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Abstract. In this note we define and study the stochastic process X in link with a parabolic
transmission operator (A,D(A)) in divergence form. The transmission operator involves a diffraction
condition along a transmission boundary. To that aim we gather and clarify some results coming
from the theory of Dirichlet forms as exposed in Fukushima et al. (1994) and Stroock (1988) for
general divergence form operators. We show that X is a semimartingale and that it is solution of
a stochastic differential equation involving partial reflections in the co-normal directions along the
transmission boundary.

1. Introduction

In this note we aim at tying - with all the necessary rigor - various theoretical results that come
from different approaches concerning the probabilistic study of divergence form operators. We also
provide a probabilistic representation of the underlying process when the divergence operator is
a transmission operator involving a transmission condition across some smooth interface: in this
particular case, we show that the process is solution of a stochastic differential equation involving
partial reflections in the co-normal directions along the transmission boundary. All of these results
are natural but we could not find them in the existing literature and would like to record them in
print with a proof as they ground the foundations for the study of probabilistic numerical methods
for transmission problems (see e.g. Bossy et al. (2010); Étoré and Martinez (2021)).

Our starting point is a : Rd → Md (R) some measurable symmetric matrix valued coefficient
satisfying the following ellipticity and boundedness condition (E−B):

Assumption 1.1. (E-B): There exists λ,Λ ∈ (0,∞) such that

∀x ∈ Rd, ∀ξ ∈ Rd, λ|ξ|2 ≤ ξ∗a(x)ξ ≤ Λ|ξ|2. (1.1)
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Let us associate to the coefficient a the following unbounded operator A : D(A) ⊂ L2(Rd) →
L2(Rd) defined by

D(A) =
{
u ∈ H1(Rd) with

d∑
i,j=1

Di(aijDju) ∈ L2(Rd)
}

and

∀u ∈ D(A), Au =
d∑

i,j=1

Di(aijDju).

There exists a closed symmetric Dirichlet form (E ,D[E ]) and its corresponding semigroup (Tt)
on L2(Rd) that are naturally in link with (A,D(A)).

We define rigorously these objects and study their relations in Section 2. Using the spectral
resolution of the identity associated to (A,D(A)), we study the regularity in the ’time variable t’
of E(Ttf, g), f ∈ L2(Rd), g ∈ D[E ] (Subsection 2.1). This permits to establish rigorously in Sub-
section 2.2 the connection with the results in Stroock (1988) that are exposed by D.W. Stroock
in the Cb(Rd) setting (Feller semigroup) and to assert the validity of Aronson’s estimates for the
transition function of (Tt) (see Aronson (1967), Stroock (1988), Bass (1998)).

We then aim at providing tractable (from a numerical perspective) stochastic representations for
the Hunt process X associated to (E ,D, E).

Of course, we are in the ideal setting to apply the stochastic calculus for symmetric Dirichlet
forms, and we give the Fukushima decomposition of X via the Revuz correspondence for additive
functionals that is presented in Subsection 3.1. In this general setting a representation of X may
be also provided by the so-called Lyons-Zheng decomposition involving reversed-time martingale
increments: we give a brief insight of the ideas behind this theoretical decomposition in Subsec-
tion 3.2. Please note that none of the results presented in Section 3 are new (see Fukushima et al.
(1994), Lyons and Zheng (1990)) and we have tried our best to present the ideas in a coherent and
assimilable way for a reader that might not be familiar with the subject.

Then, gradually moving from broad issues to more specific ones, we focus in Section 4 on the
particular case where (A,D(A)) is a transmission operator across some transmission boundary: we
present a Skorokhod representation of the Hunt process X associated to (E ,D[E ]) in this case.
This result is new and constitutes the main contribution of this note (see Subsection 4.1). Finally,
we give a special attention to the particular case of a diagonal coefficient matrix a that remains
constant on each side of the transmission boundary and compare our result to the one obtained
in the pionneering paper Bossy et al. (2010) (see Subsection 4.2). We show that, when reduced
to this very specific context, our description essentially matches the stochastic differential equation
considered in Bossy et al. (2010).

2. Dirichlet form and Markovian semigroup associated to general elliptic divergence
form operators

2.1. Definitions and first properties. To the coefficient matrix a, we may associate a closed sym-
metric Dirichlet form (E ,D[E ]) defined on L2(Rd) by

D [E ] = H1(Rd),

E(u, v) =

d∑
i,j=1

∫
Rd

aij DjuDiv, u, v ∈ D [E ]

(see Fukushima et al. (1994), p111). This closed symmetric Dirichlet form is the starting point of
our construction.
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On the underlying Hilbert space L2(Rd), we denote within this subsection by (A,D(A)) the
(unique) self-adjoint operator associated to (E ,D [E ]) and characterized by{

D(A) ⊂ D [E ] ,
E(u, v) = −〈Au, v〉L2(Rd), u ∈ D(A), v ∈ D [E ]

(Fukushima et al. (1994), Theorem 1.3.1 and Corollary 1.3.1 p.21).

We aim at identifying this operator - as expected it will turn out that (A,D(A)) is nothing else
than the operator defined in the Introduction, therefore the common notation.

By the very definition of (A,D(A)), we have for any f ∈ D(A) and any g ∈ C∞c (Rd)

−〈Af, g〉L2(Rd) = E(f, g) =
d∑

i,j=1

∫
Rd

aij Djf Dig = −
〈 d∑
i,j=1

Di(aijDjf), g
〉
H−1(Rd),H1(Rd)

where
∑d

i,j=1Di(aijDjf) is understood in the distributional sense as an element of H−1(Rd). But
as Af ∈ L2(Rd) by the definition ofD(A) the above equality shows that

∑d
i,j=1Di(aijDjf) ∈ L2(Rd)

(for any f ∈ D(A)).
Thus, it is proved that D(A) ⊆ {f ∈ H1(Rd) with

∑d
i,j=1Di(aijDjf) ∈ L2(Rd)}.

In turn (by the density of C∞c (Rd) in L2(Rd)) the equality permits to identify for any f ∈ D(A),

Af =
d∑

i,j=1

Di(aijDjf).

Let us now prove the reverse inclusion {f ∈ H1(Rd) with
∑d

i,j=1Di(aijDjf) ∈ L2(Rd)} ⊆ D(A).
Let f ∈ {f ∈ H1(Rd) with

∑d
i,j=1Di(aijDjf) ∈ L2(Rd)}. By the symmetry of the coefficient

matrix a and integration by parts, it is not hard to prove that for any v ∈ D(A),

〈Av, f〉L2(Rd) = −E(v, f) = −
d∑

j,i=1

∫
Rd

ajiDifDjv =
〈∑

j,i

Dj(ajiDif), v
〉
L2(Rd)

and in particular f ∈ D(A∗)
def
= {g ∈ L2(Rd) | ∃hg ∈ L2(Rd) s.t. 〈Av, g〉 = 〈v, hg〉,∀ v ∈ D(A)} (see

Pazy (1983)). So that we get the reverse inclusion

{f ∈ H1(Rd) with
d∑

i,j=1

Di(aijDjf) ∈ L2(Rd)} ⊆ D(A∗) = D(A)

where the equality comes from the fact that (A,D(A)) is self-adjoint. Finally, we have proved

D(A) = {f ∈ H1(Rd) with
d∑

i,j=1

Di(aijDjf) ∈ L2(Rd)} (2.1)

and (A,D(A)) is fully identified as being the same operator of the Introduction 1.
Note that since a is only assumed to be measurable, C∞c (Rd) - which is a core for the Dirichlet

form (E ,D(E)) - is not even a subset of D(A).

We now turn to the study of the spectral resolution and the semigroup associated to (E ,D[E ])
and (A,D(A)). For the sake of conciseness we denote (·, ·) = 〈·, ·〉L2(Rd) and || · || = || · ||L2(Rd) till
the end of the section.

Since (−A,D(A)) is a self-adjoint operator on the Hilbert space L2(Rd) that is non-negative
definite, it admits a spectral resolution of the identity {Eγ : γ ∈ [0,∞)}. For any γ ≥ 0 the
operator Eγ : L2(Rd)→ L2(Rd) is a self-adjoint projection operator with (Eγf, f) ≥ 0, f ∈ L2(Rd),



4 Pierre Etoré and Miguel Martinez

and the Eγ ’s form a spectral family with in particular EµEγ = Eµ∧γ , (see Fukushima et al. (1994)
p18 for a list of properties). The link with (−A,D(A)) is through

(−Af, g) =

∫
[0,∞)

γd(Eγf, g) ∀f ∈ D(A), g ∈ L2(Rd)

and D(A) =
{
f ∈ L2(Rd) :

∫
[0,∞) γ

2d(Eγf, f) <∞
}
(see Fukushima et al. (1994) paragraph 1.3.4

p.18).
Consequently, the family of operators {Tt

def
= etA : t > 0} is a strongly continuous semigroup of

self-adjoint contractions acting on L2(Rd) (Fukushima et al. (1994) Lemma 1.3.2 p.19) and

(Ttf, g) =

∫
[0,∞)

e−γtd(Eγf, g) ∀f ∈ L2(Rd), g ∈ L2(Rd).

Note that for any γ ≥ 0, t > 0, and any functions f ∈ L2(Rd) and g ∈ L2(Rd), we have the
commutation property

(TtEγf, g) = (Eγf, Ttg)

=

∫
[0,∞)

e−ξtdξ(Eγf,Eξg) =

∫
[0,γ]

e−ξtdξ(EξEγf, g) +

∫
[γ,∞)

e−ξtdξ(EξEγf, g)

=

∫
[0,γ]

e−ξtdξ(Eξf, g) =

∫
[0,∞)

e−ξtdξ(Eξf,Eγg) = (Ttf,Eγg) = (EγTtf, g).

Note also that for any f ∈ L2(Rd) and any t > 0,∫
[0,∞)

γ2d(EγTtf, Ttf) =

∫
[0,∞)

γ2dγ

(∫
[0,∞)

e−ξtdξ(EγEξf, Ttf)

)

=

∫
[0,∞)

γ2dγ

(∫
[0,∞)

e−ξtdξ

(∫
[0,∞)

e−θtdθ(EγEξf,Eθf)

))

=

∫
[0,∞)

γ2e−2γtdγ(Eγf, f)

≤ 4

t2
e−2

∫
[0,∞)

e−γtdγ(Eγf, f) =
4

t2
e−2(Ttf, f) ≤ 4

t2
e−2||f ||2 < +∞,

where we have used the spectral family property, the associativity of the Stieltjes integral and the
inequality γ2e−γt ≤ 4e−2/t2. The above inequality ensures that Ttf ∈ D(A) for any t > 0.

From the fact that | ddte
−γt| ≤ γ is integrable w.r.t. d(Eγh, g) whenever h ∈ D(A), we deduce

from the commutation property that for any f, g ∈ L2(Rd) and for any s > 0

− d

dt
(Ttf, Tsg) =

∫
[0,∞)

γe−γtd(Eγf, Tsg) −−−→
t↘0+

∫
[0,∞)

γd(EγTsf, g) = (−ATsf, g)

where the limit exists and is well defined (since we have shown that Tsf ∈ D(A)).
If moreover g ∈ D [E ] then

− d

ds
(Tsf, g) = − d

dt
(Ts+tf, g)|t=0+ = − d

dt
(Ttf, Tsg)|t=0+

= (−ATsf, g) = E(Tsf, g). (2.2)

And since − d
ds(Tsf, g) = − d

ds(Tsg, f) by the symmetry property of Ts, we deduce that E(Tsf, g) =
E(f, Tsg) for any f, g ∈ D [E ].
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Consequently, for any f ∈ D [E ] and using the ellipticity of the coefficient matrix a,

λ||∇Tsf ||2 ≤ E(Tsf, Tsf) = E(T2sf, f) = (−AT2sf, f)

=

∫
[0,∞)

γe−2γsd(Eγf, f) ≤ e−1

s

∫
[0,∞)

e−γsd(Eγf, f) =
e−1

s
(Tsf, f) ≤ ||f ||

2

s
,

from which we deduce the fundamental estimate

||∇Tsf || ≤
||f ||√
λ s

, ∀s > 0. (2.3)

In turn this estimate implies that for any f ∈ L2(Rd), g ∈ D [E ], the function

s 7→ E(Tsf, g) is integrable on (0, t],

and from (2.2) and the right continuity of s 7→ Tsf at time s = 0+ (one may extend T0f = f as long
as no differentiation of s 7→ Tsf is implied at s = 0+ when f /∈ D(A)), we deduce the integrated
version of (2.2) namely
∀f ∈ L2(Rd), ∀g ∈ D [E ],

(Ttf, g)− (f, g) = −
∫ t

0

d∑
i,j=1

(aijDjTsf,Dig) ds = −
∫ t

0
E(Tsf, g)ds, t ∈ (0,∞). (2.4)

2.2. Link with the results of D.W. Stroock Stroock (1988). In his celebrated article Diffusion semi-
groups corresponding to uniformly elliptic divergence form operators D.W. Stroock constructs via
a regularization procedure a Feller continuous semigroup {Pt : t > 0} associated to a with the
properties that (with our notations)

(1) the map t ∈ [0,∞) 7→ Ptφ ∈ H1(Rd) is a weakly continuous map for each φ ∈ C∞c (Rd).
(2) ∀φ, ψ ∈ C∞c (Rd),

(Ptφ, ψ)− (φ, ψ) = −
∫ t

0
(a∇Psφ,∇ψ) ds = −

∫ t

0
E(Psφ, ψ)ds, t ∈ (0,∞). (2.5)

(Nota: please note that there is a sign error in the original version of Stroock (1988)).
In fact, {Pt : t > 0} determines a unique strongly continuous semigroup {P̄t : t > 0} of

self-adjoint contractions on L2(Rd).
The aim of this subsection is to prove the following equality, which clarifies the relationship

between the results obtained in Stroock (1988) and the those provided by the theory of Dirichlet
forms Fukushima et al. (1994).

Proposition 2.1.
{P̄t : t > 0} = {Tt : t > 0} on L2(Rd). (2.6)

Proof : The semigroup {P̄t : t > 0} is strongly continuous on H1(Rd). Moreover, for each t > 0, the
operator P̄t maps L2(Rd) into H1(Rd) and for each f ∈ H1(Rd) = D [E ], we have the fundamental
estimate

||∇P̄sf || ≤
1√
λ

(
||f ||√
s

)
∧ ||∇f ||, ∀s > 0. (2.7)

(See Stroock (1988) Theorem II.3.1. p.341).
This estimate implies that for for each f, g ∈ D [E ] and any t, s > 0,

|E(P̄tf, g)− E(P̄sf, g)| ≤ Λ||∇g|| ||P̄t∨s−t∧sf − f ||√
λ (t ∧ s)

−−→
s→t

0,
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which ensures the continuity of s 7→ E(P̄sφ, ψ) for any φ, ψ ∈ C∞c (Rd). Since (P̄t)t>0 and (Pt)t>0

coïncide on C∞c (Rd), we may differentiate in (2.5) (as long as t > 0) to find that

d

dt
(P̄tφ, ψ) = −E(P̄tφ, ψ), t ∈ (0,∞). (2.8)

This has to be compared to (2.2).
Let us now justify rigorously that for any t > 0, s ∈ (0, t) and φ, ψ ∈ C∞c (Rd),

d

ds
(Tsφ, P̄t−sψ) =

d

du
(Tuφ, P̄t−sψ)|u=s −

d

du
(Tsφ, P̄t−uψ)|u=s. (2.9)

We have for sufficiently small 0 ≤ h < t− s and using the strong continuity of (P t)t>0

|
(
Ts+hφ− Tsφ, P̄t−s+hψ − P̄t−sψ

)
| ≤ ||P̄t−s+hψ − P̄t−sψ|| ||Ts+hφ− Tsφ||

≤ εψ(h)

(∫
[0,∞)

e−2γs(e−γh − 1)2d(Eγφ, φ)

)1/2

≤ εψ(h)

(∫
[0,∞)

e−2γs(γh)2d(Eγφ, φ)

)1/2

≤ hεψ(h)

(∫
[0,∞)

e−γs
(
γ2e−γs

)
d(Eγφ, φ)

)1/2

≤ hεψ(h)
2e−1

s
||φ||,

where as usual εψ(·) denotes some positive continuous function vanishing at zero. We deduce that

1

h
|
(
Ts+hφ− Tsφ, P̄t−s+hψ − P̄t−sψ

)
| −−−→
h→0

0,

implying (2.9).
Hence, from (2.9) and applying (2.2) and (2.8), we have that

d

ds
(Tsφ, P̄t−sψ) = 0, s ∈ (0, t). (2.10)

Integrating the identity (2.10) on (0, t) and using the time continuity of both semigroups (Tt)
and (P̄t) up to time s = 0+ gives

(Ttφ, ψ) = (φ, P̄tψ) = (P̄tφ, ψ) (2.11)

which holds for any φ, ψ ∈ C∞c (Rd). Since C∞c (Rd) is dense in L2(Rd), using the strong continuity
of both semigroups (Tt) and (P̄t), we finally deduce from (2.11) the identification (2.6). �

Consequently, all results in Stroock (1988) that are valid for {P̄t : t > 0} are true for {Tt : t > 0}.
For example, identifying abusively {Tt : t > 0} with its Feller restriction {Pt : t > 0} on C∞c (Rd),
we deduce that there is a p ∈ C

(
(0,∞)× Rd × Rd

)
such that

[Ttφ] (x) =

∫
Rd

φ(y)p(t, x, y)dy, `(dx)− a.e., φ ∈ C∞c (Rd). (2.12)

Moreover, the fundamental function p satisfies the well-known Aronson’s estimates for the funda-
mental solutions of elliptic divergence form operators, namely there exists a constant M(λ,Λ, d) ∈
[1,∞) such that

1

Mtd/2
exp

(
−M |x− y|2/t

)
≤ p(t, x, y) ≤ M

td/2
exp

(
−|x− y|2/Mt

)
. (2.13)
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Finally, we have the convergence result of Stroock (1988) (Theorem II.3.1. p.341) that we state
roughly without introducing the necessary notations (see Stroock (1988) for details): if {an}∞1 ⊂
A(λ,Λ) and an −→ a almost everywhere, then pn(t, x, y) −→ p(t, x, y) uniformly on compacts
(in (0,∞)× Rd × Rd) and for each t ∈ [0,∞) and φ ∈ C∞c (Rd), Tnt φ −→ Ttφ in H1(Rd).

3. Associated stochastic processes

Since (E ,D [E ]) is a regular Dirichlet form (with the space D [E ]∩Cc(Rd) or C∞c (Rd) as a special
standard core, see e.g. Exercice 1.4.1 in Fukushima et al. (1994)), we are in position to apply
Theorem 7.2.1 p. 380 of Fukushima et al. (1994).

We may associate to (E ,D [E)] and its corresponding semigroup (Tt) a Hunt process, symmetric
w.r.t the Lebesgue measure `(dx) on Rd. We shall denote by M = (Ω, (Ft)t≥0,F , (Xt)t≥0, (P

x)x∈Rd)

this Hunt process, with X = (X1, . . . , Xd). The correspondence with (E ,D [E ]) and (Tt) is through

Ex[f(Xt)] = Ttf(x), ∀f ∈ L2(Rd), ∀t ≥ 0, ∀x ∈ Rd (3.1)

(see the discussion p160 in Fukushima et al. (1994), at the beginning of Section 4.2).
The aim of this section is to present various representations of M in various contexts. We start

with the general case and then present a Skorokhod decomposition in the specific case where our
Dirichlet form is associated to a transmission parabolic operator in divergence form.

3.1. The Revuz correspondence for additive functionals and the Fukushima decomposition.

3.1.1. A reminder of the Revuz correspondence for additive functionals. Denote by {Rα : α > 0} the
Markovian resolvent kernel of the Markovian transition function {p̂(t, x, dy) := p(t, x, y)dy : t > 0}.
Then, for any α > 0, f ∈ Bb(Rd) and x ∈ Rd, Rαf(x) =

∫
Rd rα(x, y)f(y)dy with rα(x, y) =∫∞

0 e−αtp(t, x, y)dt.
Denote by S the set of positive Radon measures on (Rd,B(Rd)). For µ ∈ S define R1µ(x) =∫

Rd r1(x, y)µ(dy) (x ∈ Rd) and introduce the subset of finite energy measures

S0 :=

{
µ ∈ S : sup

v∈D[E]∩Cc(Rd)

∫
Rd

|v(x)|
||v||E1

µ(dx) <∞

}
,

(where we follow the notations of Fukushima et al. (1994)).
Finally, introduce

S00 := {µ ∈ S0 : µ(Rd) <∞, ||R1µ(.)||∞ <∞}.
Let us denote respectively by A+

c and A+
c,1 the families of all Positive Continuous Additive

Functionals (PCAF in short) (resp. the family of all PCAF in the strict sense) associated to M (for
the distinction between A+

c and A+
c,1, see Fukushima et al. (1994) the introduction of Section 5.1).

The Revuz correspondence asserts that there is a one-to-one correspondence (up to equivalence of
processes) between A+

c and S. This correspondence permits to construct for any µ ∈ S00 a unique
PCAF in the strict sense A ∈ A+

c,1 such that

∀x ∈ Rd, Ex
∫ ∞

0
e−tdAt = R1µ(x). (3.2)

(see for e.g. Theorem 5.1.4 in Fukushima et al. (1994)).
In order to get a bijective map, introduce a new subset S1 of S defined by µ ∈ S1 if there exists a

sequence (En)n≥0 of Borel finely open sets increasing to Rd satisfying that IEn .µ ∈ S00 for each n.
Then, there is a one-to-one correspondence between S1 and A+

c,1 (up to equivalence) which is given
by relation (3.2) whenever µ ∈ S00. The set of measures S1 is called the set of smooth measures (in
the strict sense).
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Let us introduce D [E ]b (resp. D [E ]b,loc) the space of essentially bounded functions belonging
to D[E ] (resp. locally to D[E ]. A function u is in D [E ]b,loc if for any compact set G, there exists a
bounded function ω ∈ D [E ] such that u = ω, `(dx)-a.e. on G).

For u ∈ D [E ]b, we may associate a unique positive Radon measure µ〈u〉 ∈ S, satisfying∫
Rd

f(x)µ〈u〉(dx) = 2E(uf, u)− E(u2, f), ∀f ∈ D [E ] ∩ Cc(Rd). (3.3)

Observe that the positivity of the right hand side in (3.3) comes from

0 ≤ Ex
[
(u(Xt)− u(x))2

]
= Ex

[
u2(Xt)− 2u(x)u(Xt) + u2(x)

]
= (Ttu

2 − u2)(x)− 2u(x)(Ttu− u)(x).

Taking the scalar product with f ∈ D [E ] ∩ Cc(Rd) and dividing by t gives

0 ≤
(
Ttu

2 − u2

t
, f

)
− 2

(
Ttu− u

t
, uf

)
which tends to 2E(uf, u) − E(u2, f) as t tends to 0+ whenever u ∈ D(A); the positivity in the
case u ∈ D [E ]b may be obtained by a density argument.

If u ∈ D [E ]b,loc, we may construct µ〈u〉 ∈ S with the help of a sequence (Gn)n≥0 of relatively
compact open sets such that Gn ⊂ Gn+1 and

⋃
n≥0Gn = Rd. Let (un)n≥0 a sequence of functions

in D [E ]b satisfying un = u on Gn. There is no ambiguïty in defining µ〈u〉 = µ〈un〉 on Gn because the
construction is consistent (since µ〈un〉 = µ〈un+1〉 on Gn). For an account on the above assertions,
please refer to Fukushima et al. (1994) Section 3.2.

3.1.2. The Fukushima decomposition. Note that obviously (E ,D [E ]) is strong local, so we may apply
Theorem 5.5.5 in Fukushima et al. (1994).

Suppose that a function u satisfies the following conditions:
(1) u ∈ D [E ]b,loc , u is finely continuous on Rd.
(2) IG.µ〈u〉 ∈ S00 for any relatively compact open set G.
(3) ∃% = %(1) − %(2) with IG.%(1), IG.%(2) ∈ S00 for any relatively compact open set G and

E(u, v) = (%, v), ∀v ∈ C∞c (Rd).

(Note that even though u is not formally in D [E ], the quantity E(u, v) is well-defined because
v has compact support and u ∈ D [E ]b,loc).

Let A(1), A(2), and B be PCAF’s in the strict sense with Revuz measures %(1), %(2), and µ〈u〉
respectively. Then, Theorem 5.5.5 in Fukushima et al. (1994) asserts that

u(Xt)− u(X0) = M
[u]
t +N

[u]
t , Px − a.s, ∀x ∈ Rd. (3.4)

Here,
N [u] = −A(1) +A(2), Px − a.s, ∀x ∈ Rd (3.5)

andM [u] is a local Additive Functional in the strict sense such that for any relatively compact set G,

ExM
[u]
t∧τG = 0, ∀x ∈ G

and
Ex
[
(M

[u]
t∧τG)2

]
= ExBt∧τG , ∀x ∈ G,

where τG = inf(s > 0 : Xs /∈ G) stands for the first leaving time from G (with the convention
inf ∅ =∞) and B denotes the PCAF in the strict sense with Revuz measure µ〈u〉.
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3.2. An insight to the Lyons-Zheng decomposition for diffusions associated to divergence form oper-
ators. For the seek of completeness, in this paragraph we present briefly an insight on the Lyons-
Zheng decomposition Lyons and Zheng (1990) for the stochastic process in correspondence with a
divergence form operator.

3.2.1. Time reversal for diffusions associated to divergence form operators. Assume for a moment
that a ∈ A (λ,Λ) is very smooth and belongs to C∞

(
Rd →Md (R)

)
.

In this smooth case, the process {Xt = (X1
t , . . . , X

d
t ) : 0 ≤ t ≤ T} in correspondence

with (E ,D [E ]) and constructed in the previous section becomes a diffusion process with values
in Rd and well-known results from the general theory for solutions of stochastic differential equa-
tions ensure that (Xt) is solution of

Xk
t = xk +

∫ t

0

d∑
j=1

σkj(Xs)dW
j
s +

∫ t

0

d∑
j=1

∂jakj(Xs)ds t ≥ 0, Px − a.s., ∀x = (x1, . . . , xd) ∈ Rd,

(3.6)

where W = (W 1, . . . ,W d) denotes a d-dimensional standard Brownian motion starting from zero
and σ : Rd →Md(R) denotes the positive square-root of coefficient 2a i.e. the positive matrix real
valued coefficient satisfying

σσ∗(x) = 2a(x), ∀x ∈ Rd.
We will denote by L the classical generator of (Xt),

L =
d∑

i,j=1

∂i (aij∂j) =
d∑

i,j=1

aij∂
2
ij +

d∑
i,j=1

(∂iaij) ∂j (3.7)

acting on C2(Rd) real valued functions.
Fix x = (x1, . . . , xd) ∈ Rd. For any fixed 0 ≤ t < 1, denote Lxt the second order differential

operator

Lxt =
∑
i,j=1

aij∂
2
ij −

d∑
i,j=1

(∂iaij) ∂j + [p(1− t, x, .)]−1
d∑

i,j=1

∂j ((2aij) p(1− t, x, .)) ∂i

acting also on C2(Rd) real valued functions and where p denotes the fundamental solution (2.12).
(Nota: the reader should be careful with the 2 factor appearing in the last integral, that is due to
the fact that we are considering σ as the square root of 2a and not a. Also, since a is assumed to
be smooth, classical estimates for p ensure that the term p(1− t, x, .)−1∂j ((2aij) p(1− t, x, .)) ∂i is
well defined).

Consider {Xt := X1−t : t ∈ [0, 1)} the time reversed process of (Xt). The fact that the
time reversal of a Markov process is again a (weak) Markov process with respect to the reversed
filtration traces back to the seminal result of K.L. Chung and J.B. Walsh Chung and Walsh (1969).
Moreover, it is proved in Haussmann and Pardoux (1986) that

(
Xt

)
0≤t<1

is a diffusion process with
generator L up to time 1 excluded. The process {Xt = (X1

1−t, . . . , X
d
1−t) : 0 ≤ t < 1} is solution

of

X
k
t = X1 +

∫ t

0

d∑
j=1

σkj(Xs)dβ
j
s −

∫ t

0

d∑
j=1

∂jakj(Xs)ds

+

∫ t

0

[
p(1− t, x,Xs)

]−1
d∑

i,j=1

∂j
(
(2aij) p(1− s, x,Xs)

)
ds, Px − a.s., ∀x = (x1, . . . , xd) ∈ Rd,
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where β = (β1, . . . , βd) denotes a d-dimensional standard Brownian motion starting from zero and
adapted to the filtration

{
FXt := σ (X1−u : u ∈ [0, t]) | t ∈ [0, 1)

}
.

3.2.2. The Lyons-Zheng decomposition. We now make the following observation. Fix 0 < ε < 1,
then for any ϕ ∈ C∞c (Rd) and arbitrary t ∈ [ε, 1]

ϕ(Xt)− ϕ(x) =
1

2
(ϕ(Xt)− ϕ(x)) +

1

2

[(
ϕ(X1−(1−t))− ϕ(X1−(1−ε))

)
+ (ϕ(Xε)− ϕ(x))

]
=

1

2
(ϕ(Xt)− ϕ(x))− 1

2

(
ϕ(X1−ε)− ϕ(X1−t)

)
+

1

2
(ϕ(Xε)− ϕ(x))

and applying Itô’s formula, we find that for all t ∈ [ε, 1]

ϕ(Xt)− ϕ(x)

=
1

2

(∫ t

0
(∇ϕ(Xu), σ(Xu)dWu) +

∫ t

0
Lϕ(Xu)du

)
− 1

2

(∫ 1−ε

1−t

(
∇ϕ(Xu), σ(Xu)dβu

)
−
∫ 1−ε

1−t
Lxuϕ(Xu)du

)
+

1

2
(ϕ(Xε)− ϕ(x))

=
1

2
Mϕ
t +

1

2
Ñϕ,ε
t +

1

2

∫ t

ε
(L − Lx1−u)ϕ(Xu)du+

1

2

(
ϕ(Xε)− ϕ(x) +

∫ ε

0
Lϕ(Xu)du

)
(3.8)

where we have set Mϕ
t :=

∫ t

0
(∇ϕ(Xu), σ(Xu)dWu) and Ñϕ,ε

t := −
∫ 1−ε

1−t

(
∇ϕ(Xu), σ(Xu)dβu

)
.

We may write

Ñϕ,ε
t = −

∫ 1−ε

1−t

(
∇ϕ(Xu), σ(Xu)dβu

)
=

∫ 1−t

0

(
∇ϕ(Xu), σ(Xu)dβu

)
−
∫ 1−ε

0

(
∇ϕ(Xu), σ(Xu)dβu

)
= Nϕ

1−t −N
ϕ
1−ε,

where
(
Nϕ
θ

)
stands for the FX martingale

(∫ θ

0

(
∇ϕ(Xu), σ(Xu)dβu

))
θ∈[0,1)

.

Now for any z ∈ Rd

1

2

(
L − Lx1−u

)
ϕ(z) =

d∑
i,j=1

(∂iaij) ∂jϕ(z)− [p(u, x, z)]−1
d∑

i,j=1

∂j (aijp(u, x, z)) ∂iϕ(z)

=

 d∑
i,j=1

(∂iaij) ∂jϕ(z)−
d∑

i,j=1

(∂jaij) ∂iϕ(z)

− [p(u, x, z)]−1
d∑

i,j=1

aij∂jp(u, x, z)∂iϕ(z)

= − [p(u, x, z)]−1
d∑

i,j=1

aij∂jp(u, x, z)∂iϕ(z)

where terms cancel due to the symmetry of the coefficient matrix a.

Of course lim
ε↘0+

(
ϕ(Xε)− ϕ(x) +

∫ ε

0
Lϕ(Xs)ds

)
= 0. Applying the martingale convergence

theorem ensures that the martingale term Nϕ
1−ε tends Px − a.s. to N

ϕ
1 =

∫ 1

0

(
∇ϕ(Xu), σ(Xu)dβu

)
as ε tends to zero.
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In turn, this ensures from (3.8) that the limit

lim
ε↘0+

∫ t

ε
[p(u, x,Xu)]−1

d∑
i,j=1

aij∂jp(u, x,Xu)∂iϕ(Xu)du (3.9)

exists Px − a.s.
Coming back to (3.8) and taking limits as ε↘ 0+ yields the Lyons-Zheng decomposition of (Xt)

when the coefficient matrix a is smooth: for all ϕ ∈ C∞c , ∀t ∈ [0, 1],Px − a.s.

ϕ(Xt)− ϕ(x) =
1

2
Mϕ
t +

1

2
Ñϕ
t −

∫ t

0
[p(u, x,Xu)]−1

d∑
i,j=1

aij∂jp(u, x,Xu)∂iϕ(Xu)du (3.10)

with Ñϕ
t = Nϕ

1−t−N
ϕ
1 an increment of a time-reversed martingale. The quadratic variations of the

martingales involved in the decomposition are given by

〈Mϕ〉t =

∫ t

0

d∑
i,j=1

2aij(Xs)∂iϕ(Xs)∂jϕ(Xs)ds, and 〈Nϕ〉t =

∫ t

0

d∑
i,j=1

2aij(Xs)∂iϕ(Xs)∂jϕ(Xs)ds.

We make the following observations:
• If we have proved (3.9), it is important to notice however that there is no limit to the

deterministic quantity
∫ t

ε
[p(u, x, z)]−1

d∑
i,j=1

aij∂jp(u, x, z)∂iϕ(z)du as ε tends to 0+. This

can be easily seen by performing the computation from the explicit Laplacian case where p
is just the Gaussian transition density of some Browian motion started from x.

• For any ε > 0 the random variable Ñϕ,ε
t = −

∫ 1−ε

1−t

(
∇ϕ(Xu), σ(Xu)dβu

)
is measurable w.r.t

the sigma field

σ
(
Xu : u ∈ [1− t, 1− ε]

)
= σ (Xu : u ∈ [ε, t])

so that
(
Ñϕ
t

)
and all terms in (3.10) are adapted to

(
FXt
)
t∈[0,1]

the natural filtration of X.
• Only ϕ and its first order partial derivatives appear in equality (3.10). Using a density
argument and a little work we may prove that the equality holds for ϕ ∈ H1(Rd).
• None of the quantities in the right hand side of (3.10) involve the derivatives of the coefficient
matrix a: the dependence on the derivatives of the coefficient a is totally encompassed in
the logarithmic derivative of the fundamental solution p(t, x, y).

The idea is now to pick a measurable in A (λ,Λ) and to take a sequence of smooth {an}∞1 ⊂
A(λ,Λ) such that an −→ a almost everywhere and to prove that there is convergence in law for
the decomposition (3.10) for any ϕ belonging to a the widdest possible class of functions. This
programm has been successively performed in Rozkosz (1996a) and Rozkosz (1996b) in a more
general setting of an inhomogeneous divergence operator.

Though theoretically powerful, the Lyons-Zheng decomposition is unlikely to be directly ex-
ploitable from a numerical perspective, as we do not have access to the logarithm derivative of the
transition density, even in mild cases.

4. Stochastic dynamics associated to transmission operators in divergence form

4.1. Skorokhod representation of the Hunt process associated to a transmission operator in divergence
form. Consider Rd = D̄+ ∪D− with D+ and D− two open connected subdomains separated by a
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transmission boundary Γ that is to say

Γ = D̄+ ∩ D̄−.

We denote
D = D+ ∪D− = Rd \ Γ ⊂ Rd.

For a point x ∈ Γ we denote by ν(x) ∈ Rd the unit normal to Γ at point x, pointing to D+. In the
following, "f ∈ Cp(D̄+;R)∩Cp(D̄−;R)" means that the restriction f+ of the real valued function f
to D+ (and the restriction f− of f to D−) coincides on D+ (resp. D−) with a function f̃+ of
class Cp(Rd) (resp. f̃−). Furthermore Cpb (E) = Cpb (E;R) will denote the set of real valued functions
on E of class Cp, bounded with bounded derivatives up to order p.

Assume the aij ’s satisfy (a±)ij ∈ C(D̄±;R). We may define then the co-normal vector fields γ+(x) :=
a+(x)ν(x) and γ−(x) := a−(x)ν(x), for x ∈ Γ.

We shall consider restricted operators and bilinear forms in the following sense. We define A+ :
H1(D+)→ H−1(D+) by

∀v ∈ H1(D+), A+v =

d∑
i,j=1

Di

(
(a+)ijDjv

)
.

We define A− : H1(D−) → H−1(D−) in the same manner (note that we do not specify here any
domain D(A±)). Further, we define

E±(u, v) =
d∑

i,j=1

∫
D±

(a±)ijDjuDiv, ∀u, v ∈ H1(D±).

We have, for u± ∈ H1(D±) with A±u± ∈ L2(D±),

E±(u±, v) =

∫
D±

(−A±u±)v, ∀v ∈ H1
0 (D±). (4.1)

Imagine now that in (4.1) we wish to take the test function in H1(D±) instead of H1
0 (D±).

There will still be a link between A± and E±, but through Green type identities, involving conormal
derivatives and boundary integrals.

We introduce a specific notation for the one-sided conormal derivatives on Γ of u ∈ L2(Rd)
with u± ∈ H2(D±). Provided the (a±)ij are in C1

b (D̄±;R) and Γ is bounded and Lipschitz we set

B±ν u = ν∗Tr±(a±∇u±) =
d∑
i=1

d∑
j=1

νiTr±
(
(a±)ijDju±

)
on Γ (4.2)

where Tr± : H1(D±)→ H1/2(Γ) stand for the usual trace operators on Γ.
For g ∈ H−

1
2 (Γ) and f ∈ H

1
2 (Γ) we denote by

(
g, f
)

Γ
the action of g on f . If both f, g are in

H
1
2 (Γ) the quantity

(
g, f
)

Γ
coincides with the surface integral

∫
Γ gf dς.

Let us recall the version of the Green identity that is used in the sequel.

Proposition 4.1 (First Green identity, first version; McLean (2000), Lemma 4.1). Assume Γ
is bounded and C2. Let u ∈ L2(Rd) with u+ ∈ H2(D+) and u− ∈ H2(D−). Assume that the
coefficients (a±)ij are in C1

b (D±;R). Then

E±(u±, v) =

∫
D±

(−A±u±)v ∓
(
B±ν u,Tr±(v)

)
Γ
, ∀v ∈ H1(D±).

We have the following result.
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Theorem 4.2. Assume Γ is bounded and C2. Assume that Assumption (E−B) is fulfilled and
that for all 1 ≤ i, j ≤ d, aij ∈ C1

b (D+;R) ∩ C1
b (D−;R) with aij possessing a possible discontinuity

on Γ. Then, the Hunt process M associated to (E ,D [E ]) is a diffusion which possesses the following
Skorokhod decomposition: for any k ∈ {1, . . . , d},

Xk
t = xk +

∫ t

0

d∑
j=1

σkj(Xs)dW
j
s +

∫ t

0

d∑
j=1

∂jakj(Xs)IXs∈Dds

+
1

2

∫ t

0
γ+,k(Xs)dKs −

1

2

∫ t

0
γ−,k(Xs)dKs, t ≥ 0, P x − a.s., ∀x = (x1, . . . , xd) ∈ Rd. (4.3)

In the above equality σ : Rd → Rd×d denotes the positive square-root of coefficient 2a i.e. the positive
matrix real valued coefficient satisfying

σσ∗(x) = 2a(x), ∀x ∈ D.

(Note that this coefficient exists because a(x) is non-negative definite for all x ∈ D). The process
W = (W 1, . . . ,W d) is a d-dimensional standard Brownian motion starting from zero and (Kt)t≥0

denotes the unique PCAF associated to the surface measure ς(dξ) ∈ S on Γ through the Revuz
correspondence. The process (Kt) increases only at times where X lies on Γ,∫ t

0
IXs∈ΓdKs = Kt, t ≥ 0.

Proof : We apply the results of Theorem 5.5.5 in Fukushima et al. (1994) in this context for the
coordinate functions

pk(x1, . . . , xd) := xk (k ∈ {1, . . . , d}).

and follow the ideas of Trutnau (2005) Theorem 5.2. Of course pk ∈ D [E ]b,loc and pk is finely
continuous on Rd. Let G a relatively compact open set containing Γ and a function fk ∈ D [E ]b such
that pk = fk on G. Let 〈M [fk]〉 the square bracket of M [fk]. Then, an easy computation from (3.3)
shows that the energy measure of M [fk] (the Revuz measure of 〈M [fk]〉) is

µ〈fk〉(dy) = µ〈M [fk]〉(dy) = 〈2a(y)∇fk(y),∇fk(y)〉`(dy) (4.4)

and we know that µ〈fk〉 = µ〈pk〉 on G. It is easy to show that IG.µ〈pk〉 is a finite Radon measure
belonging to S00 and that µ〈pk〉 is a smooth measure. Then, an easy computation from (3.2) shows
that

〈M [fk]〉t =

∫ t

0
〈2a(Xs)∇fk(Xs),∇fk(Xs)〉ds, k ∈ {1, . . . , d}

and by the well-known results on stochastic representation of martingales, there exists a d dimen-
sional Brownian motion W = (W 1, . . . ,W d) such that

M
[fk]
t =

∫ t

0

[
σ(Xs)∇fk(Xs)

]∗
dWs, P x − a.s. ∀x ∈ Rd, k ∈ {1, . . . , d}

(see for e.g. Revuz and Yor (1999) Chapter V Theorem 3.9 and the remark following its proof).
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Moreover, for any v ∈ C∞c (Rd), using the Green Identities of Proposition 4.1 and taking into
account that v is of compact support, we have:

E(fk, v) = E+(fk,+, v) + E−(fk,−, v)

=

∫
D+

(−A+fk,+)v −
(
B+
ν fk,+,Tr+(v)

)
Γ

+

∫
D−

(−A−fk,−)v +
(
B−ν fk,−,Tr−(v)

)
Γ

= −
∫
D

d∑
i,j=1

Di (aij(y)Djfk(y)) v(y)Iy∈D`(dy)

−
∫

Γ
ν∗
[
Tr+ (a+∇fk,+)− Tr− (a−∇fk,−)

]
γ(v)dς

= −
∫
D

d∑
j=1

∂jakj(y)v(y)Iy∈D`(dy)−
∫

Γ

[
Tr+((a+ν)k)− Tr−((a−ν)k)

]
vdς

= −
∫
D

d∑
j=1

∂jakj(y)v(y)Iy∈D`(dy)−
∫

Γ
[(ã+ν)k − (ã−ν)k] vdς

= (%+
k , v)− (%−k , v)

with

%±k (dy) := −
d∑
j=1

[∂jakj(y)]± Iy∈D`(dy) + [(γ−)k − (γ+)k]
± (y)Iy∈Γ ς(dy).

(here, the notation [a]+ (resp. [a]−) stands for the positive (resp. negative) part of some real
number a).

Let us now proceed to show that the measures IG.%±k belong to S00.
Note that ||∂jakjID∩G||∞ < ∞ and from the definition of S00 and the Revuz correpondence

(3.2), it is not difficult to prove that the measures − [∂jakj ]± (y)Iy∈D`(dy) are smooth with their

corresponding additive functional writing as
(
−
∫ t

0 [∂jakj ]± (Xs)IXs∈Dds
)
t≥0

.

We now turn to the surface measures ζ±k (dy) := [(γ−)k − (γ+)k]
± (y)Iy∈Γ ς(dy). It is well-known

(see e.g. Evans and Gariepy (2015) p.134 3. (? ? ?), (? ? ??)) that there exists a universal constant
C0 > 0, depending only on the Lipschitz domain D+, such that for all h ∈ C1(D+),∫

Γ
|h(y)|ς(dy) ≤ C0

∫
D+

(|∇h(x)|+ |h(x)|)`(dx).

Thus, for all h ∈ D [E ] ∩ Cc(Rd), we have∫
Γ
|h(y)|ς(dy) ≤ C0

∫
D+

(|∇h(x)|+ |h(x)|)`(dx)

≤ C0(2`(D+))1/2

(∫
Rd

(|∇h(x)|2 + |h(x)|2)`(dx)

)1/2

≤ C0

√
(2`(D+))

λ
(E(h, h) + (h, h))1/2

so that the surface measure ς(dy) belongs to S0. Since

∀y ∈ Γ, [| (γ−)k − (γ+)k |(y)]± ≤ 2|ã±(y)ν(y)| ≤ 2Λ,

the surface measures ζ±k (dy) := [(γ−)k − (γ+)k]
± (y)Iy∈Γ ς(dy) belong also to S0.
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Note that from Aronson’s estimates (2.13) we retrieve the following estimations

r1(x, y) ≤ C|x− y|−(d−2) if d > 2 ; r1(x, y) ≤ C (ln(1/|x− y|) ∨ 1) if d = 2.

Then, using the same arguments as in Fukushima et al. (1994) (Example 5.2.2 p.255), we can
assert that the measures ζ±k (dy) belong to S00. Moreover, let (Kt)t≥0 denote the PCAF associated
to ς(dy); in regard of the results stated in the original article of D. Revuz (cf. Revuz (1970) p.507)
we may assert that

(∫ t
0 [(γ−)k − (γ+)k]

± (Xs)IXs∈ΓdKs

)
t≥0

is the PCAF associated to ζ±k (dy) via

the Revuz correspondence.
By application of Theorem 5.5.5 in Fukushima et al. (1994) and since all the necessary hypothesis

are fulfilled, we get the decomposition (4.3) on the set {t ≥ 0 : t ≤ τGq} where Gq := {x ∈
Rd : |x| < q}. The identification of the process for all times follows by letting q tend to infinity. �

Let u0 ∈ D(A). From the Hille-Yosida theorem (Brezis (1983) Theorems VII.4 and VII.5) we can
prove that there exists a unique function

u ∈ C1
(
[0, T ]; L2(Rd)

)
∩ C

(
[0, T ]; D(A)

)
satisfying

du

dt
= Au, u(0) = u0. (4.5)

where the first equality in (4.5) has to be understood in the weak sense.
Under the hypothesis of Theorem 4.2, we deduce the following Corollary.

Corollary 4.3. Let 0 < T <∞. Under the conditions of Theorem 4.2, for any u0 ∈ D(A), we have

Ex[u0(Xt)] = u(t, x), ∀t ∈ [0, T ], ∀x ∈ Rd, (4.6)

where X is the diffusion considered in Theorem 4.2 and u is the solution of (4.5).
In particular, the following transmission condition

〈a+∇xu+(t, y)− a−∇xu−(t, y), ν(y)〉 = 0, for a.e. (t, y) ∈ (0, T ]× Γ (?) (4.7)

is satisfied.

Proof : In view of (3.1) and since d
dtTtu0 = ATtu0 (Pazy (1983) Thm 2.4-c)) the function (t, x) 7→

Ex[u0(Xt)] is solution of (4.5). We refer to the proofs of Proposition 3.14 and Theorem 3.1 in Étoré
and Martinez (2021) for the verification of the other assertions. �

In the light of (4.6) and in order to compute an approximate value of u(t, x), one could think of
producing a Monte Carlo method. Our article Étoré and Martinez (2021) is an attempt to tackle
this issue.

4.2. The diagonal case: link with the results of Bossy & al. Bossy et al. (2010). We wish to compare
the result of our Theorem 4.2 with the ones in Bossy et al. (2010). For this purpose we restrict
once more the assumption on the diffusion coefficient a(x) given in the setting of the preceding
subsection. Namely we assume

a(x) = Id ε(x)

with ε(x) :=
[
ε+1D̄+

+ ε−1D−
]
(x), Id the identity matrix and ε+ 6= ε− ∈ R∗+. We are therefore

considering the case of a diagonal diffusion matrix. We will also assume in the forthcoming theorems
that Γ is bounded and closed, and will consider that D+ is the interior domain delimited by Γ.

We start by summing up the notions and results in Bossy et al. (2010) that we need in order to
do the comparison.

In the sequel we denote (C, C) the usual canonical space, i.e. C = C([0,∞);Rd) and C = B(C)
(see Pb 2.4.2 in Karatzas and Shreve (1991) for details). We also denote (Ct)t≥0 the usual canonical
filtration (see Eq. (5.3.19) in Karatzas and Shreve (1991)).
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We shall denote by ω the canonical process defined on (C, C). Note that ω = (ωt)t≥0 is (Ct)-
adapted.

Let us define the transmission operator L acting on functions ϕ ∈ C(Rd)∩C2(D̄+)∩C2(D̄−) by

Lϕ(x) =
d∑

i,j=1

∂i

(
[Id ε]ij ∂jϕ

)
(x) =

d∑
i=1

ε(x) ∂2
iiϕ(x), ∀x ∈ Rd \ Γ,

Lϕ(x) = δ(x), ∀x ∈ Γ (4.8)

where for any x ∈ Γ, δ(x) ∈ R is an arbitrary value of no importance in our computations.

Definition 4.4 (Bossy et al. (2010)). i ) A family of probability measures (Px)x∈Rd on (C, C) solves
the martingale problem for the operator L if, for all x ∈ Rd one has Px(ω(0) = x) = 1 and, for all ϕ
satisfying

ϕ ∈ Cb(Rd) ∩ C2
b (D̄+) ∩ C2

b (D̄−) (4.9)

〈ε+∇xϕ+(y)− ε−∇xϕ−(y), ν(y)〉 = 0, ∀y ∈ Γ, (?) (4.10)

one has that the t-indexed process defined by

ϕ(ωt)− ϕ(ω0)−
∫ t

0
Lϕ(ωs)ds, ∀t ≥ 0

is a (Ct)-martingale under Px.
ii) The martingale problem is said to be well-posed if there exists a unique family of probability

measures (Px)x∈Rd which solves the martingale problem for the operator L.

Theorem 4.5 (Theorems 2.4, 2.10 and 2.12 in Bossy et al. (2010)). For all x ∈ Rd consider the
SDE 

Xt = x+

∫ t

0

√
2ε(Xu)dBu +

ε+ − ε−
2ε−

∫ t

0
ν(Xu)dL0

u(Y )

Yt = ρ(Xt)

(4.11)

where B is a d-dimensional Brownian motion, ρ(z) is the distance from z ∈ Rd to the boundary Γ
and L0

t (Y ) stands for the (right) local time at point zero of the local martingale Y .
If Γ is of class C3 and compact we have:
i) There exists a weak solution to (4.11). For any x ∈ Rd consider the law Px of this weak solution

on (C, C). The family (Px) is a solution to the martingale problem for L.
ii) Conversely let (Px) be a solution to the martingale problem for L, and let x ∈ Rd. There

exists a (Ct)-Brownian motion B under Px, such that ω is a weak solution to (4.11) driven by B,
under Px.

Remark 4.6. Note a change of sign in the weight in front of the local time term in (4.11), compared
to Bossy et al. (2010). This is because for us the exterior normal to the interior domain D+ is −ν.

Remark 4.7. Note that in Bossy et al. (2010) the authors work with right local time at point zero
of Y = ρ(X). Working with the symmetric local time instead, as it is often the case in the study of
asymetric diffusions (e.g. Lejay (2006)) would lead to different coefficients in front of the local time
term.

Theorem 4.8 (Theorem 2.14 in Bossy et al. (2010)). Assume Γ is of class C3 and compact. Then
the martingale problem for L is well posed and in particular there is a unique weak solution to (4.11)
in the sense of probability law.

We then have the following main result.
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Theorem 4.9. Assume Γ is of class C2 and compact. Consider the Hunt process X (M) in The-
orem 4.2. For any starting point x ∈ Rd consider the law Px of X on (C, C). The family (Px) is a
solution to the martingale problem for L.

Proof : Let M = (Ω, (Ft)t≥0,F , (Xt)t≥0, (P
x)x∈Rd) the Hunt process considered in Theorem 4.2. Let

x ∈ Rd and let ϕ satisfying (4.9) and (4.10). We aim at applying Theorem 5.5.5. in Fukushima
et al. (1994) with ϕ in order to check that

ϕ(Xt)− ϕ(x)−
∫ t

0
Lϕ(Xs)ds

is a martingale under P x w.r.t (Ft).
Indeed, proceeding as in Karatzas and Shreve (1991) p314, this implies that the law Px induced

on (C, C) by X (under P x) is such that if we consider the family (Px) this is a solution to the
martingale problem for L.

The fact that ϕ is finely continuous is clear. In order to check that ϕ ∈ D [E ]b,loc it suffices to
notice that for any compact G ⊂ Rd the functions (ϕ1G)+ and (ϕ1G)+ are respectively in H1(D+)
and H1(D−). As ϕ1G is in L2(Rd) and continuous across Γ, Exercise 4.5 in McLean (2000) implies
that ϕ1G ∈ H1(Rd) = D [E ].

We now check that 1G ·µ〈ϕ〉 ∈ S00 for any relatively compact set G. We first check that 1G ·µ〈ϕ〉
is a positive and finite Radon measure. Indeed one has, as in Eq. (3.3),

1G · µ〈ϕ〉(Rd) =

∫
G
µ〈ϕ〉(dx) = 2E(1Gϕ,ϕ)− E(1Gϕ

2, 1) = 2E(1Gϕ,ϕ)

and 0 ≤ E(1Gϕ,ϕ) <∞. We now check that ||R1 1G · µ〈ϕ〉||∞ <∞. For any x ∈ Rd we have, with
a constants m,M ′ depending on λ,Λ,

|R1 1G · µ〈ϕ〉 (x)| ≤
∫ ∞

0
e−t
(∫

Rd

p(t, x, y)|1G · µ〈ϕ〉|(dy)
)
dt

≤ M

∫ ∞
0

dt e−t
∫
Rd

1

td/2
e−
|y−x|2

Mt |1G · µ〈ϕ〉|(dy)

= M

∫ ∞
0

dt e−t
∫
G

1

td/2
e−
|y−x|2

Mt |〈2a(y)∇ϕ(y),∇ϕ(y)〉|dy

= M ′
∫ ∞

0
dt e−tEx

[
|〈2a(mWt)∇ϕ(mWt),∇ϕ(mWt)〉|1Wt∈G

]
≤ 2M ′Λ sup

z∈G
|∇u(mz)|2

∫ ∞
0

dt e−tdt < ∞

(4.12)

Here we have used (2.13) at the second line. At the third line we have used (3.3) and computations
similar to the ones leading to (4.4). At the last line we have used (E-B). As the bound in (4.12)
does not depend on x we have proven ||R1 1G · µ〈ϕ〉||∞ <∞.
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Let v ∈ C∞c (Rd). We have, using in particular Proposition 4.1, the smoothness of ϕ, Tr+(v) =
Tr(v+) = Tr−(v) = Tr(v−) = Tr(v) and (4.10),

E(ϕ, v) = E+(ϕ, v) + E−(ϕ, v)

= −
∫
D+

(A+ϕ+)v −
∫
D−

(A−ϕ−)v +
(
B−ν u− B+

ν u,Tr(v)
)

Γ

= −
∫
D
Lϕv +

∫
Γ
〈Tr(ε+∇xϕ+)− Tr(ε−∇xϕ−), ν〉 v dς

= −
∫
D
Lϕv.

The function Lϕ is piecewise continuous and bounded and proceeding as above one may check that
the positive and negative parts (−Lϕ)± satisfy 1G ·

(
(−Lϕ)±dx

)
∈ S00 for any relatively compact

set G.
We denote A± the PCAF’s related to Revuz measures (−Lϕ)±dx. We set

N [ϕ] = −A+ +A−

and notice that following Example 5.1.1 in Fukushima et al. (1994) we haveN [ϕ]
t = −

∫ t
0 (−Lϕ)+(Xs)ds+∫ t

0 (−Lϕ)−(Xs)ds =
∫ t

0 Lϕ(Xs)ds (note that we use the fact that
∫ t

0 1Xs∈Γds = 0 Px-a.s., therefore
the arbitrary value of Lϕ(z) for z ∈ Γ causes no issue).

We now apply Theorem 5.5.5. in Fukushima et al. (1994). We have

ϕ(Xt)− ϕ(x) = M
[ϕ]
t +

∫ t

0
Lϕ(Xs)ds

with M [ϕ] which a martingale (as for example the M [fk]’s are martingales in the proof of Theo-
rem 4.2). The proof is completed. �

In view of Theorems 4.5, 4.8 and 4.9 we immediately get the following corollary.

Corollary 4.10. Assume Γ is of class C3 and compact.
The solutions of (4.3) and (4.11), with starting point x ∈ Rd, have the same distribution on

(C, C).
In particular there is uniqueness in the sense of probability law of the weak solutions of (4.3).

Going a bit further in the analysis we may do an identification in the strong sense of the terms
appearing in (4.3) and (4.11).

Corollary 4.11. Assume Γ is of class C3 and compact.
Consider the Hunt process M = (Ω, (Ft)t≥0,F , (Xt)t≥0, (P

x)x∈Rd) in Theorem 4.2, which is such
that X solves (4.3) under P x.

Then one also has Xt = x+

∫ t

0

√
2ε(Xu)dBu(X) +

ε+ − ε−
2ε−

∫ t

0
ν(Xu)dL0

u(Y )

Yt = ρ(Xt)

with B(X) a Brownian motion under P x (that is X is also a weak solution to (4.11)).
Moreover one has B(X) = W (with W the Brownian motion driving (4.3)) and

Kt =
1

ε−
L0
t (ρ(X)), ∀t ≥ 0. (4.13)
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Proof : Pick x ∈ Rd. Let us rewrite (4.3) in the matrix form in the case of interest. One has

Xt = x+

∫ t

0

√
2ε(Xu)dWu +

1

2

∫ t

0
(γ+(Xu)− γ−(Xu))dKu

under P x. We set now

G(X) := Xt − x =

∫ t

0

√
2ε(Xu)dWu +

1

2

∫ t

0
(γ+(Xu)− γ−(Xu))dKu

and notice that G(·) is obviously measurable and that

Φ(X) := G(X)−Xt − x = 0 P x − a.s.

Noting that Φ(·) is measurable and remembering the definition of Px as the law of X on (C, C)
under P x it is obvious that one has P x(Φ(X) = 0) = 1 = Px(Φ(ω) = 0).

Therefore under Px one has a.s.

G(ω) = ωt − x

but from Theorem 4.5 Point ii) one has

G(ω) =

∫ t

0

√
2ε(ωu)dBu(ω) +

ε+ − ε−
2ε−

∫ t

0
ν(ωu)dL0

u(ρ(ω)) (4.14)

where B(ω) is a (Ct)-Brownian motion under Px. In the notation we have stressed that B(ω) is
constructed from the paths of ω (through a measurable mapping).

Applying G(·) viewed as in (4.14) to X we get the first part of the corollary, that is that X
solves (4.11) (4.11) driven by B(X) (to check that B(X) is a B.m. under P x we have to check that
the increments of B(X) are independent and that Bt(X)−Bs(X) for any s < t and distributed as
a Nd(0, (t− s)Id), by identifying the law of X under P x with the one of ω under Px).

Using the uniqueness of the decomposition of a semimartingale and recalling that γ± = a±ν we
have ∫ t

0

√
2ε(Xu)dWu =

∫ t

0

√
2ε(Xu)dBu(X) ∀t ≥ 0 (4.15)

and ∫ t

0
ν(Xs)dKs =

∫ t

0
ν(Xs)

1

ε−
dL0

s(ρ(X)) ∀t ≥ 0. (4.16)

From (4.15) and (1.1) one has

0 ≤ 〈W −B(X)〉t ≤
1

2λ

∫ t

0
2ε(Xu)d〈W −B(X)〉u ≤

1

2λ

〈 ∫ ·
0

√
2ε(Xu)d(W −B(X))u

)
〉t = 0

where the bracket has to be understood in the multidimensional sense (matrix of brackets). There-
fore W ≡ B(X) using Proposition IV.1.12 in Revuz and Yor (1999).

It remains to use the componentwise meaning of (4.16) in order to check (4.13). For the use of
exposure we assume for a while that d = 2, with ν = (ν1, ν2)T . Using the fact that if ν1(y) = 0 then
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ν2(y) 6= 0, y ∈ Γ, we get for any t ≥ 0,

Kt =

∫ t

0

(
1ν1(Xs)6=0

ν1(Xs)

ν1(Xs)
+ 1ν1(Xs)=0

ν2(Xs)

ν2(Xs)

)
dKs

=

∫ t

0

(
1ν1(Xs)6=0

ν1(Xs)

ν1(Xs)
+ 1ν1(Xs)=0

ν2(Xs)

ν2(Xs)

) 1

ε−
dL0

s(ρ(X))

=

∫ t

0

(
1ν1(Xs)6=0 + 1ν1(Xs)=0

) 1

ε−
dL0

s(ρ(X))

=
1

ε−
L0
t (ρ(X))

We claim that the above reasoning can easily be extended to d > 2. The proof is completed. �
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