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April 4, 2020

Abstract

In this paper we study a type of games regularized by the relative entropy, where the
players’ strategies are coupled through a random environment variable. Besides the exis-
tence and the uniqueness of equilibria of such games, we prove that the marginal laws of
the corresponding mean-field Langevin systems can converge towards the games’ equilibria
in different settings. As applications, the dynamic games can be treated as games on a
random environment when one treats the time horizon as the environment. In practice,
our results can be applied to analysing the stochastic gradient descent algorithm for deep
neural networks in the context of supervised learning as well as for the generative adversarial
networks.

1 Introduction

The approximation of the equilibria is at the heart of the game theory. The classic litera-
ture introduces a natural relation connecting the equilibria of the games and the optima of
the sequential decision problems. This leads to a fruitful research on the topics such as ap-
proachability, regret and calibration, see the survey by V. Perchet [26] and the books by N.
Cesa-Bianchi and G. Lugosi [5] and by D. Fudenberg and D. K. Levine [14]. In particular,
the gradient-based strategy often plays a crucial rule in approximating the equilibria. In the
present paper we study the analog to the gradient-based strategy in the continuous-time setting,
namely, we aim at approximating the equilibria of games using the diffusion processes encoded
with the gradients of potential functions.

Consider a game with n players. The mixed Nash equilibrium is defined to be a collection
of probability measures (ν∗,i)i=1,··· ,n such that

ν∗,i ∈ argmin
νi

∫
f i(x1, · · · , xn)νi(dxi)

∏
j 6=i

ν∗,j(dxj), (1.1)

which means that each player can no longer improve his performance by making a unilateral
change of strategy. Note that in this classical setting, the potential function of each player

νi 7→ F i
(
νi, (νj)j 6=i

)
:=

∫
f i(x1, · · · , xn)νi(dxi)

∏
j 6=i

νj(dxj)
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is linear. In this paper we shall allow the potential function to be nonlinear in view of the appli-
cations, in particular, to the neural networks (see Section 4). As another generalization to the
classic theory, we consider games on a random environment. Introduce a space of environment
Y and fix a probability measure m on it. We urge each player to choose a strategy among the
probability measures νi on the product space Rni×Y such that the marginal law of νi on Y, νiY ,
matches the fixed distribution m. Typically, in our framework we consider the game of which
the Nash equilibrium is a collection of probability measures (ν∗,i)i=1,··· ,n on the product spaces
such that

ν∗,i ∈ argmin
νi:νiY =m

∫
f i(x1, · · · , xn, y)νi(dxi|y)

∏
j 6=i

ν∗,j(dxj |y)m(dy) +
σ2

2
H(νi|Leb×m), (1.2)

where ν(·|y) denotes the conditional probability given y, and we add the relative entropy H as a
regularizer. In contrast to the conventional definition of the Nash equilibrium (1.1), where the
players’ strategies are uncorrelated, in our setting the strategies of the players are allowed to be
coupled through the environment. Moreover, the general framework of the present paper goes
beyond the particular game (1.2), by allowing the cost function to be nonlinear in (νi)i=1,··· ,n.
As an application, we observe (Example 2.4) that relaxed dynamic games can be viewed as
games on random environment, where the environment Y is the time horizon.

One of our main contributions is the first order condition of the optimization on the prob-
ability space given a marginal constraint (Theorem 3.1), which naturally provides a necessary
condition for being a Nash equilibrium of a game on random environment (Corollary 3.3). This
result is a generalization to the first order condition in Proposition 2.4 in [18] for the optimiza-
tion on the probability space without marginal constraint. The key ingredient for this analysis
is the linear functional derivative δF

δν , first introduced for the variational calculus and recently
popularized by the study on the mean-field games, see e.g. Cardaliaguet et al. [1], Delarue et
al. [9, 10], Chassagneux et al. [6]. Roughly speaking, we prove that

if ν∗ ∈ argminν:νY =m F (ν) + σ2

2 H(ν|Leb×m),

then ∇x δFδν (ν∗, x, y) + σ2

2 ∇x ln ν∗(x|y) = 0, for all x, m-a.s. y. (1.3)

Besides the first order condition for the Nash equilibrium, we also provide sufficient conditions
on the linear functional derivative so that the game on a random environment admits a (unique)
equilibrium.

The first order equation in (1.3) clearly links the minimizer ν∗ (or the Nash equilibrium in
the context of games) to the invariant measure of a system of diffusion processes, see (2.2) below.
Since the dynamics of the diffusion processes depends on their marginal distributions (in other
word, McKean-Vlasov diffusion, see [24,27]) and involves the gradients of the potential functions,
we name the system mean-field Langevin (MFL) system. Further, we study the different settings
where the marginal laws of the MFL system converge to the unique invariant measure, which,
due to the first order condition, must coincide with the Nash equilibrium of the game on random
environment. We remark that in order to fit a wider class of applications (in particular those
related to neural networks), we are interested in the MFL systems of which the coefficients are
not necessarily convex in the state variable (as in [3, 4]) and do not necessarily have non-small
dependence on the marginal laws. The non-small mean-field dependence is a common technical
constraint in the previous studies on the (exponential) ergodicity of McKean-Vlasov diffusions,
see e.g. [12, 13]. One important contribution of this paper is to get around this constraint and
prove the exponential ergodicity by introducing a structural condition on the dependence of the
marginal laws (see Theorem 3.12). This approach is original to our knowledge. In the special
case of one-player game (in other word, optimization), once the potential function is convex,
we use an argument, similar to that in [17, 18], based on the Lasalle’s invariant principle to
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prove the (non-exponential) ergodicity of the MFL system under quite mild conditions on the
coefficients.

In view of applications, our result can be used to justify the applicability of the gradient
descent algorithm for training (deep) neural networks. As mentioned in [17, 18, 22, 23], the
supervised learning with (deep) neural networks can be viewed as a minimization problem (or
optimal control problem in the context of deep learning) on the space of probability measures,
and the gradient descent algorithm is approximately a discretization of the corresponding mean-
field Langevin dynamics. The present paper provides a more general framework for such studies.
In particular, it is remarkable that in Section 4 we provide a theoretically convergent numerical
scheme for the generative adversarial networks (GAN) as well as a way to characterize the
training error.

The rest of the paper is organized as follows. In Section 2 we introduce the definitions of
a game on a random environment and the corresponding MFL system. In Section 3 the main
theorems of the paper are stated without proofs. In Section 4 we present the applications to the
dynamic games and the GAN. Finally in Section 5 we present the proofs of the main theorems.

2 Notation and definitions

2.1 Preliminary

Denote by Y the space of environment, and assume Y to be Polish. Throughout the paper, we fix
a probability measure m on Y. Define the product space R̄d := Rd×Y for d ∈ N. In this paper we
consider a game in which the players choose strategies among Π := {π̄ ∈ Pp(R̄d) : π̄(Rd, ·) = m},
where Pp(R̄d) is the space of probability measures on R̄d with finite p-moments for some p ≥ 1.
We say that a function F : Π→ R is in C1 if there exists a function δF

δν : Π× R̄d → R such that
for all ν, ν ′ ∈ Π

F (ν ′)− F (ν) =

∫ 1

0

∫
R̄d

δF

δν

(
(1− λ)ν + λν ′, x̄

)
(ν ′ − ν)(dx̄)dλ. (2.1)

We will refer to δF
δν as the linear functional derivative. There is at most one δF

δν , modulo a
constant, satisfying (2.1).

Here is the basic assumption we apply throughout the paper.

Assumption 2.1 (basic assumption). Assume that for some p ≥ 1, the function F : Π → R
belongs to C1 and

• F is Wp-continuous, where Wp stands for the p-Wasserstein distance;

• δF
δπ̄ : (π̄, x, y) ∈ Π × Rd × Y 7→ δF

δπ̄ (π̄, x, y) ∈ R is Wp-continuous in π̄ and continuously
differentiable in x;

• δF
δπ̄ is of p-polynomial growth in x̄ = (x, y), that is, supπ̄∈Π

∣∣ δF
δπ̄ (π̄, x̄)

∣∣ ≤ C(1 + |x̄|p).

Remark 2.2. Since in our setting the law on the environment Y is fixed, by disintegration we
may identify a distribution π̄ ∈ Π with the probability measures

(
π(·|y)

)
y∈Y ⊂ Pp(R

d) such that

π̄(dx̄) = π(dx|y)m(dy).

2.2 Game on random environment

In this paper, we consider a particular game in which the strategies of the n players are correlated
through the random environment (or signal) Y. Let ni ∈ N for i = 1, · · · , n and N :=

∑n
i=1 n

i.
As mentioned before, the i-th player chooses his strategy (a probability measure) among Πi :=
{ν ∈ Pp(R̄n

i
) : ν(Rni , ·) = m}, while the joint distribution of the other players’ strategies belongs
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to the space Π−i := {ν ∈ Pp(R̄N−n
i
) : ν(RN−ni , ·) = m}. The i-th player aims at optimizing his

objective function F i : Πi ×Π−i → R. More precisely, he faces the optimization:

given µ ∈ Π−i, solve inf
ν∈Πi

F i(ν, µ).

In this paper, we are more interested in solving a regularized version of the game above. We
use the relative entropy with respect to Lebn

i ×m, denoted by H i, as the regularizer. Namely,
given µ ∈ Π−i the i-th player solves:

inf
ν∈Πi

V i(ν, µ), V i(ν, µ) := F i(ν, µ) +
σ2

2
H i(ν) for some σ > 0.

For π̄ ∈ Π, we denote by π̄i ∈ Πi its marginal distribution on R̄ni , and by π̄−i ∈ Π−i the
marginal distribution on R̄N−ni .

Definition 2.3. A probability measure π̄ ∈ Π is a Nash equilibrium of this game, if

π̄i ∈ arg min
ν∈Πi

V i(ν, π̄−i), for all i = 1, · · · , n.

Example 2.4. To have a concrete example of games on random environment, we refer to the
dynamic games, both discrete-time and continuous-time models. In the discrete-time case, let
Y := {1, · · · , T} for some T ∈ N and m be the uniform distribution on Y. Define the controlled
dynamics:

Θi
y = ϕiy(Θ

i
y−1, π

i(·|y), π̄−i), where π̄i(·, y) = πi(·|y)m(y), for y ∈ Y.

If the n players minimize the objective functions of the form f i
(
(Θi

y)y∈Y
)

by choosing the strategy
π̄i, then the game fits the framework of this paper.

Similarly for the continuous-time model, consider the space Y := [0, T ] for T ∈ R and let m
be the uniform distribution on the interval. Define the continuous-time dynamics:

dΘi
y = ϕi

(
πi(·|y), π̄−i,Θi

y, y
)
dy, where π̄i(·, dy) = πi(·|y)m(dy), for y ∈ Y.

If the n players minimize the objective functions of the form f i
(
(Θi

y)y∈Y
)

by choosing the strategy
π̄i, then this game also fits in the framework discussed above.

2.3 Mean-field Langevin system

For any fixed µ ∈ Π−i, we assume that F i(·, µ) : ν ∈ Πi 7→ F i(ν, µ) ∈ R satisfies Assumption 2.1.

The linear derivative is denoted by δF i

δν (·, µ, ·) : (ν, x̄i) 7→ δF i

δν (ν, µ, x̄i), with x̄i = (xi, y) ∈ R̄ni .
In order to compute Nash equilibria of the game on random environment, we are interested in
the following mean-field Langevin (MFL) dynamics:

dXi
t = −∇xi

δF i

δν
(π̄it, π̄

−i
t , Xi

t , Y )dt+ σdW i
t , for i = 1, · · · , n, (2.2)

where W = (W i)i is an N -dimension Brownian motion, Y is a random variable taking values
in Y and satisfying the law m, and π̄t := LawX̄t with X̄t := (X1

t , · · · , Xn
t , Y ). In this paper we

will discuss the relation between the MFL dynamics and the Nash equilibrium of the game on
the random environment.

Remark 2.5. Here are some important observations:

4



• The random variable Y plays the role of parameter in the MFL system. This leads us to
study the system:

dXy
t = −

(
∇xi

δF i

δν
(π̄it, π̄

−i
t , Xy,i

t , y)

)
i=1,··· ,n

dt+ σdWt, for m-a.s. y ∈ Y. (2.3)

Formally, the marginal laws of the MFL system above with a fixed y ∈ Y satisfy the
following system of Fokker-Planck equations:

∂tπ
i(·|y) = ∇xi ·

(
∇xi

δF i

δν
(π̄i, π̄−i, ·, y)πi(·|y) +

σ2

2
∇xiπi(·|y)

)
,

for all i = 1, · · · , n, m-a.s. y ∈ Y. (2.4)

• For fixed y ∈ Y, the dynamic systems for
(
Xi(y)

)
i

are only weakly coupled through the
marginal distributions.

• Although we name the system after Langevin, the drift term of the dynamics of the ag-
gregated vector (Xi)i=1,··· ,n is in general not in the form of the gradient of a potential
function.

3 Main results

3.1 Optimization with marginal constraint

One of our observations is the following first order condition of the optimization over the prob-
ability measures with marginal constraint.

Theorem 3.1 (first order condition). Let F : Π→ R satisfy Assumption 2.1. Define V (π̄) :=
F (π̄) + ηH(π̄) for some η > 0. If π̄∗ ∈ argminπ̄∈Π V (π̄), then

∇x
δF

δπ̄
(π̄∗, ·, y) + η∇x ln

(
π∗(·|y)

)
= 0 for m-a.s. y. (3.1)

Conversely, if we additionally assume that F is convex, then π̄∗ ∈ Π satisfying (3.1) implies
π̄∗ ∈ argminπ̄∈Π V (π̄).

Remark 3.2. We remark that

• the regularizer H(π̄) plays an important role for the proof of the necessary condition.
Without it, for π̄∗ ∈ argminπ̄∈Π V (π̄) we can only conclude that there is a measurable
function f : Y→ R such that

δF

δπ̄
(π̄∗, x, y) = f(y), π̄∗-a.s.;

• for the readers more interested in the minimization of the unregularized potential function
F , by standard argument (see e.g. [18, Proposition 2.3]) one may prove that under mild
conditions the minimum of F + ηH converges to the minimum of F as η → 0.

3.2 Equilibria of games on random environment

Applying the first order condition above to the context of the game on random environment,
we immediately obtain the following necessary condition for the Nash equilibria.
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Corollary 3.3 (Necessary condition for Nash equilibria). For i = 1, · · · , n and µ ∈ Π−i, let
F i(·, µ) : ν ∈ Πi 7→ F i(ν, µ) ∈ R satisfy Assumption 2.1. If π̄ ∈ Π is a Nash equilibrium, we
have for i = 1, · · · , n,

∇xi
δF i

δν
(π̄i, π̄−i, xi, y) +

σ2

2
∇xi ln

(
πi(xi|y)

)
= 0 for all xi ∈ Rni and m-a.s. y ∈ Y. (3.2)

We shall use the first order equation (3.2) to show the following sufficient condition for the
uniqueness of Nash equilibrium.

Corollary 3.4 (Uniqueness of Nash equilibrium: Monotonicity). The functions (F i)i=1,··· ,n
satisfy the monotonicity condition, if for π̄, π̄′ ∈ Π we have

n∑
i=1

∫ (
δF i

δν
(π̄i, π̄−i, x̄i)− δF i

δν
(π̄′i, π̄′−i, x̄i)

)
(π̄ − π̄′)(dx̄) ≥ 0.

We have the following results:

(i) for n = 1, if a function F satisfies the monotonicity condition then it is convex on Π.
Conversely, if F is convex and satisfies Assumption 2.1, then F satisfies the monotonicity
condition.

(ii) in general (n ≥ 1), for i = 1, · · · , n and any µ ∈ Π−i, let F i(·, µ) : ν ∈ Πi 7→ F i(ν, µ) ∈ R
satisfy Assumption 2.1 and (F i)i=1,··· ,n satisfy the monotonicity condition. Then for any
two Nash equilibria π̄∗, π̄′∗ ∈ Π we have (π̄∗)i = (π̄′∗)i for all i = 1, · · · , n.

Remark 3.5. Similar monotonicity conditions are common assumptions to ensure the unique-
ness of equilibrium in the game theory, in particular in the literature of mean-field games, see
e.g. [20].

As for the existence of Nash equilibria, we obtain the following result following the classical
argument based on the fixed point theorem.

Theorem 3.6 (Existence of equilibria). Assume that for i = 1, · · · , n, and µ ∈ Π−i

(i) the set argminν∈Πi V
i(ν, µ) is non-empty and convex;

(ii) the function F̃ i(π̄) := F i(π̄i, π̄−i) is Wp-continuous on Π;

(iii) the function F i(·, µ) : ν ∈ Πi 7→ F i(ν, µ) ∈ R satisfies Assumption 2.1, and there exist
some q ≥ q′ > 0, C, C ′ > 0 ∈ R such that for all π̄ ∈ Π we have

C ′|x̄i|q′ − C ≤ δF i

δν
(π̄i, π̄−i, x̄i) ≤ C|x̄i|q + C. (3.3)

Then there exists at least one Nash equilibrium π̄∗ ∈ Π for the game on random environment.

Remark 3.7. There are various sufficient conditions so that the set argminν∈Πi V
i(ν, µ) is con-

vex, for example, the function ν 7→ V i(ν, µ) is quasi-convex, or V i(ν, µ) has a unique minimizer.
That is why we leave the assumption (i) in the abstract form.
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3.3 Invariant measure of the MFL system

In view of the Fokker-Planck equation (2.4), the first order equation (3.2) appears to be a
sufficient condition for π̄ being an invariant measure of the MFL system (2.2). That is why we
consider the MFL dynamics as a reasonable tool to compute the Nash equilibria of the game
on random environment.

The following Theorem 3.8 suggests that proving the existence of Nash equilibria and the
uniqueness of the invariant measure, we can establish the equivalence between the invariant
measure of (2.2) and one Nash equilibrium. While the existence of Nash equilibria has been
discussed in Theorem 3.6, the uniqueness of invariant measure of mean-field dynamics is more
complicated and is indeed a long-standing problem in probability and analysis. We are going
to use the coupling argument in order to obtain the contraction result in Theorem 3.12.

Define the average Wasserstein distance:

Wp(π̄, π̄
′) :=

(∫
Y
Wp
p

(
π(·|y), π′(·|y)

)
m(dy)

) 1
p
,

and the spaces of flow of probability measures:

Cp([0, T ],Π) :=
{

(π̄t)t∈[0,T ] : for each t, π̄t ∈ Π, and t 7→ π̄t is continuous in Wp

}
,

Cp([0, T ],Π) :=
{

(π̄t)t∈[0,T ] : for each t, π̄t ∈ Π, and t 7→ π̄t is continuous in Wp

}
.

Theorem 3.8. For i = 1, · · · , n and µ ∈ Π−i, let F i(·, µ) : ν ∈ Πi 7→ F i(ν, µ) ∈ R satisfy
Assumption 2.1. Further assume that

• the initial distribution π̄0 = Law(X̄0) ∈ Π;

• for each i = 1, · · · , n, the function ∇xi δF
i

δν is Lipschitz continuous in the following sense∣∣∣∣∇xi δF iδν
(ν, µ, xi, y)−∇xi

δF i

δν
(ν ′, µ′, x′i, y)

∣∣∣∣
≤ C

(
Wp(ν, ν

′) +Wp(µ, µ
′) + |xi − x′i|

)
+ C0Wp

(
µ(·|y), µ′(·|y)

)
,

and satisfies

sup
ν∈Πi,µ∈Π−i,y∈Y

∣∣∣∣∇xi δF iδν
(ν, µ, 0, y)

∣∣∣∣ <∞. (3.4)

Then the MFL system (2.2) admits a unique strong solution in Cp([0, T ],Π) for all T > 0. In
particular, if C0 = 0 then the unique solution lies in Cp([0, T ],Π) for all T > 0. Moreover, each
Nash equilibrium π̄∗ defined in Definition 2.3 is an invariant measure of (2.2).

Remark 3.9. (i) The dependence on µ(·|y) of the function ∇xi δF
i

δν (ν, µ, xi, y) is inevitable for
some interesting examples such as (1.2) in the introduction, where under some mild conditions
we may compute

∇xi
δF i

δν

(
νi, (νj)j 6=i, x

i, y
)

:=

∫
∇xif i(x1, · · · , xi, · · · , xn, y)

∏
j 6=i

νj(dxj |y).

Note that when there is only one player, there is no such dependence.

(ii) The Lipschitz condition with respect to Wp(ν, ν
′) and Wp(µ, µ

′) can be replaced by the one
with respect toWp(ν, ν

′) andWp(µ, µ
′). The latter is weaker. Under such assumption we cannot

prove the particular case that the unique solution lies in Cp([0, T ],Π) for all T > 0 when C0 = 0.
In the following analysis of the one-player problem it is crucial for us that the solution is in
Cp([0, T ],Π), so we prefer to state the Lipschitz condition in its current form.
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Assumption 3.10. Let ψ : RN → RN . Assume that ψ is Lipschitz continuous and there exists
a continuous function η : (0,+∞) → R s.t. limr→+∞ η(r) = 0,

∫ 1
0 rη(r)dr < +∞ and for

x, x′ ∈ RN (x 6= x′)
|ψ(x)− ψ(x′)| ≤ |x− x′|η(|x− x′|).

Example 3.11. Let O be a compact set in RN . Then the projection function projO satisfies
Assumption 3.10, because∣∣projO(x)− projO(x′)

∣∣ ≤ ∣∣projO(x− x′)
∣∣ ≤ min

(
|x− x′|, |O|

)
= |x− x′|

min
(
|x− x′|, |O|

)
|x− x′|

,

where |O| := maxx∈O |x|.

For a probability measure ν ∈ P(RN ) we define the image measure νψ := ν ◦ ψ−1, and for
a probability measure π̄ ∈ P(RN ) we define π̄ψ(dx, dy) := πψ(dx|y)m(dy).

Theorem 3.12 (Uniqueness of invariant measure: Contraction). For i = 1, · · · , n and µ ∈ Π−i,
let F i(·, µ) : ν ∈ Πi 7→ F i(ν, µ) ∈ R satisfy Assumption 2.1. and consider a function ψ : RN →
RN satisfying Assumption 3.10. Assume that

• for each i = 1, · · · , n, the function ∇xi δF
i

δν is Lipschitz continuous in the following sense:∣∣∣∣∣
(
∇xi

δF i

δν
(π̄i, π̄−i, xi, y)

)
i=1,··· ,n

−
(
∇xi

δF i

δν
(π̄′i, π̄′−i, x′i, y)

)
i=1,··· ,n

∣∣∣∣∣
≤ γ

(
W1(π̄ψ, π̄′ψ) +W1

(
πψ(·|y), π′ψ(·|y)

))
+ C|xi − x′i|,

and (3.4) holds true;

• there is a continuous function κ : (0,+∞) → R s.t. lim sup
r→+∞

κ(r) < 0,
∫ 1

0 rκ(r)dr < +∞

and for any (π̄, y) ∈ Π× Y we have for all x, x′ ∈ RN (x 6= x′)

n∑
i=1

(xi − x′i) ·
(
−∇xi

δF i

δν
(π̄i, π̄−i, xi, y) +∇xi

δF i

δν
(π̄i, π̄−i, x′i, y)

)
≤ κ

(
|x− x′|

) ∣∣x− x′∣∣2 .
Let π̄0, π̄

′
0 ∈ Pq(R̄d) ∩ Π for some q > 1 be two initial distributions of the MFL system (2.2).

Then we have

W1(π̄t, π̄
′
t) ≤ e−cσ

2t 2

ϕ(R1)
W1(π̄0, π̄

′
0), (3.5)

where with κ̂(r) = κ(r) + 2γη(r) we define

ϕ(r) = exp
(
−1

2

∫ r
0
uκ̂+(u)
σ2 du

)
, c−1 =

∫ R2

0 Φ(r)ϕ(r)−1dr, Φ(r) =
∫ r

0 ϕ(s)ds,

R1 := inf{R ≥ 0 : κ̂(r) ≤ 0 for all r ≥ R},
R2 := inf{R ≥ R1 : κ̂(r)R(R−R1) ≤ −4σ2 for all r ≥ R}.

In particular, there is a unique invariant measure in ∪q>1Pq(R̄N ) ∩Π.

Remark 3.13. The contraction result above resembles the one in Theorem 2.3 of [13]. We
want to point out two major novelties:

(i) The dependence on the environment variable y is new, and that is why the contraction is
under the metric W1.

(ii) In [12, 13], concerned with the exponential ergodicity of McKean-Vlasov diffusion, one
needs to assume the small dependence on the marginal laws, that is, the Lipschitz constant
γ needs to be small enough. Here we get around the constraint by imposing the Lipschitz
continuity with respect to the W1 distance of the image measure π̄ψ where the function ψ
satisfies Assumption 3.10. This change allows wider applications of the contraction result.
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3.4 Special case: one player

When the problem degenerates to the case of a single player, the MFL dynamics becomes a
gradient flow and the function V = F + σ2

2 H is a natural Lyapunov function for the dynamics.

Theorem 3.14 (Gradient flow). Consider a function F satisfying Assumption 2.1 with p = 2.
Let the assumption of Theorem 3.8 hold true, and further assume that

• there is ε > 0 such that for all π̄ ∈ Π and y ∈ Y

x · ∇x
δF

δν
(π̄, x, y) ≥ ε|x|2, for |x| big enough; (3.6)

• for all π̄ ∈ Π and y ∈ Y, the mapping x 7→ ∇x δFδν (π̄, x, y) belongs to C3;

• for all y ∈ Y, the function (π̄, x) 7→ ∇x δFδν (π̄, x, y),∇2
x
δF
δν (π̄, x, y) are jointly continuous.

Then we have for s′ > s > 0

V (π̄s′)− V (π̄s) = −
∫ s′

s

∫
R̄N

∣∣∣∣∇x δFδν (π̄t, x, y) +
σ2

2
∇x ln

(
πt(x|y)

)∣∣∣∣2 π̄t(dx̄)dt (3.7)

Using an argument, similar to that in [17,18], based on the Lasalle’s invariant principle, we
can show the following theorem.

Theorem 3.15. Consider the following statements:

(i) π̄0 ∈ ∪q>2Pq(R̄N );

(ii.a) Y is countable;

(ii.b) Y = Rm, m is absolutely continuous with respect to the Lebesgue measure and the function

e−
2
σ2

δF
δν

(π̄,·)m is semiconvex in x̄ for any given π̄ ∈ Π.

Let the assumptions of Theorem 3.14 hold true. Further assume (i), (ii.a) or (i), (ii.b). Then
all the W2-cluster points of the marginal laws (π̄t)t≥0 of the MFL system (2.2) belong to the set

I :=

{
π̄ ∈ Π : ∇x

δF

δν
(π̄, ·, y) +

σ2

2
∇x ln

(
π(·|y)

)
= 0 m-a.s.

}
. (3.8)

Remark 3.16 (The limit set and the mean-field equilibria on the environment). Consider the
case where the probability measure on the environment m is atomless. In particular, for a fixed
y ∈ Y the probability π̄ ∈ Π does not depend on π(·|y). Therefore the equation in (3.8) is a
sufficient and necessary condition for

π(·|y) = argmin
ν∈Π

(∫
δF

δν
(π̄, x, y)ν(dx) +

σ2

2
H(ν|Leb)

)
, for m-a.s. y, (3.9)

where H(·|Leb) is the relative entropy with respect to the Lebesgue measure. If we view the
variable y as the index of the ‘players’, (3.9) indicates that all π̄ ∈ I are (mean-field) Nash
equilibria of the game where the y-player aims at:

inf
ν∈Π

(∫
δF

δν
(π̄, x, y)ν(dx) +

σ2

2
H(ν|Leb)

)
.

Corollary 3.17. If the function V is convex, the limit set I is a singleton and thus the marginal
laws (π̄t)t≥0 converge in W2 to the minimizer of V .
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4 Applications

4.1 Dynamic games and deep neural networks

As mentioned in Example 2.4, both discrete-time and continuous-time dynamic games can be
viewed as games on the random environment.

Take the continuous-time dynamic game as an example, in particular Y = [0, T ]. Consider
the controlled process of the i-th player

dΘi
y =

∫
ϕi
(
xi, π̄−i,Θi

y, y
)
πi(dxi|y)dy. (4.1)

and his objective function

F i(π̄i, π̄−i) :=

∫ T

0
ci
(
xi, π̄−i,Θi

y, y
)
πi(dxi|y)dy + gi(Θi

T ).

Define the Hamiltonian function H i(xi, µ, θi, y, p) := ci(xi, µ, θi, y) + p · ϕi(xi, µ, θi, y). Assume
that

• the coefficients ϕi, ci are uniformly Lipschitz in (xi, θi);

• ϕi, ci, gi are continuously differentiable in θi;

• ∇θiϕi,∇θici are uniformly Lipschitz in (xi, θi), and ∇θigi is uniformly Lipschitz in xi.

It follows from a standard variational calculus that

δF i

δν
(ν, µ, xi, y) = H i(xi, µ,Θi

y, y, P
i
y),

where Θi follows the dynamics (4.1) and P i is the solution to the linear ODE:

P iy = ∇θg(Θi
T ) +

∫ T

y
∇θH i(xi, µ,Θi

y, y, P
i
y)πi(dxi|y)dy.

Therefore, according to Theorem 3.12, the Nash equilibrium of this dynamic game can be
approximated by the marginal law of the MFL system.

In case the number of players n = 1, the marginal laws of the MFL system approximates the
minimizer of the optimization. There is a rising interest in modeling the forward propagation of
the deep neural networks using a controlled dynamics and in connecting the deep learning to the
optimal control problems, see e.g. [7,8,11,21]. For the controlled processes in the particular form
(4.1), we refer to Section 4 in [17] for the connection between the optimal control problem and
the deep neural networks. In particular, we remark that the backward propagation algorithm
is simply a discretization of the corresponding MFL dynamics.

4.2 Linear-convex zero-sum game and GAN

Consider the zero-sum game between two players, i.e. F 1 = −F 2(=: F ). For F satisfying the
assumption in Theorem 3.12, we may use the following MFL system to approximate the unique
Nash equilibrium: {

dX1
t = −∇x1

δF
δν (π̄1

t , π̄
2
t , X

1
t , Y )dt+ σdW 1

t ,

dX2
t = ∇x2

δF
δν (π̄2

t , π̄
1
t , X

2
t , Y )dt+ σdW 2

t .
(4.2)

Now we consider a particular subclass of the zero-sum games. Assume that F : (ν, µ) ∈
Π1 × Π2 7→ F (ν, µ) ∈ R is linear in µ and convex in ν, and define Ṽ (ν, µ) := F (ν, µ) +
σ2

2

(
H(ν)−H(µ)

)
. In particular,
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• δF
δµ does not depend on µ;

• the function Φ : ν 7→ maxµ∈Π2 Ṽ (ν, µ)− σ2

2 H(ν) is convex.

If the Nash equilibrium exists, denoted by π̄∗, by the standard argument we have

min
ν∈Π1

max
µ∈Π2

Ṽ (ν, µ) = Ṽ (π̄∗,1, π̄∗,2) = max
µ∈Π2

min
ν∈Π1

Ṽ (ν, µ).

It follows from Theorem 3.1 that µ∗[ν] := argmaxµ∈Π2 Ṽ (ν, µ) has the explicit density

µ∗[ν](x2, dy)

m(dy)
= C(ν, y)e

− 2
σ2

δF
δµ

(ν,x2,y)
,

where C(ν, y) is the normalization constant. Further, assume that the function Φ(ν) = Ṽ (ν, µ∗[ν])
satisfies the assumption of Theorem 3.15 and recall that Φ is convex, it follows from Corollary
3.17 that we may approximate the minimizer π̄∗,1 using the dynamics:

dXt = −∇x
δΦ

δν
(π̄t, Xt, Y )dt+ σdWt. (4.3)

Compared to the dynamics (4.2), the dynamics (4.3) enjoys the natural Lyapunov function Ṽ ,
i.e. t 7→ Ṽ (π̄t) decreases monotonically.

As an application, the generative adversarial networks (GAN) can be viewed as a linear-
convex game. Given a bounded, continuous, non-constant activation function ϕ, consider the
parametrized functions

{z 7→ E[ϕ(X, z)] : Law(X) = ν ∈ P2(Rn
2
)} (4.4)

as the options of the discriminators. The regularized GAN aims at computing the Nash equi-
librium of the game:

Define Ṽ (ν, µ) := −
∫
E[ϕ(X, z)](µ− µ̂)(dz)− 1

2λ
( ∫
|z|2µ(dz)− E[|X|2]

)
− σ2

2

(
H(µ)−H(ν)

)
{

Generator : sup
µ∈P2(Rn1 )

Ṽ (ν, µ)

Discriminator : inf
ν∈P2(Rn2 )

Ṽ (ν, µ)
,

where µ̂ ∈ P2(Rn1
) is the distribution of interest. Indeed, in order to compute the Nash

equilibrium of the game, one may rely on the MFL dynamics (4.2) and approximate its invariant
measure. This approach is endorsed by Theorem 3.12. Here we present another approach, which
exploits the particular structure of the linear-convex game. In particular, as discussed before,
the optimizer of the generator given ν ∈ P2(Rn2

) is explicit and has the density:

µ∗[ν](z) = C(ν)e−
2
σ2

(
E[ϕ(X,z)]+λ

2
|z|2
)
. (4.5)

Further for the potential function Φ(ν) := Ṽ (ν, µ∗[ν])− σ2

2 H(ν) we have

δΦ

δν
(ν, x) = −

∫
ϕ(x, z)(µ∗[ν]− µ̂)(dz) +

λ

2
|x|2. (4.6)

Then the strategy of the discriminator in the Nash equilibrium can be approximated by the
MFL dynamics (4.3). In the perspective of numerical realization, note that the law µ∗[ν] can
be simulated by the MCMC algorithms such as Metropolis-Hastings.

In order to illustrate the advantage of the algorithm using the MFL dynamics (4.3), here we
present the numerical result for a toy example. We are going to use the GAN to generate the
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samples of the exponential distribution with intensity 1. In this test, the optimal response of the
generator, µ∗[ν], is computed via Metropolis algorithm with Gaussian proposal distribution with
zero mean and variance optimised according to [15]. The discriminator chooses parametrized
functions among (4.4), where

ϕ(X, z) = C(Az + b)+, with X = (C,A, b).

When we numerically run the MFL dynamics (4.3) to train the discriminator, we use a 3000-
particle system, that is, the network is composed of 3000 neurones, and set its initial distribution
to be standard Gaussian. The other parameters are chosen as follows: σ = 0.4, dt = 0.01,
λ = 0.2. Figure 1 shows the training result after 60 iterations.

(a) Histogram of GAN’s sampling and the target
density

(b) Training error

Figure 1: Learning via MCMC-GAN: histogram of learned distribution and training error.

In particular, we see that the training error decreases monotonically as suggested by our theo-
retical results.

5 Proofs

5.1 Optimization with marginal constraint

Proof of Theorem 3.1 Necessary condition Step 1. Let π̄∗ ∈ Π be a minimizer of V .
Since H(π̄∗) <∞, the probability measure π̄∗ is absolutely continuous wrt Leb×m. Take any
probability measure π̄ ∈ Π such that H(π̄) < ∞, in particular π̄ is also absolutely continuous
wrt Leb×m. Denote the convex combination by π̄ε := επ̄+ (1− ε)π̄∗ ∈ Π. Define the function
h(z) := z ln z for z ∈ R+ and h(0) = 0. Then

0 ≤ V (π̄ε)− V (π̄∗)

ε
=

F (π̄ε)− F (π̄∗)

ε
+ η

∫
h(πε(x|y))− h(π∗(x|y))

ε
dxm(dy)

=
1

ε

∫ ε

0

∫
δF

δπ̄
(π̄λ, x̄)(π̄ − π̄∗)(dx̄)dλ+ η

∫
h(πε(x|y))− h(π∗(x|y))

ε
dxm(dy).

Since supλ∈[0,ε] | δFδπ̄ (π̄λ, x̄)| ≤ C(1 + |x̄|p) and π̄, π̄∗ ∈ Π, by the dominated convergence theorem

lim
ε→0

1

ε

∫ ε

0

∫
δF

δπ̄
(π̄λ, x̄)(π̄ − π̄∗)(dx̄)dλ =

∫
δF

δπ̄
(π̄∗, x̄)(π̄ − π̄∗)(dx̄).
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Since the function h is convex, we have h(πε(x|y))−h(π∗(x|y))
ε ≤ h(π(x|y))− h(π∗(x|y)). Note that∫ (

h(π(x|y))− h(π∗(x|y))
)
dxm(y) = H(π̄)−H(π̄∗) <∞. By Fatou lemma, we obtain

lim sup
ε→0

∫
h(πε(x|y))− h(π∗(x|y))

ε
dxm(dy) ≤

∫
lim
ε→0

h(πε(x|y))− h(π∗(x|y))

ε
dxm(dy)

=

∫
lnπ∗(x|y)(π̄ − π̄∗)(dx̄).

Therefore we have

0 ≤ lim sup
ε→0

V (π̄ε)− V (π̄∗)

ε
≤
∫ (

δF

δπ̄
(π̄∗, x̄) + η lnπ∗(x|y)

)
(π̄ − π̄∗)(dx̄). (5.1)

Step 2. We are going to show that for m-a.s. y

Ξy(x) :=
δF

δπ̄
(π̄∗, x̄) + η lnπ∗(x|y) is equal to a constant π∗(·|y)-a.s. (5.2)

Define the mean value c(y) :=
∫
Rd Ξy(x)π∗(dx|y) and let ε, ε′ > 0. Consider the probability

measure π̄ ∈ Π absolutely continuous wrt π̄∗ such that

dπ(·|y)

dπ∗(·|y)
=

1, for y such that π∗
(
Ξy ≤ c(y)− ε

∣∣y) < ε′

1Ξy≤c(y)−ε

π∗
(

Ξy≤c(y)−ε
∣∣y) , otherwise

.

Since dπ̄
dπ̄∗ is bounded, we have that π̄ ∈ Π and H(π̄) < ∞. In particular (5.1) holds true for

this π̄. Also note that Ξy ≤ c(y)− ε, π(·|y)-a.s. for y such that π∗
(
Ξy ≤ c(y)− ε

∣∣y) ≥ ε′. So we
have

0 ≤
∫
Y

∫
Rd

Ξy(x)
(
π(dx|y)− π∗(dx|y)

)
m(dy)

=

∫
π∗
(

Ξy≤c(y)−ε
∣∣y)≥ε′

∫
Rd

Ξy(x)
(
π(dx|y)− π∗(dx|y)

)
m(dy)

=

∫
π∗
(

Ξy≤c(y)−ε
∣∣y)≥ε′

(∫
Rd

Ξy(x)π(dx|y)− c(y)

)
m(dy)

≤ −ε m
{
y : π∗

(
Ξy ≤ c(y)− ε

∣∣y) ≥ ε′} .
Therefore we conclude that π∗

(
Ξy ≤ c(y)−ε

∣∣y) < ε′ for m-a.s. y. Since this is true for arbitrary
ε′, ε > 0, we obtain (5.2).

Step 3. We are going to show that π̄∗ is equivalent to Leb×m, so that Ξy does not depend on
x, Leb × m-a.s. and the first order equation (3.1) holds true. Suppose the opposite, i.e. there
is a set K ∈ R̄d such that π̄∗(K) = 0 and Leb × m(K) > 0. In particular, lnπ∗(x|y) = −∞
on K. Denote Ky := {x ∈ Rd : (x, y) ∈ K}. We may assume that there exist K > ε > 0
such that Leb(Ky) ∈ [ε,K] for all y ∈ Y. Define a probability measure π̄ ∈ Π such that for all
Borel-measurable A ⊂ Rd

π(A|y) :=
1

2
π∗(A|y) +

1

2Leb(Ky)

∫
A∩Ky

dx.

It is easy to verify that H(π̄) <∞, so (5.1) holds true and it implies

0 ≤ 1

2

∫
K

(
δF

δπ̄
(π̄∗, x̄) + η lnπ∗(x|y)

)
π̄(dx̄)− 1

2

∫ (
δF

δπ̄
(π̄∗, x̄) + η lnπ∗(x|y)

)
π̄∗(dx̄)

≤ −∞+

∫
C(1 + |x̄|p)π̄∗(dx̄)− η

2
H(π̄∗) = −∞.
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It is a contradiction, so π̄∗ is equivalent to Leb×m.

Sufficient condition Assume that F is convex. Let π̄∗ ∈ Π satisfy the first order equation
(3.1), in particular, π̄∗ is equivalent to Leb × m. Take any π̄ ∈ Π absolutely continuous wrt
Leb ×m (otherwise V (π̄) = +∞), and thus absolutely continuous wrt the measure π̄∗. Define
π̄ε := (1− ε)π̄∗ + επ̄ for ε > 0. By the convexity of F we obtain

F (π̄)− F (π̄∗) ≥ lim
ε→0

1

ε

(
F (π̄ε)− F (π̄∗)

)
= lim

ε→0

1

ε

∫ ε

0

∫
R̄d

δF

δπ̄
(π̄λ, x̄)(π̄ − π̄∗)(dx̄)dλ =

∫
R̄d

δF

δπ̄
(π̄∗, x̄)(π̄ − π̄∗)(dx̄).

The last equality is due to the dominated convergence theorem. On the other hand, by convexity
of the function h,

H(π̄)−H(π̄∗) ≥
∫
R̄d

lnπ∗(x|y)(π̄ − π̄∗)(dx̄).

Hence

V (π̄)− V (π̄∗) ≥
∫
R̄d

(
δF

δπ̄
(π̄∗, ·) + η lnπ∗(x|y)

)
(π̄ − π̄∗)(dx̄) = 0,

so π̄∗ is a minimizer.

5.2 Equilibria of game

Proof of Corollary 3.4 (i) Let n = 1. Take three probability measures π̄, π̄′, π̄′′ ∈ Π such
that π̄ = 1

2(π̄′+ π̄′′). Denote π̄′λ := λπ̄+ (1−λ)π̄′ and π̄′′λ := λπ̄+ (1−λ)π̄′′. By the definition
of the linear derivative of F we obtain

F (π̄′)− 2F (π̄) + F (π̄′′) =

∫ 1

0

∫
R̄N

δF

δν
(π̄′λ, x̄)(π̄′ − π̄)(dx̄)dλ

+

∫ 1

0

∫
R̄N

δF

δν
(π̄′′λ, x̄)(π̄′′ − π̄)(dx̄)dλ.

Note that π̄′ − π̄ = π̄ − π̄′′ = 1
2−2λ

(
π̄′λ − π̄′′λ

)
. Therefore we have

F (π̄′)− 2F (π̄) + F (π̄′′) =

∫ 1

0

1

2− 2λ

∫
R̄N

(
δF

δν
(π̄′λ, x̄)− δF

δν
(π̄′′λ, x̄)

)
(π̄′λ − π̄′′λ)(dx̄)dλ ≥ 0.

Finally note that λ 7→ (F (π̄′λ), F (π̄′′λ)) is continuous. So F satisfying the monotonicity condi-
tion must be convex on Π.

On the other hand, suppose F is convex on Π. Following a similar computation, we obtain

0 ≤ 1

ε

(
F (π̄′)− F (π̄′ε)− F (π̄′′ε) + F (π̄′′)

)
=

1

ε

∫ ε

0

1

2

∫
R̄N

(
δF

δν
(π̄′λ, x̄)− δF

δν
(π̄′′λ, x̄)

)
(π̄′ − π̄′′)(dx̄)dλ.

Let π̄′, π̄′′ ∈ Π. It follows from the dominated convergence theorem that

0 ≤ lim
ε→0

1

ε

∫ ε

0

1

2

∫
R̄N

(
δF

δν
(π̄′λ, x̄)− δF

δν
(π̄′′λ, x̄)

)
(π̄′ − π̄′′)(dx̄)dλ

=
1

2

∫
R̄N

(
δF

δν
(π̄′, x̄)− δF

δν
(π̄′′, x̄)

)
(π̄′ − π̄′′)(dx̄).

So F satisfies the monotonicity condition on Π.
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(ii) Let π̄∗ ∈ Π be a Nash equilibrium of the game. Then, by Corollary 3.3 we have that for
every i there exists a function f i : Y→ R

δF i

δν
((π̄∗)i, (π̄∗)−i, xi, y) +

σ2

2
ln((π∗)i(xi|y)) = f i(y), for m-a.s. y.

Let π̄∗, π̄′∗ ∈ Π be Nash equilibriums. Then monotonicity condition (3.4) implies

n∑
i=1

∫
R̄N

(
−σ

2

2
ln((π∗)i(xi|y)) +

σ2

2
ln((π′∗)i(xi|y))

)
(π̄∗ − π̄′∗)(dx̄) ≥ 0,

because the marginal distributions of π̄∗ and π̄′∗ on Y coincide. The latter inequality can be
rewritten

0 ≤ −
n∑
i=1

∫
R̄ni

ln

(
(π∗)i(xi|y)

(π′∗)i(xi|y)

)
((π̄∗)i − (π̄′∗)i)(dx̄i)

= −
n∑
i=1

(
H((π̄∗)i|(π̄′∗)i) +H((π̄′∗)i|(π̄∗)i)

)
.

This is only possible if (π̄∗)i = (π̄′∗)i for all i = 1, . . . , n.

Proof of Theorem 3.6 For π̄ ∈ Π denote Ri(π̄) := argminν∈Πi V
i(ν, π̄−i) for i = 1, · · · , n,

and define
R(π̄) := {π̄′ ∈ Π : π̄′i ∈ Ri(π̄) for i = 1, · · · , n}.

Step 1. First we prove that R(π̄) is Wp-compact. For any νi ∈ Ri(π̄), it follows from the first
order equation (3.1) that

νi(x̄i) = C(νi, π̄−i)e−
2
σ2

δFi

δν
(νi,π̄−i,x̄i),

where C(νi, π̄−i) > 0 is the normalization constant so that νi is a probability measure. Take a
p′ > p. The condition (3.3) implies that C(νi, π̄−i) is uniformly bounded as well as∫

R̄ni
|x̄i|p′νi(dx̄i) ≤ C(νi, π̄−i)

∫
R̄ni
|x̄i|p′e−C′|x̄i|q+Cdxim(dy).

So we have

C
i

:= sup
νi∈Ri(π̄)

∫
R̄ni
|x̄i|p′νi(dx̄i) <∞.

Therefore,R(π̄) ⊂ E := {ν ∈ Π : νi ∈ E i for i = 1, · · · , n}, with E i := {νi ∈ Πi :
∫
R̄ni |x̄

i|p′νi(dx̄i) ≤
C
i}, and note that E is Wp-compact.

Step 2. We are going to show that the graph of π̄ ∈ E 7→ R(π̄) is Wp-closed, i.e. given
π̄m, π̄∞ ∈ Π ∩ E , π̄′m ∈ R(π̄m) such that π̄m → π̄∞ in Wp and π̄′m → π̄′∞ ∈ Π, we want to show
that π̄′∞ ∈ R(π̄∞).

Denote the concatenation of two probability measures νi ∈ Πi, µ−i ∈ Π−i by

νi ⊗ µ−i(dx, dy) = νi(xi|y)µ−i(x−i|y)dxm(dy).

Note that for π̄, π̄′ ∈ E we have π̄′i ⊗ π̄−i ∈ E . Since E is Wp-compact, there is a subsequence,
still denoted by (π̄m, π̄

′
m), and π̄∗ ∈ Π ∩ E such that π̄′im ⊗ π̄−im → π̄∗ in Wp and π̄∗,i = π̄′i∞,

π̄∗,−i = π̄−i∞ . By the lower-semicontinuity of the mapping: π̄ 7→ V i(π̄i, π̄−i), we have

V i(π̄′i∞, π̄
−i
∞ ) = V i(π̄∗,i, π̄∗,−i) ≤ lim inf

m→∞
V i(π̄′im, π̄

−i
m ). (5.3)
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Further, fix νi ∈ Πi ∩ E i. Again by the compactness of E , there is a subsequence, still denoted
by (νi, π̄′m), and π̄ν ∈ Π∩E such that νi⊗ π̄−im → π̄ν inWp and π̄ν,i = νi, π̄ν,−i = π̄−i∞ . Therefore

lim inf
m→∞

V i(π̄′im, π̄
−i
m ) ≤ lim inf

m→∞
V i(νi, π̄−im ) = V i(π̄ν,i, π̄ν,−i) = V i(νi, π̄−i∞ ).

Together with (5.3), we conclude that π̄
′i
∞ ∈ Ri(π̄∞) for all i, and thus π̄′∞ ∈ R(π̄∞).

Step 3. From the condition of the theorem and the result of Step 1&2, we conclude that for any
π̄ ∈ Π the set R(π̄) is non-empty, convex, that the set ∪π̄∈ΠR(π̄) is a subset of a Wp-compact
set, and that the graph of the mapping π̄ ∈ E 7→ R(π̄) ⊂ E is Wp-closed. Therefore, it follows
from the Kakutani fixed-point theorem that the mapping π̄ 7→ R(π̄) has a fixed point, which is
a Nash equilibrium.

5.3 Invariant measure of MFL system

Proof of Theorem 3.8 The proof is based on the Banach fixed point theorem. Given fixed
(π̄t), (π̄

′
t) ∈ Cp([0, T ],Π), the SDEs (2.2) apparently have unique strong solutions, denoted by

X̄, X̄ ′ respectively. Denote by ˆ̄πt := Law(X̄t) and ˆ̄π′t := Law(X̄ ′t). We are going to show that
the mapping Ψ : π̄ 7→ ˆ̄π is a contraction as T is small enough.

First, by the standard SDE estimate we know E
[

supt∈[0,T ] |Xt|p
]
< ∞, and this implies

(ˆ̄πt), (ˆ̄π′t) ∈ Cp([0, T ],Π). Note the SDEs for X̃, X̃ ′ share the same Brownian motion. Denoting
δX = X −X ′, we have

|δXi
s|p =

∣∣∣∣∫ s

0

(
−∇xi

δF i

δν
(π̄it, π̄

−i
t , Xi

t , Y ) +∇xi
δF i

δν
(π̄′it , π̄

′−i
t , X ′it , Y )dt

)
dt

∣∣∣∣p
≤ T

1− 1
p

(∫ s

0
C
(
Wp
p (π̄it, π̄

′i
t ) +Wp

p (π̄−it , π̄′−it ) + |δXi
t′ |p
)
dt+

∫ s

0
C0Wp

p (π̄−it (·|Y ), π̄′−it (·|Y ))dt
)
.

Taking expectation on both sides, by the Gronwall inequality we obtain that

E
[
|δXy

s |p
]
≤ CeCT

∫ T

0

(
Wp
p (π̄t, π̄

′
t) +Wp

p (π̄t(·|y), π̄′t(·|y))
)
dt.

Note that E
[
|δXy

s |p
]
≥ Wp

p (ˆ̄πs(·|y), ˆ̄π′s(·|y)). Therefore

Wp
p (ˆ̄πs(·|y), ˆ̄π′s(·|y)) ≤ CeCT

∫ T

0

(
Wp
p (π̄t, π̄

′
t) +Wp

p (π̄t(·|y), π̄′t(·|y))
)
dt.

Integrating both sides with respect to m, we obtain

Wp
p(ˆ̄πt, ˆ̄π

′
t) ≤ CeCT

∫ T

0
2Wp

p(π̄t, π̄
′
t)dt ≤ 2CTeCT sup

t∈[0,T ]
Wp

p(π̄t, π̄
′
t),

and Ψ is a contraction whenever T is small enough. In case C0 = 0 the result can be deduced
similarly.

In order to prove Theorem 3.12, the main ingredient is the reflection coupling in Eberle [12].
For this mean-field system, we shall adopt the reflection-synchronous coupling as in [13].

We first recall the reflection-synchronous coupling. Fix a parameter ε > 0. Introduce the
Lipschitz functions rc : RN × RN → [0, 1] and sc : RN × RN → [0, 1] satisfying

sc2(x, x′) + rc2(x, x′) = 1, rc(x, x′) = 1 for |x− x′| ≥ ε, rc(x, x′) = 0 for |x− x′| ≤ ε/2.

Let π̄0, π̄
′
0 ∈ Π ∩ Pq(R̄N ) with some q > 1 be two initial distributions of the MFL system (2.2),

and W, W̃ be two independent N -dimensional Brownian motions. It follows from Theorem 3.8
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the two MFL systems have strong solutions, and denote the marginal laws by π̄t, π̄
′
t. Denote

the drift of the dynamics (2.3) by

by(t, x) :=

(
−∇xi

δF i

δν
(π̄it, π̄

−i
t , xi, y)

)
i=1,··· ,n

, b̃y(t, x) :=

(
−∇xi

δF i

δν
(π̄′it , π̄

′−i
t , xi, y)

)
i=1,··· ,n

(5.4)
Further, for a fixed y ∈ Y, define the coupling Σy = (Xy, X ′y) as the strong solution to the SDE

dXy
t = by(t,Xy

t )dt+ rc(Σy
t )σdWt + sc(Σy

t )σdW̃t,

dX ′yt = b̃y(t,X ′yt )dt+ rc(Σy
t )
(
Id− 2et〈et, ·〉

)
σdWt + sc(Σy

t )σdW̃t,

where et :=
Xy
t−X

′y
t

|Xy
t−X

′y
t |

for Xy
t 6= X ′yt , otherwise et := ê some arbitrary fixed unit vector in RN .

In the following proof, we will use the concave increasing function f constructed in [13,
Theorem 2.3]:

f(r) :=

∫ r

0
ϕ(s)g(s ∧R2)ds, where g(r) := 1− c

2

∫ r

0
Φ(s)ϕ(s)−1ds,

and the function ϕ and the constants R2, c are defined in the statement of Theorem 3.12. In
particular, on (0, R2) ∪ (R2,+∞) the function f satisfies

2σ2f ′′(r) ≤ −r
(
κ(r) + 2γη(r)

)
f ′(r)− cσ2f(r) (5.5)

and for r ∈ R+

rϕ(R1) ≤ Φ(r) ≤ 2f(r) ≤ 2Φ(r) ≤ 2r. (5.6)

Proof of Theorem 3.12. Note that π0(·|y), π′0(·|y) ∈ Pq(RN ) with q > 1 for m-a.s. y ∈ Y.
For such y, we may choose the coupling (Xy

0 , X
′y
0 ) so that

W1

(
π0(·|y), π′0(·|y)

)
= E

[
|Xy

0 −X
′y
0 |
]
≥ E

[
f
(
|Xy

0 −X
′y
0 |
)]
. (5.7)

The last inequality is due to (5.6). On the other hand, for all t ≥ 0 we have

W1

(
πt(·|y), π′t(·|y)

)
≤ E

[
|Xy

t −X
′y
t |
]
≤ 2

ϕ(R1)
E
[
f
(
|Xy

t −X
′y
t |
)]
. (5.8)

Denote δXy
t := Xy

t −X
′y
t . By the definition of the coupling above, we have

dδXy
t =

(
by(t,Xy

t )− b̃y(t,X ′yt )
)
dt+ 2rc(Σy

t )σetdW̄t,

where W̄t :=
∫ t

0 es · dWs is a one-dimensional Brownian motion. Denote rt := |δXy
t | and note

that by the definition of rc we have rc(Σy
t ) = 0 whenever rt ≤ ε/2. Therefore,

drt = et ·
(
by(t,Xy

t )− b̃y(t,X ′yt )
)
dt+ 2rc(Σy

t )σdW̄t.

Then it follows from the Itô-Tanaka formula and the concavity of f that

f(rt)− f(r0) ≤
∫ t

0

(
f ′(rs)es ·

(
by(s,Xy

s )− b̃y(s,X ′ys )
)

+ 2rc(Σy
s)

2σ2f ′′(rs)
)
ds+Mt,

where Mt := 2
∫ t

0 rc(Σy
s)f ′(rs)σdW̄s is a martingale. Now note that

es ·
(
by(s,Xy

s )− b̃y(s,X ′ys )
)
≤ 1{rs≥ε}rsκ(rs) + 1{rs<ε}Cε+ γ

(
W1(π̄ψs , π̄

′ψ
s ) +W1(πψs (·|y), π′ψs (·|y))

)
.

17



Further, since f ′′ ≤ 0 and rc(Σy
s) = 1 whenever rs ≥ ε, we have

f(rt)− f(r0) ≤
∫ t

0

(
1{rs≥ε}

(
f ′(rs)rsκ(rs) + 2σ2f ′′(rs)

)
+ 1{rs<ε}Cε

+γf ′(rs)
(
W1(π̄ψs , π̄

′ψ
s ) +W1(πψs (·|y), π′ψs (·|y))

))
ds+Mt.

By taking expectation on both sides, we obtain∫
E
[
f(rt)− f(r0)

]
m(dy)

≤
∫ t

0

(∫
E
[
1{rs≥ε}

(
f ′(rs)rsκ(rs) + 2σ2f ′′(rs)

)
+ Cε

]
m(dy) + 2γf ′(rs)W1(π̄ψs , π̄

′ψ
s )
)
ds

≤
∫ t

0

∫
E
[
1{rs≥ε}

(
f ′(rs)rsκ(rs) + 2σ2f ′′(rs)

)
+ Cε+ 2γf ′(rs)

(
ψ(Xy

s )− ψ(X ′ys )
)]
m(dy)ds

≤
∫ t

0

∫
E
[
1{rs≥ε}

(
f ′(rs)rs

(
κ(rs) + 2γη(rs)

)
+ 2σ2f ′′(rs)

)
+ 2Cε

]
m(dy)ds

≤
∫ t

0

∫
E
[
− cσ2f(rs) + (2C + cσ2)ε

]
m(dy)ds.

The second last inequality is due to Assumption 3.10, while the last one is due to (5.5). Together
with (5.7) and (5.8), we obtain

ϕ(R1)

2
ecσ

2tW1

(
π̄t, π̄

′
t

)
−W1

(
π̄0, π̄

′
0

)
≤ ecσ

2t

∫
E
[
f(rt)

]
m(dy)−

∫
E
[
f(r0)

]
m(dy)

≤
∫ t

0
ecσ

2s(C + cσ2)εds.

This holds true for all ε > 0, so finally we obtain (3.5).

5.4 One player case

Throughout this subsection, we suppose that the assumptions in Theorem 3.14 hold true. Recall
the drift function by defined in (5.4) with n = 1, i.e.

by(t, x) := −∇x
δF

δν
(π̄t, x, y).

Under the assumption of Theorem 3.14 the function by is continuous in (t, x) and C3 in x for all
t ∈ [0, T ]. Due to a classical regularity result in the theory of linear PDEs (see e.g. [19, p.14-15]),
we obtain the following result.

Lemma 5.1. Under the assumption of Theorem 3.14, the marginal laws (πt(·|y))t≥0 of the
solution to (2.3) are weakly continuous solutions to the Fokker-Planck equations:

∂tν = ∇x · (−byν +
σ2

2
∇xν) for y ∈ Y. (5.9)

In particular, we have that (t, x) 7→ πt(x|y) belongs to C1,2
(
(0,∞)× RN )

)
.

The following results can be proved with the same argument as in Lemma 5.5-5.7 in [17], so
the proof is omitted.

Lemma 5.2. Fix a y ∈ Y and assume E
[
|Xy

0 |2
]
<∞, where we recall the Xy defined in (2.3).

Denote by Qσ
y the scaled Wiener measure1 with initial distribution π0(·|y) and by (Ft)t≥0 the

canonical filtration of the Wiener space. Then

1Let B be the canonical process of the Wiener space and Q be the Wiener measure, then the scaled Wiener
measure Qσ := Q ◦ (σB)−1.

18



(i) for any finite horizon T > 0, the law of the solution to (2.2), Π(·|y) := Law(Xy), is
equivalent to Qσ

y on FT and the relative entropy∫
ln
(dΠ(·|y)

dQσ
y

∣∣∣
FT

)
dνt = E

[ ∫ T

0

∣∣by(t,Xy
t )
∣∣2dt] < +∞.

(ii) the marginal law πt(·|y) admits a density s.t. πt(·|y) > 0 and H
(
πt(·|y)

)
< +∞ for t > 0.

(iii) the function lnπt(x|y) is continuous differentiable in x for t > 0, and for any t0 ∈ (0, t] it
satisfies

∇x lnπt(x|y) = − 1

t0
E
[∫ t0

0

(
1− s∇xby(s,Xy

t−t0+s)
)
dW t−t0

s

∣∣∣Xy
t = x

]
,

where W t−t0
s := Wt−t0+s −Wt−t0 and W is the Brownian motion in (2.3). In particular,

for any t∗ > 0 we have

C := sup
s≥t∗

∫
RN

∣∣∇x lnπs(x|y)
∣∣2πs(x|y)dx < +∞,

and C only depends on t∗ and the Lipschitz constant of ∇xby with respect to x.

(iv) we have the estimates∫
RN |∇x lnπt(x|y)|dx < +∞,

∫
RN |x · ∇x lnπt(x|y)|dx < +∞ for all t > 0,

and
∫ t′
t

∫
RN |∆xxπs(x|y)|dxds < +∞ for all t′ > t > 0,

and together with the integration by parts we obtain for all t′ > t > 0∫
RN ∆xx

δF
δν (π̄t, x, y)πt(x|y)dx = −

∫
RN ∇x

δF
δν (π̄t, x, y) · ∇xπt(x|y)dx, (5.10)∫ t′

t

∫
RN ∆xx

(
lnπs(x|y)

)
πs(x|y)dxds = −

∫ t′
t

∫
RN |∇x lnπs(x|y)|2 πs(x|y)dxds.

The proof of Theorem 3.14 is based on the previous lemma and Itô calculus.

Proof of Theorem 3.14 It follows from the Itô-type formula [2, Theorem 4.14] and (5.10)
that

dF (π̄t) =

∫
RN

(
−
∣∣∇x δF

δν
(π̄t, x̄)

∣∣2 +
σ2

2
Tr(∇2

x

δF

δν
(π̄t, x̄))

)
π̄t(dx̄)dt

=

∫
RN

(
−|∇x

δF

δν
(π̄t, x̄)|2 − σ2

2
∇x

δF

δν
(π̄t, x̄) · ∇xπt(x|y)

πt(x|y)

)
π̄t(dx)dt. (5.11)

On the other hand, by Itô’s formula and the Fokker-Planck equation (5.9), we have

d log πt(Xt|y) =

(
σ2∇x ·

∇xπt(Xt|y)

πt(Xt|y)
+
σ2

2

∣∣∣∣∇xπt(Xt|y)

πt(Xt|y)

∣∣∣∣2 −∇x · ∇x δFδν (π̄t, Xt, y)

)
dt+ dMt.

where M is a martingale on [t, T ] for any 0 < t < T . By taking expectation on both sides and
using (5.10), we obtain for t > 0:

dH(mt) = E

[
−σ

2

2

∣∣∣∣∇xπt(Xt|y)

πt(Xt|y)

∣∣∣∣2 +∇x
δF

δν
(π̄t, Xt, y) · ∇xπt(Xt|y)

πt(Xt|y)

]
dt

=

∫
RN

(
−σ

2

2

∣∣∣∣∇xπt(x|y)

πt(x|y)

∣∣∣∣2 −∇x δFδν (π̄t, x, y) ·
(
∇xπt(x|y)

πt(x|y)

))
π̄(x̄)dt. (5.12)
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Summing up equations (5.11) and (5.12), we obtain (3.7).

Let (π̄t)t≥0 be the flow of marginal laws of the solution of (2.2) given an initial law π̄0.
Define a dynamic system S(t) [π̄0] := π̄t. Due to the result of Theorem 3.14, we can view the
function V as a Lyapunov function of the dynamic system (St)t≥0, and then it is natural to prove
Theorem 3.15 using LaSalle’s invariance principle (see the following Proposition 5.4). However,
V σ is not continuous (only lower-semicontinuous), in particular, the mapping t 7→ V σ(π̄t) is not
a priori continuous at +∞, which makes the proof non-trivial. Here we follow the strategy first
developed in [18] to overcome the difficulty. Define the ω-limit set:

ω(π̄0) :=
{
π̄ ∈ Π : there exists tn → +∞ such that W2 (S(tn) [π̄0] , π̄)→ 0

}
.

Lemma 5.3. Assume that π̄0 ∈ Π ∩ Pq(R̄N ) with q ≥ 2. Then for the solution to the MFL
system (2.2) we have

sup
t≥0

∫
R̄N
|x̄|qπ̄t(dx̄) <∞. (5.13)

Proof By Itô formula, we obtain

d|Xy
t |q = q|Xy

t |q−2

(
−2Xy

t ·
δF

δν
(π̄t, X

y
t , y) + σ2q(q − 2 +N)

)
dt+ σq|Xy

t |q−2Xy
t · dWt.

By the linear growth assumption on δF
δν and the dissipative condition (3.6), there is a constant

M such that

d|Xy
t |q ≤ q|Xy

t |q−2
(
C − ε|Xy

t |21{|Xy
t |≥M}

)
dt+ σq|Xy

t |q−2Xy
t · dWt

≤ q|Xy
t |q−2

(
(C + εM2)− ε|Xy

t |2
)
dt+ σq|Xy

t |q−2Xy
t · dWt.

In particular, the constant C above does not depend on y. In case q = 2, by taking expectation
on both sides and using the Gronwall inequality, we obtain

sup
t≥0

E[|Xy
t |q] ≤ C

(
1 + E[|Xy

0 |
q]
)
, (5.14)

with q = 2. For q > 2, a similar inequality follows from the induction. The desired result (5.13)
follows from integrating with respect to m on both sides of the inequality.

Proposition 5.4 (Invariance Principle). Assume that π̄0 ∈ Π ∩ Pq(R̄N ) with q > 2. Then the
set ω(π̄0) is non-empty, compact and invariant, that is

(a) for any π̄ ∈ ω(π̄0), we have S(t) [π̄] ∈ ω(π̄0) for all t ≥ 0;

(b) for any π̄ ∈ ω(π̄0) and t ≥ 0, there exists π̄′ ∈ ω(π̄0) such that S(t) [π̄′] = π̄.

Proof Note that

• the mapping π̄0 7→ S(t) [π̄0] is W2-continuous due to the stability on the initial law;

• the mapping t 7→ S(t) [π̄0] belongs to C2

(
R+,Π

)
, due to Theorem 3.8;

• the set
{
S(t)[π̄0], t ≥ 0

}
belongs to a W2-compact set, due to (5.13).

The rest follows the standard argument for Lasalle’s invariance principle (see e.g. [16, Theorem
4.3.3] or [18, Proposition 6.5]).
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Proof of Theorem 3.15. Step 1. Recall the set I defined in (3.8). We first prove the
existence of a converging subsequence towards a member in I. Since ω(π̄0) is W2-compact and
V is W2-lower semicontinuous, there is π̄∗ ∈ argminπ̄∈ω(π̄0) V (π̄). By the backward invariance
(b), given t > 0 there is ν ∈ ω(π̄0) such that S(t)[ν] = π̄∗. By Theorem 3.14, we have

V
(
S(t+ s)[ν]

)
≤ V

(
S(t)[ν]

)
= V (π̄∗), for all s > 0.

Further by the forward invariance (a), we know S(t + s)[ν] ∈ ω(π̄0), and by the optimality of
π̄∗ we obtain V

(
S(t+ s)[ν]

)
= V (π̄∗). Again by Theorem 3.14, we get

0 =
dV
(
S(t)[ν]

)
dt

= −
∫
R̄N

∣∣∣∣∇x δFδν (π̄∗, x, y) +
σ2

2
∇x ln

(
π∗(x|y)

)∣∣∣∣2 π̄∗(dx̄).

Since π̄∗ = S(t)[ν] is equivalent to Leb × m according to Lemma 5.2 (ii), we have π̄∗ ∈ I. By
the definition of ω(π̄0), there is a subsequence of (π̄t) converging towards π̄∗.

Step 2 (a). We first prove the result under the assumption (ii.a). Let (π̄tn)n be a sequence
converging to π̄∗ in W2. Due to the estimate (5.14) and the fact that Y is countable, there is
subsequence, still denoted by (tn)n such that for each y ∈ Y, πtn(·|y) converges to a probability
measure πy in W2. Then clearly πy = π∗(·|y) for m-a.s. y, and thus π̄tn(·|y)→ π̄∗(·|y) in W2 for
m-a.s. y. Note that

π̄∗(x|y) = C exp

(
− 2

σ2

δF

δν
(π̄∗, x, y)

)
,

in particular, π̄∗(·|y) is log-semiconcave. By the HWI inequality (see [25, Theorem 3]) we have∫ (
ln π̄tn(x|y)− ln π̄∗(x|y)

)
π̄tn(dx|y)

≤ W2

(
π̄tn(x|y), π̄∗(x|y)

) (√
Iyn + CW2

(
π̄tn(x|y), π̄∗(x|y)

))
, (5.15)

where Iyn is the relative Fisher information defined as

Iyn :=

∫ ∣∣∣∇x ln π̄tn(x|y)−∇x ln π̄∗(x|y)
∣∣∣2π̄tn(dx|y)

=

∫ ∣∣∣∇x ln π̄tn(x|y) +
2

σ2
∇x

δF

δν
(π̄∗, x, y)

∣∣∣2π̄tn(dx|y)

≤ 2

∫ ∣∣∇x ln π̄tn(x|y)
∣∣2π̄tn(dx|y) + C

(
1 +

∫
|x|2π̄tn(dx|y)

)
,

where the last inequality is due to the linear growth of ∇x δFδν in x. It follows from Lemma 5.2
(iii) that supn,y I

y
n <∞. Integrate both sides of (5.15) with respect to m, and obtain

H
(
π̄tn
∣∣π̄∗) ≤ CW2(π̄tn , π̄

∗)
(

1 +W2(π̄tn , π̄
∗)
)
. (5.16)

The right hand side converges to 0 as n→∞ by the dominated convergence theorem. Therefore,

lim sup
n→∞

H(π̄tn |Leb×m)−H(π̄∗|Leb×m)

= lim sup
n→∞

∫
ln

(
πtn(x|y)

π∗(x|y)

)
π̄tn(dx̄) +

∫
ln
(
π∗(x|y)

)
(π̄tn − π̄∗)(dx̄)

= lim sup
n→∞

H
(
π̄tn
∣∣π̄∗) ≤ 0,

where the last equality is due to the dominated convergence theorem and the last inequality is
due to (5.16). Since H isW2-lower-semicontinuous, we have lim

n→∞
H(π̄tn |Leb×m) = H(π̄∗|Leb×
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m). Together with the fact that F is W2-continuous, we have lim
t→∞

V (π̄t) = V (π̄∗). Further by

the W2-lower-semicontinuity of V , we obtain

V (π̄) ≤ lim
t′n→∞

V (π̄t′n) = V (π̄∗), for all π̄ ∈ ω(π̄0).

Together with the optimality of π̄∗, we have V (π̄) = V (π̄∗) for all π̄ ∈ ω(π̄0). Finally by the
invariant principle and (3.7), we conclude that ω(π̄0) ⊂ I.

Step 2 (b). Similarly we can prove the result under the assumption (ii.b). Let (π̄tn)n be a
sequence converging to π̄∗ in W2. Note that

π̄∗(x, y) = C exp

(
− 2

σ2

δF

δν
(π̄∗, x, y)

)
m(y)

is log-semiconcave due to the assumption. Due to the HWI inequality, we have∫ (
ln π̄tn(x|y)− ln π̄∗(x|y)

)
π̄tn(dx̄) ≤ W2

(
π̄tn , π̄

∗) (√In + CW2

(
π̄tn , π̄

∗)) ,
where In is the relative Fisher information defined as

In :=

∫ ∣∣∣∇x ln π̄tn(x|y)−∇x ln π̄∗(x|y)
∣∣∣2π̄tn(dx̄)

=

∫ ∣∣∣∇x ln π̄tn(x|y) +
2

σ2
∇x

δF

δν
(π̄∗, x, y)

∣∣∣2π̄tn(dx̄)

≤ 2

∫ ∣∣∇x ln π̄tn(x|y)
∣∣2π̄tn(dx̄) + C

(
1 +

∫
|x|2π̄tn(dx̄)

)
.

Again by Lemma 5.2 (iii) we have supn In <∞. For the rest, we may follow the same lines of
arguments in Step 2 (a) to conclude the proof.
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