provided expression is lower than the order of the assembled term.
For example, if a Jacobian matrix has to be assembled but the provided expression is only first order, this
will be automatically differentiated to the corresponding second order term. In general, if necessary, the
symbolic differentiation rules will be applied once or even twice to the already optimized DAG, representing
the provided expression. Most of the GWFL operators include in their definitions either the corresponding
symbolic differentiation rule or an equivalent lower level numerical implementation of it. For instance,
the implementation of the multiplication operator * includes the symbolic differentiation rule ∂(fg) =
∂fg + f∂g but the derivative of the matrix inverse operator Inv(A) is implemented as a C++ function
instead of being written out according to the corresponding symbolic rule ∂(A−1) = −A−1(∂A)A−1.
Whenever an expression has to be differentiated, the resulting DAG will be again analyzed semantically
and optimized, in order to mitigate the fairly high complexity that may arise from the application of the
chain rule.

Once the optimized DAG of the term to be assembled has been generated, with or without any inter-
mediate differentiation, the last step consists in compiling a sequence of basic instructions corresponding
to each node of the DAG. A tensor of appropriate dimensions is also associated to each of these in-
structions for storing the expected result. For the earlier discussed example for instance, the generated
instruction sequence is illustrated in Figure 5. It should be noted that the described assembly procedure
includes the vectorization with respect to the active degrees of freedom in the current element, discussed
in the previous subsection. The tensor t16

ijk in Figure 5, for example, is a rank three tensor just because
of this vectorization, with the first tensor index i actually denoting the position in the set of active basis
functions ϕu|T in the current element T . This extra tensor dimension propagates to the result tensor t17

i ,
the elementary vector, which holds residual values to be transferred to all degrees of freedom in the global
residual vector that are active in the current element. An extra instruction O performs the weighted
summation over all integration points in the current element, and a final instruction P, executed only at
the last integration point per element, performs the actual assembly, adding the computed elementary
vector to the correct indices in the global residual vector.

All tensors involved in the compiled instruction list are in principle of constant size, independent of
the current element and integration point. This allows to allocate all tensors involved in the assembly
procedure only once and avoid any memory reallocation during the actual assembly. This is in general
true for uniform finite element meshes with a constant number of degrees of freedom per element. If
different finite element types are mixed in the same mesh, an additional instruction is added for resizing
any tensors that depend on the number of degrees of freedom in the current element. In that sense, for
meshes with multiple finite element types it is computationally favorable to number the elements clustered
in groups of similar element types in order to minimize the need for reallocations.

It is important here to briefly describe the actual C++ implementation of the final compilation of the
processed expression into a sequence of basic instructions. The compilation algorithm produces a list of
function calls which correspond to each node crossed when transversing the DAG from the leafs (sinks) to
the root (source). To achieve a computationally efficient implementation, the function calls are without
passing of arguments of any kind. Instead, the necessary memory allocation and wiring of input and

21

output quantities of these function calls occurs in an appropriate structure generated by the expression
compilation algorithm. The building block for this structure is the instruction class conceptually shown in
Figure 6, which implements the function call in its exec() method and occupies memory only for the output
tensor and possibly some internal data. It will typically also include C++ references to output tensors of
other instructions in the DAG for giving access to all required input. The compilation procedure consists
in constructing a list with instances of pre-implemented instruction classes corresponding to each node in
the DAG and initialize these instances appropriately. Once the list is produced, the exec() method of all
instruction instances in the list will be successively called at each integration point. The DAG structure
ensures that when the exec() method of an instruction is called, all necessary input is already available
from the prior execution of its dependencies.

...

Figure 6: Structure of a typical instruction class implementing a node in the GWFL DAG and example
of compiled list of instruction class instances.

Based on the previous description, the term compilation in this context is to be understood in the
sense of producing a sequence of function calls to actually precompiled basic instructions acting on an
appropriately initialized data structure. This is in contrast to generation and compilation of C or C++
code involving a call to an external compiler, as in FEniCS [23]. Being able to do the compilation of
an expression at runtime offers great flexibility and allows to easily and efficiently update the expression
between load steps to account for example for possibly evolving terms. The use of C++ references for
achieving the necessary flow of data between instructions avoids any redundant memory allocations or
copying of values from one instruction to another. A single call per instruction to its exec() method
is actually the only well defined computational penalty of this approach, compared to the low level
compilation approach. The cost of calling a C++ virtual method without arguments is comparable
to a simple memory access operation and it is hence negligible compared to the time spent inside the
function. This is is especially the case for the assembly of second order terms, where the computations
performed inside each instruction are comparably heavier. A GWFL-based reimplementation of a large
collection of PDE terms in GetFEM, has led to significant performance gains against most of the manual
implementations. Minor losses were only observed for a combination of very simple PDE terms and linear
elements.

The example DAG of Figure 5 represents a very simple situation with a single variable and a single
assembly term. For coupled problems and more advanced constitutive laws, DAGs can become much more
complicated. In order to approach the absolutely minimum number of necessary computations, operation

22

trees of different terms to be evaluated on the same elements and with the same integration method are
combined together and the search for repeated subexpressions and corresponding simplifications are made
on the combined set of operation trees. The resulting single DAG can be very complex, but this treatment
ensures that no subexpression repeated in different terms, will be evaluated more than once. Obviously,
the more complex the considered problem, the largest the gain from this optimization procedure compared
to a traditional implementation where contributions of different PDE terms are assembled independently.

As a final comment, we need to underline the importance of the simplicity of the proposed generic
weak form language. Although the language includes a very comprehensive set of operators, its syntax
is extremely simple, much closer to a mathematic language than a programming language. The lack
for instance of if-conditions, loops or local variables as part of the language is a conscious choice, very
essential not only for maintaining a certain simplicity in the language and its implementation but also for
achieving high efficiency based on conceptually rather simple optimizations.

4.3 Performance

High level and very universal modeling environments are normally associated with inferior performance
both in terms of memory usage and computational efficiency. However, the above described optimizations
show a potential for computational gains through a high level automated modeling approach, which are
hard to match through a manual low level implementation. Of course, such gains from avoiding repeated
calculations of intermediate quantities will only become decisive for the overall computational performance
if 1) the cost of parsing and high-level compilation of GWFL expressions is small and scalable with
increasing expression size, and 2) the remaining parts of the implementation have similar performance to
more specific low level implementations.

Parsing of GWFL strings is implemented in GetFEM based on standard C++ strings and a usual
recursive algorithm of approximately linear complexity. Recorded timings of the expression parsing,
generation of the computation DAG, c.f. Figure 5, and eventual derivation of higher order weak forms,
have demonstrated that the computational cost of the GWFL operations, performed once per assembly,
is far from becoming a bottleneck.

Regarding the non-GWFL part of GetFEM, the underlying semi-automated finite element infrastruc-
ture relies heavily on lazy, i.e. on demand, computations and caching of intermediate results, to achieve
similar performance with purely manual implementations. To mention geometric transformations as an
example, GetFEM uses a memory pool to store and retrieve values, gradients or Hessians of relevant
shape functions, evaluated only once at all involved integration points. As a general comment, caching
of intermediate results favors computational efficiency at the cost of memory usage. On the other side,
reusing objects by means of a memory pool is a mechanism which both favors memory and computational
efficiency and it can actually lead to computational gains also compared to manual implementations, in
which case reusing of results between very remote parts of the code is harder to achieve.

For strongly nonlinear and highly coupled problems that the presented solution is meant for, residual
vector and Jacobian matrix assemblage can comprise a quite significant computational load, compared to
the solution of linear systems. Fortunately, assemblage is trivially parallelizable. GetFEM includes both
OpenMP and MPI parallelizations of the assembly of GWFL expressions, based on partitioning of the
computational mesh with METIS [16] and storage of these partitions in mesh regions, c.f. subsection 3.1.

23

4.4 Interpolate transformations

Interpolate transformations were presented in subsection 2.7 as a major feature that endows the GWFL
with considerably extended expressive capabilities. Apart from the possibility of defining interpolate trans-
formations symbolically using GWFL expressions, explained in subsection 2.7, the GWFL implementation
in GetFEM allows to define custom interpolate transformations programmatically by overloading a C++
abstract base class described in Figure 7.

Figure 7: Interpolate transformation class archetype (virtual interpolate transformation base class).

In the most general case, the implementation of the transform method of this class will for a given point
X return information about the transformed point Y(X), but it will also upon request return numerical
results for all derivatives of the transformation required in Eq. (10). Derivatives ∂Y/∂ui with respect to
any variable ui can be requested by including the name of the variable ui in the derivatives input/output
argument of the transform method. Upon execution of the method, appropriate tensors will be evaluated
and stored in the same argument for each requested derivative. Moreover, if a variable ui is used in the
considered interpolate transformation through another interpolate transformation, the application of the
chain rule for nested transformations can be requested by a corresponding entry in the passed derivatives
argument with a non-empty name for the nested transformation.

The programming of the computation of derivatives for a transformation is usually the most work-
intensive task in implementing a custom interpolate transformation. The GWFL expression based trans-
formations, raytracing and neighbor element transformations, discussed in subsection 2.7, are all derived
from the archetype shown in Figure 7.

5 Examples

This section presents two representative numerical models implemented with the help of GWFL, that
demonstrate modeling techniques with relevance for multiphysics problems. First, a relatively simple
continuum mechanics problem is solved, mainly for showing the expressive power and compactness of the
proposed language. Subsequently, a more advanced multiphysics example with several coupled variables
demonstrates the versatility of GWFL in accounting for complex couplings between different physics.
Code excerpts are provided for the two models implemented in Python in a total of approximately 110
and 160 lines, respectively.

24

5.1 Hyperelastic membrane and follower loads

For the first example, a circular membrane is considered, fixed at its circumference and subjected to
an incremented pressure on one side. The heavily stretched membrane at increased pressure, will also
become thinner, leading to significant thickness variations. Beyond some point, deformations will localize
to the most thinned region causing the membrane to burst. The maximum pressure before this instability
occurs defines the pressure capacity of the membrane.

This is a rather simple problem for moderate loads, but significant challenges occur when the onset of
localization is approached. In such high load situations, a very accurate membrane element is required,
linked to a robust underlying material model suitable for very large strains. Moreover, a numerical
continuation scheme is required for tracking the process of localization.

In its reference configuration, the membrane of this example is considered planar and perpendicular to
the z-axis. A displacements field u is considered to describe the overall shape of the deformed membrane
with respect to its reference configuration. Moreover, if the initial normal unit vector on the membrane
is mapped to a vector n in the deformed configuration, it is easy to show that the deformation state of
each point of the membrane can be represented by a deformation gradient matrix in the form

F =

1 + ux,x ux,y nx
uy,x 1 + uy,y ny
uz,x uz,y nz


The vector field n is considered here as an additional field with 3 components to solve for, apart from the
displacements field u. Its magnitude essentially expresses the actual thickness of the membrane relative
to its initial thickness

Given the aforementioned expression for the deformation gradient F as a function of ∇u and n, any
hyperelastic material law can be defined in terms of F . In the present example, a neo-Hookean material
is considered, according to the strain energy density

W (∇u, n) =
κ

2
(ln|F |)2 +

µ

2

(
|F |−2/3 ‖F‖2 − 3

)
,

with κ and µ respectively denoting the initial bulk and shear moduli. By using W as the integrand G0

of a zero order term F0 according to Eq. (1), involving the two field variables u and n, the kinematics
and constitutive behavior of the considered membrane are fully defined. The deformed state of the
membrane in equilibrium can then be easily found by solving the strain energy minimization problem on
the functional F0.

It only remains to provide a weak form term for the applied load on the membrane. The work conjugate
tractions to the displacements field u for different kinds of follower loads are summarized in Table 4. In
the present case, the applied pressure on one side of the membrane acts normal to the deformed membrane
and it is defined per area of the deformed membrane, so that the expression in the upper right corner of
the table will be used. For a membrane initially lying in the xy-plane with the overpressure on its bottom
side, one can use

N = (0, 0,−1)T and q = λ pmax,

where λ is a scalar load multiplier for performing numerical continuation and pmax a user defined maximum
pressure. A first order term according to Eq. (3) can then be used for representing the applied load, with
the integrand

G1(∇u, n ; δu) =
(
λpmax|F |F−TN

)
· δu

25

Table 4: Follower load q on a surface as a function of the deformation gradient F , and the normal and
tangent vectors N and T in the reference configuration.

q per undeformed area q per deformed area

q acting normal to the surface q
F−TN

‖F−TN‖
q|F |F−TN

q acting tangent to the surface q
FT

‖FT‖
q|F |

∥∥F−TN∥∥ FT

‖FT‖

Figure 8 presents simulation results at different load steps, showing the actual thickness distribution
over the deformed membrane. The numerical continuation algorithm has tracked the maximum applied
load of the membrane corresponding to λ = 0.6912 at load step 50 and could further simulate the
localization phase of the deformation up to the final bursting of the membrane.

For the implementation of this model in GetFEM, the mesh shown in Figure 8 was used with 9-node
quadratic quadrilateral elements for both unknown fields u and n. The model was implemented in Python
and the most essential parts of the implementation are provided in the code listings below. The mesh
generation, the definition of a finite element space and the definition of an appropriate integration method
are done with

mesh = gf.Mesh("import", "structured_ball",
"GT=’GT_QK(2,2)’;ORG=[0,0];SIZES=[50];NSUBDIV=[10,3];SYMMETRIES=0")

mesh.transform([[1,0],[0,1],[0,0]]) # convert the 2D mesh to 3D
mesh.set_region(DIR_BOUNDARY, mesh.outer_faces(2))
mf = gf.MeshFem(mesh, 3) # vector FEM with 3 components per node
mf.set_classical_fem(2) # second order Lagrangian FEM
mim = gf.MeshIm(mesh, 5) # degree 5 integration method, i.e. 3x3 points

Then a model object is created, all relevant variables and problem constants are defined and the two
weak form terms representing the aforestated hyperelastic strain energy function and the follower load,
are added to the model. Last, a homogeneous Dirichlet condition is imposed on the displacements at the
external circumference of the membrane.

step 0, λ = 0 step 100, λ = 0.615 step 200, λ = 0.585 step 250, λ = 0.643

Figure 8: Deformation of a circular membrane under pressure, with diameter of 100 mm, initial thickness
of 2 mm and, Young’s modulus 50 MPa, Poisson ratio 0.4, and pmax = 1 MPa.

26

md = gf.Model("real")
md.add_fem_variable("u", mf) # displacements variable
md.add_fem_variable("n", mf) # deformed normal vector variable
md.set_variable("n", md.interpolation("[0,0,1]", mf, -1))
md.add_initialized_data("gamma", 0.) # numerical continuation load multiplier
md.add_initialized_data("pmax", pmax) # maximum pressure
md.add_initialized_data(’kappa’, kappa) # initial bulk modulus
md.add_initialized_data(’mu’, mu) # initial shear modulus
md.add_initialized_data(’H’, H) # membrane thickness

md.add_macro("F", "[1,0,0;0,1,0;0,0,0]+Grad(u)+n@[0,0,1]") # deformation gradient
md.add_nonlinear_term(mim, "H*0.5*kappa*sqr(log(Det(F)))+"

"H*0.5*mu*(pow(Det(F),-2/3)*Norm_sqr(F)-3)")
md.add_nonlinear_term(mim, "gamma*pmax*Det(F)*((Inv(F)’*[0,0,-1]).Test_u)")
md.add_Dirichlet_condition_with_multipliers(mim, "u", mf, DIR_BOUNDARY)

The subsequent call to the numerical continuation solver within a corresponding loop is omitted here in
the interest of space, but these remaining steps are also implemented in a comparably compact manner.
Just to give an impression about the use of GWFL for preparing post-processing output, Von Mises
stresses are calculated and exported with

VM = md.local_projection(mim, "sqrt(1.5)*Norm(mu*pow(Det(F),-5./3.)"
"*Deviator(Left_Cauchy_Green(F)))", mfout)

mfout.export_to_vtk("membrane_VM.vtk", mfout, VM, "Von Mises Stress")

where mfout is a discontinuous Langrangian finite element space, used only for post-processing.

5.2 Phase field model of hydrogen assisted crack propagation

Hydrogen assisted crack propagation is a typical multiphysics problem, involving elasticity with fracture
damage and diffusion of hydrogen. There is a strong bidirectional coupling between the two subproblems
with the elastic stresses affecting the diffusion of hydrogen and at the same time the hydrogen concentra-
tion having an impact on the damage behavior. Here, we present a reimplementation and extension of a
model from the literature, with the help of GWFL.

Considering a solid with bulk modulus κ and shear modulus µ, subjected to small strains due to a
displacements field u, its elastic energy density function is

ψ0(∇u) =
κ

2
(∇ · u)2 + µ ‖Dev (∇su)‖2 .

The fracture phase field model proposed by [28], introduces a damage field variable d, which leads to a
degradation in stiffness as it increases from zero to one. The evolution of the damage variable is governed
by the critical energy release rate parameter Gc and the length scale parameter l. The model proposed
by [27] additionally introduces the hydrogen concentration C as an unknown field, and accounts for a
dependence of the fracture parameter Gc on C. The diffusion of hydrogen in the material is coupled to
the mechanical stresses, as hydrogen is attracted to regions of lower hydrostatic pressure p.

In order to avoid the occurrence of second order spatial derivatives with respect to the displacement
field u in the hydrogen diffusion equation, which are difficult to treat numerically, the hydrostatic pressure
p is considered as an additional unknown field. This results in a model with the four unknown fields u,
d, p and C, in contrast to the three fields used in [27]. Moreover, we add an inertia term based on the
material density constant ρ.

27

Following the time discretization proposed in [28], the governing equations for the time step dtn =
tn − tn−1 can be cast into a weak form consisting of four first order terms∫

Ω
G1a(d,∇u ; ∇δu) + G1b(d,∇u,∇d ; δd,∇δd)

+ G1c(p, d,∇u ; δp) + G1d(C,∇p,∇C ; δC,∇δC) dΩ = 0 ∀ δu, δp, δd, δC.

The three integrands G1a, G1b and G1d, are adopted from [27], with only small modifications. By including
inertia forces, with acceleration approximated recursively in a backward Euler sense, the first integrand
becomes

G1a = ρ
(
(u− un−1)/dtn − u̇n−1

)
/dtn · δu+ g(d)

(
κ (∇ · u) I + µDev(∇su)

)
: ∇δu, (20)

where un−1 and u̇n−1 = (un−1−un−2)/dtn−1, are displacements and velocities at the previous time instant
tn−1, and g(d) = (1− d)2 + k1 is degradation function with a small positive constant k1.

Following the model from the literature, the second integrand is

G1b = −2(1− d)Hn(∇u) δd+
Gc(C)

l

(
d δd+ l2∇d · ∇ δd

)
, (21)

with

Hn = max
(
ψ0(∇u),Hn−1

)
and Gc =

(
1− χ C

C + c1

)
Gc0,

where Gc0 is the critical energy release rate in the hydrogen free material and χ and c1 are additional
material parameters.

The pressure variable p can be defined as equal to −g(d)κ∇ · u through the weak form integrand

G1c = (p+ g(d)κ∇ · u) δp, (22)

and finally, the steady state form of the hydrogen diffusion equation is expressed through

G1d = (∇C + c2C∇p) · ∇δC, (23)

where c2 is a material parameter describing the attraction of hydrogen due to pressure gradients.
The following code excerpts assume a 2D mesh defined in GetFEM, along with appropriate finite

element spaces mfu, mfd, mfp and mfC corresponding to the four unknown fields. Quadratic, 9-node quadri-
lateral elements are used for mfu and mfd, while linear 4-node elements are used for mfp and mfC. Moreover,
mim4 and mim9 represent integration methods with 4 and 9 integration points per element, respectively,
while mimd4 and mimd9 are so called mesh im data objects for storing scalar data on the integration points
of the two aforementioned integration methods. In this context, all problem unknowns, data and state
variables can be added to a GetFEM model md with

md.add_fem_variable("u", mfu) # displacements field
md.add_fem_variable("d", mfd) # fracture phase field
md.add_fem_variable("p", mfp) # hydrostatic pressure field
md.add_fem_variable("C", mfC) # hydrogen concentration field
md.set_variable("C", C0*np.ones(mfC.nbdof()))
md.add_fem_data("u_prev", mfu)
md.add_fem_data("v_prev", mfu)
md.add_im_data("psi0_max", mimd9)
Definition of constants (Dt, kappa, mu, rho, Gc0, l, C0, chi, c1, c2)
md.add_initialized_data(...name, ...value)

28

The state variables u prev and v prev, corresponding to un−1 and u̇n−1, are stored in the same finite
element space as u, while the state variable psi0 max, corresponding to the maximum reference energy
Hn−1, is stored on all relevant integration points. The constant C0 is simply used as an initial and
boundary condition value for the hydrogen concentration variable C. The presented governing equations
can then be implemented in GWFL as compact as listed in the following code excerpt.

md.add_linear_term(mim9, "rho/Dt*((u-u_prev)/Dt-v_prev).Test_u")
md.add_macro("degradation", "sqr(1-d)+1e-7")
md.add_macro("deveps", "Sym(Grad(u))-Div(u)/3*Id(2)")
md.add_macro("psi0", "(0.5*kappa*sqr(Div(u))+mu*Norm_sqr(deveps))")
md.add_macro("Gc", "(1-chi*C/(C+c1))*Gc0")
md.add_nonlinear_term(mim9, "degradation*(kappa*Div(u)*Id(2)+2*mu*deveps):Grad(Test_u)")
md.add_nonlinear_term(mim9, "(-2*(1-d)*max(psi0_max,psi0)*Test_d"

"+Gc*(d/l*Test_d+l*Grad(d).Grad(Test_d)))")
md.add_nonlinear_term(mim4, "(p+degradation*kappa*Div(u))*Test_p")
md.add_nonlinear_term(mim4, "(Grad(C)+c2*C*Grad(p)).Grad(Test_C)"

"+1e3*pos_part(2*d-1)*(C-C0)*Test_C")

The deviatoric strain definition in the macro deveps, assumes a 2D problem domain and plane strain
conditions. It should also be noted that the provided implementation extends the diffusion Eq. (23) from
the literature, by imposing a reference hydrogen concentration value C0 in all damaged regions of the
domain, characterized by d > 0.5, through the extra penalization term

k2 〈2d− 1〉 (C − C0) δC,

with k2 being a moderately large positive penalization factor.

Figure 9: Obtained fracture phase field (left), hydrogen concentration [ppmw] (center) and hydrostatic
pressure [MPa] (right), at an imposed average vertical strain of 0.00266. Reference hydrogen concentration
of 0.5 [ppmw], strain rate of 2 · 10−4 [1/s], density ρ = 8 · 10−9 [t/mm3], and remaining model parameters
as in [27].

The definition of Dirichlet boundary conditions on u and C is skipped here, as it is rather trivial as

29

shown in the first example. To complete the presentation of all essential parts of the implementation, the
code for updating the three state variables for the next time step is listed below.

md.set_variable("u_prev", md.variable("u"))
md.set_variable("v_prev", md.interpolation("(u-u_prev)/Dt", mfu))
md.set_variable("psi0_max", md.interpolation("max(psi0_max,psi0)", mimd9))

To close this example, Figure 9 shows representative results for the fields d, C and p in a single edge
notched specimen under mode I loading. Instead of defining the initial crack as a discontinuity in the
computational mesh, it is represented by initializing the state variable psi0 max, corresponding to H−1, to
some large value in all elements in a given region. Representative timings for single residual vector and
Jacobian matrix assemblies as well as for a single non-symmetric linear system solution with MUMPS [2]
are given in Table 5.

Table 5: Assembly and linear solution timings for example 2 on Intel ® Xeon ® CPU E5-2660 v3
(2.60GHz).

Mesh Degrees of freedom Assembly Linear
size Displacement Total Residual Jacobian solution

80× 60 38962 69249 80 ms 350 ms 1700 ms
160× 120 154722 272889 320 ms 1400 ms 8500 ms

6 Concluding remarks

Numerical modeling for scientific applications follows a general trend in software towards a less error-
prone development through less code duplication and a higher level of automation. In this context, this
paper has provided software design and implementation details for a highly automated finite element
modeling framework. As the main ingredient for this automation, a proposed generic weak form language
has been presented both from a theoretical and an implementation perspective, focusing on its potential
for combining a high level of automation with computational efficiency.

The value of the introduced ASCII text based language as a suitable universal format for formulat-
ing arbitrarily coupled systems of partial differential and algebraic equations has been discussed. More
specifically, the interpolate transformation mechanism, incorporated in the language, has received special
attention due to its significant contribution to the achieved expressive power of the proposed language. A
wide range of numerical methods such as mortar and unilateral contact as well as discontinuous Galerkin
methods can be implemented with the help of this mechanism.

At a more technical level, the runtime compilation of the generic weak form language expressions
has been explained and conceptually compared to alternative solutions such as just-in-time compilation,
highlighting the possible computational efficiency gains. Other relevant innovations and software archi-
tecture decisions regarding the overall GetFEM framework that implements the proposed language have
also been presented and justified.

The included examples have indicated the potential of the proposed automation for gains in coding
and debugging time. Certainly, different types of models and modeling needs exist beyond the presented
examples and language functionalities. However, there is also a set of more advanced features already

30

integrated in GetFEM/GWFL but not covered here. These features, including levelset and XFEM capa-
bilities as well as static condensation of internal variables based on local equations described in GWFL,
will in the future demonstrate the extendibility of GWFL to even more complex modeling scenarios.

Appendix

Table 6: Naming of common geometric transformations and corresponding reference elements in GetFEM.

GT PK(p,k) Simplicial element in Rp of degree k. E.g. GT PK(3,1) is a linear
tetrahedral element.

GT QK(p,k) Hypercube element in Rp of degree k. E.g. GT QK(3,2) is a 27-node
hexahedral element.

GT PRISM(p,k) Prismatic element in Rp of degree k. E.g. GT PRISM(3,1) is a 6-node
wedge element.

GT PYRAMID(k) Quadrilateral base pyramids in 3D, either linear or quadratic (k =
1, 2).

GT Q2 INCOMPLETE(p) Quadratic serendipity parallelepiped elements in 2D (p=2) and 3D
(p=3), respectively corresponding to 8-node quadrilateral and 20-node
hexahedral elements.

GT PRODUCT(a,b) Tensor product of transformations. E.g. the product of a linear tri-
angular element and a line element GT PRODUCT(GT PK(2,1),GT PK(1,1))
is equivalent to GT PRISM(3,1).

Table 7: Naming of common numerical integration methods in GetFEM.

IM GAUSS1D(k) Gauss-Legendre quadrature rule on a 1D element with
k/2 + 1 points, integrating polynomials of degree k exactly.

IM TRIANGLE(k) Integration method of order k (up to 13) on a triangle.

IM QUAD(k) Integration method of order k (up to 17) on a quadrilateral.

IM TETRAHEDRON(k) Integration method of order k (up to 8) on a tetrahedron.

IM PYRAMID(IM) Transforms a hexahedron into a pyramid integration
method.

IM STRUCTURED COMPOSITE(IM,s) Refines the integration method IM using s subdivisions.

31

Table 8: Naming of common finite element types in GetFEM.
Name τ -equiv. Vector Element description

FEM PK(n,k) Yes No Lagrange of degree k on a n-dimensional simplex (seg-
ment, triangle, tetrahedron, ...).

FEM QK(n,k) Yes No Lagrange of degree k on a segment, quadrilateral, hexa-
hedron, ...

FEM HERMITE(n) No No Hermite on a n-dimensional simplex.

FEM ARGYRIS No No Argyris on a triangle. Conformal C1-element, polynomial
of degree 5.

FEM PYRAMID QK(k) Yes No Lagrange of degree k = 1 or 2 on a pyramid with rational
shape functions on the reference element.

FEM RT0(n) No Yes Raviart-Thomas vector element of lowest order on a n-
dimensional simplex.

FEM NEDELEC(n) No Yes Nedelec vector element of order 1 on a n-dimensional
simplex.

FEM HTC TRIANGLE No No Hsieh-Clough-Tocher on a triangle. Composite element,
piecewise polynomial of degree 3.

FEM PRODUCT
(FEM1,FEM2)

Yes - Tensor product of two (τ -equivalent) ele-
ments. E.g. FEM QK(2,1) can be written as
FEM PRODUCT(FEM PK(1,1),FEM PK(1,1)).

References

[1] G. Amberg, R. Tönhardt, and C. Winkler. Finite element simulations using symbolic computing.
Math. Comput. Simulat., 49(4):257 – 274, 1999.

[2] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multifrontal solver
using distributed dynamic scheduling. SIAM J. Matrix Anal. A., 23(1):15–41, 2001.

[3] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II – a general purpose object oriented finite
element library. ACM T. Math. Software, 33(4):24/1–27, 2007.

[4] K.-J. Bathe and F. Brezzi. A simplified analysis of two plate bending elements — the mitc4 and
mitc9 elements. In G. N. Pande and J. Middleton, editors, Numerical Techniques for Engineering
Analysis and Design, pages 407–417, Dordrecht, 1987. Springer Netherlands.

[5] M. Bergot, G. Cohen, and M. Duruflé. Higher-order finite elements for hybrid meshes using new
nodal pyramidal elements. J. Sci. Comput., 42(3):345–381, 2010.

[6] D. Boffi, F. Brezzi, and M. Fortin. Mixed finite element methods and applications. Springer Series in
Computational Mathematics. Springer, 2013.

[7] P. G. Ciarlet. The finite element method for elliptic problems. Classics in Applied Mathematics,
40:1–511, 2002.

32

[8] A. Dhooge, W. Govaerts, and Y. A. Kuznetsov. Matcont: A matlab package for numerical bifurcation
analysis of odes. ACM T. Math. Software, (31):141 – 164, 2003.

[9] D. Di Pietro and A. Ern. A hybrid high-order locking-free method for linear elasticity on general
meshes. Computer Methods in Applied Mechanics and Engineering, 283:1 – 21, 2015.

[10] V. Domı́nguez and F.-J. Sayas. Algorithm 884: A simple Matlab implementation of the Argyris
element. ACM T. Math. Software, 35(2):16/1–11, 2008.

[11] C. Geuzaine and J.-F. Remacle. Gmsh: A 3-d finite element mesh generator with built-in pre- and
post-processing facilities. Int. J. Numer. Meth. Eng., 79(11):1309–1331, 2009.

[12] R. D. Graglia and I.-L. Gheorma. Higher order interpolatory vector bases on pyramidal elements.
IEEE T. Antenn. Propag., 47:775–782, 1999.

[13] F. Hecht. C++ tools to construct our user-level language. ESAIM-Math. Model. Num., 36(5):809–
836, 2002.

[14] F. Hecht. New development in freefem++. J. Numer. Math., 20(3-4):251–265, 2012.

[15] M. Heil and A. L. Hazel. oomph-lib – An object-oriented multi-physics finite-element library. In Hans-
Joachim Bungartz and Michael Schäfer, editors, Fluid-Structure Interaction, pages 19–49. Springer
Berlin Heidelberg, 2006.

[16] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998.

[17] R. Kirby. A general approach to transforming finite elements. SMAI Journal of Computational
Mathematics, 4:197–224, 2018.

[18] J. Korelc. Automatic generation of finite-element code by simultaneous optimization of expressions.
Theor. Comput. Sci., 187(1):231 – 248, 1997.

[19] J. Korelc. Automation of primal and sensitivity analysis of transient coupled problems. Comput.
Mech., 44(5):631–649, 2009.

[20] D. C. Kozen. The design and analysis of algorithms. Springer, 1992.

[21] T. Ligurský and Y. Renard. A continuation problem for computing solutions of discretised evolution
problems with application to plane quasi-static contact problems with friction. Comput. Method.
Appl. M., (280):222 – 262, 2014.

[22] T. Ligurský and Y. Renard. Bifurcations in piecewise-smooth steady-state problems: abstract study
and application to plane contact problems with friction. Comput. Mech., 56(1):39 – 62, 2015.

[23] A. Logg, K. A. Mardal, and G. N. Wells. Automated solution of differential equations by the finite
element method. Lect. Notes Comp. Sci., 84:1–736, 2012.

[24] A. Logg and G. N. Wells. DOLFIN: Automated finite element computing. ACM T. Math. Software,
37(2):20/1–28, 2010.

33

[25] K. Long, P. T. Boggs, and B. G. van Bloemen Waanders. Sundance: High-level software for PDE-
constrained optimization. Sci. Programming-Neth., 20(3):293–310, 2012.

[26] K. Long, R. Kirby, and B. G. van Bloemen Waanders. Unified embedded parallel finite element
computations via software-based frechet differentiation. SIAM J. Sci. Comput., 32(6):3323–3351,
2010.

[27] E. Mart́ınez-Pañeda, A. Golahmar, and C. F. Niordson. A phase field formulation for hydrogen
assisted cracking. Comput. Method. Appl. M., 342:742 – 761, 2018.

[28] C. Miehe, M. Hofacker, and F. Welschinger. A phase field model for rate-independent crack prop-
agation: Robust algorithmic implementation based on operator splits. Comput. Method. Appl. M.,
199(45-48):2765–2778, 2010.

[29] K. Poulios and Y. Renard. An unconstrained integral approximation of large sliding frictional contact
between deformable solids. Computers & Structures, 153:75–90, 2015.

[30] C. Prud’homme. A domain specific embedded language in C++ for automatic differentiation, pro-
jection, integration and variational formulations. Sci. Programming-Neth., 14(2):81–110, 2006.

[31] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T.T. McRae, G. T. Bercea,
G. R. Markall, and P. H.J. Kelly. Firedrake: Automating the finite element method by composing
abstractions. Acm Transactions on Mathematical Software, 43(3):2998441, 2016.

[32] K. Rupp. Symbolic integration at compile time in finite element methods. Proceedings of the Inter-
national Symposium on Symbolic and Algebraic Computation ISSAC, pages 347–354, 2010.

[33] P. S. Wang. Finger - a symbolic system for automatic-generation of numerical programs in finite-
element analysis. J. Symb. Comput., 2(3):305–316, 1986.

[34] T. Zimmermann and D. Eyheramendy. Object-oriented finite elements I. principles of symbolic
derivations and automatic programming. Comput. Method. Appl. M., 132(3-4):259–276, 1996.

34

	Introduction and aim
	The generic weak form language
	Zero-order terms, functionals
	First order terms, residuals
	Second order terms, Jacobians
	Algebraic variables
	The generic weak form language
	Modeling automation
	Interpolate transformations

	Software architecture
	Meshes and integration methods
	Finite element description
	The model and workspace objects

	Implementation aspects
	Elementary computations and assembly
	Compilation of GWFL expressions and optimization
	Performance
	Interpolate transformations

	Examples
	Hyperelastic membrane and follower loads
	Phase field model of hydrogen assisted crack propagation

	Concluding remarks

