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Stochastic processes associated to multidimensional parabolic
transmission problems in divergence form*

Pierre Etoréf Miguel Martinez?*
April 6, 2020

Abstract In this note we define and study the stochastic process X in link with a parabolic transmission
operator (A,D(A)) in divergence form. The transmission operator involves a diffraction condition along a
transmission boundary. To that aim we gather and clarify some results coming from the theory of Dirichlet
forms as exposed in [6] and [14] for general divergence form operators. We show that X is a semimartingale and
that it is solution of a stochastic differential equation involving partial reflections in the co-normal directions
along the transmission boundary.

1 Introduction

In this note we aim at tying - with all the necessary rigor - various theoretical results that come from different
approaches concerning the probabilistic study of divergence form operators. We also provide a probabilistic
representation of the underlying process when the divergence operator is a transmission operator involving
a transmission condition across some smooth interface : in this particular case, we show that the process is
solution of a stochastic differential equation involving partial reflections in the co-normal directions along the
transmission boundary. All of these results are natural but we could not find them in the existing literature
and would like to record them in print with a proof. Besides, these results ground the foundations of a research
project pointing at probabilistic numerical methods for transmission problems (see [4]).

Let a : R? — My (R) a measurable symmetric matrix valued coefficient satisfying the following ellipticity
and boundedness condition (E — B) :

Assumption 1.1. (E-B) : There exists A\, A € (0,00) such that
Ve e RY VEeRY MNP < €ralz)é < AJE) (1)

Let us associate to the coefficient a the following unbounded operator A : D(A) C L?(R%) — L?(R?) defined
by

d
D(A) = {u € H'(R?) with > Di(ai;;D;u) € L*(R)}

and
d

Yu € D(A), Au = Z DZ(CL”DJU)

ij=1

There exists a closed symmetric Dirichlet form (£, D[€]) and its corresponding semigroup (7;) on L?(R9)
that are naturally in link with (A, D(A)).

We define rigorously these objects and study their relations in Section 2. Using the spectral resolution of
the identity associated to (A4, D(A)), we study the regularity in ¢ of £(Tif,g), f € L*(R?), g € DIE] (Subsection
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2.1). This permits to establish rigorously the connection with the results of D.W. Stroock in [14] (Subsection
2.2) which are exposed in the Cj(R?) setting (Feller semigroup) and to assert the validity of Aronson’s estimates
for the transition function of (T3) (see [1], [14], [2]).

Finally, in Section 3 we focus on the case where (A, D(A)) is a transmission operator and provide a Skorokhod
representation of the Hunt process X associated to (€, D[€]) in this particular case (Subsection 3.2).

2 Dirichlet form and Markovian semigroup associated to general
elliptic divergence form operators

2.1 Definitions and first properties

To the coefficient matrix a, we may associate a closed symmetric Dirichlet form (€, D[€]) defined on L?(R¢) by

DlE] = HY(RY),

Z/a”DuDv u,v € D[E]

1,7=1

(see [6], p111). This closed symmetric Dirichlet form is the starting point of our construction.
On the underlying Hilbert space L?(R%), we denote within this subsection by (A4, D(A)) the (unique) self-
adjoint operator associated to (£, D [£]) and characterized by

D(A) C D],
{ 8( ) <Aua v>L2(]Rd)7 u € D(A)a veD [5]
([6], Theorem 1.3.1 and Corollary 1.3.1 p.21).
We aim at identifying this operator - as expected it will turn out that (A, D(A)) is nothing else than the

operator defined in the Introduction, therefore the common notation.
By the very definition of (A4, D(A)), we have for any f € D(A) and any g € C°(R?)

<14f7 >L2 Rd) - ijlf CL»LJ D fD’Lg - _<,LJZlD azJD f > Rd) Hl(Rd)
where Z” 1 Di(a;;D; f) is understood in the distributional sense as an element of H!(R%). But as Af €

L2(R%) by the definition of D(A) the above equality shows that 3¢ =1 Di(aijD;j f) € L*(RY) (for any f € D(A)).
Thus, it is proved that D(A) C {f € H'(R?) with Z” 1 Di(ai;D;f) € L*(R9)}.
In turn (by the density of C>°(R9) in L?(R%)) the equality permits to identify for any f € D(A),

d
ij=1
Let us now prove the reverse inclusion {f € H*(R%) with ¢ =1 Di(ai;D; f) € L*(RY)} C D(A).

Let f € {f € H(R?) with El j=1 Dilai;D;f) € L?(R%)}. By the symmetry of the coefficient matrix a and
integration by parts, it is not hard to prove that for any v € D(A),

(Av, f)r2mey = — “ZI/ a;; DifDjv = <ZD (a;Dif),v >L2(]Rd)
and in particular f € D(A%) def{ € LXR?) | 3h, € L2(RY) s.t. (Av,g) = (v,hy),Yv € D(A)} (see [9]). So
that we get the reverse inclusion

d
{f € H'(RY) with > Di(ai;D;f) € L*(R?)} € D(A*) = D(A)

i,j=1



where the equality comes from the fact that (A, D(A)) is self-adjoint. Finally, we have proved

d
D(A) = {f € H'(R?) with Y Di(a;;D;f) € L*(R%)} (2)

i,7=1

and (A,D(A)) is fully identified as being the same operator of the Introduction 1.
Note that since a is only assumed to be measurable, C2°(R?) - which is a core for the Dirichlet form (£, D(E))
- is not even a subset of D(A).

We now turn to the study of the spectral resolution and the semigroup associated to (£, D[€]) and (4, D(A)).
For the sake of conciseness we denote (-,-) = (-,) p2(ray and || - [| = || - || ,2(ray till the end of the section.

Since (—A4, D(A)) is a self-adjoint operator on the Hilbert space L?(R%) that is non-negative definite, it admits
a spectral resolution of the identity {E, : 7 € [0,00)}. For any v > 0 the operator E, : L?(R?) — L%(R?) is
a self-adjoint projection operator with (E, f, f) >0, f € L?(RY), and the E,’s form a spectral family with in
particular E,E, = E,r, (see [6] p18 for a list of properties). The link with (—A, D(A)) is through

(—Af.g) = /[ (B f.9) F € D), g < LR

and D(A) = { feLX®Y) : [ VB, f) < oo} (see [6] paragraph 1.3.4 p.18).

Consequently, the family of operators {T; dfata o ¢ > 0} is a strongly continuous semigroup of self-adjoint

contractions acting on L?(R%) ([6] Lemma 1.3.2 p.19) and
Tf9)= [ B L) v LRY, g R,
[0,00)

Note that for any v > 0, t > 0, and any functions f € L?(R%) and g € L?(R?), we have the commutation
property
(TtEva g) = (E’Yf7 Ttg)

:/[ )e_gtdi(Evfa E¢g) :/[ ]e_gtdﬁ(Eﬁwaag)Jr/ e *'d¢(E¢Ey f,9)
0,00 0,

[,00)

= / e de(Eef,g)
[0,7]

[ s
= (thu E’yg) = (E’ythu g)

Note also that for any f € L?(R?) and any ¢ > 0,

/ V(B Tof, Tof) = / 2, ( / e—ftdg(Evng,th)>
[0,00) [0,00) [0,00)

:/ "de,Y (/ eigtdg </ eietde(E,Yng, ng)))
[0,00) [0,00) [0,00)

/ 726727td'y (E’va f)

[0,00)

IN
l\)| W~

_ _ 4 _ 4 _
7 ¢ B ) = e T D) < e I < e,

where we have used the spectral family property, the associativity of the Stieltjes integral and the inequality
v2e=7t < 4e72/t2. The above inequality ensures that Ty f € D(A) for any t > 0.



From the fact that |ie’7t| < « is integrable w.r.t. d(E,h,g) whenever h € D(A), we deduce from the
commutation property that for any f, g € L*(R?) and for any s > 0

d N
—%(th,ng):/ ve "'d(E, f, Tog) —— Yd(E\Ts f,9) = (—ATsf, g)
[0,00) N0+ J[0,00)

where the limit exists and is well defined (since we have shown that T, f € D(A)).
If moreover g € D [€] then
d d d
_d_s(TSf’ 9) = = (e, 9)li=or = = (Tof Tsg)le=o+

And since —dLlS(TSf7 g) = —dis(ng, f) by the symmetry property of T, we deduce that £(Ts f, g) = E(f, Tsg) for
any f,g € D[£].
Consequently, for any f € D[] and using the ellipticity of the coefficient matrix a,

/\||VTsf||2 < 5(Tsf, Tsf) = g(T2sfu f) = (_AT25f7 f)

:/ 76_278d(E,Yf7 )< e_/ e (B, f, f) = (T £ < ||f||
[0,00) [0,00)

S

from which we deduce the fundamental estimate

[I£1]
Vot

In turn this estimate implies that for any f € L2(R9), g € D [£], the function

VT, f]| < Vs > 0. (4)

s+ E(Tsf,g) is integrable on (0,¢],

and from (3) and the right continuity of s — Tsf at time s = 0+ (one may extend Tpf = f as long as no
differentiation of s — T f is implied at s = 0+ when f ¢ D(A)), we deduce the integrated version of (3) namely
Vf e L3(RY), Vg € D[],

(Tif.9) — (.9 / S (ayDyT. ., Dig) / E(T.f,g)ds, € (0,0%). (5)
1,j=1
2.2 Link with the results of D.W. Stroock [14]

In his celebrated article Diffusion semigroups corresponding to uniformly elliptic divergence form operators D.W.
Stroock constructs via a regularization procedure a Feller continuous semigroup {P; : ¢t > 0} associated to a
with the properties that (with our notations)

1. the map t € [0,00) = Pi¢p € H*(R?) is a weakly continuous map for each ¢ € C2°(R9).

2. V¢,9 € C°(RY),

~

(Pupod) — () = — /0 (aVP.6, Vi) ds = /0 E(Pup s, € (0,00). (6

(Nota : please note that there is a sign error in the original version of [14]).

In fact, {P; : t > 0} determines a unique strongly continuous semigroup {P; : t > 0} of self-adjoint
contractions on L?(R%).

The aim of this subsection is to prove the following equality, which clarifies the relationship between the
results obtained in [14] and the those provided by the theory of Dirichlet forms [6].



Proposition 2.1. -
(P, : t>0}={T; : t >0} on L*RY). (7)

Proof. The semigroup {P; : t > 0} is strongly continuous on H'(R?). Moreover, for each ¢t > 0, P; maps
L?*(R?) into H'(R?) and for each f € H'(R?) = D[€], we have the fundamental estimate

IVPf < \% (@) AIVAL Vs> 0. (®)

(See [14] Theorem I1.3.1. p.341).
This estimate implies that for for each f,g € D[£] and any ¢, s > 0,

|pt\/sft/\sf - f||

o |
IE(Pif,9) — E(Ps f,9)] < Al|Vgl]| A(tAs) st

0,

which ensures the continuity of s — &(Ps¢,) for any ¢,¢ € C°(R?). Since (P,)i>o and (P;);~o coincide on
C>(R%), we may differentiate in (6) (as long as t > 0) to find that

%(Ptqﬁﬂ/}) =—E(Pig, ), te(0,00). (9)

This has to be compared to (3).
Let us now justify rigorously that for any ¢ > 0, s € (0,¢) and ¢,v € C(R9),

d _ d _ d _

_Ts 7P75 :_Tu ;Pfs u:s__Ts 7P7u u=s- 1

L (126, Piest) = - (T Prest) s — (16, Pt (10)
We have for sufficiently small 0 < h < ¢t — s and using the strong continuity of (P;)s>o

| ({Z—‘s—i-h(l5 - T5¢, Pt—s—i—hz/] - pt—sz/]) | < ||pt—s+hw - pt—swn ||T5+h¢ - TS¢||
1/2

<ey(h) ( / e (e — 1)2d(E, ¢, ¢)>

[0,00)

1/2

<ey(h) < / ™27 (yh)*d(E- ¢, ¢)>

[0,00)

1/2
< hey(h) < / e (e 7%) d(E, 0, ¢)>
[0,00)

2e~1

S

< hey (h)—lol],

where as usual ,4(-) denotes some positive continuous function vanishing at zero. We deduce that

1 _ _
El (T5+h¢ - Ts(ba Pt—s-l—hw - Pt—sw) | m 0,
implying (10).

Hence, from (10) and applying (3) and (9), we have that

(16, Pa) =0, s€(0,0). (11)

Integrating the identity (11) on (0,#) and using the time continuity of both semigroups (7}) and (P;) up to time
s = 04 gives

(Tt(bv 1/)) = (¢a pt‘/’) = (pt¢a 1/}) (12)
which holds for any ¢,1 € C2°(R?). Since C°(R?) is dense in L?(R?), using the strong continuity of both
semigroups (73) and (F;), we finally deduce from (12) the identification (7). O



Consequently, all results in [14] that are valid for {P; : t > 0} are true for {T; : ¢ > 0}. For example,
identifying abusively {7} : t > 0} with its Feller restriction {P; : t > 0} on C>°(R?), we deduce that there is
ape€ C((0,00) x R x R?) such that

[T:¢] (z) = g o()p(t,z,y)dy,  L(dz) —ae., ¢€CFRY. (13)

Moreover, the fundamental function p satisfies the well-known Aronson’s estimates for the fundamental solutions
of elliptic divergence form operators, namely there exists a constant M (A, A, d) € [1,00) such that

1 M
WGXP (—M|x—y|2/t) <p(t,z,y) < a2 exp( |a:—y|2/Mt). (14)

Finally, we have the convergence result of [14] (Theorem I1.3.1. p.341) that we state roughly without introducing
the necessary notations (see [14] for details) : if {a,}{° € A(MNA) and a, — a almost everywhere, then
p"(t,x,y) — p(t,z,y) uniformly on compacts (in (0,00) x R? x R?) and for each t € [0,00) and ¢ € C°(R?),
Tr'é —s Ty¢ in H'(RY).

3 Stochastic representation of transmission operators in divergence
form

3.1 An application of the Revuz correspondence for additive functionals

Since (€, D[€]) is a regular Dirichlet form (with the space D[] NC.(RY) or C2°(R?) as a special standard core,
see e.g. Exercice 1.4.1 in [6]), we are in position to apply Theorem 7.2.1 p. 380 of [6].

We may associate to (£, D[€]) and its corresponding semigroup (7;) a Hunt process, symmetric w.r.t the
Lebesgue measure ¢(dr) on R%. We shall denote by M = (Q, (F;)i>0, F, (Xt)t>0, (P¥)4epae) this Hunt process,
with X = (X',..., X%). The correspondence with (£, D[£]) and (T}) is through

E®[f(X,)] = T,f(x), Vfe L*RY), vt>0,vzeR? (15)

(see the discussion p160 in [6], at the beginning of Section 4.2).

Let us also denote by {R, : « > 0} the Markovian resolvent kernel of the Markovian transition function
{p(t,x dy) —p(t z,y)dy : t>0}. Then, for any a > 0, f € By(RY) and = € R%, R, f(z = JgaTa(z,y)f(y)dy
with ro(z,y) = [~ e~ 'p(t, z, y)dt.

Denote by S the set of positive Radon measures on (R?, B(R?)). For p € S define Ryp(z) = [ga 1 (2, y)u(dy)
(r € R%) and introduce the subset of finite energy measures

Sy = {u €S :3C >0, YveD[E]NC(RY), /R lv(z)|pu(dz) < C (E(v,v) + (v,v))l/z}

=ues: sup / [v()] pdx) < oo g,
veD[E]NC.(RY) JR l[v]le,

(where we follow the notations of [6]).
Finally, introduce

Soo = {u € 8o : R < oo, |[Rip()lee < o0}.

Let us denote respectively by A} and AT 1 the families of all Positive Continuous Additive Functionals
(PCAF in short) (resp. the family of all PCAF in the strict sense) associated to M (for the distinction between
A} and A, see [6] the introduction of Section 5.1).

The Revuz correspondence asserts that there is a one-to-one correspondence (up to equivalence of processes)
between AT and S. This correspondence permits to construct for any pu € Spp a unique PCAF in the strict
sense A € AJF1 such that

Ve € RY, IE””/O e 'dA; = Rip(z). (16)



(see for e.g. Theorem 5.1.4 in [6]).

In order to get a bijective map, introduce a new subset S; of S defined by p € 57 if there exists a sequence
(En)n>o0 of Borel finely open sets increasing to R? satisfying that I, .u € Soo for each n. Then, there is a
one-to-one correspondence between S; and Aj:_,l (up to equivalence) which is given by relation (16) whenever
i € Soo. The set of measures Sy is called the set of smooth measures (in the strict sense).

Let us introduce D[], (resp. D[], ,.) the space of essentially bounded functions belonging to D[] (resp.
locally to DIE]. A function u is in D [€], . if for any compact set G, there exists a bounded function w such
that u = w, {(dz)-a.e. on G).

For u € D[£],, we may associate a unique positive Radon measure i,y € S, satisfying

g F@) gy (dz) = 2E(uf,u) — E@?, f), Vf e DIE]NC(R). (17)

IfueD [E]b_’loc, we may construct i) € S with the help of a sequence (G, )n>0 of relatively compact open

sets such that G,, C G,41 and UnsoGn = R, Let (un)n>0 a sequence of functions in D (€], satisfying u, = u
on Gyp. There is no ambiguity in defining j,y = p(u,) on G, because the construction is consistent (since
Hun) = Hunsi) 00 Gyp). For an account on the above assertions, please refer to [6] Section 3.2.

Note that obviously (£, D [£]) is strong local, so we may apply Theorem 5.5.5 in [6].

Suppose that a function u satisfies the following conditions :

1. w € D[E]} . » u is finely continuous on R4

2. lg.pquy € Soo for any relatively compact open set G.

3. 30 = 0 — 0@ with I5.0M,15.0?) € Sy for any relatively compact open set G and
E(u,v) = (0,v), You € CX(RY).

(Note that even though u is not formally in D [€], the quantity &(u,v) is well-defined because v has
compact support and u € D[E], 1..)-

Let A, A® and B be PCAF’s in the strict sense with Revuz measures o(*), o2, and p(uy Tespectively. Then,
Theorem 5.5.5 in [6] asserts that

w(Xy) —u(Xo) = MM + N, P*—as, Vo e R (18)
Here,
N = AW L A@) - pr _ g5 Vo e R? (19)
and M is a local Additive Functional in the strict sense such that for any relatively compact set G,
EeMM =0, vzeq
and
E® [(M}XLG)Q} = E"Bipr,, Vz€G,

where 7¢ = inf(s > 0 : X, ¢ G) stands for the first leaving time from G (with the convention inf () = c0) and
B denotes the PCAF in the strict sense with Revuz measure fi(,).

3.2 Skorokhod representation of the Hunt process associated to a transmission
operator in divergence form

Consider RY = D, U D_ with Dy and D_ two open connected subdomains separated by a transmission

boundary I' that is to say - -
=Dy nD_.

We denote
D=D;UD_=RI\T cR%



For a point # € I we denote by v(x) € R? the unit normal to I' at point z, pointing to D..

In the following, " f € CP(Dy;R) N CP(D_;R)” means that the restriction f, of the real valued function
J to Dy (and the restriction f_ of f to D_) coincides on Dy (resp. D_) with a function fy of class CP(RY)
(resp. f_).

Assume the a;;’s satisfy (ax);; € C(D+;R). We may define then the co-normal vector fields v (z) :=
ay(x)v(z) and v—(z) := —a_(z)v(x), for = € T

We shall consider restricted operators and bilinear forms in the following sense. We define A, : H (D) —
H~Y(Dy) by

d
voe HY(Dy), Apv= Z Di((a+)i;Djv).
ij=1
We define A_ : HY(D_) — H~'(D_) in the same manner (note that we do not specify here any domain D(A~.)).

Further, we define
d

Ex(u,v) = > / (a+)ijDjuDiv, Yu,v € H' (D).
ij=17Dx
We have, for ux € H* (D) with Afuy € L?(Dy),

Ex(ug,v) = /D (—Azus)v, Vve HY (D). (20)

Imagine now that in (20) we wish to take the test function in H'(D) instead of Hg(D4). There will still
be a link between AL and &£, but through Green type identities, involving conormal derivatives and boundary
integrals.

We introduce a specific notation for the one-sided conormal derivatives on T' of v € L?(RY) with uy €
H?(D.). Provided the (a4 );; are in Cf(D4;R) and T is bounded and Lipschitz we set

d d
Bfu:V*Tr (axVuy) :ZZ ai )ii Dj ui) on T (21)

where Tr™ : H' (D) — HY?(T") stand for the usual trace operators on T

For g € H_%(l") and f € H%(I‘) we denote by (g, f)r the action of g on f. If both f, g are in H%(I‘) the
quantity (g, f )F coincides with the surface integral fr gfds.

Let us recall the version of the Green identity that is used in the sequel.

Proposition 3.1 (First Green identity, first version; [8], Lemma 4.1). Assume I is bounded and C*. Let
u € L3(RY) with uy € H*(D4) and u— € H*(D_). Assume that the coefficients (ay);; are in CL(Dy;R). Then

Ei(uy,v) = /D (—Ajuq)v — (Bju,TrJr(v))F , Ywe HYDy)

and

E_(u_,v) :/ (—A_u_)v+ (B;u,Tr_(v))F , Ywe HYD-).

We have the following result.
Theorem 3.2. Assume I' is bounded and C?. Assume that Assumption (E — B) is fulfilled and that for all
1<i,j <day € CH(Dy;R) N CH(D4;R) with a;; possessing a possible discontinuity on T'. Then, the Hunt

process M associated to (€, D[E]) is a diffusion which possesses the following Skorokhod decomposition : for any
ked{l,...,d},

t+ d
th:xk—i—/ ZUkJ(XS)dWSJ-F/ Z@ a;w HX epds
0 =

1 t 1 t
—5/ ’yJﬁk(Xs)sz—i-E/ Y- k(Xs)dKs, t>0, P —a.s., Vo= (21,...,2q) e R (22)
0 0



In the above equality o : R® — R¥*? denotes the positive square-root of coefficient 2a i.e. the positive matriz
real valued coefficient satisfying

oo*(x) = 2a(z), Vz e D.

(Note that this coefficient exists because a(x) is mon-negative definite for all x € D). The process W =
(W1 ..., W) is a d-dimensional standard Brownian motion starting from zero and (K;);>o denotes the unique
PCAF associated to the surface measure ¢(d€) € S on T’ through the Revuz correspondence. The process (Ky)
increases only at times where X lies on T,

t
/ Ix.crdK, = K, t>0.
0

Proof. We apply the results of Theorem 5.5.5 in [6] in this context for the coordinate functions

pr(z1,. . mq) =z (ke {l,...,d}).

and follow the ideas of [16] Theorem 5.2. Of course py, € D [E], . and py is finely continuous on RZ. Let G a

relatively compact open set containing I' and a function f; € D[€], such that py = fx on G. Let (M) the
square bracket of MU/*]. Then, an easy computation from (17) shows that the energy measure of M+ (the
Revuz measure of (MFx])) is

1 (dy) = parsay (dy) = (2a(y)V fi(y), V fi(y)) (dy)

and we know that sy = pp,) on G. It is easy to show that Ig.p(p,) is a finite Radon measure belonging to
Soo and that fu(,,) is a smooth measure. Then, an easy computation from (16) shows that

(MUY, — /t<2a(XS)ka(XS),ka(XS)>ds, kedl,. .. d
0

and by the well-known results on stochastic representation of martingales, there exists a d dimensional Brown-
ian motion W = (W', ..., W) such that

t
Mt[fklz/ [0(X )V Fi(X)]"dWs, B® —as. Yz e R ke {l,....d)
0

(see for e.g. [11] Chapter V. Theorem 3.9 and the remark following its proof).
Moreover, for any v € C2°(R%), using the Green Identities of Proposition 3.1 and taking into account that
v is of compact support, we have :

E(fr,v) = Ex(frt,v) + E-(fr—:v)
= [ At = (Bt @)+ [ Ao (8T 0)),

= [ 3 D)D) oot

1,7=1

—1Auwmﬁuuvnﬁ>—ﬂfouvnﬁﬂv@M<

/ Za ar; (y)v(y)Lyepl(dy) — /1“ [Tr+((a+1/)k) - Tr_((a,u)k)} vds

/Z&% Deptldy) = [ (@) = @-vnl ods
= (kav)_(gkvv)

with
d
0 (dy) = > (05015 ()] yep(dy) + [(-)e = (e W] ()yers(dy).



(here, the notation [a]T (resp. [a] ™) stands for the positive (resp. negative) part of some real number a).

Let us now proceed to show that the measures ]Ig.gf belong to Sgp.

Note that ||0jak;Ipnc|lec < oo and from the definition of Spo and the Revuz correpondence (16), it is
not difficult to prove that the measures [0;ar;], (y)I,epf(dy) are smooth with their corresponding additive

functional writing as (fot [0jan;] L (Xs)]IXSeDds> N
>0

We now turn to the surface measures (it (dy) := [(v-)x — (v E (¥)Iyers(dy). It is well-known (see e.g. [5]
p-134 3. (%% %), (xx**)) that there exists a universal constant Cy > 0, depending only on the Lipschitz domain
D, such that for all h € C*(D),

[ st < co [ (h@)] + ) etde).
r Dy
Thus, for all h € D [£] N C.(RY), we have

/ Ih(y)ls(dy) < Co / (IVA()| + |h(z))0(dz)
r Dy
1/2
< Cat(D4)!" ( [ (ot + |h<w>|>zf<dw>>
Dy

1/2
< o) [ () + o) Pyecas) )

< Coy [ E2 D (e 1y 4 ()

so that the surface measure ¢(dy) belongs to Sy. Since

Vyel, [[(v-)e — (e ()" < 20as(y)vy)] < 2A,

the surface measures ¢ (dy) == [(7_ )k — (v )k ™ (¥)Iyers(dy) belong also to S.
Note that from Aronson’s estimates (14) we retrieve the following estimations

ri(z,y) < Cle —y|~42 ifd>2; r(z,y) <C(In(1/jz —y|) V1) if d = 2.

Then, using the same arguments as in [6] (Example 5.2.2 p.255), we can assert that the measures ¢ (dy) belong
to Spo. Moreover, let (Ky)i>0 denote the PCAF associated to ¢(dy) ; in regard of the results stated in the

original article of D. Revuz (cf. [10] p.507) we may assert that (fot (v )k — (v )i ® (XS)HXSEFdKS) . is the
t>
PCAF associated to C,;t (dy) via the Revuz correspondence.
By application of Theorem 5.5.5 in [6] and since all the necessary hypothesis are fulfilled, we get the decom-

position (22) on the set {t > 0 : t < 7¢,} where Gy := {z € R? : |z]| < ¢}. The identification of the process
for all times follows by letting ¢ tend to infinity. (|

Let ug € D(A). From the Hille-Yosida theorem ([3] Theorems VII.4 and VIL5) we can prove that there
exists a unique function
ue C'([0,T); L*(RY) nC([0,T); D(A))
satisfying
du

P Au, u(0) = up. (23)

where the first equality in (23) has to be understood in the weak sense.
Under the hypothesis of Theorem 3.2, we deduce the following Corollary.

Corollary 3.3. Let 0 < T < co. Under the conditions of Theorem 8.2, for any uy € D(A), we have

E?[uo(X¢)] = u(t,x), Vte[0,T], Vo € RY, (24)
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where X s the diffusion considered in Theorem 3.2 and u is the solution of (23).
In particular, the following transmission condition

(a4 Vyuy(t,y) —a_Vau_(t,y),v(y)) =0, forae. (t,y)e€ (0,T]xT (%) (25)
is satisfied.

Proof. On the one hand we have E*[ug(X¢)] = Tyuo(z) thanks to (15). On the other hand we have 2T uy =
ATiug (see [9] Thm 2.4-¢)), i.e. Tiug solves (23) whose solution is unique. Thus T'ug and u are equal in the
space C*([0,T]; L3(R%)) N C([0,T]; D(A)), and finally Tyug(x) = u(t,x) for any ¢,z (where we have used the
fact that D(A) C H'(RY) and elements of H!(R?) are identified with their continuous versions). For a proof of
(25) see [4]. O

In the light of (24) and in order to compute an approximate value of u(t,x), one could think of producing
a Monte Carlo method. Our preprint [4] is an attempt to tackle this issue.
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