
HAL Id: hal-02531062
https://hal.science/hal-02531062v1

Submitted on 3 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ACO with automatic parameter selection for a
scheduling problem with a group cumulative constraint

Lucas Groleaz, Samba Ndojh Ndiaye, Christine Solnon

To cite this version:
Lucas Groleaz, Samba Ndojh Ndiaye, Christine Solnon. ACO with automatic parameter selection for
a scheduling problem with a group cumulative constraint. GECCO 2020 - Genetic and Evolutionary
Computation Conference, Jul 2020, Cancun, Mexico. pp.13–21, �10.1145/3377930.3389818�. �hal-
02531062�

https://hal.science/hal-02531062v1
https://hal.archives-ouvertes.fr

ACO with automatic parameter selection for a scheduling
problem with a group cumulative constraint

Lucas Groleaz

Infologic, INSA Lyon, LIRIS UMR5201,

CNRS, F-69621 Villeurbanne

Samba N. Ndiaye

CITI, INRIA, Univ. Lyon 1, LIRIS

UMR5201, CNRS, F-69621

Villeurbanne

Christine Solnon

INSA Lyon, CITI, INRIA CHROMA,

F-69621 Villeurbanne

ABSTRACT
We consider a RCPSP (resource constrained project scheduling

problem), the goal of which is to schedule jobs on machines in

order to minimise job tardiness. This problem comes from a real

industrial application, and it requires an additional constraint which

is a generalisation of the classical cumulative constraint: jobs are

partitioned into groups, and the number of active groupsmust never

exceeds a given capacity (where a group is active when some of

its jobs have started while some others are not yet completed). We

first study the complexity of this new constraint. Then, we describe

an Ant Colony Optimisation algorithm to solve our problem, and

we compare three different pheromone structures for it. We study

the influence of parameters on the solving process, and show that

it varies from an instance to another. Hence, we identify a subset of

parameter settings with complementary strengths and weaknesses,

and we use a per-instance algorithm selector in order to select

the best setting for each new instance to solve. We experimentally

compare our approach with a tabu search approach and an exact

approach on a data set coming from our industrial application.

CCS CONCEPTS
• Applied computing→ Industry and manufacturing; • The-
ory of computation→ Theory of randomized search heuris-
tics; Problems, reductions and completeness.
KEYWORDS
Ant Colony Optimization (ACO), Scheduling, Cumulative Con-

straint, Algorithm selection

ACM Reference Format:
Lucas Groleaz, Samba N. Ndiaye, and Christine Solnon. 2020. ACO with

automatic parameter selection for a scheduling problem with a group cu-

mulative constraint. In Genetic and Evolutionary Computation Conference
(GECCO ’20), July 8–12, 2020, Cancún, Mexico. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/3377930.3389818

1 INTRODUCTION
In this paper we deal with a scheduling problem coming from a

real application which aims at preparing orders in food industry.

More precisely, each order is composed of a set of jobs which must

be scheduled on machines. The goal is to assign a machine and

a start time to each job so that the sum of tardiness of all jobs is

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of a national govern-

ment. As such, the Government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for Government purposes only.

GECCO ’20, July 8–12, 2020, Cancún, Mexico
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7128-5/20/07. . . $15.00

https://doi.org/10.1145/3377930.3389818

minimised. This schedule must also satisfy an additional constraint

which comes from the fact that we must load a palet for each order:

this palet is installed when starting the first job of the order, and

it is removed when the last job of the order is completed. As the

physical space is limited, the number of active palets (which are

installed but not yet completed) must never exceed a given limit.

A first contribution of our paper is to study this new constraint,

called Group Cumulative (GC) constraint. In particular, we show

that we can easily model GC constraints with classical cumulative

constraints by adding fictive jobs. However, as the duration of these

fictive jobs is not known a priori, the resulting model hardly scales.

We also show that the GC constraint is more difficult to tackle than

the classical cumulative constraint because we cannot decide in

polynomial time if it is possible to satisfy it even when we know

the order of jobs on every machine.

A second contribution is anAnt ColonyOptimization (ACO) algo-

rithm for our problem. We consider and compare three pheromone

structures: two of them are classical structures which have been

already used to solve scheduling problems, whereas the third one

is new.

Finally, we study the influence of parameters on the solution

process. This sensitivity analysis highlights the fact that several

parameter configurations have complementary performances, and

the best configuration varies from an instance to another. We show

that better results can be obtained by using a per-instance algo-

rithm selector in order to select the best parameter configuration

according to instance features.

Organisation of the paper: We describe the scheduling problem

and the GC constraint in Section 2, and the ACO algorithm in

Section 3. We study the influence of parameters on the solution pro-

cess in Section 4, and we show how to use a per-instance algorithm

selector to improve results in Section 5.

2 DESCRIPTION OF THE PROBLEM
We first describe the basic problem without the GC constraint, in

Section 2.1, and then introduce the GC constraint in Section 2.2. In

Section 2.3, we study the complexity of the GC constraint, and in

Section 2.4 we describe our benchmark instances.

2.1 Basic scheduling problem
Scheduling problems [24] basically involve scheduling a set 𝐽 of

jobs on a set 𝑀 of machines. More precisely, for each job 𝑗 ∈ 𝐽 ,

𝑟 𝑗 denotes its release date, 𝑑 𝑗 its due date, and 𝑝 𝑗 its processing

time. The goal is to find, for each job 𝑗 ∈ 𝐽 , a start time 𝑏 𝑗 , an end

time 𝑒 𝑗 and a machine𝑚 𝑗 . Different constraints and objective func-

tions may be considered, and [4] introduces a notation to formally

https://doi.org/10.1145/3377930.3389818
https://doi.org/10.1145/3377930.3389818

GECCO ’20, July 8–12, 2020, Cancún, Mexico Anonymous et al.

specify them. According to this notation, our problem is denoted

𝑅𝑚, 1, 1;𝑀𝑃𝑆 ;𝑏𝑏𝑟𝑘𝑑𝑤𝑛 |𝑠𝑖 𝑗 ; 𝑟 𝑗 |
∑
𝑇𝑗 :

• 𝑅𝑚, 1, 1 means that𝑀 contains several machines working in

parallel and each machine𝑚 ∈ 𝑀 can process at most one

job at a time;

• 𝑀𝑃𝑆 stands for multi-mode project scheduling and means

that every machine𝑚 ∈ 𝑀 has its own speed denoted 𝑠𝑝𝑚
(so that the duration of a job 𝑗 is 𝑝 𝑗 ∗ 𝑠𝑝𝑚 𝑗

);

• 𝑏brkdwn indicates that each machine has its own breaks dur-

ing which it cannot process any job, i.e., the end time of a job

𝑗 is equal to 𝑒 𝑗 = 𝑏 𝑗 +𝑝 𝑗 ∗𝑠𝑝𝑚 𝑗
+Δbreak where Δbreak is equal

to the break duration if there is a break which starts between

𝑏 𝑗 and 𝑏 𝑗 + 𝑝 𝑗 ∗ 𝑠𝑝𝑚 𝑗
on machine𝑚 𝑗 , and to 0 otherwise;

• 𝑠𝑖, 𝑗 indicates that the setup-time of a job 𝑗 ∈ 𝐽 depends

on the job 𝑖 that precedes 𝑗 on the machine (i.e., the time

interval between the end time of 𝑖 and the start time of 𝑗

must be larger than or equal to this setup-time); a specificity

of our problem is that setups cannot be done during breaks

(because, in our application, a setup involves modifying the

machine configuration by the machine operator);

• 𝑟 𝑗 means that each job cannot start before its release date,

i.e., ∀𝑗 ∈ 𝐽 , 𝑏 𝑗 ≥ 𝑟 𝑗 ;

• ∑
𝑇𝑗 indicates that the goal is to minimize the sum of tardi-

ness of every job, i.e.,
∑

𝑗 ∈𝐽 max(0, 𝑒 𝑗 − 𝑑 𝑗).

We have modelled this scheduling problem with IBM CPOpti-

mizer (CPO) [15]: each job is associated with an interval variable,

and we use noOverlap constraints to ensure that jobs scheduled on a
same machine do not overlap and are separated by setup times, and

intensity constraints to ensure that jobs are not scheduled during

breaks (see [15] for details on these constraints). The choice of CPO

is motivated by the fact that it has state-of-the-art results on a large

range of scheduling problems. We also designed an Integer Linear

Programming (ILP) model (using CPLEX), and noticed that CPO

strongly outperforms CPLEX on our data-set.

2.2 Group Cumulative Constraint
In Resource Constrained Project Scheduling Problems (RCPSPs),

jobs need resources (such as electricity or human skills, for example),

and these resources are limited by capacities. RCPSPs are often

modelled by using cumulative constraints [1, 2, 21, 23]: each job is

associated with a height corresponding to the amount of resource

needed by the job, and the cumulative constraint ensures that, at

any time 𝑡 , the total height of all jobs that are started but not yet

finished at time 𝑡 does not exceed the capacity.

In our application, we also have limited resources but these

resources are needed by job groups. More precisely, our application

aims at preparing a set 𝑂 of orders such that each order is a set

of jobs. Hence, each job 𝑗 ∈ 𝐽 is associated with exactly one order

denoted 𝑜 𝑗 . We define the start (resp. end) time of an order as the

smallest start time (resp. largest end time) among all its jobs, and

we say that an order is active at a time 𝑡 when it is started and not

yet ended at time 𝑡 . We denote active(𝑡) the set of orders which are

active at time 𝑡 , i.e.,

active(𝑡) = {𝑜 ∈ 𝑂 : ∃ 𝑗, 𝑗 ′ ∈ 𝐽 , 𝑜 𝑗 = 𝑜 𝑗 ′ = 𝑜 ∧ 𝑏 𝑗 ≤ 𝑡 ≤ 𝑒 𝑗 ′}.

Each active order occupies some physical space (corresponding

to a pallet). As the physical space is limited, the number of active

orders must be smaller than or equal to a given limit 𝐿, at any time

of the schedule. Hence, our RCPSP is obtained by adding to the

scheduling problem defined in Section 2.1 a Group Cumulative (GC)
constraint which ensures that, for each time 𝑡 , #active(𝑡) ≤ 𝐿.

We can extend the CPO model described in Section 2.1 in order

to model this constraint in a rather straightforward way:

• for each order 𝑜 ∈ 𝑂 , we define a fictive job 𝑓𝑜 with an

undefined duration and a height of 1;

• for each job 𝑗 ∈ 𝐽 , we add the constraints 𝑏 𝑓𝑜 ≤ 𝑏 𝑗 and

𝑒𝑓𝑜 ≥ 𝑒 𝑗 , where 𝑓𝑜 is the fictive job associated with 𝑜 𝑗 order;

• we add a classical cumulative constraint on all fictive jobs in

order to ensure that the number of fictive jobs started and

not ended at any time 𝑡 does not exceed 𝐿.

However, CPO does not scale very well on this model. This comes

from the fact that durations of fictive jobs are not known (until all

jobs of the corresponding order have been scheduled) and constraint

propagation algorithms used by CPO (which are based on energy

Reasoning [3]) do not reduce the search space in this case.

2.3 Complexity
The scheduling problem described in Section 2.1 (without resource

constraints) is NP-hard [24]. However, if we know the ordered list of

jobs that must be scheduled on everymachine, thenwe can compute

the start times that minimize the tardiness sum in polynomial time

[9, 26]. More precisely, a list schedule is a set of #𝑀 ordered lists

𝑙1, . . . 𝑙#𝑀 such that each job of 𝐽 occurs in exactly one list. Given a

list schedule, we compute optimal start times in a greedy way: for

each machine𝑚, we consider jobs according to the order defined by

𝑙𝑚 and schedule each of these jobs as soon as possible. Therefore,

solving the scheduling problem of Section 2.1 amounts to finding

the best list schedule (and start times are derived in polynomial

time from these lists).

Let us now consider the cases where we add a classical cumula-

tive constraint (Section 2.3.1), or a GC constraint (Section 2.3.2).

2.3.1 Classical cumulative constraints. If we add a classical cumula-

tive constraint to the scheduling problem of Section 2.1, the problem

of computing the best start times given a list schedule becomes

NP-hard [21]. However, if we remove the objective function (i.e.,
we simply search for a schedule which satisfies the cumulative

constraint without having to minimize the tardiness sum), then the

problem of finding start times that satisfy cumulative constraints

given a list schedule is polynomial: Again, this can be done greedily,

by considering jobs in the order of the list 𝑙𝑚 for each machine

𝑚 ∈ 𝑀 , and scheduling each job as soon as possible with respect to

cumulative constraints.

For example, let us consider the list schedule displayed on top of

Fig. 1, and let us assume that blue and yellow jobs require one unit of

resource (whereas green and pink do not require any resource), and

the capacity of this resource is 2. In this case, the greedy approach

computes start times displayed on bottom of Fig. 1.

2.3.2 GC constraint. However, this is no longer true for the GC

constraint, i.e., deciding if there exist start times that satisfy the GC

ACO with automatic parameter selection for a scheduling problem with a group cumulative constraint GECCO ’20, July 8–12, 2020, Cancún, Mexico

Figure 1: Computation of start times given list schedules.
Top: a list schedule with 3 machines and 17 jobs. Bottom:
start times computed in a greedy way in the case of a classi-
cal cumulative constraint when blue and yellow jobs require
one unit of a resource which is limited to 2.

constraint given a list schedule is an NP-complete problem (even

when there is no objective function to minimize)
1
.

For example, let us consider the list schedule displayed on top

of Fig. 1, and let us assume that there are 4 orders: the blue (resp.

yellow, pink, and green) order contains jobs { 𝑗1, 𝑗12, 𝑗13, 𝑗14} (resp.
{ 𝑗3, 𝑗5, 𝑗7, 𝑗8, 𝑗15, 𝑗17}, { 𝑗2, 𝑗4, 𝑗6, 𝑗10}, and { 𝑗9, 𝑗11, 𝑗16}). Finally, let
us assume that we have a GC constraint which ensures that the

number of active orders never exceeds 2. In this case, it is not

possible to find start times that satisfy the GC constraint for this

list schedule. Indeed, on machine𝑚1, the yellow job 𝑗3 is between

two pink jobs 𝑗2 and 𝑗4, and this implies that we must start the

yellow order to be able to complete the pink order. Similarly, on

machine𝑚2, there is a pink job between two green jobs so that we

must start the pink order to be able to complete the green order,

and on machine𝑚3, there is a green job between two yellow jobs

so that we must start the green order to be able to complete the

yellow order. This implies that both yellow, green and pink orders

must be active all together at some time and, therefore, there do not

exist start times that satisfy the GC constraint for this list schedule.

2.4 Data set
Weuse a benchmark of instances coming from our industrial partner

Infologic. Our instances have been extracted from 1182 work days

in a warehouse. In these instances, the number of orders (resp.

jobs and machines) ranges from 55 to 478 (resp. from 207 to 3460,

and from 1 to 14). As our goal is to study the impact of the GC

constraint on the solution process, we have generated two classes

of instances: the first class, denoted loose, contains instances with a

rather large capacity 𝐿 = 0.8 ∗𝑋 whereas the second class, denoted

tight, contains instances with a smaller capacity 𝐿 = 0.5 ∗𝑋 , where

𝑋 is computed as follows: we use a heuristic algorithm
2
to solve

the instance without the GC constraint (i.e., without limiting the

number of active orders), and define 𝑋 = max𝑡 #𝑎𝑐𝑡𝑖𝑣𝑒 (𝑡) for this
solution. Finally, we have removed from our data-set every instance

1
The NP-completeness proof has been done by reducing the decision version of the

PATHWIDTH problem, but we do not detail it as it is out of the scope of this paper.

2
This heuristic algorithm corresponds to a single solution construction as described in

Algo. 1 when pheromone is ignored (i.e., 𝛼 = 0), and line 7 is replaced with a greedy

choice (i.e., we choose 𝑗 ∈ Cand which maximizes 𝑝 (𝑗)).

for which a simple greedy construction finds an optimal solution

without any tardiness. We obtain 1459 instances (728 loose instances
and 731 tight instances)3.

Among these 1459 instances, 674 instances have been solved to

optimality (either because CPO has been able to prove optimality,

or because one of our approaches has been able to find a solution

with an objective function cost equal to 0). These instances are said

to be closed. The 785 remaining instances are said to be open: for
these instances, we do not know the optimal solution. We evaluate

the quality of a solution for an open instance by computing its

ratio to a reference solution which is the best solution found by all

approaches introduced in this paper.

3 ANT COLONY OPTIMIZATION
Ant Colony Otimization (ACO) [5, 6] is a meta-heuristic which

has been used to solve various optimization problems including

scheduling problems such as, for example, the resource-constrained

scheduling problem [20]. A survey on solving scheduling problems

with ACO is provided in [30].

ACO algorithms use pheromone trails to learn promising so-

lution components and progressively intensify the search around

them. In this paper, we consider three different kinds of pheromone

trails, which are defined in Section 3.1.

Our ACO algorithm iterates over three steps: in a first step,𝑁𝑎𝑛𝑡𝑠

solutions are constructed in a greedy randomised way, as described

in Section 3.2; in a second step, the best solution of the cycle is

improved with local search, as described in Section 3.3; in a third

step, pheromone trails are updated, as described in Section 3.4.

3.1 Pheromone trails
We consider three different kinds of pheromone trails. The first

two ones (denoted Jobs and Position, respectively) have been widely

used to solve scheduling problems (according to [30], Jobs is used
in 38 papers, and Position in 17 papers). The third one (denoted

Time) is a new pheromone factor which has never been used to

solve a scheduling problem (as far as we know).

Jobs pheromone trails. For each couple of jobs (𝑗, 𝑗 ′) ∈ 𝐽 2, we

define a pheromone trail 𝜏 (𝑗, 𝑗 ′) which represents the learned de-

sirability of scheduling job 𝑗 ′ just after job 𝑗 on a same machine.

We add a fictive job to 𝐽 (used to represent the job that precedes

the first job on a machine).

Position pheromone trails. For each triple (𝑗,𝑚, 𝑛) ∈ 𝐽 × 𝑀 ×
[1, #𝐽], we define a pheromone trail 𝜏 (𝑗,𝑚, 𝑛) which represents the

learned desirability of scheduling job 𝑗 on machine𝑚 at position 𝑛.

Time pheromone trails. Let 𝐻 be the time horizon, discretised

according to a given step size stepSize (i.e.,𝐻 is a finite set of contigu-

ous time intervals such that the first interval starts at the beginning

of the day, the last interval ends at the end of the day, and the size

of each interval is equal to stepSize). For each couple (𝑗, ℎ) ∈ 𝐽 ×𝐻 ,

we define a pheromone trail 𝜏 (𝑗, ℎ) which represents the learned

desirability of scheduling job 𝑗 at time step ℎ.

GECCO ’20, July 8–12, 2020, Cancún, Mexico Anonymous et al.

Algorithm 1: Construction of a solution

1 𝑆 ← ∅
2 while 𝐽 ≠ ∅ do
3 𝑚next ← argmin𝑚∈𝑀 endTime(𝑚)
4 𝑂open = {𝑜 : ∃(𝑗, 𝑗 ′) ∈ 𝐽 × 𝑆, 𝑜 𝑗 = 𝑜 𝑗 ′ = 𝑜}
5 if #𝑂open < 𝐿 then 𝐶𝑎𝑛𝑑 ← 𝐽 ;

6 else 𝐶𝑎𝑛𝑑 ← { 𝑗 ∈ 𝐽 : 𝑜 𝑗 ∈ 𝑂open} ;
7 choose 𝑗 ∈ 𝐶𝑎𝑛𝑑 with probability 𝑝 (𝑗)
8 𝑚 𝑗 ←𝑚𝑛𝑒𝑥𝑡

9 compute the start time 𝑏 𝑗 and the end time 𝑒 𝑗 of 𝑗

10 remove 𝑗 from 𝐽 and add it to 𝑆

3.2 Construction of a solution
The greedy randomised procedure used to build a solution is de-

scribed in Algo. 1. It starts from an empty schedule 𝑆 = ∅, and
iteratively adds jobs to 𝑆 (lines 2-10) until all jobs are scheduled.

At each iteration of lines 2-10, we first select the machine𝑚next
which has the smallest end time, where the end time of a machine

𝑚 (denoted endTime(𝑚)) is equal to the end time of the last job

assigned to it, i.e., endTime(𝑚) = max𝑗 ∈𝑆,𝑚 𝑗=𝑚𝑒 𝑗 . In lines 4-6, we

build the set 𝐶𝑎𝑛𝑑 of jobs that are not yet scheduled and that can

be scheduled on𝑚𝑛𝑒𝑥𝑡 without violating the GC constraint. To this

aim, we first compute the set 𝑂open of orders 𝑜 such that at least

one job of 𝑜 has been scheduled in 𝑆 and at least one job of 𝑜 has

not yet been scheduled. If #𝑂open < 𝐿, then we can select any job of

𝐽 without violating the GC constraint (line 5). Otherwise, #𝑂open is

equal to 𝐿, and in this case we restrict𝐶𝑎𝑛𝑑 to the jobs that are not

yet scheduled and that belong to an order of 𝑂open (line 6). Note

that this filtering procedure may remove from𝐶𝑎𝑛𝑑 some jobs that

could lead to better schedules. However, as it is NP-complete to

decide if a job can be scheduled without violating the GC constraint,

we use this simple filtering procedure to ensure feasibility.

Then, we randomly choose a job 𝑗 ∈ 𝐶𝑎𝑛𝑑 according to the

probability:

𝑝 (𝑗) = [𝑓𝜏 (𝑗,𝑚next , 𝑆)]𝛼 [𝜂 (𝑗,𝑚next , 𝑆)]𝛽∑
𝑗 ′∈𝐶𝑎𝑛𝑑

[𝑓𝜏 (𝑗 ′,𝑚next , 𝑆)]𝛼 [𝜂 (𝑗 ′,𝑚next , 𝑆)]𝛽

where 𝑓𝜏 (𝑗,𝑚next , 𝑆) is the pheromone factor, 𝜂 (𝑗,𝑚next , 𝑆) is the
heuristic factor, and 𝛼 and 𝛽 are parameters that are used to balance

pheromone and heuristic factors.

The exact definition of the pheromone factor depends on the

pheromone trails:

• for Jobs, we define

𝑓𝜏 (𝑗,𝑚next , 𝑆) = 𝜏 (prev 𝑗 , 𝑗)

where prev 𝑗 is equal to the fictive job if there is no job sched-
uled on𝑚next , and to the last job scheduled onmachine𝑚next
(i.e., prev 𝑗 = argmax𝑗 ′∈𝑆,𝑚 𝑗′=𝑚next

𝑠 𝑗 ′) otherwise;

• for Position, we define

𝑓𝜏 (𝑗,𝑚next , 𝑆) = 𝜏 (𝑗,𝑚next , 𝑛)

3
These instances are available at perso.citi-lab.fr/csolnon/gc-sched.html.

where 𝑛 = #{ 𝑗 ∈ 𝑆 : 𝑚 𝑗 = 𝑚next } is the number of jobs

already scheduled on machine𝑚next in 𝑆 ;

• for Time, we define

𝑓𝜏 (𝑗,𝑚next , 𝑆) = 𝜏 (𝑗, ℎ)

where ℎ is the time interval associated with endTime(𝑚next).
The heuristic factor is the ATCS (Apparent Tardiness Cost with

Setup-times) score introduced in [24]. It is a compromise between

the duration of the job, the remaining time before its due date and

the setup-time incurred by doing this job just after the preceding

one :

𝜂 (𝑗,𝑚next , 𝑆) =
1

𝑝 𝑗
𝑒
−𝑚𝑎𝑥 (𝑑𝑗 −𝑝𝑗 ∗𝑠𝑝𝑚next −𝑡,0)

𝑝 𝑒−
𝑠prev 𝑗 ,𝑗

𝑠

where 𝑝 is the mean processing time of the remaining jobs, and 𝑠 is

the mean setup-time between all the remaining jobs.

Finally, we assign 𝑗 to the machine𝑚𝑛𝑒𝑥𝑡 (line 8), and we com-

pute the start time 𝑏 𝑗 for 𝑗 (line 9): this start time is equal to the

end time endTime(𝑚 𝑗) plus the setup time between 𝑗 and the last

job scheduled on𝑚 𝑗 (including breaks).

3.3 Local search
Once 𝑁𝑎𝑛𝑡𝑠 solutions have been constructed, we select the best

solution among them, and improve it by local search. However, as

this local search step is rather time consuming, we do not perform

it at each cycle, and introduce a parameter 𝑞𝐿𝑆 to control the fre-

quency of this local search step: 𝑞𝐿𝑆 is the probability of applying

local search to the best solution of the cycle.

We consider a classical neighborhood for scheduling problems

(used, for example, in [16]): we select the job with the largest tardi-

ness, remove it from its machine, and explore all neighbor solutions

obtained by inserting this job elsewhere. We consider a first im-

provement policy, i.e., we stop exploring the neighborhood when

finding a neighbor which improves the objective function and sat-

isfies the GC constraint. If there is no improving neighbor, we

select the best neighbor. We use a tabu list to prevent the search

from cycling by forbidding to move a job which has been recently

moved [7].

This local search process is stopped when the number of non-

improving moves is equal to 𝑑𝐿𝑆 ∗ #𝐽
100

, where 𝑑𝐿𝑆 is a parameter.

3.4 Pheromone updating step
We consider the Max-Min Ant System (MMAS) framework [29]

4
.

Hence, we introduce two parameters 𝜏min and 𝜏max , and every

pheromone trail is bounded between 𝜏min and 𝜏max . Also, we ini-

tialize every pheromone trail to 𝜏max at the beginning of the search

process.

At the end of each cycle (once 𝑁ants solutions have been con-

structed, and the best of these solutions has been improved by

local search), pheromone trails are updated in two steps. In a first

step, pheromone evaporation is simulated by multiplying every

pheromone trail with 1 − 𝜌 where 𝜌 ∈ [0, 1] is the pheromone

evaporation rate.

4
We also made experiments with P-ACO [8], and obtained rather similar performance

than with MMAS.

ACO with automatic parameter selection for a scheduling problem with a group cumulative constraint GECCO ’20, July 8–12, 2020, Cancún, Mexico

In a second step, the best solution of the cycle (denoted 𝑠cycle) is

rewarded. The quantity of pheromone added is defined by

Δ = 1 −
𝑓 (𝑠cycle) − 𝑓 (𝑠run)

𝑓 (𝑠run)
where 𝑠run is the best solution found since the beginning of the run,

and 𝑓 (𝑠) is the objective function value of a solution 𝑠 . Note that

when 𝑓 (𝑠) = 0, then we have found an optimal solution (such that

every job ends before its due date) and we stop the run.

This quantity Δ of pheromone is added on pheromone trails

associated with 𝑠cycle :

• for Jobs pheromone trails, it is added on every trail 𝜏 (𝑗, 𝑗 ′)
such that either job 𝑗 immediately precedes job 𝑗 ′ on a ma-

chine, or 𝑗 is the fictive job and 𝑗 ′ is the first job on amachine;

• for Position, it is added on every trail 𝜏 (𝑗,𝑚, 𝑛) such that 𝑗 is

the 𝑛𝑡ℎ job scheduled on machine𝑚;

• for Time, it is added on every trail 𝜏 (𝑗, ℎ) such that job 𝑗 is

scheduled at time step ℎ. We also reward pheromone trails

𝜏 (𝑗, ℎ − 𝑘) and 𝜏 (𝑗, ℎ + 𝑘). Indeed, if it is good to schedule

𝑗 at time step ℎ, then it should be good too to schedule 𝑗

at time steps close to ℎ. We consider a Gaussian reward, as

introduced in [27] for continuous problems. More precisely,

we introduce a parameter 𝑠𝑡𝑑𝑑𝑒𝑣 and, for every integer value

𝑘 ≥ 1, we define Δ𝑘 = Δ ·𝑒−
1

2
(𝑘
𝑠𝑡𝑑𝑑𝑒𝑣

)2
. For every job 𝑗 which

is scheduled at time step ℎ, and for every integer value 𝑘 ≥ 1

such that Δ𝑘 > 0.01, we add Δ𝑘 to 𝜏 (𝑗, ℎ − 𝑘) and 𝜏 (𝑗, ℎ + 𝑘).

4 INFLUENCE OF PARAMETERS ON THE
SOLUTION PROCESS

Our algorithm has classical ACO parameters: the number of solu-

tions constructed at each cycle 𝑁ants , the pheromone factor weight

𝛼 , the heuristic factor weight 𝛽 , the pheromone evaporation rate 𝜌 ,

and the pheromone bounds 𝜏𝑚𝑖𝑛 and 𝜏𝑚𝑎𝑥 .

There is also one hyper-parameter which is used to select the

kind of pheromone trails, as described in Section 3.1. This hyper-

parameter is denoted 𝜏struture and its possible values are Jobs, Po-
sition, and Time. When 𝜏struture = Time, there are two additional

parameters: the size of time intervals StepSize (in seconds), and the

standard deviation considered in the Gaussian reward 𝑠𝑡𝑑𝑑𝑒𝑣 .

Finally, there are two parameters which are used to configure

the local search step: the probability of applying local search to the

best solution of the cycle 𝑞𝐿𝑆 , and a parameter 𝑑𝐿𝑆 which controls

the number of non improving moves before stopping local search.

When 𝛼 is set to 0, pheromone trails are not used and we skip

the pheromone updating step (and parameters 𝜌 , 𝜏𝑚𝑖𝑛 , 𝜏𝑚𝑎𝑥 , and

𝜏structure are ignored). In this case, our algorithm may be viewed as

a kind of Greedy Randomized Adaptive Search Procedure (GRASP),

as described in [25], for example.

4.1 Automatic parameter configuration
Automatic configuration tools are now widely used to tune param-

eters of ACO algorithms (see [19], [18] or [28], for example).

We have used ParamILS [10] to search for a good setting of

our parameters. This search has been performed on a subset of 10

representative instances: all these instances are non trivial ones (i.e.,
CPO is not able to solve them within one hour), and have various

Table 1: Automatic parameter configuration: each column
corresponds to a parameter and contains the values initially
provided to paramILS for this parameter. We highlight in
grey the parameter setting chosen by paramILS.

𝛼 𝛽 𝑁𝑎𝑛𝑡𝑠 𝜌 𝜏𝑚𝑖𝑛 𝜏𝑚𝑎𝑥

0 1 10 0.02 0.01 1

1 5 30 0.1 0.1 3

3 10 50 0.25 1 5

5 15 0.5

10 0.9

𝜏structure StepSize 𝑠𝑡𝑑𝑑𝑒𝑣 𝑞𝐿𝑆 𝑑𝐿𝑆
Job 10 1 0 0.1

Position 60 5 0.1 1

Time 300 10 0.5 10

1 100

sizes; half of them are loose instances, and the other half are tight
instances. Each run has been limited to one hour of CPU time, and

the total running time of ParamILS has been limited to one week.

All experiments reported in this paper have been performed on a

processor Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz with 4 GB

RAM.

Table 1 gives, for each parameter, the set of values which have

been considered by paramILS and highlights in grey the parameter

chosen by ParamILS. Our algorithm with this parameter config-

uration is denoted ACO paramILS. In this configuration, 𝜏structure
is set to Time, i.e., pheromone is used to learn the desirability of

scheduling jobs at time steps, with time steps of 60 seconds and a

standard deviation 𝑠𝑡𝑑𝑑𝑒𝑣 equal to 1. Also, 𝑞𝐿𝑆 is set to 0.5, meaning

that local search is applied (on average) every 2 cycles.

4.2 Sensitivity analysis
To evaluate the influence of parameters on the solution process, we

fix some parameters to the setting found by paramILS, and change

the values of the other parameters. For each configuration, we plot

the evolution of the ratio
𝑓

𝑓 ∗ (on the y-axis) with respect to time 𝑡

(on the x-axis, with a log-scale), where 𝑓 is the total tardiness of

the best solution found after 𝑡 seconds of CPU time, and 𝑓 ∗ is the
total tardiness of a reference solution (which is the best solution

found by all configurations within a time limit of one hour). Hence,

when
𝑓

𝑓 ∗ = 1, the configuration has found the reference solution.

Results are presented separately for four different instances

which have been randomly chosen, and we plot average results on

5 runs (with different random seeds) for each instance. In all figures,

the curve in orange corresponds to the configuration computed by

paramILS.

Figure 2 displays results with different configurations for 𝛼 and

𝜌 , ranging from 𝛼 = 0 (where pheromone is not considered at

all) to 𝛼 = 10; 𝜌 = 0.25 (where pheromone has a strong influence

on the solution process). When 𝛼 = 0, we skip the pheromone

updating step and, therefore, more solutions are constructed within

a same time limit. However, nothing is learned from a construction

to another and better results are obtained with larger values for

GECCO ’20, July 8–12, 2020, Cancún, Mexico Anonymous et al.

Figure 2: Influence of 𝛼 and 𝜌

Figure 3: Influence of 𝜏structure

𝛼 , for the four considered instances. However, the best setting for

𝛼 and 𝜌 is different from one instance to the other: for instances

corresponding to the two top plots, the best results are obtained

when 𝛼 = 5 and 𝜌 = 0.1 and when 𝛼 = 10 and 𝜌 = 0.1. However,

for the two other instances (and more particularly for the bottom

right one), the best results are obtained with the setting computed

by paramILS (𝛼 = 10 and 𝜌 = 0.25).

Figure 3 displays results when changing the value of 𝜏structure ,

i.e., changing the definition of pheromone trails. Again, the best

setting changes from an instance to the other. For example, for the

top left (resp. bottom right) instance, the best results are obtained

with Position (resp. Time).
Figure 4 displays results when changing the values of stepSize

and 𝑆𝑡𝑑𝑑𝑒𝑣 , which are the two extra parameters used when 𝜏structure
is set to Time. Again, the best setting varies from an instance to

the other: on the top left instance, the configuration computed by

paramILS obtains the worst results whereas on the bottom right it

obtains the best results.

Finally, Figure 5 displays results when changing the values of𝑞𝐿𝑆
and 𝑑𝐿𝑆 , which are the two parameters related to the Local Search

Figure 4: Influence of StepSize and 𝑠𝑡𝑑𝑑𝑒𝑣

Figure 5: Influence of 𝑑𝐿𝑆 and 𝑞𝐿𝑆

step. When 𝑞𝐿𝑆 = 0, local search is never triggered and, for the

four considered instances, better results are obtained with larger

values of 𝑞𝐿𝑆 , showing the interest of using local search to improve

solutions. However, for the two top (resp. bottom) instances, better

results are obtained when 𝑞𝐿𝑆 = 0.1 (resp. 𝑞𝐿𝑆 = 0.5), i.e., when
local search is triggered every 10 (resp. 2) cycles, on average.

Hence, the main conclusion of this section is that the best pa-

rameter configuration is very different from an instance to another.

5 PER INSTANCE PARAMETER SELECTION
As the best parameter configuration strongly varies from an in-

stance to another, we propose to automatically choose a different

configuration for each new instance to solve. To this aim, we could

dynamically tune ACO parameters as proposed, for example, in

[11, 14, 22]). Another solution is to use a per-instance algorithm

selectors which selects from an algorithm portfolio the algorithm

expected to perform best on a given problem instance. One of the

most prominent systems that employs this approach is SATzilla [31],

ACO with automatic parameter selection for a scheduling problem with a group cumulative constraint GECCO ’20, July 8–12, 2020, Cancún, Mexico

Table 2: Configurations used by Llama: For each configuration, we give its parameter values, and #Best gives the number of
instances for which this configuration has obtained the best results (for closed, open, and all instances, repectively).

Number (name) 𝛼 𝛽 𝑁𝑎𝑛𝑡𝑠 𝑞𝐿𝑆 𝑑𝐿𝑆 𝜌 𝜏𝑚𝑎𝑥 𝜏𝑚𝑖𝑛 Structure 𝑠𝑡𝑒𝑝𝑆𝑖𝑧𝑒 𝑠𝑡𝑑𝑑𝑒𝑣 #Best

Closed Open Total

1 (ACO paramILS) 10 10 50 0.5 100 0.25 1 0.1 Time 60 1 227 215 442

2 (ACO Single Best) 3 10 40 0.01 100 0.05 4 0.1 Jobs 188 270 458

3 3 10 40 0 0.05 4 0.1 Jobs 171 126 297

4 3 10 40 0.01 100 0.05 4 0.1 Position 201 200 401

5 3 10 40 0 0.05 4 0.1 Position 239 171 410

6 1 10 40 0.01 100 0.05 4 0.1 Time 180 5 92 213 305

7 3 10 40 0.01 100 0.05 4 0.1 Time 60 3 46 192 238

8 5 10 40 0.01 100 0.05 4 0.1 Time 180 5 92 171 263

9 (Tabu search) 0 10 40 1 100 160 186 346

which defined the state of the art in SAT solving for a number of

years (see [12] for additional information on algorithm selection).

In this section, we use the R package Llama [13] to learn an algo-

rithm selection model. Llama supports many selection approaches.

We performed a set of preliminary experiments to determine the ap-

proach that works best for our application, i.e., regularized random

forest. We use 10-fold cross-validation to evaluate the performance

of Llama (i.e., our benchmark is randomly partitioned into 10 sub-

sets, and we repeat 10 experiments where 9 subsets are used to train

a selection model which is evaluated on the remaining subset).

Llama uses features (extracted from instances) to learn the se-

lection model. Hence, each instance must be described by a set

of features. In our experiments, we have considered the follow-

ing features: the number of jobs #𝐽 , the number of machines #𝑀 ,

the number of orders #𝑂 , the capacity 𝐿, job release dates 𝑟 𝑗 , due

dates 𝑑 𝑗 , durations 𝑝 𝑗 , and setup-times 𝑠𝑖 𝑗 (for 𝑟 𝑗 , 𝑑 𝑗 , 𝑝 𝑗 , and 𝑠𝑖 𝑗 , we

compute the average, minimal, maximal, and standard deviations

among all jobs). We also extract some features from breaks, and the

due date range, the due date tightness, the job-machine factor and

the setup-time severity as defined in [17].

The model is trained to select one algorithm within a given port-

folio of algorithms. In our context, this portfolio contains different

instances of our ACO algorithm, corresponding to different param-

eter configurations. We have selected 9 complementary parameter

configurations which are described in Table 2. The last column of

Table 2 gives the number of instances (among the 1459 instances of

our benchmark) for which the configuration has obtained the best

results (the smallest CPU time for closed instances, and the smallest

objective function value for open instances). Note that the total of

this column is greater than 1459 because for some instances several

approaches may have the same results.

Configuration 1 corresponds to ACO paramILS, and it obtains the
best results on 442 instances (227 closed and 215 open). This shows
us that the automatic search performed by paramILS on a subset of

10 instances generalizes quite well on the complete benchmark as

it is the best configuration for more than 30% of the instances.

However, Configuration 2 is slightly better than ACO paramILS
(it obtains the best results on 16 more instances). If these two con-

figurations have close results, they have very different parameter

settings: in Configuration 2, 𝛼 and 𝜌 are much smaller (whichmeans

that the influence of pheromone is less important), 𝑞𝐿𝑆 is 5 times

as small (which means that local search is triggered 5 times less

often), and 𝜏structure = Jobs (which means that pheromone is used

to learn job precedence relations instead of job time relations). Con-

figuration 2 is called ACO Single Best as it is the best performing

configuration (among the 9 considered configurations).

Configuration 9 is called Tabu Search because it actually cor-

responds to a multi-start Tabu search approach as 𝛼 = 0 (and

pheromone is not updated), and the probability of applying local

search to improve a constructed solution is 𝑞𝐿𝑆 = 1.

We call Llama ACO the approach which first uses the model

learned by Llama to select one configuration (among the 9 con-

figurations listed in Table 2), and then solves the instance with

the selected configuration. We compare this approach with 4 other

approaches, i.e., ACO paramILS (corresponding to configuration 1),

ACO Single Best (corresponding to configuration 2), Tabu Search
(corresponding to configuration 9), and IBM CPOptimizer. We also

report results of a Virtual Best Solver (denoted VBS ACO) which
selects for each instance the best performing ACO configuration

(among the 9 configurations listed in Table 2). This approach is

purely virtual as it can be designed only if we have an oracle able

to predict what is the best configuration without any error.

In figure 6, we plot the cumulative number of solved instances

with respect to time for the 674 closed instances. CP Optimizer

has the worst performance. This was expected as it is a complete

approach, which is able to prove optimality whereas all other ap-

proaches are heuristic approaches. Tabu search quickly finds the

optimal value on many instances, but after one hour it has been able

to find the optimal solution for only 584 instances. ACO paramILS,
ACO Single Best, and Llama ACO solve less instances than Tabu
search for short CPU time limits (smaller than 20 seconds), but they

solve more instances when increasing the time limit. When the

time limit is equal to one hour, ACO paramILS (resp. ACO Single
Best and Llama ACO) have been able to solve 617 (resp. 626 and 640)

instances. Hence, on closed instances, using Llama allows us to

slightly improve results. VBS ACO shows us what could be expected

if we had a perfect oracle, i.e., if the model learned by Llama were

perfect.

Let us now consider the 785 open instances, for which we do

not know the optimal solution. In Figure 7, we plot the evolution

of the ratio between the best solution found within 𝑡 seconds and

the reference solution (on average for the 785 instances) when

GECCO ’20, July 8–12, 2020, Cancún, Mexico Anonymous et al.

Figure 6: Results for the 674 closed instances: Evolution of
the cumulative number of solved instances with respect to
time

Figure 7: Results for the 785 open instances: Evolution of the
average ratio between the best solution found within 𝑡 sec-
onds and the reference solution when increasing the time
limit 𝑡 .

increasing the time limit 𝑡 . We do not plot results for CP Optimizer

as it is not able to find any solution on the hardest instances. Again,

for short time limits (smaller than 80 seconds), Tabu Search obtains

the best results. However, for longer time limits, all ACO variants

outperform Tabu Search: for a time limit of one hour, the ratio to

the reference solution is equal to 1.17 (resp. 1.24, 1.42, and 1.52) for

Llama ACO (resp. ACO Single Best, ACO paramILS, and Tabu Search).
In other words, the best solution it found is 17% (resp. 24%, 42%, and

52%) larger than the reference solution. Hence, on these instances,

using Llama allows us to clearly improve results compared to a

single configuration.

6 CONCLUSION
We have introduced a new scheduling problem, corresponding to a

real industrial problem where jobs are partitioned into groups and

the number of active groups must never exceed a given capacity.

We have introduced a new ACO algorithm for this problem, and

compared three different kinds of pheromone trails: two of them

are classical ones whereas the third one is a new one. We have

shown that the best parameter setting strongly varies from one

instance to another, and we have shown how to use a per-instance

algorithm selector to dynamically choose a parameter configuration

for each new instance to solve. We have experimentally evaluated

our approach on a large benchmark of 1459 instances, and we have

shown that our ACO algorithm with a static parameter setting

clearly outperforms a Tabu search algorithm, and that even better

results are obtained when using machine learning to select the

parameter configuration for each instance separately.

When comparing the results obtained by Llama ACO with the

results obtained by a virtual best solver (which always selects the

best configuration for each instance), we notice that there is still

room for improving the model used to select configurations. Hence,

further work will aim at improving this model. In particular, we

will study the interest of using other features to describe instances,

and other machine learning algorithms to learn the model.

REFERENCES
[1] Abderrahmane Aggoun and Nicolas Beldiceanu. 1993. Extending chip in order to

solve complex scheduling and placement problems. Mathematical and Computer
Modelling 17, 7 (April 1993), 57–73. https://doi.org/10.1016/0895-7177(93)90068-

A

[2] Philippe Baptiste and Nicolas Bonifas. 2018. Redundant cumulative constraints

to compute preemptive bounds. Discrete Applied Mathematics 234 (Jan. 2018),
168–177. https://doi.org/10.1016/j.dam.2017.05.001

[3] Nicolas Bonifas. 2016. A O(n2 log(n)) propagation for the Energy Reasoning.

(2016), 4.

[4] Peter Brucker, Andreas Drexl, Rolf Möhring, Klaus Neumann, and Erwin Pesch.

1999. Resource-constrained project scheduling: Notation, classification, models,

and methods. European Journal of Operational Research 112, 1 (Jan. 1999), 3–41.

https://doi.org/10.1016/S0377-2217(98)00204-5

[5] Alberto Colorni, Marco Dorigo, and Vittorio Maniezzo. 1991. Distributed Op-

timization by Ant Colonies. In Proceedings of the First European Conference on
Artificial Life.

[6] Marco Dorigo and Thomas Stützle. 2004. Ant colony optimization. MIT Press,

Cambridge, Mass. OCLC: 834298732.

[7] Fred Glover, James P. Kelly, and Manuel Laguna. 1996. New advances and

applications of combining simulation and optimization. In Proceedings of the 28th
conference on Winter simulation - WSC ’96. ACM Press, Coronado, California,

United States, 144–152. https://doi.org/10.1145/256562.256595

[8] Michael Guntsch and Martin Middendorf. 2002. Applying Population Based ACO

to Dynamic Optimization Problems. In Ant Algorithms (Lecture Notes in Computer
Science). Springer, Berlin, Heidelberg, 111–122. https://doi.org/10.1007/3-540-

45724-0_10

[9] Sönke Hartmann and Rainer Kolisch. 2000. Experimental evaluation of state-

of-the-art heuristics for the resource-constrained project scheduling problem.

European Journal of Operational Research 127, 2 (Dec. 2000), 394–407. https:

//doi.org/10.1016/S0377-2217(99)00485-3

[10] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stuetzle. 2009. ParamILS: An

Automatic Algorithm Configuration Framework. Journal of Artificial Intelligence
Research 36 (Oct. 2009), 267–306. https://doi.org/10.1613/jair.2861

[11] Madjid Khichane, Patrick Albert, and Christine Solnon. 2009. An ACO-Based Re-

active Framework for Ant Colony Optimization: First Experiments on Constraint

Satisfaction Problems. In Learning and Intelligent Optimization. Vol. 5851. Springer
Berlin Heidelberg, Berlin, Heidelberg, 119–133. https://doi.org/10.1007/978-3-

642-11169-3_9

[12] Lars Kotthoff. 2014. Algorithm Selection for Combinatorial Search Problems: A

Survey. AI Magazine 35, 3 (Sept. 2014), 48–60. https://doi.org/10.1609/aimag.

v35i3.2460

[13] Lars Kotthoff. 2014. LLAMA: Leveraging Learning to Automatically Manage

Algorithms. arXiv:1306.1031 [cs] (April 2014). http://arxiv.org/abs/1306.1031

https://doi.org/10.1016/0895-7177(93)90068-A
https://doi.org/10.1016/0895-7177(93)90068-A
https://doi.org/10.1016/j.dam.2017.05.001
https://doi.org/10.1016/S0377-2217(98)00204-5
https://doi.org/10.1145/256562.256595
https://doi.org/10.1007/3-540-45724-0_10
https://doi.org/10.1007/3-540-45724-0_10
https://doi.org/10.1016/S0377-2217(99)00485-3
https://doi.org/10.1016/S0377-2217(99)00485-3
https://doi.org/10.1613/jair.2861
https://doi.org/10.1007/978-3-642-11169-3_9
https://doi.org/10.1007/978-3-642-11169-3_9
https://doi.org/10.1609/aimag.v35i3.2460
https://doi.org/10.1609/aimag.v35i3.2460
http://arxiv.org/abs/1306.1031

ACO with automatic parameter selection for a scheduling problem with a group cumulative constraint GECCO ’20, July 8–12, 2020, Cancún, Mexico

arXiv: 1306.1031.

[14] Kuan YewWong and Komarudin. 2008. Parameter tuning for ant colony optimiza-

tion: A review. In 2008 International Conference on Computer and Communication
Engineering. IEEE, Kuala Lumpur, Malaysia, 542–545. https://doi.org/10.1109/

ICCCE.2008.4580662

[15] Philippe Laborie, Jérôme Rogerie, Paul Shaw, and Petr Vilím. 2018. IBM ILOG CP

optimizer for scheduling: 20+ years of scheduling with constraints at IBM/ILOG.

Constraints 23, 2 (April 2018), 210–250. https://doi.org/10.1007/s10601-018-9281-

x

[16] Jae-Ho Lee, Jae-Min Yu, and Dong-Ho Lee. 2013. A tabu search algorithm for unre-

lated parallel machine scheduling with sequence- and machine-dependent setups:

minimizing total tardiness. The International Journal of Advanced Manufacturing
Technology 69, 9-12 (Dec. 2013), 2081–2089. https://doi.org/10.1007/s00170-013-

5192-6

[17] Young Hoon Lee and Michael Pinedo. 1997. Scheduling jobs on parallel machines

with sequence-dependent setup times. European Journal of Operational Research
100, 3 (Aug. 1997), 464–474. https://doi.org/10.1016/S0377-2217(95)00376-2

[18] Pengpeng Lin, Jun Zhang, and Marco A. Contreras. 2015. Automatically config-

uring ACO using multilevel ParamILS to solve transportation planning problems

with underlying weighted networks. Swarm and Evolutionary Computation 20

(Feb. 2015), 48–57. https://doi.org/10.1016/j.swevo.2014.10.006

[19] Manuel López-Ibáñez and Thomas Stützle. 2010. Automatic Configuration of

Multi-Objective ACO Algorithms. In Swarm Intelligence. Vol. 6234. Springer
Berlin Heidelberg, Berlin, Heidelberg, 95–106. https://doi.org/10.1007/978-3-

642-15461-4_9

[20] D. Merkle, M. Middendorf, and H. Schmeck. 2002. Ant colony optimization

for resource-constrained project scheduling. IEEE Transactions on Evolutionary
Computation 6, 4 (Aug. 2002), 333–346. https://doi.org/10.1109/TEVC.2002.802450

[21] Klaus Neumann and Christoph Schwindt. 2003. Project scheduling with inventory

constraints. Mathematical Methods of Operations Research (ZOR) 56, 3 (Jan. 2003),
513–533. https://doi.org/10.1007/s001860200251

[22] Héctor Neyoy, Oscar Castillo, and José Soria. 2013. Dynamic Fuzzy Logic Param-

eter Tuning for ACO and Its Application in TSP Problems. In Recent Advances on

Hybrid Intelligent Systems. Vol. 451. Springer Berlin Heidelberg, Berlin, Heidel-

berg, 259–271. https://doi.org/10.1007/978-3-642-33021-6_21

[23] Pierre Ouellet and Claude-Guy Quimper. 2013. Time-Table Extended-Edge-

Finding for the Cumulative Constraint. In Principles and Practice of Constraint
Programming. Vol. 8124. Springer Berlin Heidelberg, Berlin, Heidelberg, 562–577.

https://doi.org/10.1007/978-3-642-40627-0_42

[24] Michael L. Pinedo. 2016. Scheduling. Springer International Publishing, Cham.

https://doi.org/10.1007/978-3-319-26580-3

[25] Mauricio G. C. Resende and Celso C. Ribeiro. 2003. Greedy Randomized Adaptive

Search Procedures. In Handbook of Metaheuristics. Springer US, Boston, MA,

219–249. https://doi.org/10.1007/0-306-48056-5_8

[26] J.M.J. Schutten. 1996. List scheduling revisited. Operations Research Letters 18, 4
(Feb. 1996), 167–170. https://doi.org/10.1016/0167-6377(95)00057-7

[27] Krzysztof Socha and Marco Dorigo. 2008. Ant colony optimization for continuous

domains. European Journal of Operational Research 185, 3 (March 2008), 1155–1173.

https://doi.org/10.1016/j.ejor.2006.06.046

[28] Wouter Souffriau, Pieter Vansteenwegen, Greet Vanden Berghe, and Dirk

Van Oudheusden. 2008. Automated Parameterisation of a Metaheuristic for

the Orienteering Problem. In Adaptive and Multilevel Metaheuristics. Vol. 136.
Springer Berlin Heidelberg, Berlin, Heidelberg, 255–269. https://doi.org/10.1007/

978-3-540-79438-7_13

[29] T. Stützle and H. Hoos. 1998. Improvements on the Ant-System: Introducing the

MAX-MIN Ant System. In Artificial Neural Nets and Genetic Algorithms. Springer
Vienna, Vienna, 245–249. https://doi.org/10.1007/978-3-7091-6492-1_54

[30] R.F. Tavares Neto and M. Godinho Filho. 2013. Literature review regarding Ant

Colony Optimization applied to scheduling problems: Guidelines for implementa-

tion and directions for future research. Engineering Applications of Artificial Intel-
ligence 26, 1 (Jan. 2013), 150–161. https://doi.org/10.1016/j.engappai.2012.03.011

[31] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. 2008. SATzilla: Portfolio-based

Algorithm Selection for SAT. Journal of Artificial Intelligence Research 32 (July

2008), 565–606. https://doi.org/10.1613/jair.2490

https://doi.org/10.1109/ICCCE.2008.4580662
https://doi.org/10.1109/ICCCE.2008.4580662
https://doi.org/10.1007/s10601-018-9281-x
https://doi.org/10.1007/s10601-018-9281-x
https://doi.org/10.1007/s00170-013-5192-6
https://doi.org/10.1007/s00170-013-5192-6
https://doi.org/10.1016/S0377-2217(95)00376-2
https://doi.org/10.1016/j.swevo.2014.10.006
https://doi.org/10.1007/978-3-642-15461-4_9
https://doi.org/10.1007/978-3-642-15461-4_9
https://doi.org/10.1109/TEVC.2002.802450
https://doi.org/10.1007/s001860200251
https://doi.org/10.1007/978-3-642-33021-6_21
https://doi.org/10.1007/978-3-642-40627-0_42
https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1007/0-306-48056-5_8
https://doi.org/10.1016/0167-6377(95)00057-7
https://doi.org/10.1016/j.ejor.2006.06.046
https://doi.org/10.1007/978-3-540-79438-7_13
https://doi.org/10.1007/978-3-540-79438-7_13
https://doi.org/10.1007/978-3-7091-6492-1_54
https://doi.org/10.1016/j.engappai.2012.03.011
https://doi.org/10.1613/jair.2490

	Abstract
	1 Introduction
	2 Description of the problem
	2.1 Basic scheduling problem
	2.2 Group Cumulative Constraint
	2.3 Complexity
	2.4 Data set

	3 Ant Colony Optimization
	3.1 Pheromone trails
	3.2 Construction of a solution
	3.3 Local search
	3.4 Pheromone updating step

	4 Influence of parameters on the solution process
	4.1 Automatic parameter configuration
	4.2 Sensitivity analysis

	5 Per instance parameter selection
	6 Conclusion
	References

