Luc Libralesso

Florian Fontan

2018 ROADEF/EURO challenge glass cutting problem

Keywords:

An anytime tree search algorithm for the

Introduction

In automated planning and scheduling (AI planning) communities, resolution methods often involve exploring a search tree. These methods usually perform an advanced greedy procedure. They explore the search tree starting with the parts that are evaluated a priori most promising and continue the exploration (so long as computational time is provided). Such methods are called anytime tree searches because they can be stopped at any time and provide good solutions relatively to the allowed computation time. Thus, they share the same purpose as classical meta-heuristics, but are less common in Operations Research. Still, one called Beam Search has shown a relative popularity in the Cutting & Packing literature [START_REF] Akeb | A beam search algorithm for the circular packing problem[END_REF][START_REF] Bennell | A beam search implementation for the irregular shape packing problem[END_REF][START_REF] Baldi | Branch-and-price and beam search algorithms for the variable cost and size bin packing problem with optional items[END_REF]. They usually perform little inference within each node, and thus can open millions of nodes per second.

On the other hand, branch & bound algorithms are ubiquitous in Operations Research. Such methods are usually designed to prove optimality, thus relying on strong bound computations (such as Lagrangian relaxations) and advanced pruning rules (dominances, symmetries, etc.) to reduce the size of the search tree as much as possible. However, such refined computations often drastically reduce the number of nodes opened per second. Consequently, the quality of solutions obtained on larger instances can be harmed due to fewer nodes opened.

The constructive nature of both anytime tree search algorithms and branch & bounds suggests that it could be possible to incorporate their respective advantages in a common approach. Indeed, some branch & bound components may be (relatively) inexpensive to compute while still greatly reducing the search space. Using them within an anytime tree search algorithm would allow getting the best of both methods. It would provide a constructive method that is designed to find good solutions fast while taking advantage of the luc.libralesso@grenoble-inp.fr (L. Libralesso); dev@florian-fontan.fr (F. Fontan) ORCID(s):

search space reductions from branch & bounds.

With this in mind, we decided to develop such an algorithm for the 2018 ROADEF/EURO challenge glass cutting problem. We may note that this is unusual as almost all top-ranked methods in previous editions of the challenge mainly rely on local search or mathematical programming techniques.

We propose an anytime tree search with some simple bounds, pseudo-dominance properties, and symmetry breaking rules. We introduce some new guidance strategy that allows the algorithm to perform significantly better than if it was guided by a bound as in classical branch & bound methods.

The search strategy can be roughly described as follows. It is a restarting strategy that starts its first iteration by performing very aggressive heuristic prunings. At the second iteration, it performs less aggressive heuristic prunings, taking more time than the previous iteration, but finding better solutions. If the algorithm runs long enough, some iteration may perform no heuristic pruning, thus the method will be able to guarantee optimality. The resulting method obtained the best results compared to the other submitted approaches during the final phase. We named it Memory Bounded A* as it performs a series of A* with heuristic prunings which guarantee no-more than a given amount of nodes active at the same time.

We also highlight a general methodology that can be applied to other complex problems (and with other tree search algorithms). Indeed, the method can be divided into two parts: the Branching Scheme, usually problem-specific, which is a definition of the implicit search tree (i.e. root node, how to generate children of a given node, lower bounds, dominance rules, etc.); and a strategy, usually generic, to explore the tree. This decomposition allows rapid prototyping of both search tree definitions and tree search algorithms as many generic parts can be reused within other algorithms. It also helps to draw insights about the contribution of each component to the resulting search algorithm. This paper is structured as follows. In Section 2, we state the problem constraints and objective. In Section 3, we give some notations and definitions. In Section 4, we describe the branching scheme and in Section 5, the tree search algorithm we designed. Finally, in Section 6, we show the numerical results we obtained.

Problem description

The 2018 ROADEF/EURO challenge was dedicated to an industrial cutting problem from the French company Saint-Gobain. The challenge consists in packing rectangular glass items into standardized bins of dimensions × (6m × 3.21m).

The cutting plan needs to satisfy the following constraints:

• All items need to be produced

• Item rotation is allowed

• Cuts must be of guillotine type. Figure 1 illustrates two examples of non-guillotine and guillotine patterns. Furthermore, the number of stages is limited to four, with only one 4-cut allowed on a sub-plate obtained after 3-cuts. This configuration is close to classical three-staged non-exact guillotine patterns, but differs in that a sub-plate obtained after 3-cuts may contain two items as illustrated in Figure 2. • Bins contain defects (between 0 and 8 rectangles about a few centimeters high and wide). Items must be defectfree and it is forbidden to cut through a defect. Even if the bins have the same dimensions, the presence of defects makes the set of bins heterogenous. It is important to note that bins must be used in the order they are given.

• Depending on their level, sub-plates are subject to minimum and maximum size constraints. The width of first level sub-plates must lie between 1 min = 100 and 1 max = 3500, except for wastes. The height of second-level sub-plates must be at least 2 min = 100, except for wastes. Finally, the width and the height of any waste area must be at least min = 20. This last constraint has an unusual consequence as illustrated in Figure 3.

The objective is to minimize the total waste area. It differs from classical Bin Packing Problems in that the remaining part of the last bin is not counted as waste. This objective is known in the packing literature as Bin Packing with Leftovers. It can be formulated as: where is the number of bins used; and are respectively the standardized width and height of the bins; is the position of the last 1-cut;  is the set of produced items; and and ℎ are respectively the width and the height of item ∈ .

Definitions and notations

We use the following vocabulary: a -cut is a cut performed in the -th stage. Cuts separate bins or sub-plates in -th level sub-plates. For example, 1-cuts separate the bin in several first level sub-plates. denotes a solution or a node in the search tree.

We call the last first level sub-plate, the rightmost one containing an item; the last second level sub-plate, the topmost one containing an item in the last first level sub-plate; and the last third level sub-plate the rightmost one containing an item in the last second level sub-plate. To compute area() we distinguish two cases

• if contains all items:

area() = curr 1 ()ℎ

• and otherwise:

area() = + prev 1 ()ℎ + (curr 1 () - prev 1 ()) prev 2 () + (curr 3 () - prev 1 ())(curr 2 () - prev 2 ())
We compute the waste of a partial solution as follows:

waste() = area() -item_area() with the sum of the areas of all but the last bin, ℎ the height of the last bin and item_area() the sum of the area of the items of . Area and waste are illustrated in Figure 4.

Branching scheme

General scheme

Two kinds of packing strategies are used in the packing literature: item-based and block-based. In item based strategies, only one item is inserted at each step, whereas in blockbased strategies, multiple items are inserted. Although several researchers highlighted the benefits of block-based approaches [START_REF] Bortfeldt | A tree search algorithm for solving the multi-dimensional strip packing problem with guillotine cutting constraint[END_REF][START_REF] Wei | A block-based layer building approach for the 2D guillotine strip packing problem[END_REF][START_REF] Lodi | Partial enumeration algorithms for Two-Dimensional Bin Packing Problem with guillotine constraints[END_REF], we chose an item-based strategy. Two reasons support this choice. First, the problem has more constraints than classical packing problems from the literature. Thus, generating feasible solutions is already challenging and block-based approaches add even more complexity. Second, the benefits of the block-based approaches might be compensated by a more powerful tree search algorithm.

However, our strategy is not purely item-based: instead of packing one item at each step, we pack the next third level sub-plate. This comes from the observation that because only one 4-cut is allowed in a third level sub-plate, a third level sub-plate has only five possible configurations; it may contain 1. exactly one item, without waste 2. exactly one item with some waste above 3. exactly one item with some waste below 4. exactly two items, without waste 5. no item, only waste These configurations are illustrated in Figure 5. The subplates containing 1 and 2 respectively follow configurations 1 and 2. These are the "standard" configurations. Placing an item on top of the sub-plate as in configuration 3 may be necessary if it would contain a defect otherwise as 3 . Similarly, inserting only waste (configuration 5) may also be necessary if the region contains a defect as the sub-plate containing the second defect. We do not allow directly inserting only waste in a region containing no defects. Such sub-plate may appear in a solution, as the third-level sub-plate to the right of 4 and 5 , but it is implicitly generated when 6 is inserted. Finally, the sub-plate containing items 4 and 5 corresponds to configuration 4.

Third level sub-plates are inserted in the order they are extracted. In Figure 5, this follows the numbering of the items. This ensures to never violate the precedence constraints. All items are candidates if their insertion does not lead to a precedence constraint violation.

Then, a third level sub-plate can be inserted at several depths To reduce the size of the tree, we apply some simple pruning rules:

• if a third-level sub-plate can be inserted in the current bin, we do not consider insertions in a new bin; and if a third level sub-plate can be inserted in the current first (resp. second) level sub-plate without increasing the position of its left 1-cut (resp. top 2-cut), we do not consider insertions in a new first (resp. second) level sub-plate; • If the last insertion is an empty sub-plate at depth , then the next insertion must also happen at depth ; • If the last insertion is a 2-item insertion at depth ≠ 3, then the next insertion must be at depth 3.

With this branching scheme, item rotation and minimum and maximum distances between cuts constraints are easy to take into account.

Pseudo-dominance rule

In this section, we describe a more sophisticated heuristic dominance rule. For a (partial) solution, we define its "front" as the polygonal chain

((curr 1 , 0), (curr 1 , prev 2), (curr 3 , prev 2), (curr 3 , curr 2), (curr 1 , curr 2), (curr 1 , ℎ))
Figure 6 shows two examples of solution fronts. Then we say that solution 1 dominates solution 2 iff they contain the same items and the front of 1 is "before" the front of 2 . (see Figure 7).

If the number of possible subsets of items is small, then for a given subset, we can memorize the best front currently seen during the search and prune any new dominated node encountered. This situation occurs in instances with strong precedence constraints (i.e. two chains) and this is the strategy of the DPA* algorithm presented afterward. However, for most instances, the number of possible subsets is too large and we only use the pseudo-dominance rule among the children of a node. To compensate, an additional symmetry breaking strategy is introduced.

Symmetry breaking strategy

We designed the following symmetry breaking strategy: if they do not contain defects and can be exchanged without violating the precedence constraints, a -level sub-plate is forbidden to contain an item with a smaller index than the previous level sub-plate of the same (-1)-level sub-plate. Preliminary experiments showed that applying the strategy for = 2 and = 3 yield the best results. The symmetry breaking strategy is illustrated in Figure 8.

It should be noted that the branching scheme is not dominant, i.e. for some instances, it may not contain an optimal solution. Likewise, the pseudo-dominance rule considers that solution 1 dominates solution 2 whereas no optimal solution can be reached from 1 but one can be from 2 . More details about this are given by Fontan (2019).

Tree search

During our initial work on the challenge, we first explored the classical "Operations Research" optimization algorithms (local-search, evolutionary algorithms and branch and bounds). However, it seemed difficult for us to find efficient localsearch or evolutionary moves, while it felt relatively natural to design constructive methods. We implemented sev-eral classical constructive algorithms: a greedy algorithm quickly providing solutions but with limited quality; a Best First (A*) algorithm returning the "optimal" one (relatively to the branching scheme) on small instances; and a Depth First struggling to improve the greedy solution. We remind the pseudo-code of the A* algorithm in Algorithm 1. At each iteration, the "best" node is extracted from the fringe and its children are added to the fringe. As written above, our implementation of A* was able to find the optimal solutions on very small instances but was quickly running out of memory larger ones because of the size of the fringe. Therefore, we decided to heuristically prune nodes to bound the required memory. This "heuristic" algorithm performed beyond expectations and provided excellent solutions. However, it depended on the amount of memory allowed for the fringe. If this parameter is too small, the search ends quickly and not benefit from the remaining available time. If too big, the search takes more time and does not provide any solution within the time limit. To get rid of this parameter, we chose to use a restart strategy where we geometrically increase the allowed memory at each restart. The new parameter to calibrate becomes the growth factor, but we found that any value between 1.25 and 3 provided similar results. This simple approach provided good solutions.

Motivated by this simple but yet efficient algorithm, we investigated other anytime tree search algorithms such as beam search [START_REF] Ow | Filtered beam search in scheduling[END_REF] and beam stack search [START_REF] Zhou | Beam-stack search: Integrating backtracking with beam search[END_REF]. We implemented and compared them on the challenge problem. To our surprise, they did not perform as well as the previously described approach. To the best of our knowledge, this approach has not been used in the Operations Research literature before. We describe it in more detail in the next section.

Memory Bounded A* (MBA*)

A* is known to minimize the cost estimate on nodes it opens. However, it suffers from a large memory requirement since it has to store a large number of nodes in the fringe. We propose a simple but yet powerful heuristic variant of A* that cuts less promising nodes if the size of the fringe goes over a parameter . We call this tree search algorithm Memory Bounded A* (MBA*). If = 1, it generalizes a greedy algorithm and if = ∞, it generalizes A*.

The pseudo-code of MBA* is given in Algorithm 2. Only lines 8 to 11 are added compared to the A* algorithm pre-sented in Algorithm 1. MBA* starts with a fringe containing only the root node (line 1). At each iteration, the "best" node is extracted from the queue (lines 3 and 4) and its children are added to the queue (lines 5 to 7). If the size of the queue goes over , the "worst" nodes are discarded (lines 8 to 11).

Guide functions

Tree search methods are dependent on well-crafted guide functions which define the meaning of "best" and "worst" nodes. Using a lower bound is common in the tree search literature. Indeed, if the objective is to prove optimality, using a lower bound as a guide function will minimize the number of opened nodes. Therefore, we first tried this approach and used the waste as a guide function. We noticed that the resulting solutions packed small items on the first plates and big items on the last ones, thus generating little waste in the beginning but a lot in the end. Globally, the solution quality was not satisfactory as illustrated in Figure 9a.

Taking this into account, we designed new guides to balance the cost of inserting small items at the beginning of the solutions:

waste percentage (= waste / area): compared to waste only, the waste has less impact if the solution contains larger items.

waste percentage / average area of packed items: this guide function directly adds a reward to solutions containing large items.

The benefit of these guides is illustrated in Figure 9b.

DPA*: solving instances with strong precedence constraints

Three instances of the challenge contain only 2 precedence chains. If we denote by 1 (resp. 2) the length of the first (resp. second) chain, then the number of possible subsets of items packed in a partial solution of the branching scheme becomes 1 2 . Since the number of items in an instance is less than 700 (this information was given in the challenge description), it becomes possible to store the nondominated fronts encountered for each possible subset without overcoming the memory limitation, compare the front of each opened node with the non-dominated fronts from all the previously encountered nodes and prune the dominated ones.

Therefore, we developed a dedicated algorithm for these instances named Dynamic Programming A* (DPA*). DPA* is an A* algorithm implementing the scheme described in the previous paragraph. DPA* does not bound the size of the queue as MBA* does, and uses the waste as a guide function. Therefore, if it terminates, it returns the "optimal" solution (relatively to the branching scheme and the pseudodominance rule).

We may note that for a given subset of items, there could be an exponential number of non-dominated fronts, which could degrade DPA* performances. This is at least not an issue for the concerned instances from the challenge.

Global algorithm

For the competition, we distinguished the case where the instance has two chains or less. In this case, we run DPA*.

If it has strictly more than two chains, we do not use DPA* since it would overcome the memory limitation. Since the processor used to evaluate the participant submissions had 4 physical cores, we run 4 threads, each one running a restarting MBA* with a given growth factor and a given guide function. Each MBA* is initially executed with a fringe maximal size of 2, and each time one terminates, it is restarted with a maximal fringe size multiplied by its growth factor. If the growth factor is 2, the maximal size doubles at each iteration. All the threads share the information of the best solution found. If one finds a better solution, the others take advantage of it to perform more cuts and globally perform better together than alone. The threads run the following algorithms:

• MBA*, waste percentage guide, growth factor 1.33

• MBA*, waste percentage guide, growth factor 1.5

• MBA*, waste percentage / average size guide, growth factor 1.33

• MBA*, waste percentage / average size guide, growth factor 1.5

Numerical results

In this section, we first evaluate the contribution of the components we described in the previous sections in the main algorithm. Then, we show the benefits of using DPA* on instances with only two precedence chains. Finally, we provide computational results with the challenge setting. Instances generally have between 300 and 600 items and 10 to 15 chains. They are available online1 .

Contribution of the components

In this section, computational experiments have been performed on a personal computer with an Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz with 16GB RAM. 9: 9a shows a solution obtained using the waste as guide function. Notice that at the beginning of the solution, small items are omnipresent whereas in later plates, only large items are present, thus globally generates more waste. 9b shows the effect of the guide biased by the item average size on a solution of the same instance. We observe that small and large items are better mixed and significantly less waste is generated at the end of the solution.

We consider the 12 possible combinations of the components we designed, namely MBA* to be compared with an Iterative Beam Search [START_REF] Zhang | Complete anytime beam search[END_REF]; with or without the symmetry breaking strategy; and with waste (w), waste percentage (p), or waste percentage/average size (a) guide. We run each pair of instance-algorithm for 100 seconds.

In Table 1, we show a summary of the performances of each variant. The goal is to help us select the best combinations to use. MBA* with the symmetry breaking strategy and guided by the waste percentage (MBA*+sym+p) and MBA* with the symmetry breaking strategy and guided by the waste percentage / average size (MBA*+sym+a) clearly outperform all other combinations. That is why these are the two combinations that we use. Since the processor used to evaluate participant submissions has 4 physical cores, we dedicate two threads for each combination with different growth factor (1.33 and 1.5) to add some robustness.

Table 2 presents an analysis of the contribution of each component individually. Each column corresponds to the best result per instance obtained by a subset of algorithms that uses a given component. For instance best IBS corresponds to a subset of algorithms using Iterative Beam Search, thus excluding MBA* (6 algorithms). MBA* variants outperform the Iterative Beam Search variants (producing 12% less waste). It finds 41/50 best solutions and 36 best so- without the symmetry breaking strategy) showing that integrating state-space reductions can greatly benefit to anytime tree search algorithms and probably even to constructive meta-heuristics. Finally, as expected, the waste (lower bound) guide provides the worst results among the 3 considered guides (16% more waste than the waste percentage guide and 20% more waste than the waste percentage / average size guide and only 5 best solutions on 50 instances). However, the waste percentage guide and the waste percentage / average size guide provided similar results (with a slight advantage on the latest as it produces 5% less waste and finds one best solution more). These results are interesting as they show that both guides are complementary. Indeed, they produce 21 (resp. 22) best solutions where they are the only one to obtain them. Thus it is worth using both.

DPA*

Table 3 shows the benefits of using DPA* on instances with only two precedence chains. There is one such instance in each dataset, but the one in dataset A is trivial to solve, therefore we only consider instances B5 and X8. Unlike MBA*, DPA* is not anytime and terminates long before the 3600 seconds time limit. Furthermore, the solutions it returns are significantly better and are even the best-known solutions for both instances.

Final results

Table 4 sums up the challenge final results. Computational experiments have been performed on a computer with an Intel Core i7-4790 CPU @ 3.60 GHz × 8 processor with 31.3 Go of RAM. This configuration is similar to the one of the challenge. Since the challenge, a few adjustments have been made. Therefore, the results presented here slightly differ from the results obtained during the final phase. Compared to the challenge version, the current version performs better: the total waste on dataset B and X decreases from 493, 600, 549 for the challenge version to 469, 910, 749 for the current one. Columns Final phase best 180s and Final phase best 3600s contain the best solutions found during the final phase. Results annotated with a star indicate that this solution was found by our algorithm during the final phase of the challenge. The Best known column contains the best solution up to our knowledge. They may have been found during the development of the algorithm, with execution times exceeding 3600 seconds or by other teams. Finally, even if it is not indicated in the table, on most of the instances, if the algorithm is run longer, for example, 2 hours, the solution will still be improved.

Conclusion and perspectives

In this article, we presented a new anytime tree search algorithm called MBA* for the 2018 ROADEF/EURO challenge glass cutting problem. It performs successive iterations, restarting when its heuristic search tree exploration is completed. During the first iterations, it performs aggressive prunings and behaves like a greedy algorithm. As iterations go, the algorithm performs fewer heuristic prunings, and thus gets access to better solutions (at the cost of an increase of the computation time of each iteration). If enough time and memory are available, the algorithm ends up performing an iteration with no heuristic pruning, finding the best solution regarding the branching scheme.

We proposed two guides (waste percentage, and waste percentage / average item size). These guides can find significantly better solutions than using a lower bound (the waste), which is what is usually used in branch and bounds. We also presented a symmetry breaking strategy and showed that it significantly improves the quality of the solutions returned by the algorithm.

Also, we designed another algorithm, DPA*, for instances with only two precedence chains. This algorithm returns the best-knowns on these instances within short times.

This result shows that anytime tree search algorithms from the AI planning community, and branch and bounds from the Operations Research community can benefit from each other, leading to algorithms competitive with classical meta-heuristics. We believe that the representation of anytime tree search algorithms in the Operations Research literature does not reflect the benefits of applying such methods on complex optimization problems. To the best of our knowledge, many of them remain unexplored such as Beam Stack Search [START_REF] Zhou | Beam-stack search: Integrating backtracking with beam search[END_REF], SMA* [START_REF] Russell | Efficient memory-bounded search methods[END_REF] or Anytime Column Search [START_REF] Cohen | Anytime focal search with applications[END_REF].

Motivated by the success of MBA* on this glass cutting application, Fontan and Libralesso (2020) already adapted it for classical guillotine cutting problems from the literature and showed that even on more fundamental problems, it is still competitive with the other dedicated algorithms from the literature.

B1

No

Figure 1 :

 1 Figure 1: Illustration of a non-guillotine pattern (a) and a guillotine one (b)

Figure 2 :

 2 Figure 2: Only one 4-cut is allowed. Therefore, pattern (a) is feasible but pattern (b) is not

Figure 3 :

 3 Figure3: Optimal solution of the case containing the following three items with the chain precedence constraint 1 → 2 → 3 . Additional waste must be added before the first 1-cut. Otherwise either the waste area to the right of 1 or the waste area to the right of 2 would violate the minimum waste constraint.

 are the left and right coordinates of the last first level sub-plate; prev 2 () and curr 2 () are the bottom and top coordinates of the last second level sub-plate; and prev 3 () and curr 3 () are the left and right coordinates of the last third level sub-plate. Figure4presents a usage example of these definitions. We define the area and the waste of a solution as follows:

Figure 4 :

 4 Figure 4: Last bin of a solution which does not contain all items. The area is the whole hatched part and the waste in the grey hatched part.

Figure 5 :

 5 Figure 5: Illustration of third level sub-plate possible configurations. Black rectangles are defects.

•

 depth 0: in a new bin • depth 1: in a new first level sub-plate to the right of the current one • depth 2: in a new second-level sub-plate above the current one • depth 3: in the current second-level sub-plate already, to the right of the last third-level sub-plate

Figure 6 :Figure 7 :

 67 Figure 6: Illustration of the front of two partial solutions

Figure 8 :

 8 Figure8: Illustration of the symmetry breaking strategy: pattern (a) is forbidden because the second-level sub-plates containing 1 and 2 can be exchanged without a feasibility issue. However, pattern (b) is allowed because of the defect and pattern (c) is also allowed because if the second-level sub-plates are exchanged, then the precedence constraint between 2 and 3 is violated.

Algorithm 2 :

 2 Memory Bounded A* (MBA*) 1 fringe ← {root}; 2 while f ringe ≠ ∅ and time < timelimit do

 (a) waste only guide -first and last plate (b) waste / average size guide -first and last plate

Figure

 Figure9: 9a shows a solution obtained using the waste as guide function. Notice that at the beginning of the solution, small items are omnipresent whereas in later plates, only large items are present, thus globally generates more waste. 9b shows the effect of the guide biased by the item average size on a solution of the same instance. We observe that small and large items are better mixed and significantly less waste is generated at the end of the solution.

Table 3

 3 DPA* vs MBA*

Table 4

 4 Computational experiments comparing the proposed approach compared to other contestants

		prec	3 232 698	3 765 558	*2 661 318	3 136 398	2 661 318
	B2		*15 635 435	14 312 915	*13 674 125	13 398 065	11 931 095
	B3		20 540 813	19 786 463	18 191 093	17 093 273	15 786 803
	B4		*8 269 045	8 323 615	*8 269 045	7 973 725	7 315 675
	B5	2 chains	72 155 615	72 155 615	72 155 615	72 155 615	72 155 615
	B6		*12 116 527	12 488 887	*11 195 257	11 089 327	10 800 427
	B7	No prec	9 601 299	9 177 579	*8 355 819	7 678 509	6 628 839
	B8		*17 865 559	17 152 939	16 067 959	15 840 049	14 398 759
	B9		18 502 147	19 969 117	17 484 577	17 474 947	16 495 897
	B10		26 012 183	26 904 563	*21 951 533	23 065 403	21 951 533
	B11		25 251 890	27 312 710	22 584 380	23 820 230	20 626 280
	B12		*15 868 657	13 734 007	*13 958 707	13 120 897	12 514 207
	B13		*28 349 055	27 360 375	*24 471 375	23 078 235	22 657 725
	B14		*9 346 480	9 442 780	*8 656 330	8 377 060	8 023 960
	B15		*27 794 441	24 568 391	*24 517 031	23 088 581	22 619 921
	X1		*15 508 097	15 302 657	*14 127 797	14 127 797	13 720 127
	X2	No prec	6 034 937	6 083 087	*5 434 667	4 879 337	4 795 877
	X3		*8 285 206	7 649 626	*7 473 076	7 180 966	6 837 496
	X4		12 182 072	15 488 372	11 405 252	13 366 562	11 405 252
	X5		5 081 297	4 988 207	4 712 147	4 715 357	4 522 757
	X6		12 565 673	11 031 293	*10 363 613	9 496 913	9 365 303
	X7		*22 443 360	22 876 710	21 127 260	21 191 460	20 568 720
	X8	2 chains	*24 788 661	22 265 601	*24 788 661	22 265 601	22 265 601
	X9		*22 251 225	22 312 215	20 167 935	20 479 305	20 039 535
	X10		*20 110 472	18 778 322	*17 824 952	17 186 162	16 865 162
	X11		*13 489 692	12 802 752	*12 417 552	11 676 042	11 011 572
	X12		*11 963 845	12 358 675	*10 583 545	10 503 295	10 246 495
	X13		15 950 172	14 345 172	*13 533 042	13 125 372	12 130 272
	X14		*8 889 542	8 591 012	*8 013 212	7 644 062	7 422 572
	X15		13 990 194	13 710 924	11 682 204	11 682 204	10 882 914

https://www.roadef.org/challenge/2018/en/instances.php