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� Microbial community in inocula

has a great impact on pre-

treatments efficiency.

� In aerobic sludge no pre-treatment

is required to increase hydrogen

yield.

� Biokinetic control has a strong in-

fluence on the Clostridiaceae family

selection.

� Low/unstable hydrogen produc-

tion is associated with the Entero-

bacteriaceae family.
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Hydrogen (H2) production by dark fermentation can be performed from a wide variety of

microbial inoculum sources, which are generally pre-treated to eliminate the activity of H2-

consuming species and/or enrich the microbial community with H2-producing bacteria.

This paper aims to study the impact of the microbial inoculum source on pre-treatment

behavior, with a special focus on microbial community changes. Two inocula (aerobic

and anaerobic sludge) and two pre-treatments (aeration and heat shock) were investigated

using glycerol as substrate during a continuous operation. Our results show that the

inoculum source significantly affected the pre-treatment efficiency. In aerobic sludge no

pre-treatment is necessary, while in anaerobic sludge the heat pre-treatment increased H2

production but aeration caused unstable H2 production. In addition, biokinetic control was

key in Clostridium selection as dominant species in all microbial communities. Lower and

unstable H2 production were associated with a higher relative abundance of Enterobac-

teriaceae family members. Our results allow a better understanding of H2 production in
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continuous systems and how the microbial community is affected. This provides key in-

formation for efficient selection of operating conditions for future applications.
Table 1 e Summary of experimental design.

Assay Inoculum Pretreatment Name of assay

1 Aerobic sludge Heat treatment AI-HT

2 Aerobic sludge Aeration AI-AT

3 Aerobic sludge e AI-C

4 Anaerobic sludge Heat treatment AnI-HT

5 Anaerobic sludge Aeration AnI-AT

6 Anaerobic sludge e AnI-C
Introduction

The growing environmental pollution of cities has motivated

the search for new sources of clean and renewable energy. In

this context hydrogen (H2) appears as a great environment

friendly alternative for transportation. Indeed, its combustion

produces only water vapor instead of greenhouse gases, with

a combustion efficiency 2.75 (122 kJ/g) times higher than

traditional fuels and can also be easily converted into elec-

tricity in electric vehicle fuel cells [1,2]. Green H2 is considered

a renewable energy since it is produced from renewable re-

sources, such as organic matter by dark fermentation. This

latter technology has been widely studied because of a high

simplicity and the low operating andmaintenance costs when

compared to other biological H2 production systems, such as

photofermentation and biophotolysis. In addition, a wide va-

riety of substrates and inocula can be used allowing the pro-

duction of energy while treating waste [1,3e6]. Different types

of waste and organic substrates have already been studied

including simple sugars such as glucose and more complex

organic matter such as organic industrial wastes [7]. A special

interest has been focusing on crude glycerol, the main by-

product of the biodiesel industry, as a low-cost feedstock

[8e10].

Dark fermentation H2 production performances from

glycerol are mostly dependent to the microbial physiological

capacities. As microbial inoculum, strains of known H2-pro-

ducing bacteria could be used in pure cultures, including

facultative anaerobes as Klebsiella sp. and Enterobacter sp. of

the Enterobacteriaceae family, as well as the strict anaerobes

Clostridium sp. of the Clostridiaceae family [11e14]. Mixed cul-

tures coming from natural and engineered ecosystems such

as soil, compost, anaerobic sludge and other anaerobic envi-

ronments [15e18] have also been used as inocula, with the

advantage of providing better adaptation capacity in response

to environmental stresses including substrate limitation and

abrupt changes in pH and temperature [7,16,19]. The higher

robustness of mixed cultures has been attributed to the di-

versity of the microbial community, enabling positive inter-

species interactions such as syntrophy [2,20]. Some mixed

community members can also generate adverse effects on the

system performance through negative interactions [2]. The

origin of the inoculum, its pre-treatment and the operating

strategy of the reactors including biokinetic control, i.e. se-

lection pressure on the microbial community imposed by low

pH and short HRT, are of crucial importance to ensure H2-

producer enrichment and achieve high and stable H2-pro-

duction performance [21e27].

Inocula pre-treatments seek to eliminate H2econsumers

such as hydrogenotrophic methanogenic archaea and enrich

the community with H2-producers [22,28]. Heat shock pre-
treatment is the most used at lab scale for its efficiency in

batch systems. Pre-treatment conditions are generally arbi-

trary and range from 50 �C to 125 �C and from 20 to 30 min

[29e32]. In this case, the microbial community is enriched

with spore-forming species such as the H2-producer Clos-

tridium sp., resisting to high temperature [7,32]. However,

other non-spore-forming H2-producing species are also

depleted such as Klebsiella sp., and Enterobacter sp. [16,33].

Moreover, heat shock pre-treatment requires additional en-

ergy consumption, which is questionable in terms of eco-

nomic and technical feasibility for a potential industrial

application [34,35]. Another less common pre-treatment is

aeration, which enriches the inoculum with aerobic and

facultative anaerobic H2-producers such as Klebsiella sp., but

also eliminates other oxygen-intolerant H2-producing bacte-

ria such as some Clostridium sp [36]. Unlike heat shock pre-

treatment, aeration could be performed in-situ as an indus-

trially viable alternative to the common instability problems

of continuous systems during H2 production [37,38].

This paper aims to study the combined effects of inoculum

source and pre-treatment on continuous H2 production effi-

ciency from glycerol, with special focus on the dynamics of

microbial communities. For this, two inocula (aerobic and

anaerobic sludge) and two pre-treatments (aeration and heat

shock pre-treatment) were compared.
Materials and methods

Inocula source

Two mixed cultures were used as inoculum: (i) anaerobic

sludge (13.1 gVSS.l�1) from a sludge stabilizing anaerobic

reactor and (ii) aerobic sludge (15.8 gVSS.l�1) from an activated

sludge reactor. Both were collected from the sewage treat-

ment plant La Farfana located in Santiago, Chile.

Pre-treatments of inocula

Inocula were either used without pre-treatment (in control

conditions), or prepared using two different pre-treatments

prior to reactors inoculation (Table 1). A heat treatment (HT)
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was conducted at 105 �C for 2 h. Aeration (AT) was performed

by bubbling air for 4 weeks at a rate providing oxygen satu-

ration. Dissolved oxygen was monitored during these treat-

ments, using a probe and a controller. During aeration,

glucose was added as carbon source (10 g L�1), as well as other

nutrients detailed in Experimental set-up (patent N�

201402319, INAPI, Chile).

Experimental set-up

Six continuous stirred tank reactors (CSTR) were operated at

different conditions, to compare the combined effects of two

inocula (aerobic and anaerobic sludge) and two pre-

treatments (HT and AT) on continuous H2-production. In

addition, a control (C) without pre-treatment was performed

for each inoculum. Tested conditions are summarized in

Table 1. Reactors had a useful volume of 2 L, and were oper-

ated at 12 h of hydraulic retention time (HRT), pH 5.5 and 37 �C.
The reactors were inoculated with 0.4 L of inoculum and then

operated in batch mode for 24 h before starting continuous

operation. The reactors were operated continuously for at

least 16 HRT. The cultivation medium was composed of

7.5 ± 1.1 g L�1 glycerol and others nutrients as follows (mg.l�1)

1000 NH4Cl, 250 KH2PO4, 100 MgSO4$7H2O, 10 NaCl, 10

NaMoO4$2H2O, 10 g L�1 CaCl2$2H2O, 9.4 MnSO4$H2O and 2.8

FeCl2 [27].

Analytical methods

An online MILLIGASCOUNTER® Type MGC-1 was utilized to

continuously determine the volume of biogas produced.

Biogas composition (H2, CO2, and CH4) was daily measured by

gas chromatography (PerkinElmer Clarus 500, HayesepQ 4mx

1/800OD column, thermal conductivity detector). The concen-

tration of ethanol, acetate, propionate and butyrate was daily

measured by gas chromatography (PerkinElmer Clarus 500,

60/80 Carbopack C column, flame ionization detector). The

concentration of glycerol, formate and succinate was

measured by HPLC with a refractive index detector (Biorad

Aminex HPX-87H column, Bio-Rad laboratories, Hercules, CA

e US). The biomass concentration was estimated using dry

weight in terms of volatile suspended solids (VSS).

Microbial community analysis

For molecular biology analysis, 2 mL biomass samples were

collected fromoriginal inocula, after pre-treatments and at the

end of the continuous operation. Biomass samples were

centrifuged, and the pellet was stored in 9% NaCl at �20 �C.
Total genomic DNA was extracted with the Power Soil DNA

isolation kit (MoBio Laboratories, Carlsbad, CA, USA). The

V3eV4 region of the bacterial 16s rRNA gene was PCR-

amplified according Carmona-Martinez et al. (2015) [39]. The

community composition was evaluated by sequencing using

the MiSeq v3 chemistry (Illumina) with 2 � 300 bp paired-end

reads at the GenoToul platform (http://www.genotoul.fr). Se-

quences were retrieved after demultiplexing, cleaning, clus-

tering (97%) and affiliating sequences usingMothur [40]. A total

of 3216 operational taxonomic units (OTU) were found and
then used for statistical analysis. Sequences have been sub-

mitted to GenBank with accession No. KX632952-KX636081.

Data analysis

Averages and standard deviations (±SD) of biomass produc-

tion, H2 yields and metabolites concentrations were calcu-

lated from daily measurements during continuous operation

(for at least 16 HRT). H2 yields was expressed in moles of H2

produced by moles of glycerol consumed. Chemical oxygen

demand (COD) mass balance was performed and the metab-

olites concentrations were expressed in %COD i.e. COD of

metabolites produced by COD of glycerol consumed.

A one-way ANOVA analysis was performed, after checking

normal data distribution, to evaluate significant differences in

H2 yields and biomass production between conditions. For H2

yield, Mann-Whitney as post-hoc test was performed to find

out which sample pairs were statistically different. Simpson

diversity index was calculated to compare microbial diversity

at the beginning and end of each condition. Principal

component analysis was performed from (i) initial and final

microbial community and, (ii) final microbial community and

metabolic patterns. For the PCA were used the microbial

community data with a relative abundance >5.0% in at least

one sample. All statistical analyses were carried out with

PAST 3.24 software (http://folk.uio.no/ohammer/past/).
Results & discussion

Microbial communities in original and pre-treated inocula

The initial microbial community was analyzed in the original

inocula (AI and AnI) and in the pre-treated inocula (AI-HTi,

AnI-HTi, AI-ATi and AnI-ATi). Whereas the Simpson Diversity

Index quantifies microbial diversity, where 1 represents

infinite diversity and 0 represents no diversity. The original

inocula have a high diversity with a Simpson Diversity Index

of 0.98 and 0.92 for aerobic and anaerobic sludge, respectively.

After any pre-treatments the SimpsonDiversity Index showed

no great changes compared to the original inocula (Table 2).

When comparing all communities, the highest similarity is

observed between both original inocula AI and AnI, as shown

on the PCA (Fig. 1).

At the phylum level, aerobic and anaerobic inocula were

dominates by Bacteroidetes and Spirochaetae phyla, repre-

senting between 34.8%e40.4% and 20.3%e26.4% of bacterial

community respectively. In particular, the most abundant

families in aerobic sludge (AI) were Spirochaetaceae (12.4%) and

Rikenellaceae (10.3%), with OTU11 (8.2%) dominating. OTU11

had 91% of 16S rRNA sequence similarity with Rectinema

cohabitans. In anaerobic sludge (AnI) the most abundant fam-

ilies were Rikenellaceae (18.8%) and WCHB1-69 (11.5%), with

OTU5 (18.4%) and OTU6 (16.2%) dominating (Fig. 2). These two

OTUs were related to Mucinivorans hirudinis (87% 16S rRNA

sequence similarity with OTU5) and Eubacteriumminutum (78%

16S rRNA sequence similarity with OTU6). Although these

families have been reported as dominant in other initial mi-

crobial communities of H2-producing reactors [23,41], none of

http://www.genotoul.fr
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Table 2 e Simpson diversity index and microbial community composition at the family level, expressed as percentage of
total community. DNA samples were collected from original inocula, after pre-treatments and after continuous operation.
Only families with a relative abundance ≥5.0% in at least one sample are shown. AI, AnI, HT, AT and C represent aerobic
inoculum, anaerobic inoculum, heat shock pre-treatment, aeration pre-treatment and control, respectively. The “i" at the
end of the sample names refers to samples taken after pre-treatments.

Family Original
inocula

After pre-treatment After continuous operation

AI AnI AI-HTi AnI-HTi AI-ATi AnI-ATi AI-C AnI-C AI-HT AnI-HT AI-AT AnI-AT

Simpson diversity index 0.98 0.92 0.99 0.94 0.95 0.96 0.83 0.71 0.67 0.64 0.75 0.79

Bacteroidetes

Flavobacteriaceae 1.7 3.5 1.6 0.1 4.8 12.1 0.0 0.0 0.0 0.0 0.0 0.1

Porphyromonadaceae 1.8 3.5 0.4 2.5 0.5 1.6 20.8 0.0 0.0 0.0 1.3 0.0

Prevotellaceae 0.2 0.0 0.3 0.3 11.8 6.3 6.4 25.6 35.9 34.1 32.2 24.9

Rikenellaceae 10.3 18.8 8.2 17.3 1.1 1.4 0.0 0.0 0.0 0.0 0.0 0.0

WCHB1-69 5.0 11.5 1.1 1.6 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0

Others (<5.0%) 15.8 3.0 11.2 0.5 2.7 1.0 0.2 1.4 1.1 0.2 2.1 2.0

Total 34.8 40.4 22.8 22.4 21.5 22.6 27.5 27.0 37.1 34.3 35.6 27.1

Firmicutes

Christensenellaceae 0.9 0.1 7.1 0.5 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0

Clostridiaceae 0.4 0.3 1.3 0.1 27.1 18.6 39.4 46.2 51.0 56.4 40.1 35.3

Enterococcaceae 0.0 0.0 0.1 0.0 1.6 3.7 27.1 0.3 0.1 0.1 0.6 1.9

Lachnospiraceae 0.0 0.0 0.1 0.1 2.5 4.6 0.2 1.0 0.1 0.1 5.3 2.2

Peptostreptococcaceae 0.5 0.2 4.0 0.2 6.5 0.8 0.0 0.0 0.0 0.0 0.0 0.0

Others (<5.0%) 6.8 5.5 6.0 8.5 3.8 4.6 4.5 7.5 2.4 1.3 5.1 1.5

Total 8.8 6.3 18.5 9.4 41.7 32.3 71.2 55.0 53.7 57.9 51.1 40.9

Proteobacteria

Comamonadaceae 4.1 3.3 5.0 4.7 2.7 5.6 0.0 0.0 0.1 0.4 0.0 0.2

Desulfobacteraceae 3.4 0.0 7.7 0.0 0.1 0.4 0.0 0.0 0.0 0.0 0.0 0.0

Enterobacteriaceae 0.0 0.0 1.6 0.0 6.7 4.4 0.4 16.7 3.3 1.3 5.4 25.4

Moraxellaceae 0.1 0.1 4.5 0.1 7.5 5.1 0.4 0.0 0.6 0.1 1.5 0.0

Pseudomonadaceae 0.2 0.1 0.1 0.0 8.8 9.6 0.2 0.1 0.8 2.2 6.2 5.8

Sphingomonadaceae 0.6 0.8 1.4 1.0 0.8 9.6 0.0 0.0 0.0 0.0 0.0 0.0

Others (<5.0%) 11.1 11.7 9.2 23.4 6.1 7.1 0.3 1.1 4.3 3.9 0.3 0.6

Total 19.5 16.0 29.5 29.2 32.9 41.7 1.3 18.0 9.1 7.8 13.3 32.0

Spirochaetae

Spirochaetaceae 12.4 1.4 6.5 1.2 1.0 0.2 0.0 0.0 0.1 0.0 0.0 0.0

Unknown_Family 0.1 8.8 0.0 1.5 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0

Others (<5.0%) 7.8 16.3 1.8 14.6 0.9 0.7 0.0 0.0 0.0 0.0 0.0 0.0

Total 20.3 26.4 8.3 17.4 2.0 1.1 0.0 0.0 0.1 0.0 0.0 0.0

Others (<5.0%) 16.7 10.9 20.9 21.6 1.9 2.3 0.0 0.0 0.0 0.0 0.0 0.0
these dominant species in AI or AnI have been reported as H2-

producing.

Heat shock pre-treatment has a rather limited impact on

total microbial community, as shown on the PCA in Fig. 1.

After heat shock, the total abundance of the initially domi-

nant Bacteroidetes and Spirochaetae phyla decreased in

both inocula. By contrast, the relative abundance of Firmi-

cutes and Proteobacteria increased, representing between

9.4 e 18.5% and 29.2e29.5% of the bacterial community

respectively (Table 2). Proteobacteria became dominant in

both inocula. However, at the family level, the same Rike-

nellaceae family as before the heat shock was maintained

dominant in the anaerobic inoculum (AnI-HTi) (17.3%) and

became dominant in the aerobic inoculum (AI-HTi) (8.2%),

even if its relative abundance slightly decreased with respect

to the original inocula. In anaerobic inoculum the same

OTU5 (17.1%) and OTU6 (14.5%) remained dominant, while in

aerobic inoculum OTU25 (5.3%) became dominant. The

OTU25 had 95% of 16S rRNA sequence similarity with

Desulfonatronobacter acetoxydans. As expected, the aerobic

inoculum community was more evenly distributed than the
anaerobic one, even after heat-treatment. Besides, heat

treatment not only favored families with known spore-

forming species such as Peptostreptococcaceae, but also fam-

ilies with non-spore forming species such as Desulfobacter-

aceae and Christensenellaceae [42,43]. However, this finding is

not unusual since other studies have reported that non-

spore forming species can survive drastic treatments such

as heat shock [2]. Surprisingly, the heat treatment resulted

in a very limited enrichment of the community with mem-

bers of well-known H2-producing families such as Clos-

tridiaceae or Enterobacteriaceae.

The aeration pre-treatment resulted in more drastic

composition changes than the heat shock, and more diver-

gent communities depending on the inoculum source, as

shown on PCA in Fig. 1. Especially, aeration decreased the

abundance of the initially dominant Bacteroidetes and Spi-

rochaetae phyla, strongly increasing the relative abundance

of Firmicutes and Proteobacteria representing between 32.2

e 41.7% and 32.9e41.7% of the bacterial community respec-

tively (Table 2). After aeration, Clostridiaceae became the

most abundant family in both aerobic (AI-ATi) and anaerobic

https://doi.org/10.1016/j.ijhydene.2019.11.113


Fig. 1 e Principal component analysis (PCA) based on initial and final microbial population distribution. PCA was performed

from correlation matrix. Triangle and circle shapes represent the anaerobic (AnI) and aerobic (AI) sludge, respectively. Filled

and empty symbols represent the initial and final samples, respectively. Purple, blue and yellow symbols represent the

samples with heat shock pre-treatment (HT), aeration pre-treatment (AT) and control (C), respectively. The “i" at the end of

the sample names refers to samples taken prior to reactor inoculation i.e. after pre-treatments. Dotted lines represent

Euclidean distances between PCA axes and taxonomic families. (For interpretation of the references to color in this figure

legend, the reader is referred to the Web version of this article.)
(AnI-ATi) inocula, representing 27.1% and 18.6% of microbial

community, respectively. The second most abundant family

was Prevotellaceae (11.8%) and Flavobacteriaceae (12.1%) for

aerobic and anaerobic inocula, respectively. Clostridiaceae
Fig. 2 e Microbial community distribution based on OTU at

the end of continuous operation. AI, AnI, HT, AT and C

represent aerobic inoculum, anaerobic inoculum, heat pre-

treatment, aeration pre-treatment and control,

respectively. OTUs with a relative abundance <5.0% are

grouped as “Others”.
and Prevotellaceae families have strict anaerobic species

commonly found in H2 producing systems [2]. The selection

of strict anaerobic species after aerobic treatment and/or

from aerobic inocula is not unusual and has already been

reported in the literature [44,45]. Flavobacteriaceae is mainly

composed of aerobic species not commonly found in H2-

producing reactors [2,46]. Besides, in aerobic inoculum OTU3

(11.4%) and OTU2 (8.9%) were dominant, while OTU240 (8.9%)

and OTU1 (8.8%) in anaerobic inoculum. These four OTUs

were related to Clostridium butyricum (100% 16S rRNA

sequence similarity with OTU3), Prevotella paludivivens (90%

16S rRNA sequence similarity with OTU2), Sphingobium

yanoikuyae (100% 16S rRNA sequence similarity with OTU240)

and Clostridium pasteurianum (98% 16S rRNA sequence simi-

larity with OTU1).

Our results show that aerobic pre-treatment allows the

selection of species with aerobic and facultative anaerobic

metabolisms belonging to families such as Pseudomonada-

ceae and Moraxellaceae (Fig. 2). Especially, the increase of the

Enterobacteriaceae family known for its facultative anaerobic

H2 producing members was observed [47]. Surprisingly, the

important presence of the Clostridiaceae family was also

observed, whose members managed to remain and

multiply despite theoretically lethal aeration conditions.

This could show positive interactions, where non oxygen

tolerant microorganisms could be protected by others

through oxygen consumption during stressful conditions

such as aeration.



Performance indicators during continuous H2 production

Biomass production for all experiments did not differ signifi-

cantly (See ANOVA in Supplementary Material), with average

growth yields reaching 6.0 ± 2.1 gVSS.molgly-consumed
�1 (Table 3).

All experiments produced H2 with yields ranging from

0.29 ± 0.10 to 0.55 ± 0.08 molH2.molgly-consumed
�1 , except for the

anaerobic sludge after aeration treatment (AnI-AT), which

produced H2 unsteadily (Table 3). In general, the H2 yields

obtained in this study are within the ranges reported in

literature (0.05e0.58 molH2 molgly-consumed
�1 ) for dark fermen-

tation from glycerol using mixed cultures in continuous sys-

tems [15,27,48e50]. Soluble metabolites produced

concomitantly with H2 are detailed in Table 3. Butyrate was

the main metabolite in all experiments, reaching between

22.0 ± 8.8%COD consumed and 39.7 ± 21.5%COD consumed. Succinate

production represented between 12.0 ± 4.5%COD consumed and

16.1 ± 5.6%COD consumed in experiments that used heat-treated

sludge (AI-HT and AnI-HT) and aeration-treated aerobic

sludge (AI-AT), but was in less amount 2.5 ± 1.2%COD consumed

in the control experiments (AI-C and AnI-C) and in the

experiment with unstable H2 production (AnI-AT). Ethanol

production represented less than 12.4 ± 5.4%COD consumed in all

experiments except in AI-AT reaching 27.3 ± 10.1%COD

consumed. Acetate and propionate were also detected in all ex-

periments but at low concentrations (<5.7 ± 2.0%COD consumed)

except in AnI-AT where acetate accumulated 13.2 ± 9.4%COD

consumed. Formate was also produced at very low concentra-

tions (<2.9 ± 4.4%COD consumed), only in aerobic sludge experi-

ments (AI-C, AI-HT and AI-AT). Overall, glycerol removal was

between 74 ± 22%COD consumed and 90 ± 15%COD consumed.

Comparing the two-original sludge (i.e., not pre-treated)

in the control experiences (AI-C and AnI-C), a 72% higher

H2 yield was obtained along with 31.2% more butyrate and

47.2% less ethanol using aerobic sludge than using anaerobic

sludge. This is consistent with literature where higher H2

production is often associated with higher butyrate pro-

duction [2,51,52]. This demonstrates a better adaptability for

H2 production of untreated aerobic sludge compared to

anaerobic sludge in a continuous system using glycerol as

substrate. As already reported, untreated anaerobic sludge

may require more time to adapt to glycerol [53]. Besides,
Table 3 e Performance indicators during continuous operation
and soluble metabolites production. Average values and stand
measurements during continuous operation.

Parameter Unit AI-C

Biomass yield gVSSmolgly-consumed
�1 5.8 (±2.1) 6.3

H2 yield molH2molgly-consumed
�1 0.50 (±0.19) 0.2

Ethanol %COD 6.5 (±2.6) 12

Acetate %COD 3.7 (±1.9) 5.7

Propionate %COD 1.4 (±0.7) 3.2

Butyrate %COD 32.8 (±11.1) 25

Succinate %COD 1.9 (±0.8) 2.5

Formate %COD 1.1 (±0.5) e

Glycerol removal efficiency % 90 (±15) 79

Metabolite distribution based on COD mass balance. %COD were calcula
a During AnI-AT the H2 production was unstable.
although no methane production was observed in any

reactor, a part of H2 could have been consumed by other H2-

consuming microorganisms present in the untreated

anaerobic sludge such as homoacetogens or hydro-

genotrophic methanogenic archaea.

When inoculum pre-treatments were performed,

different effects were observed depending on the inoculum

sources. Within aerobic sludge experiments (AI-C, AI-HT,

and AI-AT), the compared pre-treatments did not have

any significant effect on H2 yield (See ANOVA and test of

Mann-Whitney pairwise in Supplementary Material). On the

contrary, within anaerobic sludge experiments, heat treat-

ment (AnI-HT) increased H2-yields by 45% compared to

control (AnI-C), as already reported by other authors [44,54].

In addition, the heat pre-treatment resulted in two similar

H2 production systems (AnI-HT and AI-HT) with slightly

different metabolite production but statistically equal H2

yields (See ANOVA and test of Mann-Whitney pairwise in

Supplementary Material), despite the inocula came from

different sources. This shows the reproducibility and

effectiveness of heat treatments, leaving evidence why has

been widely reported in the literature to prepare different

inocula for the H2 production by dark fermentation

[33,52,55e58].

Unlike heat treatment, aerobic treatment on anaerobic

sludge (AnI-AT) generated a negative effect respect to the

control (AnI-C), causing unstable H2 production during all

operation days. Consequently, when comparing the behavior

of both sludge when exposed to aerobic treatment, again

aerobic sludge showed a better adaptability to H2 production

compared to anaerobic sludge.

In conclusion, and depending on the inoculum source,

three effects of pre-treatment on H2 production can be

observed respect to the control: Positive effect (i.e. heat pre-

treatment on anaerobic sludge), negative effect (i.e. aerobic

pre-treatment on anaerobic sludge) and neutral effect (i.e.

heat pre-treatment and aerobic pre-treatment on aerobic

sludge). Consistently, the inoculum source importance on the

efficiency of the pre-treatment was already evidenced but in a

study performed in batch mode operation using glucose, and

comparing two pre-treatments: heat treatment and acidifi-

cation [59].
of H2 producing reactors, including biomass yield, H2 yield,
ard deviations (±SD) were calculated from daily

AnI-C AI-HT AnI-HT AI-AT AnI-AT

(±1.5) 7.0 (±3.1) 5.8 (±2.4) 5.3 (±2.0) 6.7 (±2.7)
9 (±0.10) 0.47 (±0.17) 0.42 (±0.08) 0.55 (±0.08) a

.3 (±5.1) 12.4 (±5.4) 3.0 (±1.3) 27.3 (±10.1) 9.5 (±6.4)
(±2.0) 4.8 (±1.5) 4.1 (±1.6) 3.4 (±1.2) 13.2 (±9.4)
(±1.5) 2.7 (±1.0) 1.4 (±0.6) 1.6 (±0.4) 5.2 (±3.5)

.0 (±8.7) 22.0 (±8.8) 30.7 (±13.8) 23.4 (±8.2) 39.7 (±21.5)
(±1.2) 12.0 (±4.5) 16.1 (±5.6) 15.5 (±5.9) 1.8 (±3.9)

1.8 (±0.7) e 1.6 (±0.4) 2.9 (±4.4)

(±19) 78 (±20) 80 (±31) 87 (±16) 74 (±22)

ted based on total glycerol consumed.
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Link between final microbial community and metabolic
patterns during continuous H2 production

DNA samples were collected at the end of the continuous

operation to assess changes in the microbial community. As

shown in Table 2, the Clostridiaceae family wasmost abundant

in all conditions, with a relative abundance between 35.3%

and 56.4% and was mainly represented by OTU1 and OTU3

(Fig. 2). OTU1 was dominant in AnI-C (44.7%), AI-HT (46.2%),

AnI-HT (49.5%) and AI-AT (39.2%), while OTU3 in AI-C (28.5%)

and AnI-AT (34.9%). The Prevotellaceae family was the second

most abundant in AnI-C (25.6%), AI-HT (35.9%), AnI-HT (34.1%)

and AI-AT (32.2%) reactors and was represented by OTU2

(Fig. 2). The second and third most abundant family in AI-C

were Enterococaceae (27.1%) and Porphyromonadaceae (20.8%)

and were mainly represented by OTU7 (18.0%) and OTU8

(20.8%), respectively (Fig. 2). These two OTUs were related to

Enterococcus gallinarum (99% 16S rRNA sequence similarity

with OTU7) and Dysgonomonas mossii (100% 16S rRNA

sequence similarity with OTU8). In AnI-AT, the second and

third most abundant family were Enterobacteriaceae (25.4%)

and Prevotellaceae (24.9%) and were mainly represented by

OTU4 (22.4%) and OTU10 (17.5%), respectively. These two

OTUs were related to Klebsiella aerogenes (99% 16S rRNA

sequence similarity with OTU4) and Prevotella dentalis (90% 16S

rRNA sequence similarity with OTU10). In AnI-C the Entero-

bacteriaceae (16.7%) family was the third most abundant and

was mainly represented by OTU16 (16.4%). The OTU16 had

100% of 16S rRNA sequence similarity with Raoultella

ornithinolytica.

Illustratively Fig. 3 shows a principal component analysis

(PCA) performed from final microbial community at family

level and metabolic patterns to observe the relations between

them according to each experiment. The PCA shows that the

control experiences (AI-C and AnI-C) are negatively related,

probably due to the great impact of the inoculum origin on

both the final microbial communities and reactor behavior.

Particularly, AI-C is related to butyrate production and with

Enterococaceae and Porphyromonadaceae families. While, AnI-C

is slightly related to acetate and ethanol production. The

heat-treated reactors, independently of the inoculum (AI-HT

and AnI-HT), were characterized by higher abundance of the

Clostridiaceae and Prevotellaceae families along with the pro-

duction of ethanol, acetate and butyrate, as is observed in

Fig. 3. This is consistent with the literature, since some species

of the Clostridiaceae family could present an acidogenic or

solventogenic metabolism, associated to a higher H2 produc-

tion along with acetate-butyrate pathway and a lower H2

production along with the production of alcohols such as

ethanol, respectively [60]. Unlike heat pre-treatment, aerobic

pre-treatment generated two slightly different microbial

communities. Fig. 3 shows how AnI-AT is related to the

Enterobacteriaceae family, while AI-AT is related to the succi-

nate production.

In addition, Fig. 3 shows that microbial diversity is posi-

tively related to AnI-AT and negatively related to AI-HT and

AnI-HT. The literature is not clear on how microbial diversity

could affect H2 production. Contradictorily, it has been re-

ported that greater diversity may increase the possibilities of
selecting H2-producing bacteria, but it may also increase

competition among members of the microbial community,

leading to a decrease in the H2 production [35,61e63]. Our

results show that the microbial community was considerably

simplified, and that the Simpson diversity index decreased by

15.8e33.0% compared to the initial inocula. In particular, heat

shock pre-treatment reduced microbial diversity by

32.7 ± 0.5%, while aeration decreased by 19.5 ± 1.0% (Table 2).

However, greater microbial diversity could be linked to lower

H2 production efficiency.

Combined effect of inoculum source and pre-treatments on
microbial community

Fig. 1 shows a PCA performed from samples taken before

inoculating the reactors and at the end of continuous opera-

tion. Three main groups are observed, in which the change of

the microbial community from the original sludge, after pre-

treatment and after continuous operation is clearly evi-

denced. In the first group (Fig. 1, on the right) the original

sludge (AI and AnI) is associated with the sludge after heat

pre-treatment (AI-HTi and AnI-HTi). In turn, this group is

associated with themost important families of theirmicrobial

community, i.e., Rikenellaceae, Spirochaetaceae and WCHB1-69.

The second group (Fig. 1, top) includes sludge after aeration

pre-treatment (AI-ATi and AnI-ATi) and are related to families

that increased their relative abundance in at least one of these

samples such as Sphingomonadaceae, Flavobacteriaceae and

Pseudomonadaceae. While the third group (Fig. 1, left down) is

composed of all the samples taken at the end of the contin-

uous operation and are related to the families that dominated

the final microbial communities in each case, i.e. Porphyr-

omonadaceae, Enterococcaceae, Clostridiaceae, Prevotellaceae and

Enterobacteriaceae. In all cases, there is more similarity be-

tween reactor communities inoculated with different sludge

exposed to same pre-treatment, suggesting that the pre-

treatment has more impact than the inoculum source on the

total community structure. Despite the pre-treatments per-

formed and the inoculum origin, the selection pressure

imposed by biokinetic control appears to be crucial in deter-

mining the dominant families of the H2-producing microbial

community, particularly in the selection of Clostridiaceae

family members. This is consistent with the literature, as

members of this family are often selected during continuous

H2 production operated at low pH (values between 5.0 and 6.0)

and short HRT (<12 h) [4,27,64,65].

When considering the experiments that used untreated

inoculum, it is observed that despite the impact of biokinetic

control (as discussed above) on selection of Clostridiaceae

family members, AI-C had a 72% higher H2 yield than in AnI-C

(Table 3). Among the dominant species of the AI-C microbial

community is Dysgonomonas mossii (Fig. 2), a fermentative but

not H2-producing bacteria [66e68]. AI-C reach the maximum

H2 yield of this study, suggesting a positive interaction of

Dysgonomonas mossii with the microbial community and

especially with the knownH2-producing bacteria. Unlike AI-C,

all dominant families in the AnI-C microbial community (i.e.,

Clostridiaceae, Prevotellaceae, and Enterobacteriaceae) have

known H2-producing members, but the low H2 yield obtained



Fig. 3 e Principal component analysis (PCA) based on metabolic patterns and final microbial population distribution. PCA

was performed from variance-covariance matrix.Triangle and circle shapes represent the anaerobic (AnI) and aerobic (AI)

inoculum, respectively. Purple, blue and yellow symbols represent the samples with heat treatment (HT), aeration (AT) and

control (C), respectively. Plain lines and dotted lines represent Euclidean distances between PCA axes and taxonomic

families and metabolic yields, respectively. (For interpretation of the references to color in this figure legend, the reader is

referred to the Web version of this article.)
in this experiment suggests the predominance of negative

interactions in the microbial community. Therefore, the

inoculum source plays a key role in determining the final

microbial community when no pre-treatment is performed.

Comparing the metabolic patterns when a heat-treated

inoculum (AI-HT and AnI-HT) was used, and especially the

H2 yields, no statistically significant differences are observed,

although the inocula come from different sources. Surpris-

ingly, the final microbial community of both is very similar,

with Clostridium and Prevotella as dominant genus. The relative

abundance of Clostridium at the end of these experiments was

more than 50%, which was expected since the heat treatment

objective is to enrich the microbial community with spore-

forming species such as Clostridium. Contrary to our results,

Baghchehsaraee et al. (2008) obtained lower H2 yield when

using heat-treated aerobic sludge, attributed to a decrease in

microbial diversity due to pre-treatment [35]. However, they

worked with glucose as substrate in batch mode operation

and heat pre-treatment conditions were 65�, 80� or 95� for

30 min. Consequently, they are all important parameters

affecting the microbial community composition.

Aeration as pre-treatment generated important differences

in microbial communities and H2 yields depending on the

inoculum source (AI-AT and AnI-AT). The main difference

was the relative abundance of Klebsiella aerogenes in AnI-AT, a

known H2 producing bacteria. However our results show that

it is negatively related to H2 production suggesting a negative
interactionwith other knownH2 producers in the community,

which are in the ratio 1.1:1.6:1.0 for Prevotella:Clos-

tridium:Klebsiella, respectively [2]. In contrast to our results

Silva-Illanes et al. (2017) evidenced the existence of positive

interactions between all H2-producing bacteria present in the

microbial community, which are in the ratio 1.2:5.4:1.0 for

Prevotella:Clostridium:Klebsiella, respectively [27]. Conse-

quently, the difference in the results is the relative abundance

of H2 producers and their ratio, while in our results the genera

are in a ratio around 1.0, in Silva-Illanes et al. (2017) Clostridium

is the most important being 5.4 times more abundant.

In conclusion it was shown that the inoculum source

played a key role for H2 production in continuous reactors.

The inoculum source determines not only the metabolic pat-

terns when using untreated sludge, but also affects the effi-

ciency of the pre-treatments performed. A combined effect

between pre-treatments and inoculum sourceswas evidenced

by probably affecting the microbial interactions and final se-

lection of the microbial community.
Conclusion

Inoculum source has a strong impact on the reactor behaviors

when non-pretreated sludge is used, but also on pre-

treatment efficiency. Heat pre-treatment of anaerobic sludge

increased H2 yield, while aeration resulted in unstable H2
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production. Whereas when aerobic sludge is used no pre-

treatment is necessary, as there are no statistically signifi-

cant differences in H2 yields when comparing all experiments,

including control. In addition, biokinetic control was key in

the Clostridium sp. selection as dominant in the microbial

community of all assays. While, lower or intermittent H2

production were associated with higher relative abundance of

Enterobacteriaceae family members. Our results allow a better

understanding of H2 production in continuous systems,

providing key information for an efficient selection of oper-

ating conditions for future industrial applications.
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