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Stochastic processes associated to multidimensional parabolic

transmission problems in divergence form∗

Pierre Etoré† Miguel Martinez‡

April 6, 2020

Abstract In this note we define and study the stochastic process X in link with a parabolic transmission
operator (A,D(A)) in divergence form. The transmission operator involves a diffraction condition along a
transmission boundary. To that aim we gather and clarify some results coming from the theory of Dirichlet
forms as exposed in [6] and [14] for general divergence form operators. We show that X is a semimartingale and
that it is solution of a stochastic differential equation involving partial reflections in the co-normal directions
along the transmission boundary.

1 Introduction

In this note we aim at tying - with all the necessary rigor - various theoretical results that come from different
approaches concerning the probabilistic study of divergence form operators. We also provide a probabilistic
representation of the underlying process when the divergence operator is a transmission operator involving
a transmission condition across some smooth interface : in this particular case, we show that the process is
solution of a stochastic differential equation involving partial reflections in the co-normal directions along the
transmission boundary. All of these results are natural but we could not find them in the existing literature
and would like to record them in print with a proof. Besides, these results ground the foundations of a research
project pointing at probabilistic numerical methods for transmission problems (see [4]).

Let a : R
d → Md (R) a measurable symmetric matrix valued coefficient satisfying the following ellipticity

and boundedness condition (E−B) :

Assumption 1.1. (E-B) : There exists λ,Λ ∈ (0,∞) such that

∀x ∈ R
d, ∀ξ ∈ R

d, λ|ξ|2 ≤ ξ∗a(x)ξ ≤ Λ|ξ|2. (1)

Let us associate to the coefficient a the following unbounded operator A : D(A) ⊂ L2(Rd) → L2(Rd) defined
by

D(A) =
{

u ∈ H1(Rd) with

d
∑

i,j=1

Di(aijDju) ∈ L2(Rd)
}

and

∀u ∈ D(A), Au =

d
∑

i,j=1

Di(aijDju).

There exists a closed symmetric Dirichlet form (E ,D[E ]) and its corresponding semigroup (Tt) on L2(Rd)
that are naturally in link with (A,D(A)).

We define rigorously these objects and study their relations in Section 2. Using the spectral resolution of
the identity associated to (A,D(A)), we study the regularity in t of E(Ttf, g), f ∈ L2(Rd), g ∈ D[E ] (Subsection
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2.1). This permits to establish rigorously the connection with the results of D.W. Stroock in [14] (Subsection
2.2) which are exposed in the Cb(R

d) setting (Feller semigroup) and to assert the validity of Aronson’s estimates
for the transition function of (Tt) (see [1], [14], [2]).

Finally, in Section 3 we focus on the case where (A,D(A)) is a transmission operator and provide a Skorokhod
representation of the Hunt process X associated to (E ,D[E ]) in this particular case (Subsection 3.2).

2 Dirichlet form and Markovian semigroup associated to general
elliptic divergence form operators

2.1 Definitions and first properties

To the coefficient matrix a, we may associate a closed symmetric Dirichlet form (E ,D[E ]) defined on L2(Rd) by


















D [E ] = H1(Rd),

E(u, v) =

d
∑

i,j=1

∫

Rd

aij DjuDiv, u, v ∈ D [E ]

(see [6], p111). This closed symmetric Dirichlet form is the starting point of our construction.
On the underlying Hilbert space L2(Rd), we denote within this subsection by (A,D(A)) the (unique) self-

adjoint operator associated to (E ,D [E ]) and characterized by
{

D(A) ⊂ D [E ] ,
E(u, v) = −〈Au, v〉L2(Rd), u ∈ D(A), v ∈ D [E ]

([6], Theorem 1.3.1 and Corollary 1.3.1 p.21).

We aim at identifying this operator - as expected it will turn out that (A,D(A)) is nothing else than the
operator defined in the Introduction, therefore the common notation.

By the very definition of (A,D(A)), we have for any f ∈ D(A) and any g ∈ C∞
c (Rd)

−〈Af, g〉L2(Rd) = E(f, g) =
d
∑

i,j=1

∫

Rd

aij Djf Dig = −
〈

d
∑

i,j=1

Di(aijDjf), g
〉

H−1(Rd),H1(Rd)

where
∑d
i,j=1Di(aijDjf) is understood in the distributional sense as an element of H−1(Rd). But as Af ∈

L2(Rd) by the definition of D(A) the above equality shows that
∑d
i,j=1Di(aijDjf) ∈ L2(Rd) (for any f ∈ D(A)).

Thus, it is proved that D(A) ⊆ {f ∈ H1(Rd) with
∑d

i,j=1Di(aijDjf) ∈ L2(Rd)}.
In turn (by the density of C∞

c (Rd) in L2(Rd)) the equality permits to identify for any f ∈ D(A),

Af =
d
∑

i,j=1

Di(aijDjf).

Let us now prove the reverse inclusion {f ∈ H1(Rd) with
∑d
i,j=1Di(aijDjf) ∈ L2(Rd)} ⊆ D(A).

Let f ∈ {f ∈ H1(Rd) with
∑d

i,j=1Di(aijDjf) ∈ L2(Rd)}. By the symmetry of the coefficient matrix a and
integration by parts, it is not hard to prove that for any v ∈ D(A),

〈Av, f〉L2(Rd) = −E(v, f) = −
d
∑

j,i=1

∫

Rd

ajiDifDjv =
〈

∑

j,i

Dj(ajiDif), v
〉

L2(Rd)

and in particular f ∈ D(A∗)
def
= {g ∈ L2(Rd) | ∃hg ∈ L2(Rd) s.t. 〈Av, g〉 = 〈v, hg〉, ∀ v ∈ D(A)} (see [9]). So

that we get the reverse inclusion

{f ∈ H1(Rd) with

d
∑

i,j=1

Di(aijDjf) ∈ L2(Rd)} ⊆ D(A∗) = D(A)
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where the equality comes from the fact that (A,D(A)) is self-adjoint. Finally, we have proved

D(A) = {f ∈ H1(Rd) with
d
∑

i,j=1

Di(aijDjf) ∈ L2(Rd)} (2)

and (A,D(A)) is fully identified as being the same operator of the Introduction 1.
Note that since a is only assumed to be measurable, C∞

c (Rd) - which is a core for the Dirichlet form (E ,D(E))
- is not even a subset of D(A).

We now turn to the study of the spectral resolution and the semigroup associated to (E ,D[E ]) and (A,D(A)).
For the sake of conciseness we denote (·, ·) = 〈·, ·〉L2(Rd) and || · || = || · ||L2(Rd) till the end of the section.

Since (−A,D(A)) is a self-adjoint operator on the Hilbert space L2(Rd) that is non-negative definite, it admits
a spectral resolution of the identity {Eγ : γ ∈ [0,∞)}. For any γ ≥ 0 the operator Eγ : L2(Rd) → L2(Rd) is
a self-adjoint projection operator with (Eγf, f) ≥ 0, f ∈ L2(Rd), and the Eγ ’s form a spectral family with in
particular EµEγ = Eµ∧γ , (see [6] p18 for a list of properties). The link with (−A,D(A)) is through

(−Af, g) =
∫

[0,∞)

γd(Eγf, g) ∀f ∈ D(A), g ∈ L2(Rd)

and D(A) =
{

f ∈ L2(Rd) :
∫

[0,∞) γ
2d(Eγf, f) <∞

}

(see [6] paragraph 1.3.4 p.18).

Consequently, the family of operators {Tt def
= etA : t > 0} is a strongly continuous semigroup of self-adjoint

contractions acting on L2(Rd) ([6] Lemma 1.3.2 p.19) and

(Ttf, g) =

∫

[0,∞)

e−γtd(Eγf, g) ∀f ∈ L2(Rd), g ∈ L2(Rd).

Note that for any γ ≥ 0, t > 0, and any functions f ∈ L2(Rd) and g ∈ L2(Rd), we have the commutation
property

(TtEγf, g) = (Eγf, Ttg)

=

∫

[0,∞)

e−ξtdξ(Eγf, Eξg) =

∫

[0,γ]

e−ξtdξ(EξEγf, g) +

∫

[γ,∞)

e−ξtdξ(EξEγf, g)

=

∫

[0,γ]

e−ξtdξ(Eξf, g)

=

∫

[0,∞)

e−ξtdξ(Eξf, Eγg)

= (Ttf, Eγg) = (EγTtf, g).

Note also that for any f ∈ L2(Rd) and any t > 0,

∫

[0,∞)

γ2d(EγTtf, Ttf) =

∫

[0,∞)

γ2dγ

(

∫

[0,∞)

e−ξtdξ(EγEξf, Ttf)

)

=

∫

[0,∞)

γ2dγ

(

∫

[0,∞)

e−ξtdξ

(

∫

[0,∞)

e−θtdθ(EγEξf, Eθf)

))

=

∫

[0,∞)

γ2e−2γtdγ(Eγf, f)

≤ 4

t2
e−2

∫

[0,∞)

e−γtdγ(Eγf, f) =
4

t2
e−2(Ttf, f) ≤

4

t2
e−2||f ||2 < +∞,

where we have used the spectral family property, the associativity of the Stieltjes integral and the inequality
γ2e−γt ≤ 4e−2/t2. The above inequality ensures that Ttf ∈ D(A) for any t > 0.
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From the fact that | ddte−γt| ≤ γ is integrable w.r.t. d(Eγh, g) whenever h ∈ D(A), we deduce from the
commutation property that for any f, g ∈ L2(Rd) and for any s > 0

− d

dt
(Ttf, Tsg) =

∫

[0,∞)

γe−γtd(Eγf, Tsg) −−−−→
tց0+

∫

[0,∞)

γd(EγTsf, g) = (−ATsf, g)

where the limit exists and is well defined (since we have shown that Tsf ∈ D(A)).
If moreover g ∈ D [E ] then

− d

ds
(Tsf, g) = − d

dt
(Ts+tf, g)|t=0+ = − d

dt
(Ttf, Tsg)|t=0+

= (−ATsf, g) = E(Tsf, g). (3)

And since − d
ds (Tsf, g) = − d

ds (Tsg, f) by the symmetry property of Ts, we deduce that E(Tsf, g) = E(f, Tsg) for
any f, g ∈ D [E ].

Consequently, for any f ∈ D [E ] and using the ellipticity of the coefficient matrix a,

λ||∇Tsf ||2 ≤ E(Tsf, Tsf) = E(T2sf, f) = (−AT2sf, f)

=

∫

[0,∞)

γe−2γsd(Eγf, f) ≤
e−1

s

∫

[0,∞)

e−γsd(Eγf, f) =
e−1

s
(Tsf, f) ≤

||f ||2
s

,

from which we deduce the fundamental estimate

||∇Tsf || ≤
||f ||√
λ s

, ∀s > 0. (4)

In turn this estimate implies that for any f ∈ L2(Rd), g ∈ D [E ], the function

s 7→ E(Tsf, g) is integrable on (0, t],

and from (3) and the right continuity of s 7→ Tsf at time s = 0+ (one may extend T0f = f as long as no
differentiation of s 7→ Tsf is implied at s = 0+ when f /∈ D(A)), we deduce the integrated version of (3) namely

∀f ∈ L2(Rd), ∀g ∈ D [E ],

(Ttf, g)− (f, g) = −
∫ t

0

d
∑

i,j=1

(aijDjTsf,Dig) ds = −
∫ t

0

E(Tsf, g)ds, t ∈ (0,∞). (5)

2.2 Link with the results of D.W. Stroock [14]

In his celebrated article Diffusion semigroups corresponding to uniformly elliptic divergence form operators D.W.
Stroock constructs via a regularization procedure a Feller continuous semigroup {Pt : t > 0} associated to a
with the properties that (with our notations)

1. the map t ∈ [0,∞) 7→ Ptφ ∈ H1(Rd) is a weakly continuous map for each φ ∈ C∞
c (Rd).

2. ∀φ, ψ ∈ C∞
c (Rd),

(Ptφ, ψ)− (φ, ψ) = −
∫ t

0

(a∇Psφ,∇ψ) ds = −
∫ t

0

E(Psφ, ψ)ds, t ∈ (0,∞). (6)

(Nota : please note that there is a sign error in the original version of [14]).

In fact, {Pt : t > 0} determines a unique strongly continuous semigroup {P̄t : t > 0} of self-adjoint
contractions on L2(Rd).

The aim of this subsection is to prove the following equality, which clarifies the relationship between the
results obtained in [14] and the those provided by the theory of Dirichlet forms [6].
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Proposition 2.1.

{P̄t : t > 0} = {Tt : t > 0} on L2(Rd). (7)

Proof. The semigroup {P̄t : t > 0} is strongly continuous on H1(Rd). Moreover, for each t > 0, P̄t maps
L2(Rd) into H1(Rd) and for each f ∈ H1(Rd) = D [E ], we have the fundamental estimate

||∇P̄sf || ≤
1√
λ

( ||f ||√
s

)

∧ ||∇f ||, ∀s > 0. (8)

(See [14] Theorem II.3.1. p.341).
This estimate implies that for for each f, g ∈ D [E ] and any t, s > 0,

|E(P̄tf, g)− E(P̄sf, g)| ≤ Λ||∇g|| ||P̄t∨s−t∧sf − f ||
√

λ (t ∧ s)
−−−→
s→t

0,

which ensures the continuity of s 7→ E(P̄sφ, ψ) for any φ, ψ ∈ C∞
c (Rd). Since (P̄t)t>0 and (Pt)t>0 cöıncide on

C∞
c (Rd), we may differentiate in (6) (as long as t > 0) to find that

d

dt
(P̄tφ, ψ) = −E(P̄tφ, ψ), t ∈ (0,∞). (9)

This has to be compared to (3).
Let us now justify rigorously that for any t > 0, s ∈ (0, t) and φ, ψ ∈ C∞

c (Rd),

d

ds
(Tsφ, P̄t−sψ) =

d

du
(Tuφ, P̄t−sψ)|u=s −

d

du
(Tsφ, P̄t−uψ)|u=s. (10)

We have for sufficiently small 0 ≤ h < t− s and using the strong continuity of (P t)t>0

|
(

Ts+hφ− Tsφ, P̄t−s+hψ − P̄t−sψ
)

| ≤ ||P̄t−s+hψ − P̄t−sψ|| ||Ts+hφ− Tsφ||

≤ εψ(h)

(

∫

[0,∞)

e−2γs(e−γh − 1)2d(Eγφ, φ)

)1/2

≤ εψ(h)

(

∫

[0,∞)

e−2γs(γh)2d(Eγφ, φ)

)1/2

≤ hεψ(h)

(

∫

[0,∞)

e−γs
(

γ2e−γs
)

d(Eγφ, φ)

)1/2

≤ hεψ(h)
2e−1

s
||φ||,

where as usual εψ(·) denotes some positive continuous function vanishing at zero. We deduce that

1

h
|
(

Ts+hφ− Tsφ, P̄t−s+hψ − P̄t−sψ
)

| −−−→
h→0

0,

implying (10).
Hence, from (10) and applying (3) and (9), we have that

d

ds
(Tsφ, P̄t−sψ) = 0, s ∈ (0, t). (11)

Integrating the identity (11) on (0, t) and using the time continuity of both semigroups (Tt) and (P̄t) up to time
s = 0+ gives

(Ttφ, ψ) = (φ, P̄tψ) = (P̄tφ, ψ) (12)

which holds for any φ, ψ ∈ C∞
c (Rd). Since C∞

c (Rd) is dense in L2(Rd), using the strong continuity of both
semigroups (Tt) and (P̄t), we finally deduce from (12) the identification (7).
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Consequently, all results in [14] that are valid for {P̄t : t > 0} are true for {Tt : t > 0}. For example,
identifying abusively {Tt : t > 0} with its Feller restriction {Pt : t > 0} on C∞

c (Rd), we deduce that there is
a p ∈ C

(

(0,∞)× R
d × R

d
)

such that

[Ttφ] (x) =

∫

Rd

φ(y)p(t, x, y)dy, ℓ(dx)− a.e., φ ∈ C∞
c (Rd). (13)

Moreover, the fundamental function p satisfies the well-known Aronson’s estimates for the fundamental solutions
of elliptic divergence form operators, namely there exists a constant M(λ,Λ, d) ∈ [1,∞) such that

1

Mtd/2
exp

(

−M |x− y|2/t
)

≤ p(t, x, y) ≤ M

td/2
exp

(

−|x− y|2/Mt
)

. (14)

Finally, we have the convergence result of [14] (Theorem II.3.1. p.341) that we state roughly without introducing
the necessary notations (see [14] for details) : if {an}∞1 ⊂ A(λ,Λ) and an −→ a almost everywhere, then
pn(t, x, y) −→ p(t, x, y) uniformly on compacts (in (0,∞)× R

d × R
d) and for each t ∈ [0,∞) and φ ∈ C∞

c (Rd),
T nt φ −→ Ttφ in H1(Rd).

3 Stochastic representation of transmission operators in divergence

form

3.1 An application of the Revuz correspondence for additive functionals

Since (E ,D [E ]) is a regular Dirichlet form (with the space D [E ]∩Cc(Rd) or C∞
c (Rd) as a special standard core,

see e.g. Exercice 1.4.1 in [6]), we are in position to apply Theorem 7.2.1 p. 380 of [6].
We may associate to (E ,D [E ]) and its corresponding semigroup (Tt) a Hunt process, symmetric w.r.t the

Lebesgue measure ℓ(dx) on R
d. We shall denote by M = (Ω, (Ft)t≥0,F , (Xt)t≥0, (P

x)x∈Rd) this Hunt process,
with X = (X1, . . . , Xd). The correspondence with (E ,D [E ]) and (Tt) is through

E
x[f(Xt)] = Ttf(x), ∀f ∈ L2(Rd), ∀t ≥ 0, ∀x ∈ R

d (15)

(see the discussion p160 in [6], at the beginning of Section 4.2).
Let us also denote by {Rα : α > 0} the Markovian resolvent kernel of the Markovian transition function

{p̂(t, x, dy) := p(t, x, y)dy : t > 0}. Then, for any α > 0, f ∈ Bb(Rd) and x ∈ R
d, Rαf(x) =

∫

Rd rα(x, y)f(y)dy

with rα(x, y) =
∫∞

0 e−αtp(t, x, y)dt.

Denote by S the set of positive Radon measures on (Rd,B(Rd)). For µ ∈ S define R1µ(x) =
∫

Rd r1(x, y)µ(dy)

(x ∈ R
d) and introduce the subset of finite energy measures

S0 :=

{

µ ∈ S : ∃C > 0, ∀v ∈ D [E ] ∩ Cc(Rd),
∫

Rd

|v(x)|µ(dx) ≤ C (E(v, v) + (v, v))
1/2

}

=

{

µ ∈ S : sup
v∈D[E]∩Cc(Rd)

∫

Rd

|v(x)|
||v||E1

µ(dx) <∞
}

,

(where we follow the notations of [6]).
Finally, introduce

S00 := {µ ∈ S0 : µ(Rd) <∞, ||R1µ(.)||∞ <∞}.
Let us denote respectively by A+

c and A+
c,1 the families of all Positive Continuous Additive Functionals

(PCAF in short) (resp. the family of all PCAF in the strict sense) associated to M (for the distinction between
A+
c and A+

c,1, see [6] the introduction of Section 5.1).
The Revuz correspondence asserts that there is a one-to-one correspondence (up to equivalence of processes)

between A+
c and S. This correspondence permits to construct for any µ ∈ S00 a unique PCAF in the strict

sense A ∈ A+
c,1 such that

∀x ∈ R
d, E

x

∫ ∞

0

e−tdAt = R1µ(x). (16)
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(see for e.g. Theorem 5.1.4 in [6]).
In order to get a bijective map, introduce a new subset S1 of S defined by µ ∈ S1 if there exists a sequence

(En)n≥0 of Borel finely open sets increasing to R
d satisfying that IEn

.µ ∈ S00 for each n. Then, there is a
one-to-one correspondence between S1 and A+

c,1 (up to equivalence) which is given by relation (16) whenever
µ ∈ S00. The set of measures S1 is called the set of smooth measures (in the strict sense).

Let us introduce D [E ]b (resp. D [E ]b,loc) the space of essentially bounded functions belonging to D[E ] (resp.
locally to D[E ]. A function u is in D [E ]b,loc if for any compact set G, there exists a bounded function ω such
that u = ω, ℓ(dx)-a.e. on G).

For u ∈ D [E ]b, we may associate a unique positive Radon measure µ〈u〉 ∈ S, satisfying

∫

Rd

f(x)µ〈u〉(dx) = 2E(uf, u)− E(u2, f), ∀f ∈ D [E ] ∩ Cc(Rd). (17)

If u ∈ D [E ]b,loc, we may construct µ〈u〉 ∈ S with the help of a sequence (Gn)n≥0 of relatively compact open

sets such that Gn ⊂ Gn+1 and
⋃

n≥0Gn = R
d. Let (un)n≥0 a sequence of functions in D [E ]b satisfying un = u

on Gn. There is no ambigüıty in defining µ〈u〉 = µ〈un〉 on Gn because the construction is consistent (since
µ〈un〉 = µ〈un+1〉 on Gn). For an account on the above assertions, please refer to [6] Section 3.2.

Note that obviously (E ,D [E ]) is strong local, so we may apply Theorem 5.5.5 in [6].
Suppose that a function u satisfies the following conditions :

1. u ∈ D [E ]b,loc , u is finely continuous on R
d.

2. IG.µ〈u〉 ∈ S00 for any relatively compact open set G.

3. ∃̺ = ̺(1) − ̺(2) with IG.̺
(1), IG.̺

(2) ∈ S00 for any relatively compact open set G and

E(u, v) = (̺, v), ∀v ∈ C∞
c (Rd).

(Note that even though u is not formally in D [E ], the quantity E(u, v) is well-defined because v has
compact support and u ∈ D [E ]b,loc).

Let A(1), A(2), and B be PCAF’s in the strict sense with Revuz measures ̺(1), ̺(2), and µ〈u〉 respectively. Then,
Theorem 5.5.5 in [6] asserts that

u(Xt)− u(X0) =M
[u]
t +N

[u]
t , P

x − a.s, ∀x ∈ R
d. (18)

Here,
N [u] = −A(1) +A(2), P

x − a.s, ∀x ∈ R
d (19)

and M [u] is a local Additive Functional in the strict sense such that for any relatively compact set G,

E
xM

[u]
t∧τG = 0, ∀x ∈ G

and
E
x
[

(M
[u]
t∧τG)

2
]

= E
xBt∧τG , ∀x ∈ G,

where τG = inf(s > 0 : Xs /∈ G) stands for the first leaving time from G (with the convention inf ∅ = ∞) and
B denotes the PCAF in the strict sense with Revuz measure µ〈u〉.

3.2 Skorokhod representation of the Hunt process associated to a transmission
operator in divergence form

Consider R
d = D̄+ ∪ D− with D+ and D− two open connected subdomains separated by a transmission

boundary Γ that is to say
Γ = D̄+ ∩ D̄−.

We denote
D = D+ ∪D− = R

d \ Γ ⊂ R
d.

7



For a point x ∈ Γ we denote by ν(x) ∈ R
d the unit normal to Γ at point x, pointing to D+.

In the following, ”f ∈ Cp(D̄+;R) ∩ Cp(D̄−;R)” means that the restriction f+ of the real valued function
f to D+ (and the restriction f− of f to D−) coincides on D+ (resp. D−) with a function f̃+ of class Cp(Rd)
(resp. f̃−).

Assume the aij ’s satisfy (a±)ij ∈ C(D̄±;R). We may define then the co-normal vector fields γ+(x) :=
a+(x)ν(x) and γ−(x) := −a−(x)ν(x), for x ∈ Γ.

We shall consider restricted operators and bilinear forms in the following sense. We define A+ : H1(D+) →
H−1(D+) by

∀v ∈ H1(D+), A+v =

d
∑

i,j=1

Di

(

(a+)ijDjv
)

.

We define A− : H1(D−) → H−1(D−) in the same manner (note that we do not specify here any domain D(A±)).
Further, we define

E±(u, v) =
d
∑

i,j=1

∫

D±

(a±)ijDjuDiv, ∀u, v ∈ H1(D±).

We have, for u± ∈ H1(D±) with A±u± ∈ L2(D±),

E±(u±, v) =
∫

D±

(−A±u±)v, ∀v ∈ H1
0 (D±). (20)

Imagine now that in (20) we wish to take the test function in H1(D±) instead of H1
0 (D±). There will still

be a link between A± and E±, but through Green type identities, involving conormal derivatives and boundary
integrals.

We introduce a specific notation for the one-sided conormal derivatives on Γ of u ∈ L2(Rd) with u± ∈
H2(D±). Provided the (a±)ij are in C1

b (D̄±;R) and Γ is bounded and Lipschitz we set

B±
ν u = ν∗Tr±(a±∇u±) =

d
∑

i=1

d
∑

j=1

νiTr
±
(

(a±)ijDju±
)

on Γ (21)

where Tr± : H1(D±) → H1/2(Γ) stand for the usual trace operators on Γ.

For g ∈ H− 1
2 (Γ) and f ∈ H

1
2 (Γ) we denote by

(

g, f
)

Γ
the action of g on f . If both f, g are in H

1
2 (Γ) the

quantity
(

g, f
)

Γ
coincides with the surface integral

∫

Γ gf dς .
Let us recall the version of the Green identity that is used in the sequel.

Proposition 3.1 (First Green identity, first version; [8], Lemma 4.1). Assume Γ is bounded and C2. Let
u ∈ L2(Rd) with u+ ∈ H2(D+) and u− ∈ H2(D−). Assume that the coefficients (a±)ij are in C1

b (D±;R). Then

E+(u+, v) =
∫

D+

(−A+u+)v −
(

B+
ν u,Tr

+(v)
)

Γ
, ∀v ∈ H1(D+)

and

E−(u−, v) =
∫

D−

(−A−u−)v +
(

B−
ν u,Tr

−(v)
)

Γ
, ∀v ∈ H1(D−).

We have the following result.

Theorem 3.2. Assume Γ is bounded and C2. Assume that Assumption (E−B) is fulfilled and that for all
1 ≤ i, j ≤ d aij ∈ C1

b (D+;R) ∩ C1
b (D+;R) with aij possessing a possible discontinuity on Γ. Then, the Hunt

process M associated to (E ,D [E ]) is a diffusion which possesses the following Skorokhod decomposition : for any
k ∈ {1, . . . , d},

Xk
t = xk +

∫ t

0

d
∑

j=1

σkj(Xs)dW
j
s +

∫ t

0

d
∑

j=1

∂jakj(Xs)IXs∈Dds

− 1

2

∫ t

0

γ+,k(Xs)dKs +
1

2

∫ t

0

γ−,k(Xs)dKs, t ≥ 0, Px − a.s., ∀x = (x1, . . . , xd) ∈ R
d. (22)
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In the above equality σ : Rd → R
d×d denotes the positive square-root of coefficient 2a i.e. the positive matrix

real valued coefficient satisfying
σσ∗(x) = 2a(x), ∀x ∈ D.

(Note that this coefficient exists because a(x) is non-negative definite for all x ∈ D). The process W =
(W 1, . . . ,W d) is a d-dimensional standard Brownian motion starting from zero and (Kt)t≥0 denotes the unique
PCAF associated to the surface measure ς(dξ) ∈ S on Γ through the Revuz correspondence. The process (Kt)
increases only at times where X lies on Γ,

∫ t

0

IXs∈ΓdKs = Kt, t ≥ 0.

Proof. We apply the results of Theorem 5.5.5 in [6] in this context for the coordinate functions

pk(x1, . . . , xd) := xk (k ∈ {1, . . . , d}).

and follow the ideas of [16] Theorem 5.2. Of course pk ∈ D [E ]b,loc and pk is finely continuous on R
d. Let G a

relatively compact open set containing Γ and a function fk ∈ D [E ]b such that pk = fk on G. Let 〈M [fk]〉 the
square bracket of M [fk]. Then, an easy computation from (17) shows that the energy measure of M [fk] (the
Revuz measure of 〈M [fk]〉) is

µ〈fk〉(dy) = µ〈M [fk ]〉(dy) = 〈2a(y)∇fk(y),∇fk(y)〉ℓ(dy)

and we know that µ〈fk〉 = µ〈pk〉 on G. It is easy to show that IG.µ〈pk〉 is a finite Radon measure belonging to
S00 and that µ〈pk〉 is a smooth measure. Then, an easy computation from (16) shows that

〈M [fk]〉t =
∫ t

0

〈2a(Xs)∇fk(Xs),∇fk(Xs)〉ds, k ∈ {1, . . . , d}

and by the well-known results on stochastic representation of martingales, there exists a d dimensional Brown-
ian motion W = (W 1, . . . ,W d) such that

M
[fk]
t =

∫ t

0

[

σ(Xs)∇fk(Xs)
]∗
dWs, P

x − a.s. ∀x ∈ R
d, k ∈ {1, . . . , d}

(see for e.g. [11] Chapter V Theorem 3.9 and the remark following its proof).
Moreover, for any v ∈ C∞

c (Rd), using the Green Identities of Proposition 3.1 and taking into account that
v is of compact support, we have :

E(fk, v) = E+(fk,+, v) + E−(fk,−, v)

=

∫

D+

(−A+fk,+)v −
(

B+
ν fk,+,Tr

+(v)
)

Γ
+

∫

D−

(−A−fk,−)v +
(

B−
ν fk,−,Tr

−(v)
)

Γ

=

∫

D

d
∑

i,j=1

Di (aij(y)Djfk(y)) v(y)Iy∈Dℓ(dy)

−
∫

Γ

ν∗
[

Tr+ (a+∇fk,+)− Tr− (a−∇fk,−)
]

γ(v)dς

=

∫

D

d
∑

j=1

∂jakj(y)v(y)Iy∈Dℓ(dy)−
∫

Γ

[

Tr+((a+ν)k)− Tr−((a−ν)k)
]

vdς

=

∫

D

d
∑

j=1

∂jakj(y)v(y)Iy∈Dℓ(dy)−
∫

Γ

[(ã+ν)k − (ã−ν)k] vdς

= (̺+k , v)− (̺−k , v)

with

̺±k (dy) :=

d
∑

j=1

[∂jakj(y)]
±
Iy∈Dℓ(dy) + [(γ−)k − (γ+)k]

±
(y)Iy∈Γ ς(dy).
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(here, the notation [a]+ (resp. [a]−) stands for the positive (resp. negative) part of some real number a).
Let us now proceed to show that the measures IG.̺

±
k belong to S00.

Note that ||∂jakjID∩G||∞ < ∞ and from the definition of S00 and the Revuz correpondence (16), it is
not difficult to prove that the measures [∂jakj ]± (y)Iy∈Dℓ(dy) are smooth with their corresponding additive

functional writing as
(

∫ t

0
[∂jakj ]± (Xs)IXs∈Dds

)

t≥0
.

We now turn to the surface measures ζ±k (dy) := [(γ−)k − (γ+)k]
± (y)Iy∈Γ ς(dy). It is well-known (see e.g. [5]

p.134 3. (⋆ ⋆ ⋆), (⋆ ⋆ ⋆⋆)) that there exists a universal constant C0 > 0, depending only on the Lipschitz domain
D+, such that for all h ∈ C1(D+),

∫

Γ

|h(y)|ς(dy) ≤ C0

∫

D+

(|∇h(x)| + |h(x)|)ℓ(dx).

Thus, for all h ∈ D [E ] ∩Cc(Rd), we have

∫

Γ

|h(y)|ς(dy) ≤ C0

∫

D+

(|∇h(x)| + |h(x)|)ℓ(dx)

≤ C0ℓ(D+)
1/2

(

∫

D+

(|∇h(x)| + |h(x)|)2ℓ(dx)
)1/2

≤ C0(2ℓ(D+))
1/2

(
∫

Rd

(|∇h(x)|2 + |h(x)|2)ℓ(dx)
)1/2

≤ C0

√

(2ℓ(D+))

λ
(E(h, h) + (h, h))

1/2

so that the surface measure ς(dy) belongs to S0. Since

∀y ∈ Γ, [| (γ−)k − (γ+)k |(y)]± ≤ 2|ã±(y)ν(y)| ≤ 2Λ,

the surface measures ζ±k (dy) := [(γ−)k − (γ+)k]
±
(y)Iy∈Γ ς(dy) belong also to S0.

Note that from Aronson’s estimates (14) we retrieve the following estimations

r1(x, y) ≤ C|x− y|−(d−2) if d > 2 ; r1(x, y) ≤ C (ln(1/|x− y|) ∨ 1) if d = 2.

Then, using the same arguments as in [6] (Example 5.2.2 p.255), we can assert that the measures ζ±k (dy) belong
to S00. Moreover, let (Kt)t≥0 denote the PCAF associated to ς(dy) ; in regard of the results stated in the

original article of D. Revuz (cf. [10] p.507) we may assert that
(

∫ t

0 [(γ−)k − (γ+)k]
±
(Xs)IXs∈ΓdKs

)

t≥0
is the

PCAF associated to ζ±k (dy) via the Revuz correspondence.
By application of Theorem 5.5.5 in [6] and since all the necessary hypothesis are fulfilled, we get the decom-

position (22) on the set {t ≥ 0 : t ≤ τGq
} where Gq := {x ∈ R

d : |x| < q}. The identification of the process
for all times follows by letting q tend to infinity.

Let u0 ∈ D(A). From the Hille-Yosida theorem ([3] Theorems VII.4 and VII.5) we can prove that there
exists a unique function

u ∈ C1
(

[0, T ]; L2(Rd)
)

∩C
(

[0, T ]; D(A)
)

satisfying
du

dt
= Au, u(0) = u0. (23)

where the first equality in (23) has to be understood in the weak sense.
Under the hypothesis of Theorem 3.2, we deduce the following Corollary.

Corollary 3.3. Let 0 < T <∞. Under the conditions of Theorem 3.2, for any u0 ∈ D(A), we have

E
x[u0(Xt)] = u(t, x), ∀t ∈ [0, T ], ∀x ∈ R

d, (24)
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where X is the diffusion considered in Theorem 3.2 and u is the solution of (23).
In particular, the following transmission condition

〈a+∇xu+(t, y)− a−∇xu−(t, y), ν(y)〉 = 0, for a.e. (t, y) ∈ (0, T ]× Γ (⋆) (25)

is satisfied.

Proof. On the one hand we have E
x[u0(Xt)] = Ttu0(x) thanks to (15). On the other hand we have d

dtTtu0 =
ATtu0 (see [9] Thm 2.4-c)), i.e. Ttu0 solves (23) whose solution is unique. Thus T·u0 and u are equal in the
space C1

(

[0, T ]; L2(Rd)
)

∩ C
(

[0, T ]; D(A)
)

, and finally Ttu0(x) = u(t, x) for any t, x (where we have used the
fact that D(A) ⊂ H1(Rd) and elements of H1(Rd) are identified with their continuous versions). For a proof of
(25) see [4].

In the light of (24) and in order to compute an approximate value of u(t, x), one could think of producing
a Monte Carlo method. Our preprint [4] is an attempt to tackle this issue.
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