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Abstract: Near real time precipitation is essential to many applications. In Africa, the lack of dense 21 
raingauge networks and ground weather radars makes the use of satellite precipitation products 22 
unavoidable. Despite major progresses in estimating precipitation rate from remote sensing 23 
measurements over the past decades, satellite precipitation products still suffer from quantitative 24 
uncertainties and biases compared to ground data. Consequently, almost all precipitation products 25 
are provided in two modes: a real-time mode (also called early-run or raw product) and a corrected 26 
mode (also called final-run, adjusted or post-processed product) in which ground precipitation 27 
measurements are integrated in algorithms to correct for bias generally at a monthly timescale. This 28 
paper describes a new methodology to provide a near-real-time precipitation product based on 29 
satellite precipitation and soil moisture measurements. Recent studies have shown that soil 30 
moisture intrinsically contains information on past precipitation and can be used to correct 31 
precipitation uncertainties. The PrISM (Precipitation inferred from Soil Moisture) methodology is 32 
presented and its performance is assessed for five in situ rainfall measurement networks located in 33 
Africa in semi-arid to wet areas: Niger, Benin, Burkina Faso, Central Africa, and East Africa. Results 34 
show that the use of SMOS soil moisture measurements in the PrISM algorithm most often improves 35 
the real-time satellite precipitation products, and provides results comparable to existing adjusted 36 
products such as TRMM-3B42, GPCC and IMERG which are available a few weeks or months after 37 
their detection.  38 

Keywords: Precipitation; Soil moisture; Africa; satellite rainfall products; comparison 39 
 40 

1. Introduction 41 

 42 
Rainfall is a crucial resource in Africa, where large parts of the population rely on rainfed 43 

agriculture. The continent is also known for its vulnerability to rainfall variability that impacts the 44 
natural resources (water, vegetation) and subsequently the wellness of populations, in societies 45 
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where economy is based mainly on agriculture [1]. Knowledge on rainfall spatio-temporal 46 
distribution is essential to various applications such as water-resource and land-use management, 47 
agricultural crop yield estimates, flood nowcasting, dam management, ground-water recharge 48 
estimates and irrigation demand. Rain-gauges provide the most common and most direct 49 
measurement of point precipitation at the surface, therefore they are generally assumed as the most 50 
accurate method to measure precipitation. Unfortunately, Africa is a region where the ground-based 51 
rain-gauge network is of very low density and operational radar installations are almost non-existent 52 
[2]. Furthermore, the gauge networks have been degrading over the last few decades [3].  53 

 54 
In this context, satellite-based precipitation products represent an unavoidable alternative for 55 

providing precipitation knowledge in Africa. In recent decades, significant progress has been made 56 
in satellite precipitation estimation. This progress is mostly due to the introduction of new sensors 57 
(e.g. Global Precipitation Measurement Core Observatory satellite), but also to the improved sensor 58 
accuracy, and efficiency of proposed algorithms that take advantage of the many observational data 59 
(including multi-channel VIS/IR sensors, and passive microwave). Many studies have been dedicated 60 
to the evaluation of these different satellite precipitation products in Africa [4-8]. Without being 61 
exhaustive, the main conclusions of these studies can be summarized as follows: (i) the state-of-the-62 
art products perform relatively well at monthly and decadal time steps [4, 9, 10] with a decreasing 63 
performances for finer timescales; (ii) most products satisfactorily reproduce the main features of the 64 
rainfall regime [4, 5]; (iii) real-time products exhibit moderate to high (positive or negative) biases [4] 65 
whereas adjusted or post-processed products, in which ground precipitation measurements are 66 
included in algorithms to correct bias, show lower biases, (iv) there is a clear need to improve the 67 
accuracy of satellite products in the estimation of accumulated rainfall [6, 11]. 68 

 69 
One potential strategy for improving satellite precipitation products is to use soil moisture 70 

measurements from satellite microwave sensors. Soil moisture can be seen as the trace of 71 
precipitation, and a knowledge of the temporal and spatial variability of soil moisture could benefit 72 
to rainfall retrievals from space. Pioneer studies [12-17] exploited this signal to correct existing 73 
satellite precipitation products. Later, [18, 19] developed the SM2RAIN approach to directly derive a 74 
rainfall amount from soil moisture variations exclusively. Since 2015, these approaches were 75 
improved and applied at the global scale [20, 21] and on different locations in the US [22], in Australia 76 
[23], over selected sites [24] and in China [25]. One of the main advantages of these methodologies 77 
based on soil moisture measurement is that they can replace, in near-real-time, scaling procedures of 78 
state-of-the-art satellite precipitation and avoid significant latency for dataset availability.  79 

 80 
This paper aims to present the latest developments in the PrIMS (Precipitation Inferred from Soil 81 

Moisture) algorithm originally developed by [17, 24]. The concept of PrISM is to use an existing real-82 
time precipitation product and to correct it using a soil moisture information. In addition to PrISM 83 
algorithm, this paper presents an accurate evaluation of its performances for Africa, including a 84 
comparison with the performance of ten additional precipitation products at the daily time-scale. In 85 
order to improve the evaluation of the product in a region with very low rain-gauge coverage, 86 
exclusively local, national and pan-national in situ rain gauge measurements were used to assess 87 
PrISM performances and to compare with state-of-the art precipitation products. This was done to 88 
avoid traditionally used products that can be tricky at fine time scales, such as the Global 89 
Precipitation Climatology Center (GPCC [26]), the Global Precipitation Climatology Project (GPCP 90 
[27, 28]) or the Climatic Research Unit (CRU [29]). The paper is organized as follows: section 2 91 
describes the satellite and ground-based rainfall datasets, and the PrISM algorithm; section 3 presents 92 
the results and a comparison with existing rainfall products; and section 4 draws conclusions and 93 
perspectives. 94 
 95 

2. Materials and Methods  96 
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2.1 Ground-based precipitation measurements 97 

 98 
Five reference data sets based on in situ rainfall measurements are used in this study (Table 1). 99 

The first two datasets are provided by the AMMA-CATCH Observatory in Niger and Benin [30, 31]. 100 
Both sites cover about 1x1° and are composed of 34 gauge stations in Niger and 30 gauge stations in 101 
Benin. A spatial interpolation (block kriging) was performed at the 0.25x0.25° spatial resolution in 102 
order to obtain a reference rainfall amount at the commonly used satellite spatial scale (0.25°). The 103 
selected 0.25° sites in Niger and Benin are respectively centered at 2.625°E; 13.625°N and 1.625°E; 104 
9.625°N (see Figure 1). The number of gauge stations that directly affect the rainfall amount at the 105 
0.25° resolution are 12 in Niger and 10 in Benin. The third data set is composed of 20 in situ gauge 106 
stations covering the whole of Burkina Faso. The dataset was provided by National Meteorological 107 
Department of Burkina Faso. The fourth dataset is the “WaTFor” data set which documents Western 108 
Central Africa. Built-up by [5] it contains monthly and daily in situ rainfall data collected from global 109 
datasets, national meteorological services and monitoring projects for Cameroon, Gabon, Congo and 110 
Central African Republic. Finally, the last data set is a gauge network composed of 78 stations 111 
covering 7 countries in East Africa (Ethiopia, Djibouti, Somalia, Kenya, Uganda, Tanzania and 112 
Rwanda [32]). The datasets at national scale comprise both synoptic stations (whose data are 113 
generally incorporated in post-processed products) and independent stations. 114 

 115 
 116 

Table 1. Observed rainfall data sets used for evaluation. 117 

Data set Nb stations Period Time scale 

Niger 12 2010-2016 3h 

Benin 10 2010-2016 3h 

Burkina Faso 20 2010-2015 Daily 

Central Africa 42 2010-2016 Daily 

East Africa 78 2010-2013 Daily 

 118 

 119 
 120 
 121 
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 122 
Figure 1: Location of the five reference ground-based rainfall data sets: Burkina Faso (20 stations), Central Africa 123 

(42 stations), East Africa (78 stations) and the two AMMA-CATCH sites located in Niger (region of Niamey) and 124 

Benin (region of Nalohou). The two squares inside the two left graphs represent the two selected 0.25° pixels in 125 

Niger and Benin. Precipitation product on top of land cover on the right map illustrates a time step (3h) of the 126 

PrISM precipitation product (2012 July 2nd 3 to 6 am). 127 

2.2 Satellite precipitation products 128 

 129 
In addition to the PrISM product, ten existing satellite and ground-based rainfall products have 130 

been selected for the inter-comparison (Table 2). All products are provided at the 3-hour and 0.25 131 
degree resolution except TAMSAT (daily, 0.0375°), IMERG (half-hourly, 0.1°), SM2RAIN (daily, 132 
0.25°), CHIRPS (daily, 0.25°) and GPCC (daily, 1°). In order to enable an inter-comparison of the 133 
products, all the products were regridded to 0.25° spatial resolution and daily temporal resolution. 134 
Five rainfall products (out of 10) are available in real-time and are not merged with any raingauge 135 
observations. The other five products are available after a latency ranging from 7 days to 2 months  136 

 137 
CMORPH [33] is a rainfall estimate product based on geostationary infrared images and passive 138 

microwave data from low earth orbiting satellites. Motion vectors are determined from half-hourly 139 
geostationary infrared measurements, and used to propagate the estimates obtained from the 140 
microwave data. The CMORPH rainfall product is proposed in two modes: the CMORPH-Raw 141 
product which is not merged with any raingauge observations and the CMORPH-Adj product which 142 
use a monthly ground calibration procedure to remove bias and uncertainties. In this study, the 0.25° 143 
3-hour version of the product was used.  144 

 145 
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TRMM 3B42 products [34] originality lies in incorporating precipitation radar and microwave 146 
measurements to better evaluate rainfall intensity. It combines these data with polar-orbiting and 147 
geostationary satellite images to obtain 3-hourly rainfall estimates at 0.25° spatial resolution. Similar 148 
to CMORPH, the TRMM 3B42 products are available in two modes: the TRMM-3B42RT product 149 
(hereafter called TRMM-Raw) available in near real-time (latency of about 7 hours) which is not 150 
merged with any raingauge observations and the TRMM-3B42 product (hereafter called TRMM-Adj) 151 
which includes GPCP monthly gauge aggregations and is available with a latency up to 6-week. The 152 
TRMM-3B42 v7 used in this study improves upon the previous ones by incorporating additional 153 
microwave and infrared data, revising the relationship between radar reflectivity and rainfall rates, 154 
and using better reference data bases for bias correction. 155 

 156 
The IMERG product, firstly released in early 2015 [35], is provided at 0.1°×0.1° spatial and half-157 

hourly temporal resolutions in three modes, based on latency and accuracy: “early” (latency of 4–6 h 158 
after observation), “late” (12–18 h), and “final” (~3 months). The main difference between the early 159 
and final runs is – beyond the way the different sensor measurements are propagated in time – that 160 
the early run has a climatological rain gauge adjustment while the final run uses a month-to-month 161 
adjustment based on GPCC gauge data. In this study, we used the IMERG-Early and IMERG-Final 162 
products. The two products were upscaled to 0.25° by using a box-shaped kernel with antialiasing, 163 
which approach was found to outperform simple spatial averaging and half-hourly rainfall were 164 
accumulated to obtain a daily product [36]. 165 

 166 
TAMSAT (Tropical Applications of Meteorology using SATellite and ground based 167 

observations) was developed at the University of Reading specifically for Africa with a spatial 168 
resolution of 0.0375°. The TAMSAT method [37-39] is based on high resolution (0.0375°) METEOSAT 169 
thermal-infrared observations for all of Africa, available from 1983 to the present and updated in 170 
near-real time (up to 7 days). Contrary to other merged products, TAMSAT does not use Global 171 
Telecommunication System (GTS) data but historical data from about 4000 stations acquired by 172 
various African agencies since the early 1990s [40]. We used the TAMSAT V3.0 version product [38] 173 
available at the daily time scale. Similar to IMERG, the product was regridded to the 0.25° spatial 174 
resolution, and is called TAMSAT_025.  175 

 176 
The GPCC daily product is provided by the Global Precipitation Climatology Center [26], and 177 

is available since 1 January 2009 with a spatial sampling grid of 1°. GPCC is a gridded gauge-analysis 178 
product derived from quality-controlled station data (more than 85,000 different stations). This 179 
dataset is characterized by an uneven spatial distribution: some regions are characterized by dense 180 
rain gauge networks (Europe, US, China) while other regions such as Africa, Amazonia and Northern 181 
areas suffer from low density networks. To enable comparison with other products, GPCC was 182 
downscaled to 0.25° spatial resolution with a linear interpolation method. 183 

 184 
CHIRPS (Climate Hazards group Infrared Precipitation with Stations) dataset is a quasi-global 185 

(50°S-50°N), high resolution (0.05°), daily, pentadal, and monthly precipitation dataset [41]. CHIRPS 186 
uses the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis version 7 (TMPA 187 
3B42 v7) to calibrate global Cold Cloud Duration (CCD) rainfall estimates. CHIRPS incorporates 188 
station data in a two phase process. In the first phase, Meteorological Organization’s Global 189 
Telecommunication System (GTS) gauge data are incorporated and a 2-day latency product is 190 
available. In the second phase, station data are combined with monthly (and pentadal) high 191 
resolution rainfall estimates to produce a second product with a latency of about 3 weeks. The version 192 
used in this study is the second product available at the daily and 0.25 degree resolution. 193 

 194 
Similar to PrISM, SM2RAIN precipitation product [18, 19] takes advantage of satellite soil 195 

moisture observations to derive a precipitation product. SM2RAIN is based on the inversion of the 196 
soil water balance equation and allows to estimate the amount of water entering the soil by using as 197 
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input soil moisture observations from in situ or satellite sensors (e.g., [20, 42-44]. The SM2RAIN 198 
product used in this study is the GPM+SM2RAIN precipitation dataset (hereafter called SM2RAIN) 199 
which is based on the integration of IMERG-ER with SM2RAIN-based rainfall estimates derived from 200 
ASCAT, SMOS and SMAP L3 soil moisture products. The merging methodology is using an Optimal 201 
Linear Combination approach, OLI [46, 47]. This approach provides an analytically optimal linear 202 
combination of ensemble members (precipitation products in this case) that minimizes mean square 203 
error when compared to a reference dataset. The dataset is currently available for Africa and South 204 
America (2015-2018), Europe, India, Contiguous United States and Australia (2015-2017) and can be 205 
downloaded at https://doi.org/10.5281/zenodo.3345323. 206 
 207 

Table 2. Inventory of all satellite rainfall products data sets used in the study. To enable fair comparison of all 208 

products, each product was regridded to the 0.25° spatial resolution and daily time-scale. 209 

Data set 
Spatial 

Resolution 
Time-scale Period Latency 

Ground 

calibration 

PrISM 0.25° 3-hourly 2010-present ~5 day no 

CMORPH-

Raw 
0.25° 3-hourly 

1998-present 18 h no 

TRMM-RT 0.25° 3-hourly 1998-present ~6 h no 

IMERG-Early 0.1° 30 min 
03/2015-

present 

~12 h no 

TAMSAT-v3.0 0.0375° Daily 1983-present ~2 days no 

SM2RAIN 0.25° Daily 2015-2018 ~5 days no 

CHIRPS-v2.0 0.25° Daily 1981-present ~3 weeks yes 

GPCC 1° Daily 2009-present 15-45 days yes 

CMORPH-Adj 0.25° 3-hourly 1998-present >1 month yes 

TRMM-3B42 0.25° 3-hourly 1998-present >1 month yes 

IMERG-Final 0.1° 30 min 
03/2015-

present 

>1 month yes 

 210 

2.3 The SMOS soil moisture dataset 211 

The Soil Moisture and Ocean Salinity [48, 49] satellite was launched in November 2009 and 212 
started delivering data on January 2010. The primary goals of this Earth Explorer mission are to 213 
measure globally and frequently surface soil moisture over land and sea surface salinity over the 214 
oceans. The SMOS data used in the study as the main input to the PrISM algorithm corresponds to 215 
the CATDS level-3 soil moisture data obtained through https://www.catds.fr site. The SMOS-L3SM 216 
products are in NetCDF format and were regridded from the EASE 25km grid to the 0.25°x0.25° 217 
regular grid retained in the present study using the closest neighbor. 218 

2.4 The PrISM methodology 219 

 220 
The concept of the PrISM (Precipitation Inferred from Soil Moisture) methodology is to exploit 221 

remote sensing soil moisture measurements to correct the amount of rainfall estimated by an existing 222 
satellite rainfall product (CMORPH-Raw in this study). It makes use of a simple soil moisture / 223 
precipitation model and an assimilation scheme.  224 

 225 
2.4.1 The API soil moisture / precipitation model 226 

 227 
The API (Antecedent Precipitation Index) model is a simple model designed to simulate a soil 228 

moisture dynamic based on precipitation data. The API model is defined as: 229 

https://www.catds.fr/
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 230 

𝐴𝑃𝐼(𝑡) =  𝐴𝑃𝐼(𝑡−1). 𝑒
∆𝑡

𝜏 + 𝑃(𝑡)           (Eq.1) 231 

 232 
where P(t) is the rainfall accumulation (in mm) during the period Δt (in h) and τ a parameter that 233 
describes the drying-out soil moisture velocity (in h). The API index is a simple proxy of the soil 234 
moisture dynamic (in mm). Recently, [50] proposed a slight modification of the original API model 235 
in order to improve its accuracy and enable the calculation of volumetric soil moisture in m3/m3 236 
instead of an index expressed in mm. The new version of the API model contains two modifications: 237 
(i) it accounts for the degree of saturation of the soil before a rain event; and (ii) the soil moisture is 238 
now limited by the saturation value. These modifications of the relationship add three parameters: 239 
dsoil an equivalent soil thickness (in mm), θsat the soil moisture value at saturation (in m3/m3) and θres 240 
the residual soil moisture (in m3/m3). The new version of the API model (hereafter referred as the API 241 
model) is written:  242 

 243 

𝜃(𝑡) = (𝜃(𝑡−1) − 𝜃𝑟𝑒𝑠). 𝑒−
∆𝑡

𝜏 + (𝜃𝑠𝑎𝑡 − (𝜃(𝑡−1) − 𝜃𝑟𝑒𝑠)) . (1 − 𝑒
−𝑃(𝑡)

𝑑𝑠𝑜𝑖𝑙 ) +  𝜃𝑟𝑒𝑠   (Eq.2) 244 

 245 
where θ(t) is the surface soil moisture in m3/m3, τ is the soil moisture drying-out velocity (in h), and 246 
P(t) is the cumulative precipitation in mm during the Δt period (in h). It requires the use of a 247 
precipitation product at infra-daily resolution (3 hours or less) to determine when rainfall occurs 248 
compared to SMOS ascending (6am) or descending (6pm) orbits. A sensitivity study was conducted 249 
over 10 sites at the global scale [24] to derive the best 4 parameters of the API model. Authors showed 250 
that a constant value for θsat = 0.45 m3/m3 provided reliable results. On the contrary, a spatial 251 
distribution of the θres and dsoil parameters is required and as well as a spatiotemporal distribution of 252 
the τ parameter.  253 
 254 
The residual soil moisture is the minimal value of soil moisture on a given pixel. Based on surface 255 
soil moisture measurements obtained over the 10 sites presented in [24], the simple following 256 
formulation was proposed: 257 
 258 

𝜃𝑟𝑒𝑠 = 0.04676 + 0.05936 (𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅ ) − 0.00136 (𝑇𝑎𝑖𝑟̅̅ ̅̅ ̅̅ )       (Eq.3) 259 
 260 

with 𝑇𝑎𝑖𝑟̅̅ ̅̅ ̅̅  (in °C) is the annual mean 2m air temperature (source MERRA, 2013) and 𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅  is the 261 
annual mean NDVI value provided by ESA-CCI-LC-L4-NDVI (Spot VGT, 2015). Globally, residual 262 
soil moisture values range from 0.017 to 0.099 m3/m3 at the global scale and from 0.017 to 0.060 m3/m3 263 
in Africa. 264 
 265 
The dsoil coefficient (in mm) describes the rapidity of soil moisture wetting during a rainfall event and 266 
is related to the soil thickness. The thinner (thicker) the soil layer, the faster (slower) the soil 267 
wetting. Over 9 out of the 10 sites studied in [24], it was found that a dsoil value of 35 mm was adequate 268 
compared to in situ soil moisture dynamic. This is consistent with soil moisture depth sensors located 269 
at 5 cm depth. However, on the Niger site, a value of dsoil equal to 100 mm was required to reproduce 270 
observed in situ soil moisture dynamics. It was concluded that this parameter can be related to the 271 
presence/absence of vegetation. In regions without vegetation, soils are often degraded with an 272 
impermeable crust associated with a low infiltration rate. A simple sigmoid relationship based on 273 
mean annual NDVI (ESA-CCI-LC-L4-NDVI, 2015) was proposed in this study as : 274 
 275 

𝑑𝑠𝑜𝑖𝑙 = 120 −
80

1+178482301𝑒(−100∗𝑁𝐷𝑉𝐼̅̅ ̅̅ ̅̅ ̅̅ ̅)         (Eq.4) 276 

 277 
Globally, dsoil values range from 40 mm (almost everywhere) to 120 mm in arid and semi-arid areas. 278 
 279 
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The τ parameter in Eq.2 describes the drying-out velocity of the surface soil moisture due to both 280 
evapotranspiration and infiltration rate. Consequently, this parameter should depends on both soil 281 
hydraulic properties and atmospheric forcing (air temperature, wind velocity, solar radiation). In a 282 
first approximation, it was shown in this study that τ value can be appropriately estimated with 30-283 
days smoothed air temperature (Tair) using the following relationship: 284 
 285 

𝜏(𝑡) = 400 − (
350

(1+𝑒−0.1(𝑇𝑎𝑖𝑟−7.5))
)           (Eq.5) 286 

 287 
where 30-days smoothed Tair values (°C) are obtained from MERRA-2 database (3-hours, 2013). At 288 
the continental scale of Africa, the τ parameter ranges from 80 h to 350 h. 289 
 290 

2.4.2 The CDF matching procedure 291 
 292 
The PrISM methodology is based on the assimilation of the SMOS soil moisture retrievals into the 293 
API model (Eq.2). Thus, a preliminary work consists in scaling the SMOS soil moisture retrievals to 294 
the API simulation using a simple CDF-matching procedure. To that end, a reference rainfall dataset 295 
was selected to provide a reference soil moisture simulation with the API model at the Africa scale. 296 
The evaluation of two adjusted products (CMORPH-adj and TRMM-3B42) against in situ rainfall 297 
measurements in Niger and Benin sites led to the selection of the CMORPH-Adj precipitation product 298 
as the reference for the CDF-Matching procedure. Then, the API model (Eq. 2) was run for the whole 299 
of Africa using CMORPH-Adj precipitation product and parameters were derived from Eq. 3, 4 and 300 
5. Based on the obtained reference soil moisture simulation (2012), a calculation of the two linear 301 
CDF-matching coefficients (p1 and p2) was made to scale the SMOS L3SM to the reference soil 302 
moisture. The scaled SMOS values (SMOSCDF) are assumed to be linearly related to SMOS original 303 
values as: 304 
 305 

𝑆𝑀𝑂𝑆𝐶𝐷𝐹 = 𝑝1 + 𝑝2. (𝑆𝑀𝑂𝑆)     (Eq.6) 306 
 307 

with        𝑝2 =
𝜎𝑆𝑀𝑚𝑜𝑑𝑒𝑙

𝜎𝑆𝑀𝑠𝑚𝑜𝑠
⁄       and   𝑝1 = 𝑆𝑀𝑚𝑜𝑑𝑒𝑙

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑝2. (𝑆𝑀𝑠𝑚𝑜𝑠
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 308 

 309 
 310 

2.4.3 The Particle Filter assimilation scheme 311 
 312 

Among the various existing assimilation schemes, the Particle Filter (PF) is an original method 313 
based on random stochastic perturbations of the precipitation forcing that explicitly simulates the 314 
consequences of precipitation uncertainties in the associated soil moisture outputs [51-53]. It is 315 
suitable for non-linear models and makes no assumption on the prior and posterior distributions of 316 
the model states. This property of the PF makes it more suitable for this study compared to ensemble 317 
based data assimilation approaches whose optimality and performance depend on the linearity 318 
between input and output variables, having Gaussian distributed errors, as for example in the 319 
Ensemble Kalman Filter [54, 55]. For a mathematical or formal description of PF, the reader should 320 
referred to [56]. 321 
 322 

The concept is a pixel-based approach. An illustration of the PF assimilation method is shown 323 
in Figure 2 (Niger site, 2015). Once there is a new SMOS soil moisture retrieval on a given pixel, an 324 
assimilation window which contains the five last SMOS retrievals is defined. The length, i.e. the 325 
number of SMOS retrieval within each assimilated sub-period was chosen after a sensitivity study 326 
(not shown) and represents a compromise between too short periods (giving much weight to 327 
individual SMOS uncertainties) and too long periods which reduce the operational interest of the 328 
methodology. Thus, the API model is forced with the real-time satellite rainfall product (CMORPH-329 
Raw in this study) that we aim to correct and which is represented as red “bars” in Figure 2. The red 330 
curve in Figure 2 represents the soil moisture simulated by the model forced with this real-time 331 
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satellite rainfall. Then, the real-time satellite rainfall is used to generate 100 random rainfall time 332 
series (number tested in sensitivity experiments) using random stochastic perturbations (grey “bars” 333 
in Figure 2). These new rainfall time series are used to force the API model (Eq.2) to obtain an 334 
ensemble of soil moisture predictions (i.e., 100 soil moisture time series associated to 100 different 335 
rainfall time series, grey curves in Figure 2). The random stochastic perturbations of rainfall is done 336 
using the following simple multiplicative relationship: Rain(t,i) = Rain(t)*a(i) with a(i) a random 337 
number between 0 and 2 for i=1,100 (uniform distribution). Figure 2 clearly shows that the random 338 
rainfall can’t exceed twice the amount of the initial rainfall. Then, the SMOS retrievals are used to 339 
select the 30 most probable soil moisture trajectories which minimize the RMSE. Finally, the corrected 340 
rainfall amount corresponds to the average of the 30 most probable rainfall time-series. The corrected 341 
rainfall estimate is associated with an uncertainty calculated as the difference between the maximum 342 
and the minimum value of the 30 most probable rainfall time-series.  343 
 344 

 345 
 346 

Figure 2: Illustration of the PF assimilation scheme for the Niger site. The initial satellite precipitation rate (in 347 

red) produces the associated soil moisture evolution (in red). Stochastic perturbations of the initial satellite 348 

precipitation rate produce an ensemble of potential soil moisture evolutions (in grey). The SMOS retrievals (5 349 

orange diamonds) are used to select the most probable soil moisture curves (in orange) and to calculate the 350 

averaged soil moisture (in blue), which is associated with a specific precipitation rate (in blue). In this case, a 351 

decrease of the initial satellite precipitation rate is proposed which is consistent with in situ precipitation 352 

measurements (in black). 353 

The process is repeated when a new SMOS measurement is available. Consequently, each 354 
rainfall event is considered 4 times (a period of 5 successive SMOS measurements provides 4 355 
intervals) and the final rainfall rate correction is the averaged value of the 4 proposed corrected 356 
rainfall rates. 357 

 358 
As the method is based on a modification of the precipitation rate of an existing product, it is 359 

not possible to create any rain event. It is also difficult to completely remove an existing rain event 360 
even if it is possible to significantly reduce it. Therefore, the method has a low impact on scores 361 
usually used in satellite precipitation product comparisons such as probability of detection (POD) 362 
and false-alarm ratio (FAR).   363 

3. Results 364 

To enable fair comparison between satellite precipitation products, all products listed in Table 2 365 
were regridded to the 0.25° resolution and daily time-scale. At this spatial scale, a direct comparison 366 
with a single raingauge station can be distrusted due to the large spatial scale difference. Thus, we 367 
conducted a two-step assessment methodology. First, an accurate assessment was performed on two 368 
sites where 10 to 12 raingauge stations are located within the same pixel of 0.25° (i.e. about 25x25 369 
km²) belonging to the AMMA-CATCH Observatory in Niger and Benin. As stated in section 2.1, the 370 
use of dense networks of rain gauges allows an accurate estimate of the precipitation rate at this scale. 371 
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In a second step, a direct, less relevant comparison between satellite (0.25°) and individual rainfall 372 
station was done and results were analyzed at the network scale, i.e. Burkina Faso (20 stations), 373 
Central Africa (42 stations) and East Africa (78 stations).  374 

3.1. Assessment at the local scale (Niger and Benin) 375 

The eleven selected precipitation products were compared to ground-based precipitation 376 
measurements using commonly used statistical scores: the Pearson correlation (R), the Root Mean 377 
Square Error (RMSE in mm/day) and the annual bias (in mm). Null values were accounted for in the 378 
scores calculation and the comparison was performed at the daily time scale and at the 0.25° spatial 379 
resolution. As the ground-based precipitation datasets (Niger and Benin) are available at the hourly 380 
time scale whereas some satellite products are provided at the daily time scale, the matching of the 381 
two time-series was carefully checked to avoid the known ambiguity between a 6am-6am day 382 
(commonly used in precipitation measurements) and a 0-24h day. Lastly, we also examine the 383 
number of rainy days (cumulative daily rainfall > 1 mm) compared to in situ measurements.  384 

 385 
Results are presented for illustrative purposes for the Benin site (2015) in Figure 3. Statistical 386 

scores (R, RMSE and annual bias) are plotted in each graph and are also reported in Table 3. Overall, 387 
all products capture relatively well the temporal dynamics of precipitation with a rather high 388 
correlation coefficient (R>0.70 except for TRMM-Raw (R=0.65) and GPCC (R=0.42) reported only in 389 
Table 3). Best performances in term of correlation are obtained by PrIMS (R=0.81), CMORPH-Adj, 390 
IMERG-Final (R=0.80), IMERG-Early (R=0.78) and CHIRPS (R=0.77). Regarding RMSE, best 391 
performances are obtained by CMORPH-Adj, PrISM, IMERG-Final and SM2RAIN and IMERG-Early 392 
with RMSE values equal to 4.3, 4.4, 4.5 and 4.6 mm/day respectively. Lowest performances are 393 
obtained by TRMM-Raw and GPCC with 6.8 mm/day. Regarding bias score, four products obtained 394 
annual cumulative precipitation values very close to the observation (1150 mm): TRMM-Raw (1138 395 
mm, -1%), PrISM (1124 mm, -2.3%), CHIRPS (1110 mm, -4.3%) and SM2RAIN (1216 mm, +5.7%). On 396 
the contrary, TAMSAT_025 strongly underestimates the annual precipitation with an estimation of 397 
only 731 mm (-36%). Surprisingly, the three adjusted products (CMORPH-Adj, TRMM-Adj and 398 
IMERG-Final) provide moderate to strong underestimated precipitation (respectively 828 mm (-28%), 399 
1075 mm (-6.5%) and 1035 mm (-10%) compared to in situ precipitation measurements. Similarly, 400 
GPCC exhibits moderate underestimation (1013 mm, -12%). Only the CMORPH-Raw product shows 401 
an overestimation of the annual rainfall with 1246 mm (+8%) in Benin in 2015. Lastly, Table 3 includes 402 
the difference in term of annual rainy days. In the Benin site, 103 rainy days (> 1mm) were observed 403 
in 2015. Table 3 shows that CHIRPS, GPCC and SM2RAIN tends to overestimate this number (112, 404 
135 and 168 days respectively) whereas PrISM and CMORPH-Raw provides similar number of rainy 405 
days (101 and 102 days respectively). All other precipitation products exhibit a slight underestimation 406 
(from 88 to 94 days). 407 

 408 
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 409 
Figure 3 : Example of comparison between in situ precipitation measurements (Benin 0.25° site, 2015, in grey) 410 
and the ten precipitation products (PrISM, SM2RAIN, CMORPH (Raw and Adj), TRMM (Raw and Adj), IMERG 411 
(Early and Final), CHIRPS-025 and TAMSAT-025). Bars show daily rainfall amounts (left axis), curves show 412 
cumulative rainfall (right axis). Statistical scores are reported in Table 3. 413 

 414 
The same analysis was conducted for the Niger site in 2015. Graphics are shown in 415 

supplementary materiel (Figure S1) and the statistical scores are reported in Table 3. Similarly, the 416 
CMORPH-Adj and PrISM products obtain good performances in term of correlation (R=0.82 and 417 
R=0.81 respectively) and GPCC obtains the lower score (R=0.33) probably due to the low density of 418 
gauges in the Niger region and its original spatial resolution of 1°. Regarding the RMSE scores, best 419 
performances are obtained by PrISM, TAMSAT-025, CHIRPS, TRMM-Adj, SM2RAIN, CMORPH-Adj 420 
and IMERG-Final (from 3.7 mm/day to 4.6 mm/day). Conversely, CMORPH-Raw and TRMM-Raw 421 
products obtain lower RMSE scores (6.7 and 6.9 mm/day). In term of annual bias, four products 422 
obtained annual cumulative precipitation values quite close to the observation (601 mm): TRMM-Adj 423 
(602 mm), IMERG-Final (547 mm, -9%), PrISM (669 mm, +11%) and IMERG-Early (687 mm, +14%). 424 
On the contrary, CMORPH-Raw and TRMM-Raw strongly overestimate annual precipitation (1052 425 
mm, +75% and 1090 mm, +81% respectively). Other products obtain intermediate annual bias (see 426 
Table 3). Regarding the number of rainy days in Niger (43 days from in situ measurements), best 427 
performances were obtained by SM2RAIN, TAMSAT_025 and CMORPH-Adj (48, 50 and 51 days 428 
respectively) whereas GPCC still provides an overestimated number of rainy days (71 days). Other 429 
products, PrISM included, provide a slight overestimation of the number of rainy days compared to 430 
observations (from 52 to 57 days). 431 

 432 

Table 3. Statistical scores (R, RMSE, annual bias and nb of rainy days) between in situ precipitations 433 

measurements (Benin and Niger, 2015) and the eleven precipitation products. Bold values indicate the best 434 

performances. There are 103 rainy days in Benin and 43 rainy days in Niger in 2015. 435 

2015 Benin 0.25° (1150 mm, 103 rainy days) Niger 0.25° (601 mm, 43 rainy days) 
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 R 
RMSE 

(mm/d) 

Bias 

(mm) 

Rainy days 

(>1mm/d) 
R 

RMSE 

(mm/d) 

Bias 

(mm) 

Rainy days 

(>1mm/d) 

PrISM 0.81 4.4 -26 101 0.81 3.7 +68 55 

CMORPH-

Raw 
0.75 5.6 +96 102 0.80 6.7 +451 56 

TRMM-Raw 0.65 6.8 -12 94 0.75 6.9 +489 54 

IMERG-Early 0.78 4.6 -165 90 0.63 5.3 +86 57 

TAMSAT-025 0.72 5.0 -419 92 0.77 3.9 -169 50 

SM2RAIN 0.76 4.6 +66 168 0.74 4.1 -203 48 

CHIRPS 0.77 4.7 -40 112 0.70 4.3 -138 55 

GPCC 0.42 6.8 -137 135 0.33 5.9 -147 71 

CMORPH-Adj 0.80 4.3 -322 88 0.82 4.3 +152 51 

TRMM-Adj 0.70 6.1 -75 92 0.75 4.1 +1 53 

IMERG-Final 0.80 4.5 -115 94 0.66 4.6 -54 52 

 436 

Figure 4 shows the Taylor diagrams [57] in Benin and Niger sites daily precipitation in 2015. 437 
Taylor diagram enables a visual comparative assessment of the different precipitation products 438 
quantifying the degree of correspondence between the estimated and observed precipitation in terms 439 
of three statistics: the Pearson correlation coefficient, the root-mean-square error (RMSE), and the 440 
standard deviation. Correlation scores are plotted as the radial lines, and the linear distance of a point 441 
to the Observed point indicates the RMSE from in situ measurements. For instance, the GPCC point 442 
for Benin site is close to the 0.4 radial line (R=0.42 in Table 3) and close to the “7” dotted circle 443 
(RMSE=6.8 mm/days). Graphically, the best products are those closest to the “Observed” point and 444 
to the dashed curve which indicates the same amplitude of the variations. In Benin (2015), those best 445 
products are the two IMERG products and the PrISM product. For Niger (2015), PrISM and TRMM-446 
Adj perform better than the other ones.  447 

 448 

 449 

Figure 4: Taylor diagrams for the Benin (left) and Niger (right) 0.25° sites for the year 2015 for the 11 precipitation 450 

products. Color dots refer to the different products (blue=CMORPH, red=TRMM, purple=IMERG, 451 

green=TAMSAT_025, cyan=SM2RAIN, orange=CHIRPS, dark green=GPCC and black=PrISM). Statistical scores 452 

are given in Table 3.   453 

Lastly, the Taylor diagrams were plotted for the whole period (2010-2016, instead of 2015) except 454 
for the two IMERG and SM2RAIN precipitation products that start in March 2014 and are then 455 
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considered only for 2015-2016 period. Figure 5 reveals some slight differences compared to Figure 4 456 
but leads to similar conclusions. Globally, when a product is provided in two versions, e.g. raw and 457 
adjusted, the adjusted product performs better. The “raw” version of TRMM and CMORPH are 458 
located far away from their adjusted versions. The PrISM product was found to be among the best 459 
products for the Benin site and provides the best performance for the Niger site. TAMSAT_025 and 460 
SM2RAIN have similar scores and perform better for the Niger site but their standard-deviations are 461 
much lower than in the observation.  462 

 463 
 464 

 465 
Figure 5: Taylor diagrams for the Benin (left) and Niger (right) 0.25° sites and the 2010-2016 period (except for 466 

IMERG, 2015-2016) and the 11 precipitation products. Color dots refer to the different products (blue=CMORPH, 467 

red=TRMM, purple=IMERG, green=TAMSAT_025, cyan=SM2RAIN, orange=GPCC and black=PrISM).  468 

 469 

3.2. Assessment at the regional scale 470 

At the regional scale, scores were calculated using individual raingauge stations compared to 471 
0.25° precipitation products. Scores were calculated at the daily time scale based on the whole 472 
available period (see Table 1). Then, the median value of all individual scores (R, RMSE and bias) was 473 
calculated. Results are presented separately for the three raingauge networks (Burkina Faso, Central 474 
Africa and East Africa) in Figure 6. Results obtained for Benin and Niger are also reported in Figure 475 
6 for comparison. Note that the two IMERG products were not considered for East Africa because the 476 
ground rainfall measurements were not available after 2013. 477 

 478 
Results show globally that the correlation score is slightly lower for Burkina, Central Africa and 479 

East Africa compared to Benin and Niger. Similarly, the corresponding RMSE are respectively greater 480 
(worse) for these three networks. On the other hand, the biases are in the same order of magnitude 481 
in the five regions. In all regions, PrISM shows good performances according to the 3 scores and is 482 
among the best products together with the two IMERG products. It can be observed that PrISM 483 
systematically outperforms CMORPH-Raw in term of RMSE (except in East Africa where it is slightly 484 
less performant). But the improvement in term of correlation is more modest. CMORPH and TRMM, 485 
in their adjusted or raw versions, show similar performances in terms of correlation but provide 486 
generally much better results in term of RMSE and biases for their adjusted versions. SM2RAIN and 487 
CHIRPS products show lower correlation and higher RMSE scores for Burkina-Faso and Central 488 
Africa but presents a low bias for all regions. Although its biases are small, GPCC, as expected from 489 
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its low original resolution, generally shows relatively low performances, except in Central Africa. 490 
Finally, TAMSAT_025 globally tends to underestimate the rainfall rate but shows relatively good 491 
correlation and RMSE scores.  492 

 493 

 494 
Figure 6: Statistical scores (R, RMSE and bias) for the five regions (Benin, Niger, Burkina-Faso, Central Africa 495 

and East Africa) and for the 11 precipitation products. The temporal period depends on the satellite product and 496 

in situ availabilities. 497 

4. Limitation of the PrISM methodology 498 

 499 
One limitation of the methodology is that it is not able to create a rain event. This is clearly shown 500 

in Table 3 where the number of rainy days (> 1 mm) does not change much between the CMORPH-501 
Raw product and the PrISM product. Therefore, it is necessary to use an initial precipitation product 502 
that overestimates the number of events since the PrISM algorithm is able to reduce the amount of 503 
rainfall. 504 

 505 
The PrISM algorithm was also found to be more efficient when the initial rainfall product 506 

overestimates the annual rainfall amount. This is particularly true in East Africa where the CMORPH-507 
Raw showed a negative annual bias (see Figure 6) and the PrISM algorithm was not able to correct 508 
for that underestimation. On the contrary, on the other 4 sites, the CMORPH-Raw showed positive 509 
annual biases which are suitably corrected by PrISM. The reason for this behavior is that a 10 mm 510 
rain event (for instance) can easily be reduced to 1 mm, but the PrISM algorithm can’t propose a 511 
correction greater than 20 mm (correction factor ranging between 0 and 2). Consequently, it is easier 512 
to reduce the rainfall amount than to increase it. 513 
 514 

The satisfactory results of the PrISM methodology in Central Africa are a pleasant surprise since 515 
the SMOS soil moisture retrievals under dense forest are expected to be inaccurate. The explanation 516 
of this results is partly due to the large overestimation of the CMORPH-Raw product in Central 517 
Africa. The PrISM methodology leads to reduce the rainfall amount of most events and, mechanically, 518 
RMSE is reduced as well as the annual bias. Overall, the effect of vegetation cover on the performance 519 
of the PrISM algorithm is difficult to evaluate. Indeed, areas of dense vegetation are at the same time 520 
areas where the SMOS signal can be inaccurate but also areas of heavy precipitation with a high 521 
potential for improvement. PrISM performances are similar in Niger (low vegetation) and in Benin 522 
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(medium vegetation), and the PrISM performances in Central Africa are better than in East Africa (in 523 
term of correlation and bias correction).   524 

4. Summary and next step 525 

 526 
This study presents the PrISM algorithm and its evaluation over 5 regions in Africa. PrISM 527 

algorithm uses knowledge of soil water content (provided by SMOS soil moisture measurements) to 528 
adjust the precipitation rate of an existing satellite product (CMORPH-raw in this study). To assess 529 
the benefit of the proposed methodology, PrISM was compared against ten state-of-the-art satellite 530 
and ground-based rainfall products for five rain gauge networks located in semi-arid to wet areas in 531 
Africa.  532 

 533 
PrISM was found to generally outperform all real-time products (CMORPH-Raw, TRMM-Raw, 534 

IMERG-Early, TAMSAT_025 and SM2RAIN), especially when considering areas where there exists a 535 
dense network of rain gauge stations as a reference data set. It showed same or even better 536 
performances than adjusted or post-processed products. The main contribution of PrISM is that it 537 
greatly decreases RMSE values and reduces the bias values compared with the original CMORPH-538 
Raw product. Results in term of correlations are more modest. This result is quite important for many 539 
applications that require real-time information on precipitation such as crop yield estimates, flood 540 
nowcasting, dam management, ground-water recharge estimates and irrigation demand over large 541 
areas.  542 

 543 
Future studies will be designed to apply PrISM algorithm to other satellite soil moisture dataset 544 

such as SMAP, ASCAT or SMOS-IC. At the moment, PrISM product is available on the ftp site: 545 
ftp://ftp.ifremer.fr/Land_products/L4_PrISM/Africa/ and can be downloaded at 546 
https://doi.org/10.5281/zenodo.3565610 at an annual latency. The near-real-time version of the 547 
product will shortly be available on the external ERDDAP of IGE in Grenoble: http://osug-smos-548 
rea.osug.fr:8081/erddap/index.html. 549 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Comparison 550 
between in situ precipitation measurements (Niger 0.25° site, 2015, in grey) and the ten precipitation products 551 
(PrISM, CMORPH (Raw and Adj), TRMM (Raw and Adj), IMERG (Early and Final), TAMSAT-025, CHIRPS and 552 
SM2RAIN). Statistical scores are reported in Table 3.  553 
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Figure S1: Example of comparison between in situ precipitation measurements (Niger 0.25° site, 2015, in grey) 734 

and the ten precipitation products (PrISM, SM2RAIN, CMORPH (Raw and Adj), TRMM (Raw and Adj), IMERG 735 

(Early and Final), CHIRPS-025 and TAMSAT-025). Statistical scores are reported in Table 3. 736 
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