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Abstract

We study mathematically and numerically a 2-step model of anaerobic digestion
process. We focus on the hydrolysis and methanogenesis phases when applied to
the digestion of waste with a high content in solid matter: existence and stabil-
ity properties of the equilibrium points are investigated. The hydrolysis step is
considered as a limiting step in this process using the Contois growth function for
the bacteria responsible for the first degradation step. The methanogenesis step
being inhibited by the product of the first reaction (which is also the substrate
for the second one), the Haldane growth rate is used for the second reaction step.
The operating diagrams with respect to the dilution rate and the input substrate
concentrations are established and discussed.

Keywords: Anaerobic digestion, Steady state, Mortality, Stability, Operating
diagrams.

1. Introduction

Anaerobic digestion is the degradation of organic matter in the absence of oxy-
gen. The final product being methane, a renewable energy. This process is more
and more used for the treatment of liquid and solid waste. Because of its rela-
tive instability due to the possible accumulation of intermediate products, notably
the volatile fatty acids (VFA), the modeling of this process has been extensively
studied over these last years. Such models are multi-step mass balance models in
which the reactional network consists in a number of biological reactions taking
place the medium in parallel and / or in series. Their complexity highly depends on
the objectives by the modeler. On the one hand, when the objective is to develop
models for integrating and formalize the available knowledge typically to better
understand bioprocesses, models are generally high order models and not tractable
from a mathematical viewpoint, cf. for instance the ADM1 [1]. On the other hand,
when the aim of the modeling is to develop decision tools or control systems, low
order models are better suited, as for instance the AM2 [3]. In this second class of
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models, several two-steps models have been proposed in the literature.
Two steps models are commonly used to describe commensalistic microbial systems
which take the form of a cascade of two biological reactions where one substrate S1

is consumed by one microorganism/ecosystem X1 to produce S2 which serves as the
main limiting substrate for a second microorganism/ecosystem X2 as schematically
represented by the following reaction scheme representing a simplified scheme of the
anaerobic digestion

S1
µ1(.)−→ X1 + S2, S2

µ2(.)−→ X2 + CO2 + CH4

The most general two-step model under interest in the actual paper can be written
as : 

Ṡ1 = D(Sin1 − S1)− µ1(.)X1

Y1
,

Ẋ1 = [µ1(.)− αD − k1]X1,

Ṡ2 = D(Sin2 − S2) + µ1(.)X1

Y3
− µ2(.)X2

Y2
,

Ẋ2 = [µ2(.)− αD − k2]X2

(1)

where D is the dilution rate, while Sin1 and Sin2 are the input substrate concentra-
tions respectively. Parameters Yi are yield coefficients associated to the bioreactions,
ki are the mortality terms while α ∈ [0, 1] is a term allowing to decouple the reten-
tion time applying on substrates (supposed to be soluble) and biomass (supposed
to be particulate). The kinetics µ1 and µ2 are of Contois and Haldane type. By
Contois or Haldane-"type", we mean functions that are defined by qualitative prop-
erties. For µ1, it means a density dependant function which is increasing with S1

but decreasing with X1 while µ2 is non monotonic (cf. modeling hypotheses in the
next section).
The different analyses of the class of models (1) available in the literature essentially
differ on the way the growth rate functions are characterized and whether a specific
input for S2 is considered or not (i.e., the presence of a term Sin2 in the dynamic
equation of S2). They differ also in the presence or not i) of a coefficient α allowing
to decouple the solid and liquid retention times and ii) of a maintenance term ki(.).
For details and informations on the various models considered in the existing lit-
erature the reader can refer to [9], or Table (2) and Table (3) in the review paper [13].

A first mathematical study of a pure commensalistic model was proposed by Reilly
[7], where µ1 : S1 7→ µ1(S1), µ2 : S2 7→ µ2(S2), k1 = k2 = 0, α = 1 and some ex-
tensions. He was interested at explaining surprising oscillations observed during an
experiment realized in making Saccharomyces carlsbergensis growing on fructose
produced by Acetobacter suboxyduns from mannitol. In particular, he established
theoretical conditions involving an interval feedback from the yeast to the bacteria.
For more information on commensalim, the reader can refer to Stephanopoulos [10].
An important contribution on the modeling of anaerobic digestion as a commensal-
istic system is the model by Bernard et al. [3]. The authors considered a Monod
function for µ1 and a Haldane function for µ2. Sbarciog and al. [8] studied this
model for α = 1 while the most interesting case where 0 < α < 1 and where growth
functions were characterized by qualitative properties was studied in [2].

Depending on the nature of treated waste, the limiting step of anaerobic diges-
tion is not the same. If treated waste is liquid, the main limiting step usually
considered to be the methanogenesis: in such a case, simple models including only
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acidogenesis and methanogenesis can be used (cf. for instance Bernard et al. [3]).
If the waste contains a high proportion of solid matter, it is the rule rather than
the exception to consider that the hydrolysis which is the main limiting step and a
model including only hydrolysis and methanogenesis can be used. However, as pro-
posed in Vavilin, [11], when hydrolysis is the limiting step, rates depending only on
substrate concentrations, such as Monod model, are not the most appropriate. It is
better to describe such complex phenomena by density-dependent models, such as
density dependent kinetics, a family in which Contois models falls. Contois model.
Using this model, the rate of the hydrolysis step is modeled as :

µ1(S1, X1) =
m1S1

K1X1 + S1
=

m1
S1

X1

K1 + S1

X1

which exhibits the following properties specific to hydrolysis (cf. Mottet et al. [6])
S1

X1
� K1 ⇒ µ1(S1, X1)X1 ≈ m1X1 ∝ X1,

S1

X1
� K1 ⇒ µ1(S1, X1)X1 ≈ m1

K1
S1 ∝ S1

(2)

While the analysis of the general model of anaerobic digestion initially purposed
by Bernard et al., [3] (representing acidogenis and methanogenesis steps) has been
realized be Benyahia et al., [2], from the best of authors knowledge, a two-step
model where the kinetic of the first step is modeled by a density-dependent kinetics
while the second step exhibits a "Haldane-type" function has never been studied in
the literature. It is the aim of the actual paper to study such a generic model.

The paper is organized as follows. In section 2 we present the two-step model
with two input substrate concentrations and we give the general hypotheses on the
growth functions. In section 3 we give the expressions of the steady states and
in section 4, we discuss their stability. In section 5, we illustrate the effect of the
second input substrate concentration on the steady states, in designing the operat-
ing diagrams, first, with respect to the first input substrate concentration and the
dilution rate and second, with respect to the second input substrate concentration
and the dilution rate.

1.1. Mathematical model
The two-step model reads:

Ṡ1 = D(Sin1 − S1)− µ1(S1, X1)X1

Y1
,

Ẋ1 = [µ1(S1, X1)−D1]X1,

Ṡ2 = D(Sin2 − S2) + µ1(S1, X1)X1

Y3
− µ2(S2)X2

Y2
,

Ẋ2 = [µ2(S2)−D2]X2

(3)

where S1 and S2 are the substrate concentrations introduced in the chemostat with
input concentrations Sin1 and Sin2 . D1 = αD + k1 and D2 = αD + k2, where D is
the dilution rate, k1 and k2 represent maintenance terms and parameter α ∈ [0, 1]
represents the fraction of the biomass affected by the dilution rate while Yi are the
yield coefficients. X1 and X2 are the hydrolytic bacteria and methanogenic bacteria
concentrations. The functions µ1 : (S1, X1) → µ1(S1, X1) and µ2 : (S2) → µ2(S2)
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are the specific growth rates of the bacteria.

To ease the mathematical analysis of the system, we can rescale system (3). Notice
that it is simply equivalent to changing units of variables:

s1 = S1, x1 =
1

Y1
X1, s2 =

Y3
Y1
S2, x2 =

Y3
Y1Y2

X2

We obtain the following system

ṡ1 = D(sin1 − s1)− f1(s1, x1)x1,

ẋ1 = [f1(s1, x1)−D1]x1,

ṡ2 = D(sin2 − s2) + f1(s1, x1)x1 − f2(s2)x2,

ẋ2 = [f2(s2)−D2]x2

(4)

Where sin2 = Y3

Y1
Sin2 and f1 and f2 are defined by

f1(s1, x1) = µ1(s1, Y1x1) and f2(s2) = µ2

(
Y1
Y3
s2

)
We assume that the functions µ1(., .) and µ2(.) satisfy :

H1. µ1(s1, x1) is positive for s1 > 0, x1 > 0, and satisfies µ1(0, x1) = 0 and
µ1(+∞, x1) = m1(x1). Moreover µ1(s1, x1) is strictly increasing in s1, and decreas-
ing in x1 that is to say ∂µ1

∂s1
> 0 and ∂µ1

∂x1
≤ 0 for s1 > 0, x1 > 0.

H2. µ2(s2) is positive for s2 > 0, and satisfies µ2(0) = 0 and µ2(+∞) = 0. More-
over µ2(s2) increases until a concentration sM2 and then decreases, with µ

′

2(s2) > 0
for 0 ≤ s2 < sM2 , and µ

′

2(s2) < 0 for s2 > sM2 .

As underlined in the introduction, particular kinetics models as Contois function
verifies H1 while Haldane function verifies H2.

Since the functions µ1 and µ2 satisfy the hypotheses H1 and H2, it follows from
the above that functions f1 and f2 satisfy :

A1. f1(s1, x1) is positive for s1 > 0, x1 > 0, and satisfies f1(0, x1) = 0 and
f1(+∞, x1) = m1(x1). Moreover ∂f1

∂s1
> 0 and ∂f1

∂x1
≤ 0 for s1 > 0, x1 > 0.

A2. f2(s2) is positive for s2 > 0, and satisfies f2(0) = 0 and f2(+∞) =
0. Moreover f2(s2) increases until a concentration sM2 and then decreases, with
f

′

2(s2) > 0 for 0 < s2 < sM2 , and f
′

2(s2) < 0 for s2 > sM2

2. Analysis of the model

2.1. The dynamics of s1 and x1

Model (4) has a cascade structure which renders its analysis easier. In other
terms s1 and x1 are not influenced by variables s2 and x2 and their dynamics is
given by:
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 ṡ1 = D(sin1 − s1)− f1(s1, x1)x1,

ẋ1 = [f1(s1, x1)−D1]x1.
(5)

The behavior of this system is well-know, see [4]. A steady state (s∗1, x
∗
1) must

be solution of the system 0 = D(sin1 − s1)− f1(s1, x1)x1,

0 = [f1(s1, x1)−D1]x1

(6)

From the second equation we deduce that x∗1 = 0, which corresponds to the
washout E0 = (sin1 , 0), or s∗1 and x∗1 must satisfy both equations

f1(s∗1, x
∗
1) = D1 and x∗1 =

D

D1
(sin1 − s∗1). (7)

Let γ a function defined by :

γ(s1) = f1

(
s1,

D

D1
(sin1 − s1)

)
,

so s∗1 is a solution of γ(s1) = D1, and we notice that γ
′
(s1) =

∂f1
∂s1
− D

D1

∂f1
∂x1

.

According to the hypothesis A1, γ(s1) is strictly increasing over the interval ]0, sin1 [,
with γ(0) = 0 and γ(sin1 ) = f1(sin1 , 0).
According to the theorem of intermediate values, the equation γ(s1) = D1 has a
solution between 0 and sin1 if and only ifD1 < γ(sin1 ), that is to say ifD1 < f1(sin1 , 0)
(See Fig. (1)).

Figure 1: The existence of the solution of γ(s1) = D1.

Hence, for x∗1 6= 0, the equilibrium E1(s∗1, x
∗
1) exists if and only ifD1 < f1(sin1 , 0).

The local stability of the steady state is given by the sign of the real part of eigen-
values of the Jacobian matrix. In the following, we use the abbreviations LES for
locally exponentially stable.

Proposition 2.1. Assume that assumptions A1 and A2 hold. Then, the local
stability of steady states of (5) is given by :
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1. E0 = (sin1 , 0) is LES if and only if f1(sin1 , 0) < D1 (i.e. sin1 < s∗1).
2. E1 = (s∗1, x

∗
1) is LES if and only if f1(sin1 , 0) > D1 (i.e. sin1 > s∗1), (E1 is

stable if it exists)

When E0 and E1 coincide, the equilibrium is attractive (the eigenvalue equal to
zero) The results are summarized in the following table :

Steady state Existence condition Stability condition
E0 Always exists f1(sin1 , 0) < D1

E1 f1(sin1 , 0) > D1 Stable when it exists

Proof
The local stability of (5) of each steady state depends on the sign of the real parts
of the eigenvalues of the corresponding Jacobian matrix. At a given steady state
(s1, x1), this matrix is given by :

J =

−D −Mx1 −Nx1 − f1(s1, x1)

Mx1 Nx1 + [f1(s1, x1)−D1]

 , (8)

where
M =

∂f1
∂s1

(s1, x1), N =
∂f1
∂x1

(s1, x1).

The eigenvalues of J are the roots of its characteristic polynomial det(J − λI).

• For E0 = (sin1 , 0), the Jacobian matrix reads

J(E0) =

−D −f1(sin1 , 0)

0 f1(sin1 , 0)−D1

 .
Its eigenvalues are λ1 = −D and λ2 = f1(sin1 , 0) −D1. For being stable, we
need λ2 < 0. Therefore, E0 is stable if and only if

f1(sin1 , 0) < D1.

• For E1 = (s1, x1), where f1(s1, x1) = D1, the Jacobian matrix becomes :

JE1 =

−D −Mx1 −Nx1 −D1

Mx1 Nx1]

 .
As the eigenvalues λ1 and λ2 of a square matrix of dimension two are the
solutions of the equation

det(JE1
− λI) = λ2 − TrJE1

λ+ detJE1
, (9)

The real parts are strictly negative if and only if detA > 0 and TrA < 0.
Therefore by A1 we have

det(JE1
) = −DNx1 +D1Mx1 > 0,

T r(JE1) = −D −Mx1 +Nx1 < 0,

then E1 is LES if it exists.
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Operating diagram

Apart from the two operating (or control) parameters, which are the input sub-
strate concentration sin1 and the dilution rate D that can vary, all others parameters
(α, k1 and the parameters of the growth function f1(s1, x1)) have biological meaning
and are fixed depending on the organisms and substrate considered. The operating
diagram shows how the system behaves when we vary the two control parameters sin1
and D. The operating diagram is shown in Fig. (2). The condition f1(sin1 , 0) > D1

of existence of E1 is equivalent to D < 1
α [f1(sin1 , 0)− k1]. Therefore, the curve

Γ :

{
(sin1 , D) : D =

1

α
[f1(sin1 , 0)− k1]

}
separates the operating plan in two regions as defined in Fig. (2).

sin1

R0

D

Γ

R1

@
@
@

@
@@R

@
@

@
@

@@R

Figure 2: Operating diagram of (5)

The curve Γ is the border which makes E0 unstable and at the same time E1

exists. The following table indicates the stability properties of steady state in each
region.

region E0 E1

(sin1 , D) ∈ R0 S
(sin1 , D) ∈ R1 U S

Except for small values of D and sin1 , notice that the operating diagram of this
first part of the 2-step system under study is qualitatively similar to that one of the
first part of the AM2 model (when a Monod-like growth function is considered, cf.
[3]).

2.2. The dynamics of s2 and x2
Due to the cascade structure of (4), the dynamics of the state variables s2 and

x2 are given by  ṡ2 = D(F (t)− s2)− f2(s2)x2,

ẋ2 = [f2(s2)−D2]x2,
(10)

with
F (t) = sin2 +

1

D
f1(s1(t), x1(t))x1(t)
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where s1(t), x1(t) is a solution of (5). A steady state (s∗1, x
∗
1, s

∗
2, x

∗
2) of (4) cor-

responds to a steady state (s∗2, x
∗
2) of (10) where either (s1(t), x1(t)) = E0 or

(s1(t), x1(t)) = E1. Therefore (s∗2, x
∗
2) must be a steady state of the system ṡ2 = D(sin∗2 − s2)− f2(s2)x2,

ẋ2 = [f2(s2)−D2]x2

(11)

where
sin∗2 = sin2 or sin∗2 = sin2 +

D1

D
x∗1. (12)

The first case corresponds to (s∗1, x
∗
1) = E0 and the second to (s∗1, x

∗
1) = E1.

The system (11) corresponds to a classical chemostat model with Haldane-type
kinetics, including a mortality term for x2 and an input substrate concentration
depending on the input flow rate. The behavior of such a system is well-know, see
[4]. A steady state (s∗2, x

∗
2) must be a solution of the system 0 = D(sin∗2 − s2)− f2(s2)x2,

0 = [f2(s2)−D2]x2.
(13)

From the second equation we deduce that x∗2 = 0, which correspond to the washout
F0 = (sin∗2 , 0) or s∗2 must satisfy the equation

f2(s2) = D2. (14)

In general, by the hypothesis A2, and if we suppose

D2 < f2(sM2 ) (15)

this equation has two solutions such that s12 < s22. Therefore the system has two
positive steady states F1 = (s12, x

1∗
2 ) and F2 = (s22, x

2∗
2 ), where

xi∗2 =
D

D2
(sin∗2 − si2), i = 1, 2. (16)

For i = 1, 2, the steady states Fi exist if and only if sin∗2 > si2.

Proposition 2.2. Assume that assumptions A1, A2 and (15) hold. Then, the
local stability of steady states of (11) is given by :

1. F0 is LES if and only if sin∗2 < s12 or sin∗2 > s22.
2. F1 is LES if and only if sin∗2 > s12 (stable if it exists ).
3. F2 is unstable if it exists (unstable if sin∗2 > s22).

Proof

The Jacobian matrix of the system (11) is written as follows

J =

−D − f ′

2(s2)x2 −f2(s2)

f
′

2(s2)x2 f2(s2)−D2

 . (17)

• For F0 = (sin∗2 , 0), the Jacobian matrix reads

JF0
=

−D −f2(sin∗2 )

0 f2(sin∗2 )−D2

 .
The eigenvalues of JF0

are λ1 = −D and λ2 = f2(sin∗2 )−D2. For being LES,
we need λ2 < 0 that is to say f2(sin∗2 ) < D2. Therefore by A2 F0 is LES if
and only if sin∗2 < s12 or sin∗2 > s22.
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• For F1 = (s12, x
1∗
2 ), the Jacobian matrix reads

JF1
=

−D − f ′

2(s12)x1∗2 −D2

f
′

2(s12)x1∗2 0

 .
Then we have

Tr(JF1
) = −D − f

′

2(s12)x1∗2 < 0,

det(JF1
) = D2f

′

2(s12)x1∗2 > 0,

therefore, F1 is LES if it exists.

• For F2 = (s22, x
2∗
2 ), the Jacobian matrix reads

JF2
=

−D − f ′

2(s22)x2∗2 −D2

f
′

2(s22)x2∗2 0

 .
Then det(JF2

) = D2f
′

2(s22)x2∗2 is negative, hence the equilibrium F2 is unstable
because the eigenvalues are of opposite signs. This completes the proof of the
proposition.

The results are summarized in the following table

Steady-state Existence condition Stability condition
F0 Always exists sin∗2 < s12 or sin∗2 > s22
F1 sin∗2 > s12 Stable if it exists
F2 sin∗2 > s22 Unstable if it exists

Operating diagram

The operating diagram shows how the system behaves when we vary the two
control parameters sin∗2 and D. The operating diagram is shown in Fig. (3). The
conditions sin∗2 = s12 or sin∗2 = s22 are equivalent to f2(sin∗2 ) = D2, that is to say
D = 1

α (f2(sin∗2 )− k2). Therefore, the horizontal line

Γ1 :

{
(sin∗2 , D) : D =

1

α
(f2(sM2 )− k2), sin∗2 > sM2

}
together with the curve

Γ2 :

{
(sin∗2 , D) : D =

1

α
(f2(sin∗2 )− k2)

}
separate the operating diagram plane in three regions as defined in Fig. (3).
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R2

R4

R3

@
@
@

@
@@R

@
@

@
@

@@R

D

sin∗2

Figure 3: Operating diagram of (11)

The following table indicates the stability properties of steady states in each
region.

Region F0 F1 F2

(sin∗2 , D) ∈ R2 S
(sin∗2 , D) ∈ R3 U S
(sin∗2 , D) ∈ R4 S S U

2.3. Steady state of (4)
The aim of this section is to study the dependance of the steady state of (4) with

respect to the operating parameters D, sin1 and sin2 . Let (s∗1, x
∗
1, s

∗
2, x

∗
2) be a steady

state of (4), then (s∗1, x
∗
1) is a steady state of (5) and (s∗2, x

∗
2) is a steady state of

(11) with (12).

If (s∗1, x
∗
1) = E0 = (sin1 , 0) then sin∗2 = sin2 and three possibilities can occur

1. (s∗2, x
∗
2) = (sin2 , 0), and we denote E0

1 := (sin1 , 0, s
in
2 , 0).

2. (s∗2, x
∗
2) = (s12, x

1
2), and we denote E1

1 := (sin1 , 0, s
1
2, x

1
2)

3. (s∗2, x
∗
2) = (s22, x

2
2), and we denote E2

1 := (sin1 , 0, s
2
2, x

2
2).

If (s∗1, x
∗
1) = E1 = (s∗1, x

∗
1) then three others possibilities can occur

1. (s∗2, x
∗
2) = (sin∗2 , 0), and we denote E0

2 := (s∗1, x
∗
1, s

in∗
2 , 0).

2. (s∗2, x
∗
2) = (s12, x

1∗
2 ), and we denote E1

2 := (s∗1, x
∗
1, s

1
2, x

1∗
2 ).

3. (s∗2, x
∗
2) = (s22, x

2∗
2 ), and we denote E2

2 := (s∗1, x
∗
1, s

2
2, x

2∗
2 ).

We summarize the results obtained in the previous sections in the following propo-
sition.

Proposition 2.3. The system (4) has at most six steady states :

• E0
1 = (sin1 , 0, s

in
2 , 0), always exists.

• E1
1 = (sin1 , 0, s

1
2, x

1
2), exists if and only if sin2 > s12.

• E2
1 = (sin1 , 0, s

2
2, x

2
2), exists if and only if sin2 > s22.

• E0
2 = (s∗1, x

∗
1, s

in∗
2 , 0), exists if and only if f1(sin1 , 0) > D1.

• E1
2 = (s∗1, x

∗
1, s

1
2, x

1∗
2 ), exists if and only if f1(sin1 , 0) > D1 and sin∗2 > s12.

• E2
2 = (s∗1, x

∗
1, s

2
2, x

2∗
2 ), exists if and only if f1(sin1 , 0) > D1 and sin∗2 > s22.
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2.4. Stability of steady states of (4)
Now we will study the stability of the steady states given in the Proposition

(2.3). For this we consider the Jacobian matrix

J =

[
J11 J12
0 J22

]
,

where J11 is defined in (8) and J22 is defined in (17). This matrix has a block-
triangular structure. Hence, the eigenvalues of J are the eigenvalues of J11 and the
eigenvalues of J22.
The existence of steady states depend only on the relative positions of the two num-
bers sin1 and s∗1 defined by (7) and of the four numbers s12, s22 defined by (14), sin2
and sin∗2 solutions of (12). Equilibria stability is given in the following table.

Table 1: The stability conditions for the system (4)

Equilibria Evaluated matrices J11 and J22 Conditions of stabilty

E0
1

Tr(J11) < 0 if f1(sin1 , 0) < D1, det(J11) > 0

J11 =

[
−D −f1(sin1 , 0)
0 f1(sin1 , 0)−D1

]
Tr(J22) < 0 if sin2 < s12 ou sin2 > s22, det(J22) > 0

J22 =

[
−D −f2(sin2 )
0 f2(sin2 )−D2

]
⇒


E0

1 is stable if f1(sin1 , 0) ≤ D1 and
(sin2 < s12 or sin2 > s22),

E0
1 is unstable if f1(sin1 ) > D1 or
s12 < sin2 < s22).

Ei
1, i=1,2

Tr(J11) < 0 and det(J11) > 0 if f1(sin1 , 0) < D1

J11 =

[
−D −f1(sin1 , 0)
0 f1(sin1 , 0)−D1

]
Tr(J22) < 0 and det(J22) > 0 at E1

1 , det(J22) < 0 at E2
1

J22 =

[
−[D + f

′
2(s

i
2)x

i
2] −D2

f
′
2(s

i
2)x

i
2 0

]
⇒

 E1
1 is stable,

E2
1 is unstable

Ei
1 are both unstable if sin1 > s∗1.

E0
2

Tr(J11) < 0 and det(J11) > 0 by A1

J11 =

[
−[D + ( ∂f1

∂s1
)x∗1] −[D1 + ( ∂f1

∂x1
)x∗1]

( ∂f1
∂s1

)x∗1 ( ∂f1
∂x1

)x∗1

]
Tr(J22) < 0 and det(J22) > 0 if sin∗

2 < s12 or sin∗
2 > s22

J22 =

[
−D −f2(sin∗

2 )
0 [f2(sin∗

2 )−D2]

]
⇒


E0

2 is stable if sin1 ≥ s∗1 and
(sin∗

2 < s12 or sin∗
2 > s22),

E0
2 is unstable if sin1 > s∗1 and
s12 < sin∗

2 < s22.

Ei
2, i=1,2

Tr(J11) < 0 and det(J11) > 0

J11 =

[
−[D + ( ∂f1

∂s1
)x∗1] −[D1 + ( ∂f1

∂x1
)x∗1]

( ∂f1
∂s1

)x∗1 ( ∂f1
∂x1

)x∗1

]
Tr(J22) < 0 and det(J22) > 0 at E1

2 , det(J22) < 0 at E2
2

J22 =

−[D + f
′
2(s

i
2)x

i∗
2 ] −D2

f
′
2(s

i
2)x

i∗
2 0

 ⇒
{

E1
2 is stable,

E2
2 is unstable

These results are summarized in the following tables, where S and U read for
LES and unstable respectively and no letter means that the steady state does not
exist.
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Table 2: The three cases when sin1 < s∗1

Case Area Condition E0
1 E1

1 E2
1 E0

2 E1
2 E2

2

1.1 A1 sin2 < s12 < s22 S
1.2 A2 s12 < sin2 < s22 U S
1.3 A3 s12 < s22 < sin2 S S U

Table 3: The six cases when sin1 > s∗1

Case Area Condition E0
1 E1

1 E2
1 E0

2 E1
2 E2

2

2.1 A4 sin2 < sin∗2 < s12 < s22 U S
2.2 A5 sin2 < s12 < sin∗2 < s22 U U S
2.3 A6 sin2 < s12 < s22 < sin∗2 U S S U
2.4 A7 s12 < sin2 < sin∗2 < s22 U U U S
2.5 A8 s12 < sin2 < s22 < sin∗2 U U S S U
2.6 A9 s12 < s22 < sin2 < sin∗2 U U U S S U

Remarque 2.4. Here we have excluded the limit values in the stability condition
(Ex: sin2 = s12 or sin2 = s22 ...) These cases are related to the eigenvalues of the Jaco-
bian matrix with a real part equal to 0 and the corresponding states are named non-
hyperbolic stationary states. Otherwise, they are named hyperbolic steady states.

The different possible cases of non-hyperbolic equilibria are summarized in the fol-
lowing theorem

Theorem 2.5. If sin1 < s∗1, then we have three subcases

Case Condition NH S U
1.4 sin2 = s12 < s22 E0

1 = E1
1

1.5 s12 < sin2 = s22 E0
1 = E2

1 E1
1

1.6 s12 = s22 < sin2 E1
1 = E2

1 E0
1

If sin1 > s∗1, then we have nine subcases

Case Condition NH S U
2.7 sin2 < sin∗2 = s12 < s22 E0

2 = E1
2 E0

1

2.8 sin2 < s12 < s22 = sin∗2 E0
2 = E2

2 E1
2 E0

1

2.9 sin2 = s12 < sin∗2 < s22 E0
1 = E1

1 E1
2 E0

2

2.10 sin2 = s12 < s22 < sin∗2 E0
1 = E1

1 E1
2 ,E0

2 E2
2

2.11 sin2 = s12 < s22 = sin∗2 E0
1 = E1

1 ,E0
2 = E1

2 E1
2

2.12 s12 < sin2 = s22 < sin∗2 E1
2 = E2

2 E0
2 E0

1

2.13 s12 < sin2 < s22 = sin∗2 E0
2 = E2

2 E1
2 E0

1 ,E1
1

2.14 s12 < sin2 = s22 < sin∗2 E0
1 = E2

1 E0
2 ,E1

2 E0
1 ,E2

2

2.15 s12 = s22 < sin2 < sin∗2 E1
1 = E2

1 ,E1
2 = E2

2 E0
2 E0

1

Proof

Let us give the details of the proof in the case 2.9. The other cases can be stud-
ied similarly. Assume that sin2 = s12 < sin∗2 < s22, then x12 = 0, x∗1 > 0 and x1∗2 > 0
by (16). Therefore (see Proposition 2.3), the system has three equilibria E0

1 = E1
1 ,

E0
2 and E1

2 . Using the linearization, we obtain that E0
2 and E1

2 are hyperbolic.

Remarque 2.6. In each case among those cited in the table (2), (3) and the pre-
vious Theorem 2.5 we associate a corresponding figure which represents the relative
position of the following parameters s12, s22, sin2 and sin∗2 (see Appendix).
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3. Simulations

To illustrate our results, we plot what is called the ‘operating diagrams’ in a
number of situations for the system (3) under hypothesis H1 and H2. Recall that
operating diagram summarizes the existence and the nature of the equilibria of a
dynamical system as a function of its input variables. Here, these control inputs
are D, Sin1 and Sin2 . More particularly, we plot either the operating diagrams in
the plan {Sin1 , D} for a fixed value of Sin2 or in the plan {Sin2 , D} for a fixed value
of Sin1 . All simulations are performed with the following growth functions:

µ1(S1, X1) =
m1S1

K1X1 + S1
, µ2(S2) =

m2S2

S2
2

I + S2 +K2

.

The choice of the values of the model parameters is difficult. Here, our objective
is not to match a set of data but rather to highlight the most interesting qualitative
properties of the model under interest. To do so, most parameters are taken from
[3], while others were changed more significantly as I. Indeed, as underlined in [5],
inhibition of the second reaction is not visible if original parameters proposed in [3]
are used considering reasonable ranges of variations for S1 and S2. With respect
to this later, the Haldane parameter I was thus significantly decreased to willingly
increase the effect of the inhibition of the growth of X2 by S2. Finally, parameter
values used are summarized in the following table

Table 4: Parameters values of the simulation

Parameter Unit Nominal value
m1 d−1 0.5
K1 g/L 2.1
m2 d−1 1
I mmol/L 60
K2 mmol/L 24
k1 d−1 0.1
k2 d−1 0.06
α ∈ [0, 1[ 0.5
Y1 g/g 1/25
Y2 g/mmol 1/250
Y3 g/mmol 1/268

To compute the different regions of the operating diagrams, we use the numerical
method reported in [5] which the algorithm is recalled hereafter.

3.1. Algorithm for the determination of the operating diagrams
The algorithm is as follows: for each value of input variables chosen on a grid, the

equilibria are computed. The eigenvalues of the Jacobian matrix are then calculated
for each equilibrium. Finally, according to the conditions of existence and the sign
of the real parts of the eigenvalues, a ‘flag’ is assigned to each of the 6 equilibria:
‘S’ for stable, ‘U’ for unstable or nothing if it does not exist. This procedure stops
when all the values of the grid {Sin, D} have been scanned. As a result, we obtain a
number of ‘signatures’ composed of sequences of ‘S’, ‘U’ or ‘nothing’ coding for the
existence and stability of the equilibria that we group into regions as summarized
in the tables at the end of sections 2.1 and 2.2, respectively. This algorithm may be
formalized as follows: let N1, N2 be two integers in N∗ and h1 = D

N1
and h2 = Sin

N2

the two iteration steps:
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Algorithm 1 Operating diagram
for i varying from 1 to N1 do;

for j varying from 1 to N2;
determine 6 equilibria of the model E1...E6

for k varying from 1 to 6 do
calculate the jacobian matrix at Ek (JEk

)
calculate the eigenvalues of (JEk

)
if all (the conditions of existence of Ek are fulfilled and all real parts of

the eigenvalues of (JEk
) are non-positive) then Ek is stable

else if all (conditions of existence of Ek are fulfilled at least one real part of
eigenvalue of (JEk

) is positive) then Ek is unstable
else Ek does not exist
end if

end for (k)
end for (j)

end for (i)

3.2. Operating diagrams
In this part we illustrate our results by plotting the operating diagrams and

discuss them.

Fig. (4) represents the operating diagram of model (1) in the plan {Sin1 , D} for
a fixed value of Sin2 . The regions are defined as follows. A1 (in green) is the stability
region of the washout E0

1 , A5 (in blue) is the stability region of steady-state E1
2 , A6

(in red) is the bistability region of the steady-states E0
2 and E1

2 , and A7 (in dark
blue) is the stability region of steady-state E1

2 , the difference between the regions
A5 and A7 being that the equilibrium E1

1 does not exist in the region A5 but exists
and is unstable in A7, see tables (2) and (3).

A1

A6

A7

A5

D

Sin1

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18 20

Figure 4: The operating diagram for Sin
2 = 1.5 mmol/L.

Fig. (5) represents the operating diagram of model (1) in the plan {Sin2 , D} for a
fixed value of Sin1 . The regions are defined as follows. A2 (in yellow) is the stability
region of steady-state E1

1 , A3 (in orange) is the bistability region of the washout
E0

1 and the steady-state E1
1 , A8 and A9 (in pink) and (in dark pink), respectively,
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are the bistability regions of the steady-states E0
2 and E1

2 , the difference between
A8 and A9 being that the equilibrium E2

1 does not exist in the region A8 but exists
and is unstable in A9, see tables (2) and (3).

A1

A9A8

A3

A7

A5

A2

D

Sin2

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18 20

Figure 5: The operating diagram for Sin
1 = 0.8 g/L.

Fig. (6) represents the operating diagram of model (1) in the plan {Sin2 , D} for a
fixed but a smaller value of Sin1 than before. The differences with the previous case
are i) the appearance of a little region A4 (in dark orange) which is the stability
region of steady-state E0

2 and ii) a sharp decrease of the size of region A8 which
almost disappears (it is reduced to a very narrow surface along the frontier with
the region A9 as can seen in Fig. (6)).
The region A8 becomes very small and narrow compared to Fig. (5) because it is
numerically linked to the value of Sin1 , that is to say, by reducing the value of Sin1
to appear the region A4 the size of the region A8 is getting smaller and smaller
(compare Fig. (5) and (6)). In other words, in decreasing Sin1 , the attraction basin
of the positive stable equilibrium of A7 (E1

2) increases; it is equivalent to say that,
given two values of Sin1 , say Sin1 1 and Sin1 2 where Sin1 2 > Sin1

1, a greater dilution
rate is needed to destabilize the process if Sin1 = Sin1

2 than if Sin1 = Sin1
1, thus the

shard decrease of A8 observed in Fig. (6).
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A1

A9

A8

A3

A7A5

A4

A2

D

Sin2

@@R

@
@I

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18 20

Figure 6: The operating diagram for Sin
1 = 0.03 g/L.

3.3. Practical interpretations of the operating diagrams
Herebelow, we explain how the operating diagrams may be used in practice. To

illustrate their practical interest, let us consider the operating diagram pictured in
Fig. (4) (that is for Sin2 = 1.5 g/L) and let us browse it for increasing values of D
at a fixed value of Sin1 .

Example 1: Let Sin1 = 18 g/L.

A1

A6

P2

P1

0

0

0.5

1

1.5

2

2 4 6 8 10 12 14 16 18 20

d1

D
D2 = αD + k2

d2

A7

Sin1
µ2(S2)

A5

Figure 7: Biological interpretation for Sin
1 = 18 g/L

In such a situation, we browse the following regions in considering successive
equilibria when increasing D: A7 99K A6 99K A5 99K A1, see Fig.(7). To better
interpret whose ‘steady states the system passes through’, the bifurcation diagram
is plotted in Fig. (8).
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(a) S1(D). (b) X1(D).

(c) S2(D). (d) X2(D).

Figure 8: The Bifurcation diagram for the input control D for Sin
1 = 18g/L.

This last diagram allows us to see the appearance/disappearance of steady states
as a function of the input variable D (recall that Sin1 and Sin2 are fixed). As long as
D is small enough (i.e. such that αD+ k2 < d1), the quantity of substrate entering
the second step of the reaction is very important: the system is in the region A7

where the positive equilibrium is the only stable equilibrium. AsD increases the size
of the attraction basin of this equilibrium decreases until D reaches a critical value
(corresponding to the point P1 in Fig. (7), the frontier between regions A7 and
A6). This critical value corresponds to that one for which the term Sin∗2 becomes
exactly the largest solution of the equation µ2(S2) = D2 (equivalent to equation
(14) for the system (4)): the system enters then in the region A6. From a biological
point of view, the interpretation is as follows: as D increases, X∗

1 decreases and thus
Sin∗2 decreases as can be seen from equation (12). When D2 = d2, the quantity of
available resource necessary to X2 to grow may become limiting for some initial
conditions, leading the system to enter a bistability zone. With the values of the
parameters chosen, further increasing D leads definitely X2 to the washout: the
system enters into A5 in crossing the point P2 of Fig. (7). Finally, if D is such that
D1 = d2 (the critical value corresponding to the maximum growth rate of X1) X1

goes also to extinction and the system enters into A1.
Example 2: Let Sin1 = 14 g/L.
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A1

A6

P5

P4

P3

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18 20

d4

d5

d3A7

Sin1
µ2(S2)

A5

D
D2 = αD+k2

Figure 9: Biological interpretation for Sin
1 = 14 g/L

This case is even more interesting since, whenD inscreases, the system goes back
to A5 once before leaving it definitely in browsing the following regions: A7 99K
A6 99K A7 99K A5 99K A1. WhileD is small enough (i.e. such that αD+k2 < d3, cf.
Fig. (9)), the reasonning remains the same than before: the only difference is that
the value of D leading the system to enter into A6 through P3 is a little bit higher
than in the previous case (d3 > d1). It is due to the fact that the second step of
the reaction receives less input from the first step when compared to the case where
Sin1 = 18g/L, thus enlarging the attraction basin of the stable positive equilibrium.
Then, when D is further increased, it may happen an interesting phenomenon: the
system enters back into A7 through point P4 instead of entering A5 as it was the
case before. In fact, this strongly depends on model parameters and in particular
on the relative rate at which Sin∗2 and the largest solution of the equation (12)
vary as functions of D see Fig. (10). In other words, it depends on how the input
concentration of the second step Sin∗2 - which includes the part of S1 transformed
into S2 during the first reaction - is affected by D. On the one hand, if we are
in a ‘flat’ zone of the growth rate µ2 assuming we consider concentrations at the
right of the maximum of µ2, a small variation of D (and thus of D2) will change
very much the largest solution of the equation (12) while Sin∗2 may almost remain
constant. On the other hand, if D is such that D2 crosses µ2 in a sharper zone of the
Haldane function (typically around the inflexion point, still considering S2 evolves
at concentrations such as we are on the right of the maximum of µ2), a small change
on D (and thus on D2) will affect much more the solution of the equation (12) than
before. In any of these situations, the relative positions of the largest solution of the
equation (12) and of Sin∗2 determine whether the system will evolve in the region
A7 or A6 and we can observe, as D increases to a value such αD+k2 = d4 a return
of the system from A7 into A6 through P3 and then back into A7 through P4. It is
well illustrated in the bifurcation diagram plotted in Fig.(10).
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(a) S1(D). (b) X1(D).

(c) S2(D). (d) X2(D).

Figure 10: The Bifurcation diagram of the operating diagram show in Fig(4) for Sin
1 = 14g/L.

4. Conclusions

In this paper, we have presented an analysis of an anaerobic digestion model
in which we considered two stages corresponding to hydrolysis and methanogenesis
phases. We have considered a non usual growth function for hydrolysis step that
is the Contois growth function. For the methanogenesis the Haldane law is taken.
From the best of authors knowledge, it is the first time such a model including the
association of Contois-Haldane growth functions in a two-steps model of the anaer-
obic digestion is considered. In this analysis we have shown that this model has
six steady states (E0

1 , E
1
1 , E

2
1 , E

0
2 , E

1
2 , E

2
2). Conditions under which they exist and

are stable or unstable have been highlighted. We have also presented the regions of
stability of these equilibria with the help of the operating diagrams and discussed
their practical use in a number of situations.
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Appendix: The relative positions of the following parameters s12, s22, sin2 and sin∗2

see [2].

Different cases when sin1 < s∗1

Different cases when sin1 > s∗1
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