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Abstract. In this paper, we consider dynamical systems where the graph of the relations
between state, input and output variables switches between different configurations, according
to the action of a switching time signal. Moreover, in each configuration the relations between
the variables are known only for being zero or nonzero. Switching structured systems of this
kind are described by families of simple, directed graphs. They can be used to model complex
networks of systems as well as systems of systems for which the only available information
consists in the patterns that the set of the interconnections between the components, or agents,
may assume in different situations. Using an approach that is conceptually similar to the
geometric approach developed for linear time-invariant systems, suitable notions of invariance
and controlled invariance are introduced and related to the action of feedback. These notions are
used to provide general solvability conditions for the disturbance decoupling problem expressed
in graph-theoretic terms.

1. Introduction
In dealing with dynamical systems, one is often interested in properties that depend on the
existence of relations between internal and/or external variables, namely on the structure of the
system, rather than in properties that depend on the actual values that specify the relations,
namely on the coefficients of the systems. In that case, one speaks of structured system and
represents them by using simple, directed graphs, whose vertices symbolize the state variables
of the system and whose edges symbolize nonzero relations between them. The system properties
that are expressed by graph-theoretic characteristics are called structural or, since they hold for
any value of the nonzero parameters of the system, generic. Complex dynamical objects, like
networks of systems and systems of systems, are conveniently modeled as structured systems by
associating the vertices of the graph to the agents of the network or to the components of the
overall system. Thus, features are pointed out that depend on the influence that each agent or
component exerts on the others, rather than on the individual dynamics of each of them.
The study of linear structured systems was initiated in [1] and, since then, it has received
contributions by many authors. A comprehensive survey of classic results dates back to the
early 2000s [2]. How to model and to study complex systems, like networked systems and
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systems of systems, by means of structured systems is the object of later papers, like [3], [4], [5],
[6], [7], [8], [9], [10], [11] and the references therein.
In a recent paper [12], the authors introduced the notions of controlled invariance and
conditioned invariance for a class of structured systems characterized by the fact that each input
channel, as well as each output channel, only affects one single vertex of the representing graph.
Structured systems of that kind are considered, e.g., in [13], [14], [15], [16], [17] and in some
examples of [3]. In the paper mentioned above [12], the novel definition of essential state feedback
has allowed the notion of controlled invariance for the considered class of structured systems
to be characterized in terms of dynamics. Consequently, necessary and sufficient conditions for
solvability of the disturbance decoupling problem, either by state or by output feedback, have
been established.
Here, we consider structured systems whose structure can vary over the time, thus causing, for
instance, a nonzero relation between two variables to vanish or a new relation between previously
unrelated variables to appear, as specified by a switching time signal. A system of this kind,
that we call switching structured system, is modeled by a finite indexed family of structured
systems (called modes), whose graphs have the same set of vertices, and by a switching time
signal, which is assumed to be a piece-wise constant function from R+ to the set of indices
of the family of graphs. Switching structured systems can be used to describe and to study
complex dynamical behaviours that are due, for instance, to the action of switches in electrical
circuits, to modifications in the topology of communication networks, to variations of the team
in multi-agent systems. Examples are given at the end of Section 2.
By introducing a suitable, novel notion of switching controlled invariance, we develop a
graph-theoretic approach to analysis and synthesis problems for switching structured systems,
conceptually akin to the geometric approach for classical linear systems of [19] and [20]. In
particular, we show that controlled invariance can be interpreted in terms of feedbacks whose
action modifies the modes of the switching structured system at issue. This fact leads to the
main theoretic contribution of this paper: the notion of switching essential state feedback, defined
in graph-theoretic terms.
The developed approach can be used to study a number of control problems that, in particular,
include disturbance decoupling problems by means of state feedback. In particular, using
controlled invariance, we can state necessary and sufficient solvability conditions that are
analogous to those provided in the framework of classical linear systems by the geometric
approach. This characterization of the solvability of the disturbance decoupling problem,
together with the procedure to construct a solution (if it exists), is the second contribution
of this work.
The paper is organized as follows. In Section 2, we introduce the class of switching structured
systems considered and we describe their graph representation. In Section 3, we introduce
the fundamental notions of switching invariance and switching controlled invariance in graph-
theoretic terms. Then, we define the notion of essential switching feedback and we show how
it can be used to characterize switching controlled invariance. In Section 4, we study the
disturbance decoupling problem by means of state feedback and we characterize its solvability
by means of necessary and sufficient conditions. Proofs of our results will appear in complete
form elsewhere. Section 5 contains conclusions and description of future work.
Notation Given two sets A and B, we will denote by A\B the set defined by A\B = {a ∈
A, such that a /∈ B} and by A 
B the set defined by A 
B = (A ∪B)\(A ∩B).

2. Preliminaries
Let H = {1, ..., h̄} be a finite set of indices and consider the set Γ = {(G, Eh)}h∈H , where, for
any h ∈ H, (G, Eh) is a simple directed graph (i.e. a directed graph without multiple edges and
without auto-loops) with a finite set of vertices G = {v1, ..., vn} and set of edges Eh ⊆ G × G.
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Note that all graphs in Γ have the same set of vertices and different sets of edges. If (vj , vi) ∈ Eh,
for some h ∈ H, we say that vj is the tail and vi is the head of the edge (vj , vi) ∈ Eh. A path
P in (G, Eh) is an ordered finite sequence of edges (e1, ..., em), all belonging to Eh, in which the
head of the edge ek coincides with the tail of the edge ek+1. The tail of the first edge in a path
P is called the tail of the path and the head of the last edge is called the head of the path.
To each of the graphs (G, Eh) ∈ Γ, we associate an n × n matrix Ah = [aij ] whose entries are
real, mutually independent parameters that satisfy the following conditions

• ahij 6= 0 for i 6= j if and only if (vj , vi) ∈ Eh (i.e. there is an edge from vj to vi in (G, Eh)).

Note that no condition is imposed on ahij for i = j.

Letting Ginh = {vh1, ..., vhmh
} ⊆ G, for any h ∈ H, be a subset of vertices, we associate to the

pair ((G, Eh), Ginh ) an n × mh matrix Bh = [bhij ] whose entries are real, mutually independent
parameters that satisfy the following conditions

• bhij = 1 (or more generally bhij 6= 0) if vhj = vi (that is: if the j-th element vhj of Ginh is
equal to the i-th element vi of G)

• bhij = 0 otherwise.

Note that in any column of Bh there is just one entry different from 0, while in any row of Bh
there is at most one entry different from 0.
Letting Gouth = {vh1, ..., vhph} ⊆ G, for any h ∈ H, be a subset of vertices, we associate to the
pair ((G, Eh), Gouth ) a ph × n matrix Ch = [chij ] whose entries are real, mutually independent
parameters that satisfy the following conditions

• chij = 1 (or more generally chij 6= 0) if vhj = vi (that is: if the j-th element vhj of Gouth is
equal to the i-th element vi of G)

• chijj = 0 otherwise.

Note that in any row of Ch there is just one entry different from 0, while in any column of Ch
there is at most one entry different from 0.
In representing graphically the triplet ((G, Eh), Ginh , G

out
h ) for a given h ∈ H, we use arrows

between vertices to indicate edges belonging to Eh and we mark the elements of Ginh by ingoing
arrows and the elements of Gouth by outgoing arrows, as in Figure 1 (where G = {v1, ..., v5},
Eh = {(v1, v2), (v1, v3), (v2, v4), (v3, v2), (v4, v3), (v4, v5)}, Ginh = {v1, v2}, Gouth = {v5}).
Let S denote the set of piece-wise constant, left-continuous functions σ : R+ → H with
a finite number of discontinuities in any interval. The switching structured system
Σσ((G, Eσ), Ginσ , G

out
σ )) associated to the set of triplets {(G, Eh), Ginh , G

out
h ), h ∈ H} is the

switching linear time-invariant system described in parametric state-space form by the equation

Σσ ≡
{
ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t)
y(t) = Cσ(t)x(t)

(1)

with state x ∈ Rn, input u ∈ Rm and output y ∈ Rp. The structured linear systems

Σh ≡
{
ẋ(t) = Ahx(t) +Bhu(t)
y(t) = Chx(t)

with h ∈ H are the modes of the switching structured

system Σσ and σ(t) represents the time signal that governs the switching from one mode to
another. Generally, in dealing with structured switching systems, we are interested in features
and properties that hold for all σ(t) ∈ S .
Switched structured systems can be used to model complex dynamical structures, like networks
of systems or systems of systems, that can switch between different configurations. In that case,
the vertices of the graph G represent the systems, or dynamical agents, of the network and the
edge (vj , vi) ∈ Eh represents a link, whose weight is expressed by the parameters ahij , that account
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for the way in which the (state of the) agent vj affects the (dynamics of the) agent vi when the
network is in the configuration corresponding to the index h. The dynamical structure modeled
by Σσ switches between different configurations according to the time signal σ(t) and, as a
consequence, some links may disappear and new ones may appear, accounting for a modification
of the relationship between agents. The vertices in Ginh and those in Gouth correspond to agents
that, respectively, can be influenced by inputs coming from the external environment or that
send outputs to the external environment when the system is in the configuration corresponding
to the index h.

Figure 1: Graphical representation of a
triplet ((G, Eh), Ginh , G

out
h ).

Figure 2: An electrical circuit with one
switch.

Example 1 Consider the electrical circuit of Figure 2, whose configuration varies according to
the action of the switch. Choosing the current through the inductor L and the voltage across the
capacitor C1 as the state variables x1(t) and x2(t), respectively, and the output y(t) equal to the
current through the inductor L if the switch is open and equal to the voltage across the capacitor
C1 if the switch is closed, we get the following equations for the two configurations:

Σ1 ≡

 ẋ1(t) = −R1
L x1(t) + 1

Lu(t)
ẋ2(t) = 0
y(t) = x1(t)

Σ2 ≡


ẋ1(t) = −R1

L(R1+R2)
(R2x1(t) + x2(t)) + 1

Lu(t)

ẋ2(t) = 1
C1(R1+R2)

(R1x1(t)− x2(t))
y(t) = x2(t)

Correspondingly, we have the switching structured system Σσ((G, Eσ), Ginσ , G
in
σ ), whose two

modes have the graphical representation given in Figure 3

Figure 3: Modes of the system Σσ((G, Eσ), Ginσ , G
in
σ ) that model the circuit of Figure 2.

Example 2 Consider a cyber-physical system consisting of agents that influence each other by
exchanging information through a communication network. If some links of the communication
network may be open or closed over a time interval, the system takes different configurations
and, without specifying its parameters, it can be conveniently modeled by a switching structured
system. Take, for instance, a set of three agents, whose dynamics is one-dimensional, and
assume that there are one-directional communication links from the agent v1 to the agents
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v2 and v3 and from the agent v2 to the agent v3. Assume that only one of the last two
communication links can be disabled at one time, otherwise they are both enabled; that only
agent v1 get inputs from the external environment and only agent v2 sends outputs to the
external environment. Then, the overall system can be described as Σσ(((G, Eσ), Ghσin,G

out
σ ))),

where H = {1, 2, 3}, G = {v1, v2, v3}, E1 = {(v1, v2), (v1, v3), (v3, v2)}, E2 = {(v1, v2), (v3, v2)},
E3 = {(v1, v2), (v1, v3)}, Gin1 = Gin2 = Gin3 = {v1}, Gout1 = Gout2 = Gout3 = {v2}.The switching
signal σ determines if both the communication links between v1 and v3 and between v3 and v2
are enabled (e.g. σ(t) = 1), if only the first one is disabled (e.g. σ(t) = 2) or if only the second
one is disabled (e.g. σ(t) = 3). The triplets ((G, Eh), Ginh , G

out
h ) for h = 1, 2, 3 are represented in

Figure 4. The modes Σ1, Σ2 and Σ3 of the systems have, respectively, the following equations:

Σ1 ≡


ẋ1(t) = a111x1 + b111u1(t)
ẋ2(t) = a121x1 + a122x2(t) + a132x3(t)
ẋ3(t) = a131x1 + a133x3(t)
y(t) = c111x3(t)

Σ2 ≡


ẋ1(t) = a211x1 + b211u1(t)
ẋ2(t) = a221x1 + a222x2(t) + a223x3(t)
ẋ3(t) = a233x3(t)
y(t) = c211x3(t)

Σ3 ≡


ẋ1(t) = a311x1 + b311u1(t)
ẋ2(t) = a321x1 + a322x2(t)
ẋ3(t) = a331x1 + a233x3(t)
y(t) = c311x3(t)

Figure 4: Graphical representation of the triplets ((G, Eh), Ginh , G
out
h ) for h = 1, 2, 3.

Example 3 The glucose metabolism in the human body can be represented as a switching
structured system which is triggered by the external signal consisting of ingestion of carbohydrates
as meals and snacks and which aims at reaching a target glycenmic level. As depicted in
Figure 5, the core of glucose homeostasis consists in the interactions between the liver and
the pancreas. The liver acts a glucose reservoir which releases glucose in blood plasma through
some glycogenesis process during fasting periods, like overnight periods. During prandial and
postprandial periods, the liver ”refills” the glucose reservoir as the full amount of carbohydrates
is not consumed in real-time. The pancreas produces essentially either insulin during prandial
and postprandial periods, or glucagon during fasting periods to regulate the glucose concentration
level in blood plasma. The interaction between the pancreas and the liver can be schematically
illustrated as in Figure 6, where the arrows describe how the blood glucose concentration G,
the state of the liver L, the blood plasma insulinemia I, the glucagon concentration in the blood
plasma A, the status of the pancreatic alpha cells α and the status of the pancreatic beta cells
β influence each other. The input CHO represents the disturbance caused by carbohydrates
ingestion. As shown by the basic glucose-insulin-glucagon model of [18], the overall regulation
mechanism splits into two actions, which are effective either during the prandial and postprandial
periods, when the beta cells produce a higher rate of insulin, or during fasting periods, when alpha
cells produce glucagon to stimulate glycogen release by the liver. We have therefore the two modes
graphically described in Figure 7: in case of hypoglycemia (G is below the target glycemic level),
the glucagon secretion is maximal, with an insulin secretion close to zero (Figure 7 on the left);
in case of hyperglycemia (G exceeds the target glycemic level) after ingestion of carbohydrates,
the insulin secretion will be maximal, with a glucagon secretion close to zero (Figure 7 on the
right).
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Figure 5: Glucose metabolism.
Figure 6: Functional scheme of the
glucose metabolism.

Figure 7: Modes of the system representing the glucose metabolism: hypoglycemia case (left)
and hyperglycemia case (right).

3. Invariance and controlled invariance
In this section, we extend to switching structured system the geometric notions that, in
accordance with the approach developed for linear systems in [19] and [20], characterize
invariance and controlled invariance for structured system (see [2], [12]).
In order to proceed, we introduce the following notions. Given a switching time signal σ(t) ∈ S ,
we denote by |σ(t)| = (h1, h2, ......), with hk ∈ H and hk 6= hk+1, the ordered sequence of different
values that are assumed by σ(t) as t goes from 0 to +∞. In practice, |σ(t)| describes the sequence
of modes that the system Σσ((G, Eσ), Ginσ , G

out
σ ) goes across when the implemented switching

time signal is σ(t).

Definition 1 Given a structured switching system Σσ((G, Eσ), Ginσ , G
out
σ ), a switching path

Ps in (G, Eσ) is an ordered finite sequence of edges (eh1 , eh2 , ..., ehm) ∈ Eh1 × ...× Ehm, in which
the head of the edge ehk coincides with the tail of the edge ehk+1

. The tail of the first edge in a
switching path Ps is called the tail of the switching path and the head of the last edge is called
the head of the switching path.

A switching path Ps in (G, Eσ), with Ps = (eh1 , eh2 , ..., ehm) ∈ Eh1 × ... × Ehm , indicates that
the agent represented by the tail of Ps, say v1, influences the dynamics of the agent represented
by the head of Ps, say vm, if the switching of Σσ is governed by a time signal σ̄ such that
|σ̄| = (..., h1, h2, ..., hm, ...).
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In a way conceptually similar to that followed in [12], we can introduce in our framework a
suitable notions of switching invariance and switching controlled invariance as follows.

Definition 2 Given a switching structured system Σσ((G, Eσ), Ginσ , G
out
σ ), a subset V ⊆ G of

vertices is said to be switching invariant for Σσ if, for any h ∈ H, (vj , vi) ∈ Eh with vj ∈ V
implies vi ∈ V .

Definition 3 Given a structured system Σσ((G, Eσ), Ginσ , G
out
σ ), a subset V ⊆ G of vertices is

said to be switching controlled invariant for Σσ if, for any h ∈ H, (vj , vi) ∈ Eh with vj ∈ V
implies vi ∈ V ∪Ginh .

The structural notion of controlled invariance can be characterized in dynamical terms by
using a suitable notion of feedbacks. Following the approach developed in [12], we focus on
switching state feedbacks that, acting on each mode of a given switching structured system
Σσ(G, Eh), Ginh , G

out
h ), modify the dynamics expressed by its underlying graph. Remarking that

the action of a state feedback on a mode Σh((G, Eh), Ginh , G
out
h ) may only involve the relationship

between any component of the state, i.e any element of G, and those components whose dynamics
is directly affected by the inputs, i.e any element of Ginh , we recall the definition below from [12].

Definition 4 Given the structured system Σh((G, Eh), Ginh , G
out
h ), an essential state feedback

consists of a subset Fh ⊂ G×Ginh such that (vj , vi) ∈ Fh implies i 6= j. The action of an essential
state feedback Fh on the structured system Σh((G, Eh), Ginh , G

out
h ) gives rise to the compensated

switching structured system Σcomp
h ((G, Eh
Fh), Ginh , G

out
h ), where Eh
Fh = (Eh∪Fh)\(Eh∩Fh).

Now, we can give the following novel definition.

Definition 5 Given the switching structured system Σσ(G, Eσ), Ginσ , G
out
σ ), an essential

switching state feedback Fσ consists of a set {Fh}h∈H , where Fh is an essential state feedback
for Σh((G, Eh), Ginh , G

out
h ) for any h ∈ H.

Note that applying an essential switching state feedback Fσ to Σσ((G, Eσ), Ginσ , G
out
σ ) means to

modify Eh (unless Fh = {∅}), either by adding new elements of the form (vj , vi) with vi ∈ Ginh
to it or by removing elements of the same form, if present, from it. This modifies the set of
switching paths and hence the way in which agents influences each other as the system switches.
For any h ∈ H, we associate to the essential switching state feeback Fh a linear relation of
the form u = Fhx, where Fh = [fhij ] is an mh × n matrix whose entries are real, mutually
independent parameters that satisfy specific conditions as described below. First, let us remark
that if (vj , vi) belongs to Eh ∩ Fh, then we have that vi is, for some k, the k-th element of Ginh ,
i.e. vi = vhk ∈ Ginh , and, hence, bhik 6= 0 in the matrix Bh. Now, let us take the parameters fhij
as follows

• fhij 6= 0 if and only if (vj , vi) ∈ Fh
• fhij = −ahij/bhik if (vj , vi) ∈ Fh with vi = vik ∈ Ginh and ahij is different from 0.

Note that no condition is imposed on fhij if i = j and if, for i 6= j and (vj , vi) ∈ Fh with

vi = vhk ∈ Ginh , one has ahik = 0.
With the above choice, the compensated system Σcomp

σ ((G, Eσ 
 Fσ), Ginσ , G
out
σ ) turns out to be

defined in parametric form by the following set of equations

Σcomp
σ ≡

{
ẋ(t) = (Aσ +BσFσ)x(t) +Bσu(t)
y(t) = Cσx(t)

(2)

Example 4 In the same vein of Example 2, let us consider the switching structured system
Σσ(G, Eσ), Ginσ , G

out
σ ), where H = {1, 2}, whose modes are defined by the triplets represented

in Figure 8.By applying the switching essential state feedback Fσ with F1 = {(v3, v1)} and
F2 = {(v4, v1)}, we obtain the compensated system Σcomp

σ (G, Eσ 
 Fσ), Ginσ , G
out
σ ) whose modes

are defined by the triplets represented in Figure 9.
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Figure 8: Graphical representation of the triplets ((G, Eh), Ginh , G
out
h ) for h = 1, 2.

Figure 9: Graphical representation of the triplets ((G, Eh 
 Fh), Ginh , G
out
h ) for h = 1, 2.

We can now give a basic dynamical characterization of switching controlled invariance that turns
out to be formally analogous to the one given for the corresponding notion in the classical linear
framework (compare with [19], [20]).

Proposition 1 Given a switching structured system Σσ((G, Eσ), Ginσ , G
out
σ ), a subset of vertices

V ⊆ G is switching controlled invariant for Σσ if and only if there exists an essential switching
state feedback Fσ such that V is switching invariant for the structured switching compensated
system Σcomp

σ ((G, Eσ 
 Fσ), Ginσ , G
out
σ ).

Any essential switching state feedback Fσ that has the property of making V switching invariant
in Σcomp

σ ((G, Eσ 
 Fσ), Ginσ , G
out
σ ) is called a friend of V .

As switching controlled invariant subspaces in the framework of linear systems, switching
controlled invariant subsets of vertices form a semi-lattice with respect to union and inclusion
of sets. This property implies the result of the following proposition.

Proposition 2 Given a switching structured system Σσ((G, Eσ), Ginσ , G
out
σ ) and a subset K ⊆ G,

there exists a maximal subset of vertices V such that V ⊆ K and V is switching controlled
invariant for Σσ. We denote such subset by V ∗(Eσ, Ginσ ,K) or simply by V ∗ if no confusion
arises.

Given a structured switching system Σσ((G, Eσ), Ginσ , G
out
σ ) and a subset K ⊆ G, it is possible

to construct V ∗(Eσ, Ginσ ,K) by considering the sequence of subset Vk ⊆ G defined recursively by

V0 = K
Vk+1 = Vk\

⋃
h∈H{vj , such that (vj , vi) ∈ Eh and vi /∈ Vk ∪Ginh }.

(3)

The sequence Vk converges to V ∗(Eσ, Ginσ ,K) in at most r = card(K) steps.

4. Disturbance decoupling by state feedback
A structured switching system subject to disturbance is a system Σσ((G, Eσ), Ginσ , G

out
σ ) in which

Ginh is partitioned as Ginh = Gch ∪ Gdh (possibly with Gc ∩ Gd = ∅) for any h ∈ H. Interpreting
Σσ as a network of agents, Gdh describes the set of agents that are influenced by a disturbance
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input when the network is in the configuration corresponding to the index h, while, in the same
situation, Gch describes the set of agents that are influenced by a control input. For a structured
switching system subject to disturbance we can consider the problem of finding a feedback such
that, in the compensated system, the disturbance cannot influence the output. In order to
analyze this problem, let us remark that the disturbance input influences the output if and only
if there is a switching path Ps in (G, Eσ) with tail in Gdh and head in Gouth′ for some h, h′ ∈ H.
Accordingly, we state the disturbance decoupling problem in the following way.

Problem 1 Given a disturbed structured switching ystem Σσ((G, Eσ), (Gcσ ∪ Gdσ), Goutσ ), the
Disturbance Decoupling Problem by State Feedback (DDPSF) consists in finding
an essential switching state feedback Fσ, if any exists, such that in the compensated system
Σcomp
σ ((G, Eσ 
Fσ), (Gcσ ∪Gdσ), Goutσ ) there are no switching paths in (G, Eσ 
Fσ) with tail in Gdh

and head in Gouth′ for any h, h′ ∈ H.

Applying the procedure that has been used to derive the system of equations (1), we get the
following representation in parametric terms of the disturbed system Σσ((G, Eσ), (Gcσ∪Gdσ), Goutσ )

Σσ ≡
{
ẋ(t) = Aσx(t) +Bσu(t) +Dσd(t)
y(t) = Cσx(t)

(4)

where, the matrices Bh = [bhij ] and Dh = [dhij ] have dimensions, respectively, n × ch and

n × dh, with ch = card(Gch) and dh = card(Gdh) and, letting Gch = {vh1, ..., vhch} and
Gdh = {vh1, ..., vhdh}, their entries satisfies the following conditions

• bhij = 1 (more generally bij 6= 0) if vhj = vi ∈ (i.e. the j-th element of Gch is equal to vi)

• dij = 1 (more generally bij 6= 0) if vhj = vi ∈ (i.e. the j-th element of Gdh is equal to vi)

• bij = 0 and dij = 0 otherwise

with control input u ∈ Rch and disturbance input d ∈ Rdh .
Solvability of the DDPSF stated above in the framework of structured switching sytems means
solvability of the problem for all values of the parameters which appear in (4). The following
theorem gives necessary and sufficient condition for the solvability of the DDPSF and it indicates
how to construct a switching feedback Fσ that solves it, if any exists.

Theorem 1 Given a structured switching disturbed system Σσ((G, Eσ), (Gcσ ∪ Gdσ), Goutσ ), the
associated DDPSF is solvable if and only if the condition Gdh ⊆ V ∗(Eσ, Gcσ, G\ ∪i∈I Gouti ) is
satisfied for all h ∈ H.

Hint of proof Sufficiency. Let Fσ be a friend of V ∗(Eσ, Gcσ, G\ ∪i∈I Gouti ), so that
V ∗(Eσ, Gcσ, G\ ∪i∈I Gouti ) is switching invariant in Σ((G, Eσ 
 Fσ), (Gcσ ∪Gdσ), Goutσ ). The above
condition implies that, for any h ∈ H, any edge in Eσ 
 Fσ with tail in Gdh has its head in
V ∗(Eσ, Gcσ, G\∪i∈IGouti ) and, therefore, in G\∪i∈IGouti . This implies that there are no switching
paths in (G, Eσ 
 Fσ) with tail in Gdh and head in G′outh for any h, h′ ∈ H.
Necessity. Let Fσ be a solution of the DDPSF and consider the largest switching invariant
V ⊆ G\∪i∈IGouti for the compensated system Σ((G, Eσ
Fσ), (Gcσ∪Gdσ), Goutσ ). Clearly, Gdh ⊆ V
for all h ∈ H and V is switching controlled invariant for Σσ((G, Eσ), (Gcσ ∪ Gdσ), Goutσ ). The
conclusion follows by maximality of V ∗(Eσ, Gcσ, G\ ∪i∈I Gouti ). 2

Example 5 Consider the simple example provided by the disturbed structured switching systems
Σσ((G, Eσ), (Gcσ∪Gdσ), Goutσ ), with H = {1, 2}, whose modes are defined by the triplets represented
in Figure 10. Computations show that Gdh ⊆ V ∗(Eσ, Gcσ, G\ ∪i∈I Gouti ). Therefore, the condition
of Theorem 1 is satisfied. The switching state feedback Fσ = {F1, F2}, with F1 = {(v1, vc}
and F2 = {(vd, vc}, gives rise to the compensated systems Σcomp

σ ((G, Eσ 
Fσ), (Gcσ ∪Gdσ), Goutσ ),
whose modes are defined by the triplets represented in Figure 11 and it solves the DDPSF.
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Figure 10: The modes of Σσ((G, Eσ), (Gcσ ∪Gdσ), Goutσ ) for h = 1, 2.

Figure 11: The modes of Σcomp
σ ((G, Eσ 
 Fσ), (Gcσ ∪Gdσ), Goutσ ) for h = 1, 2.

5. Conclusions
A novel approach based on the notion of controlled invariance and of essential feedbacks has been
developed for the class of structured systems whose structure varies according to a switching
time signal. This approach makes possible to characterize solvability of classical disturbance
decoupling problems and to construct solutions. Future work will aim at exploiting this approach
in other non-interacting control problems for switching structured systems and in developing
specific applications to complex networked systems and systems of systems.
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