

Geometrical constraints to reduce complexity in quantum molecular systems

Thomas Pérez, Patrick Cassam-Chenaï

▶ To cite this version:

Thomas Pérez, Patrick Cassam-Chenaï. Geometrical constraints to reduce complexity in quantum molecular systems. UCA Complex days 2019, Mar 2019, Nice, France. hal-02531863

HAL Id: hal-02531863 https://hal.science/hal-02531863

Submitted on 3 Apr 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Geometrical constraints to reduce complexity in quantum molecular systems

Thomas Perez¹, Patrick Cassam-Chenaï¹

¹ Laboratoire J. A. Dieudonné, UMR 7351 UCA-CNRS, Nice (tperez@unice.fr, cassam@unice.fr)

PRESENTATION OF THE PROBLEM

The energy of a molecule is not the sum of the energies of its atomic components. Our aim is to compute an accurate approximation of this quantity based on an electron pair model, that is to say by using an antisymmetric product of two-electron wave functions, called "geminals". In this model, the total wave function $\Psi_e = g_1 \wedge \cdots \wedge g_n$ can also be described by a set of matrices $C_k = (c_{i,j}^k)_{1 \le i,j \le m}$, one for each geminal $g_k = \sum_{i,j} c_{i,j}^k \varphi_i \wedge \overline{\varphi_j}$, where $(\varphi_i)_{1 \le i \le m}$ (resp. $(\overline{\varphi_j})_{1 \le j \le m}$) is a basis orbital of spin $+\frac{1}{2}$ (resp. $-\frac{1}{2}$).

However, without further restrictions, such a model has a factorial computational complexity with the number of electrons determined by the calculation of geminal product overlaps and its applicability is therefore limited to small systems. We will introduce generalized orthogonality constraints between geminals to reduce the computational effort, without sacrificing the indistinguishability of the electrons.

GENERAL GEMINAL PRODUCT OVERLAP FORMULA

Theorem 1: For $k \in \{1, ..., n\}$, let g_k and g'_k be geminals whose associated matrices are denoted respectively C_k and C'_k . The overlap between the wave functions $\Psi_e = g_1 \wedge \cdots \wedge g_n$ and $\Psi'_e = g'_1 \wedge \cdots \wedge g'_n$ is given by the formula :

$$\left(\Psi_{e}^{\prime} | \Psi_{e}^{\prime} \right) = \left(g_{1} \wedge \cdots \wedge g_{n} \right) g_{1}^{\prime} \left(\sum_{\substack{0 \leq N_{u,n},\dots,N_{n,g} \leq n}}^{n} \prod_{\substack{j=1\\j=1\\k_{n,j},\dots,k_{n,g} \leq n}}^{n} \prod_{\substack{j=1\\k_{n,j},\dots,k_{n,g} \in n}}^{n} \prod_{\substack{j=1\\k_$$

SCALING OF THE OVERL	AP FC	ORMU	LA FO	R \mathbf{H}_m I	LINEAR C	CHAINS
H _m molecules	H ₆	H_8	H ₁₀	H ₁₂	H ₁₄	H ₁₆
(<i>n</i> , number of partitions of <i>n</i>)	(3,3)	(4, 5)	(5,7)	(6, 11)	(7, 15)	(8, 22)
Number of terms in the sum (= $(n!)^2$)	36	576	14 400	518 400	25 401 600	1 625 702 400
The commutational cost rises	too fast	t and ma	akos the	ronoral ma	del unnracti	ical

The computational cost rises too just and makes the general model anpractical.

INTRODUCTION OF CONSTRAINTS FOR A SIMPLER ANSATZ

We will consider wave functions which are products of *n* singlet or triplet geminals (i.e. with symmetric or antisymmetric associated matrices) and we will impose to our geminals g_k 's the so-called *permutationally* invariant 2-orthogonality constraints :

 $\forall i, j, k \in \{1, \dots, n\} \text{ distinct}, \begin{cases} \langle g_i | g_j \rangle = 0 \\ g_k \not i (g_i \land g_j) = 0 \end{cases} \text{ i.e. in terms of}$

► The "maximal" linearly independent family of 2 × 2 matrices verifying these conditions is :

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}; \quad \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ and } i\sigma_y = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

where σ_x , σ_y and σ_z are the *Pauli matrices*.

EXPRESSION OF THE OVERLAP FOR A SIMPLIFIED MODEL

ALING OF THE CONS	TRAIN	ED MO	DEL FO	$\mathbf{R} \mathbf{H}_m \mathbf{I}$	LINEAR	CHAI
H _m molecules	H ₆	H_8	H ₁₀	H ₁₂	H ₁₄	H ₁₆
(n, h_n, m')	(3, 4, 1)	(4, 4, 2)	(5, 6, 2)	(6, 6, 3)	(7, 8, 3)	(8, 8, 4)
Number of terms in the sum	4	21	22	95	100	441

Ine c

of matrices :
$$\begin{cases} \operatorname{tr}(C_i^{\dagger}C_j) = 0 \\ C_i C_k^{\dagger}C_j + C_j C_k^{\dagger}C_i = 0 \end{cases}$$

$$\lambda_k^{-(h_{k-1}+1)}$$

$$\ddots$$

$$\lambda_k^{-h_k}$$

$$0_{h_n-h_k}$$