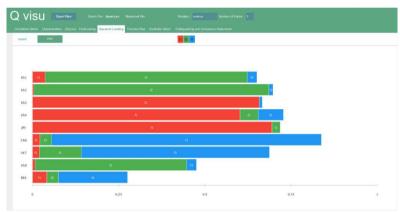
SAMI International Workshop - Subjectivity As Matter & Instrument

- 13, 14, 17 Septembre 2018 -

Maison des Sciences de l'Homme Ange Guépin, Nantes, France

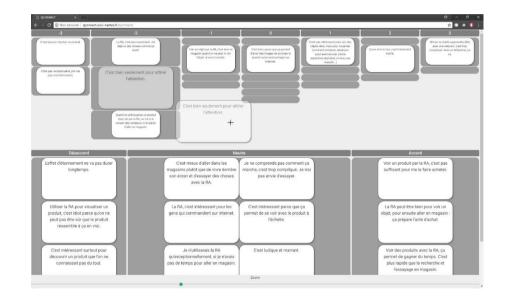
The contribution of computer science and interdisciplinarity research to Q-method

Claire Gauzente, Pascale Kuntz, Yves Roy, Aurélien Milliat



Going beyond the results ...

Tracking the sorting dynamics


Events:

- mouse click
- mouse move
- drag
- drop
- scrolling
- zooming
- key press

etc ...

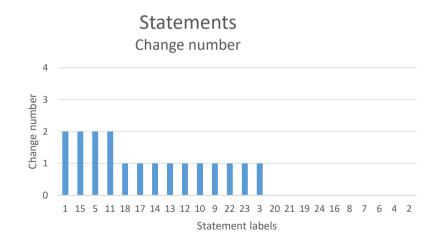
x-y coordinates of each move

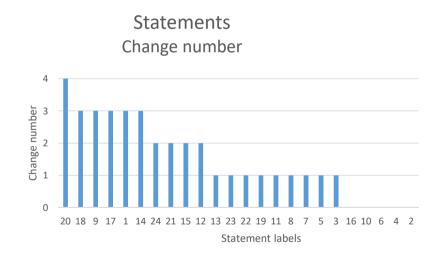
Time of each event in milliseconds

Experimental framework

24 statements -from a study on augmented reality- (S. Gautthier thesis)

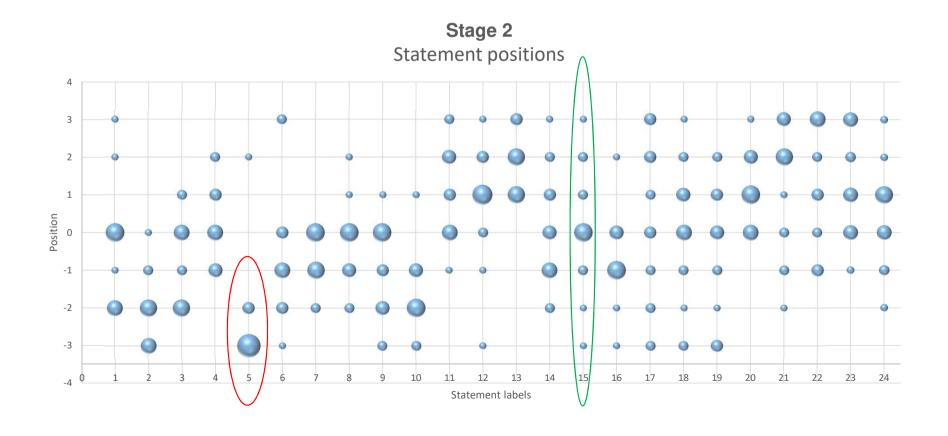
- 1. Using AR with a webcam is too complicated. With a phone, it's OK.
- 2. I don't understand how it works, it's too complicated. I don't want to try.
- 3. AR is not surprising. I've already seen things like this before.
- 4. The wow-effect will not last long.
- 5. It doesn't make sense, it's absolutely useless.
- 6. It's better to go into shops than to live behind your screen and try things with AR.
- 7. I would use AR only as an exception, if I hadn't a second to spare to go into a shop.
- 8. It is not interesting in order to see real objects, but to visualize how some situations could evolve (our physical appearance, a location, an illness ...).
- 9. It's good only to draw attention. etc ...

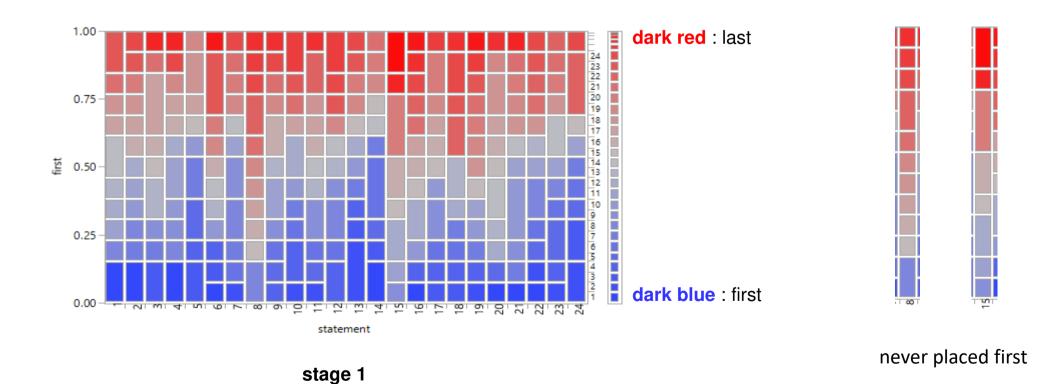

14 participants


Statements are randomnly displayed on the screen

Before starting, a sheet of paper presenting the statements has been given to the participants

2 stages 3 classes: disagree, neutral, agree q-sort with the Gaussian distribution: from -3 « strongly disagree » to +3 « strongly agree »


Question: are there some placement changes of the statements in each sorting stage?



stage 1 stage 2

Question: are some statement placements more « stable » than others ?

Question: are some statements placed before others?

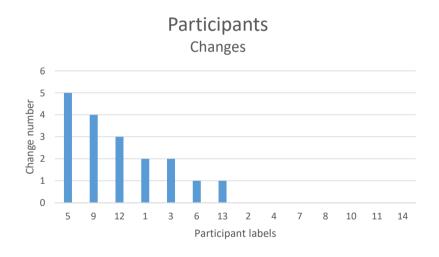
Question: what is the evolution of the « neglected » statements ?

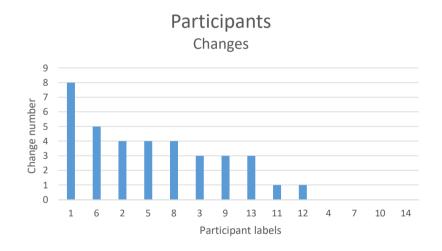
8 : once placed never moved

It is not interesting in order to see real objects, but to visualize how some situations could evolve (our physical appearance, a location, an illness ...)

15: has moved several times

When pre-visualizing a product through AR at home, one lacks the pleasure of going into a shop as well as the advice of the salesperson.


Hypothesis: « ambiguous » or double-barelled statements?

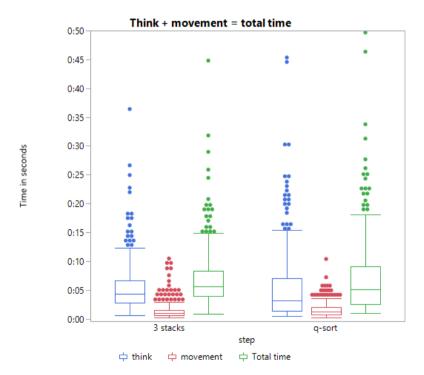

Question: what happens between stage 1 and stage 2?

			stage 2							
			-3	-2	-1	0	1	2	3	Total
	From									
~	disagree	Frequency	28	37	27	13	3	2	1	111
ge	neutral	Frequency	0	1	63	58	23	1	0	106
stage	agree	Frequency	0	1	0	10	23	35	26	95

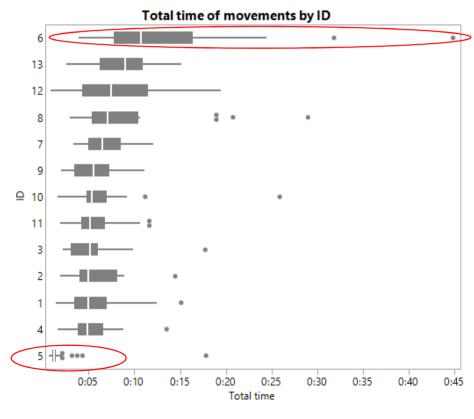
Hypothesis: the attitude is mainly built during stage 1

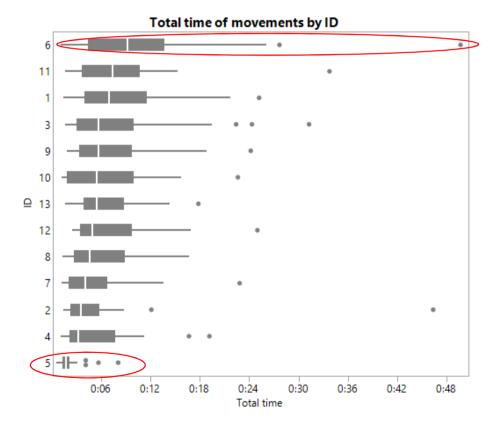
Question: are there some differences between the participants concerning the decision changes during the sorting process ?

stage 1 stage 2

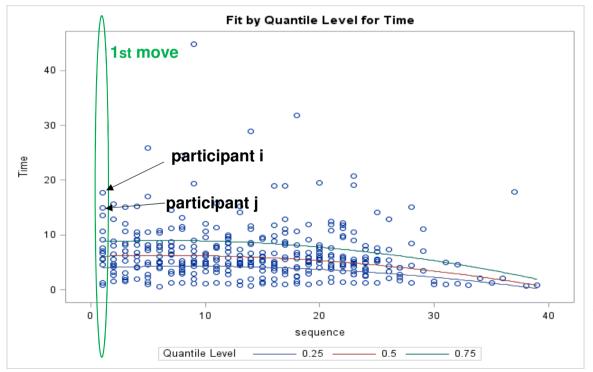

Question: are there some differences between the sorting times?

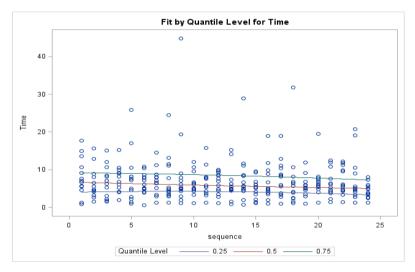
For each **displacement**:


 «reflection time »: time measured between the last movement and the displacement start


- «displacement time »: time measured between the displacement start and its end

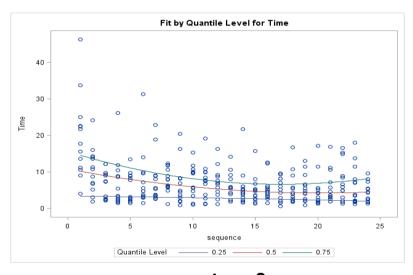
- total time: reflection time + displacement time


Question: are there some differences between the sorting times?


stage 1 stage 2

Question: how does the sorting behavior evolve?

model: quantile regression with a polynomial of degree 2

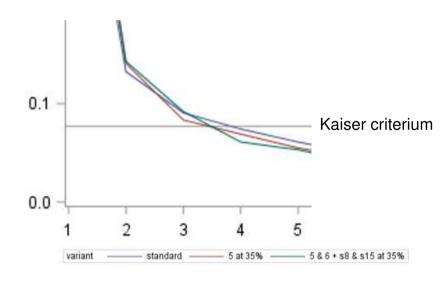

stage 1

stage 1

median stability following by a slight decreasing

Hypothesis: same attitude for each statement with a slight learning of the process

stage 2


significant median decreasing

Hypothesis: discovering of the sorting constraints at the beginning and then acceleration of the decisions (attitude mainly built in stage 1)

Impact on the Q results 1

Proposition: adding weights in PCA to modulate the « outlier » impact (both statements & individuals)

	stand	ard	5 & 6 + s8 & s15 at 35%			
	Eigenvalue	Proportion	Eigenvalue	Proportion		
Number						
	18.08	47.0%	16.66	51.7%		
	5.09	13.3%	4.61	14.3%		
	3.49	9.1%	2.97	9.2%		
	2.85	7.4%	1.97	6.1%		
	2.35	6.1%	1.71	5.3%		
	1.91	5.0%	1.31	4.1%		
	1.46	3.8%	1.22	3.8%		
	1.25	3.3%	0.68	2.1%		
	0.78	2.0%	0.40	1.2%		
.0	0.42	1.1%	0.32	1.0%		
2	0.33	0.9%	0.22	0.7%		
3	0.23	0.6%	0.13	0.4%		
otal	0.19	0.5%	0.06	0.2%		
otal	38.43	100%	32.25	100%		

3 factors with weights and 4 otherwise

Impact on the Q results 2

Comparison with random weights (here statements 5 and 14)

Eigenvalue #	eigenvalue1	% without weight	Cum % without ei weight	igenvalue2	% WITH 65%	Cum % with 65% weight	eigenvalue3	% with 35% weight	Cum % with 35% weight
1	l 18.08	47.05%	47.05%	16.68	45.60%	45.60%	15.45	44.25%	44.25%
:	2 5.09	13.25%	60.30%	5.03	13.75%	59.35%	4.98	14.26%	58.51%
3	3.49	9.07%	69.36%	3.35	9.16%	68.50%	3.23	9.26%	67.77%
4	4 2.85	7.42%	76.79%	2.83	7.74%	76.24%	2.81	8.05%	75.82%
	5 2.35	6.10%	82.89%	2.26	6.18%	82.41%	2.17	6.21%	82.03%

Further works: simulations with random selections and various weights

Impact on the Q digital protocol 1

Numerous software and on-line services

On-line

HTML-Q

https://github.com/aproxima/htmlq

qsortware

http://www.qsortware.net

Ken-Q Data

https://shawnbanasick.github.io/ken-q-data/index.html#section1

Easy-HtmlQ

https://docs.google.com/presentation/d/1fOYxQOo2XpgR1IZ4gyGOdRi9Ehh6-0TN98us2xPEPs/edit#slide=id.p

Ken-Q Analysis

https://shawnbanasick.github.io/ken-q-analysis/

Qsortouch

https://qsortouch.com/

vqmethod

https://www.vqmethod.com/Home

webQ

http://schmolck.org/qmethod/webq/

Off-line

PQMethod

http://schmolck.org/gmethod/#PQMethod

PCQ

http://www.pcqsoft.com/

Qmethod

https://cran.r-project.org/web/packages/qmethod/index.html

FlashQ

http://www.hackert.biz/flashq/home/

QFACTOR

https://ideas.repec.org/c/boc/bocode/s458326.html

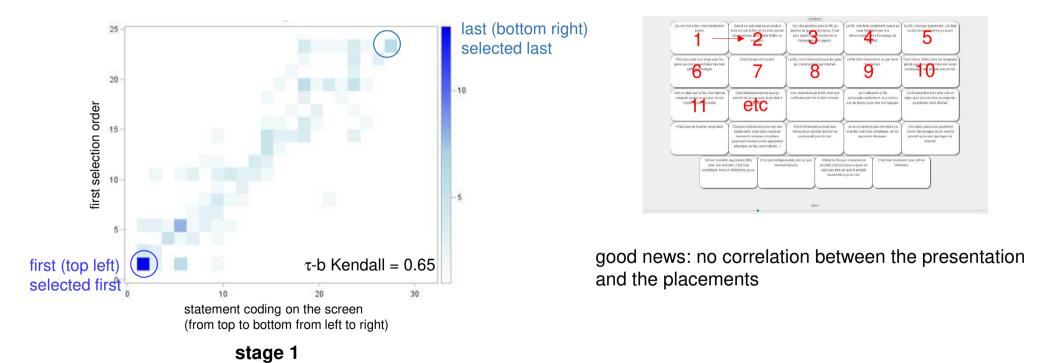
QCONECRT

https://ideas.repec.org/c/boc/bocode/s458325.html

Attachment Q-Sorter

http://www.ags.stoneclearing.net/

Lloyd's Q Sort Tool

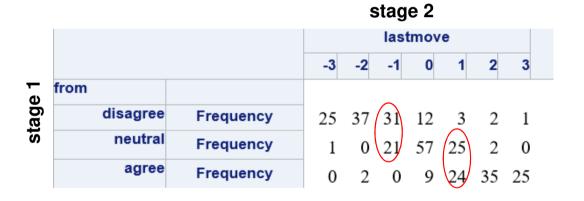

http://www.nowhereroad.com/qsort/

rap

http://rap.ucr.edu/qsorter/

Impact on the Q digital protocol 2

Question: what is impact on the results of the statement order on the screen?



Hypothesis: no holistic vision and consequently no significant difference between a global presentation and a statement by statement presentation

Impact on the Q protocol

Question: interpretation of -1 and +1 in the Q sorting?

Hypothesis: different interpretations for the coding – impact on the analysis?

Next future ...

New survey and new traces

Understanding the behaviors

Integrating the new informations in the Q process

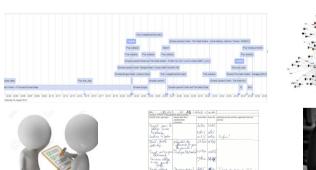
Beyond ... towards « integrative human sciences»

Inspiration: Integrative Biology

Geno-omics

Transcript-omics

A Person


ENVIRONMENT
(DIET, AGE, LIFESTYLE, DRUG, DISEASE)

PHENOTYPE

Prote-omics

Metabol-omics

- Digital traces
- Surveys
- Interviews

