Florian Fontan

Luc Libralesso
email: luc.libralesso@grenoble-inp.fr

An anytime tree search algorithm for two-dimensional two-and three-staged guillotine packing problems

Keywords: two-dimensional guillotine packing, bin packing, knapsack, strip packing, anytime algorithm, tree search algorithm

Libralesso and Fontan (2020) proposed an anytime tree search algorithm for the 2018 ROADEF/EURO challenge glass cutting problem 1 . The resulting program was ranked first among 64 participants. In this article, we generalize it and show that it is not only effective for the specific problem it was originally designed for, but is also very competitive and even returns state-of-the-art solutions on a large variety of Cutting and Packing problems from the literature. We adapted the algorithm for two-dimensional Bin Packing, Multiple Knapsack, and Strip Packing Problems, with two-or three-staged exact or non-exact guillotine cuts, the orientation of the first cut being imposed or not, and with or without item rotation. The combination of efficiency, ability to provide good solutions fast, simplicity and versatility makes it particularly suited for industrial applications, which require quickly developing algorithms implementing several business-specific constraints. The algorithm is implemented in a new software package called PackingSolver.

Even though most of the new constraints taken into account integrate naturally within the algorithm, several improvements need to be made to make it efficient on the large variety of problems and instances from the literature: two new guide functions are proposed to deal with instances with different item distributions;

an additional guide is designed for the Knapsack objective; and some flexibility has been introduced in the symmetry breaking strategy. Libralesso and Fontan (2020) proposed an efficient algorithm for a specific problem with specific constraints and instances. Here, we propose an efficient approach which should be useful for almost any (guillotine for now) Packing Problem. Also, as discussed in Section 5, experimenting on all these variants greatly improved our understanding of the effectiveness of MBA* and other tree search algorithms.

Introduction

We consider two-dimensional guillotine Packing Problems: one has to pack rectangles of various sizes into larger bins while only edge-to-edge cuts are allowed. In a solution, guillotine cuts can be partitioned into stages, i.e. series of parallel cuts, and it is common to limit the number of allowed stages. Here, we restrict to two-or three-staged guillotine patterns. In both cases, we consider both exact and non-exact variants. In the non-exact variant, an additional cut is allowed to separate items from waste. Figure 1 illustrates the different pattern types.

We consider the three main objectives studied in the literature: Bin Packing, Knapsack and Strip Packing.

In Bin Packing and Strip Packing Problems, all items need to be produced. In Bin Packing Problems, the number of used bins is minimized, while in Strip Packing Problems, there is only one container with one infinite dimension and the objective is to minimize the length used in this dimension. In Knapsack Problems, the number of containers is limited, every item has a profit and the total profit of the packed items is maximized.

Finally, for each variant, we consider the oriented case where item rotation is not allowed and non-oriented case where it is.

Throughout the article, the different variants are named following our notations illustrated with the following examples:

• The following definitions are given for the case where the first cut in the last bin is vertical, but naturally, adapt to the case where it is horizontal. We call the last first level sub-plate, the rightmost one containing an item; the last second level sub-plate, the topmost one containing an item in the last first level sub-plate;

and the last third level sub-plate the rightmost one containing an item in the last second level sub-plate.

x prev We define the area and the waste of a solution S as follows:

area(S) =                A + x curr 1 (S)h if S contains all items A + x prev 1 (S)h + (x curr 1 (S) -x prev 1 (S))y prev 2 (S) + (x curr 3 (S) -x prev 1 (S))(y curr 2 (S) -y prev 2 (S)) otherwise waste(S) = area(S) -item_area(S)
with A the sum of the areas of all but the last bin, h the height of the last bin and item_area(S) the sum of the area of the items of S. Area and waste are illustrated in Figure 2. Packing or Multiple Knapsack. However, adapting the algorithm requires to provide a heuristic procedure, on which the efficiency of the algorithm highly relies. We did not find any use of their tabu search in the subsequent literature. Also, a framework has been proposed by [START_REF] Nepomuceno | A Hybrid Optimization Framework for Cutting and Packing Problems[END_REF]; unfortunately, it has only been implemented for BPP-O and we did not find any use of their framework in the subsequent literature either.

J 1 J 2 J 3 J 4 x curr 1 = x curr
Regarding our methodology, even though tree search algorithms have been widely used to solve Packing Problems, the search algorithm that we implemented does not seem to have been proposed before. We may notice that many packing algorithms rely on Beam Search which is relatively close, as discussed in Section 5. [START_REF] Akeb | A beam search algorithm for the circular packing problem[END_REF], [START_REF] Hifi | Beam search and non-linear programming tools for the circular packing problem[END_REF], [START_REF] Akeb | Adaptive beam search lookahead algorithms for the circular packing problem[END_REF] and [START_REF] Akeb | An augmented beam search-based algorithm for the circular open dimension problem[END_REF] implemented it for Circular Packing Problems; [START_REF] Bennell | A beam search implementation for the irregular shape packing problem[END_REF] and [START_REF] Bennell | A beam search approach to solve the convex irregular bin packing problem with guillotine cuts[END_REF] for Irregular Packing Problems; [START_REF] Wang | A multi-round partial beam search approach for the single container loading problem with shipment priority[END_REF], [START_REF] Araya | A beam search approach to the container loading problem[END_REF] and Araya et al. (2020) for three-dimensional Packing Problems; and [START_REF] Hifi | A parallel algorithm for constrained two-staged two-dimensional cutting problems[END_REF] for 2NEGH-KP-O. However, these Beam Search implementations significantly differ from our tree search implementation. Most of them do not use a restart strategy, are block-based approaches and use probing (filling partial solutions with a greedy heuristic) to evaluate the quality of nodes.

Furthermore, they are globally more complex than our tree search implementation, suggesting that we better captured the key ideas that make tree search algorithms efficient for Packing Problems.

Algorithm description

We propose an anytime tree search algorithm.

Anytime is a terminology usually found in automated planning and scheduling (AI planning) communities. It means that the algorithm can be stopped at any time and still provides good solutions. In other words, it produces feasible solutions quickly and improves them over time (as classical meta-heuristics do).

Tree search algorithms represent the solution space as an implicit tree called "branching scheme" and explore it completely in the case of exact methods or partially in the case of heuristic methods. The branching scheme is described in Section 3.1 and the tree search algorithm in Section 3.2.

Branching scheme

We describe the branching scheme for the 3-staged cases with vertical cuts in the first stage. For the 2-staged cases, we merely impose the position of the first cut to be at the end of the bin and adjust the computation of parameters accordingly; and when the cuts in the first stage are horizontal, we simply adapt the computation of coordinates.

The branching scheme is rather straightforward. The root node is the empty solution without any items, and at each stage, a new item is added. All items that do not belong to the current node are considered. To handle exact guillotine cuts, we simply fix the position of the 2-cut above an item inserted in a new bin, first or second level sub-plate, i.e. the next items inserted in the same second level sub-plate will only be those of the same height. Item rotation or not is naturally handled in the branching scheme.

J 1 J 2 J 3 J 4 (a) J 1 J 2 J 3 J 4 (b)
To reduce the size of the tree, we apply some simple dominance rules.

First, if an item can be inserted in the current bin, we do not consider insertions in a new bin; and if an item can be inserted in the current first (resp. second) level sub-plate without increasing the position of its left 1-cut (resp. top 2-cut), we do not consider insertions in a new first (resp. second) level sub-plate.

Then, if item rotation is allowed, some insertions can be discarded as illustrated in Figure 3.

We also impose an order on identical items.

Finally, we add the following symmetry breaking strategy: a k-level sub-plate is forbidden to contain an item with a smaller index than the previous k level sub-plate of the same (k -1)-level sub-plate. The symmetry breaking strategy is controlled with a parameter s, 1 ≤ s ≤ 4. If s = k, then the symmetry breaking strategy is only used with k level sub-plates, k ≥ k. For example, if s = 4, no symmetry breaking strategy is used. The choice of the value of s is discussed in Section 5.

Tree search algorithm

The tree described in the previous section is too large to be entirely explored. Therefore, we use a tree search algorithm that we called Memory Bounded A* (MBA*) to explore the most interesting parts in priority. The pseudo-code is given in Algorithm 1. MBA* starts with a queue containing only the root node. At each iteration, the "best" node is extracted from the queue and its children are added to the queue.

If the size of the queue goes over a pre-defined threshold value, the "worst" nodes are discarded. We start with a threshold of 2, and each time the queue becomes empty, we start over with a threshold multiplied by the growth factor f . We choose f = 1.5 as discussed in Section 5.

The function used to define "better" and "worse" is called a guide. • mean_item_area(S) the mean area of the items of S;

• mean_squared_item_area(S) the mean squared area of the items of S.

For Knapsack Problems, we use the following guide function:

c 4 (S) = area(S) profit(S)
with profit(S) the sum of profit of the items of S.

The importance and design of these guide functions are discussed in Section 5.

Computational experiments

The algorithm has been implemented in C++ in a new software package called PackingSolver. The code is available online 2 . The repository also contains all the scripts used to conduct the experiments so that results can be reproduced. The results presented above have been obtained with PackingSolver 0.2 3 running on a personal computer with an Intel Core i5-8500 CPU @ 3.00GHz × 6. We allow running up to 3 threads with different settings in parallel. The settings have been chosen following the observations given in Section 5. Better settings may exist, we try to reproduce the results one would obtain in a practical situation where the global characteristics of the instances are known.

We compare the performances of our algorithm with the best algorithms from the literature for each variant. Due to a large number of problems, we only provide a synthesis of the results here. However, detailed results are available online4 and the interested reader is encouraged to have a look at them.

Results are summarized in Tables 1, 2 and 3. The first column of the tables indicates the article from which the results have been extracted or the parameters we used for our algorithm. c b a indicates a thread with guide function c a and symmetry breaking parameter b. TL stands for "time limit". The time limit has been chosen to yield a good compromise between computation time and the best solution value. We only indicate the frequencies of the processors used to evaluate the other algorithms when they significantly differ from ours, i.e. below 2GHz.

For Bin Packing Problems, the second column contains the total number of bins used in Table 1a and the average of the average percentage of waste of each sub-dataset in Table 1b. For Knapsack and Strip

Packing Problems, it contains the average gap to the best-known solutions. The third one indicates the average time to best when available, or the average computation time.

Dataset "hifi" is a dataset composed of instances from [START_REF] Christofides | An Algorithm for Two-Dimensional Cutting Problems[END_REF], [START_REF] Wang | Two Algorithms for Constrained Two-Dimensional Cutting Stock Problems[END_REF], [START_REF] Oliveira | An improved version of Wang's algorithm for two-dimensional cutting problems[END_REF], [START_REF] Tschöke | A new parallel approach to the constrained two-dimensional cutting stock problem[END_REF], [START_REF] Fekete | A new exact algorithm for general orthogonal d-dimensional knapsack problems[END_REF], [START_REF] Fayard | An efficient approach for large-scale two-dimensional guillotine cutting stock problems[END_REF], [START_REF] Hifi | An improvement of viswanathan and bagchi's exact algorithm for constrained two-dimensional cutting stock[END_REF] and [START_REF] Cung | Constrained two-dimensional cutting stock problems a best-first branch-and-bound algorithm[END_REF]. Researchers usually test their algorithms on a subset of these instances, but often not the same. Dataset "bwmv" refers to datasets from [START_REF] Berkey | Two-Dimensional Finite Bin-Packing Algorithms[END_REF] and [START_REF] Martello | Exact Solution of the Two-Dimensional Finite Bin Packing Problem[END_REF] which are usually used together.

Other datasets are

• "beasley1985" from [START_REF] Beasley | Algorithms for Unconstrained Two-Dimensional Guillotine Cutting[END_REF] • "fayard1998" from [START_REF] Fayard | An efficient approach for large-scale two-dimensional guillotine cutting stock problems[END_REF] • "kroger1995" from [START_REF] Kröger | Guillotineable bin packing: A genetic approach[END_REF] • "hopper2000" from Hopper (2000)

• "hopper2001" from Hopper and Turton (2001)

• "alvarez2002" from Alvarez-Valdés et al. (2002)

• "morabito2010" from Morabito and Pureza (2010)

• "hifi2012" from [START_REF] Hifi | A parallel algorithm for constrained two-staged two-dimensional cutting problems[END_REF] • "velasco2019" from Velasco and Uchoa (2019) (2016) for the considered datasets. Furthermore, the average time to best is of the order of a second, which is significantly smaller than the average time reported for the other algorithms. On 3NEGH-BPP-O, 3GH-BPP-O, and 2NEGH-BPP-O, the average of the average percentage of waste of PackingSolver is smaller than the one of the algorithms from [START_REF] Alvelos | Sequence based heuristics for twodimensional bin packing problems[END_REF]. However, on 2GH-BPP-O, it is greater. Finally, compared to the algorithms from [START_REF] Puchinger | Models and algorithms for three-stage two-dimensional bin packing[END_REF] and [START_REF] Alvelos | A Hybrid Heuristic Based on Column Generation for Two-and Three-Stage Bin Packing Problems[END_REF], it needs more bins, but the average time to best is two orders of magnitude smaller than the average time reported for those algorithms. We also note that PackingSolver respectively needs significantly fewer bins on 3NEGH-BPP-O and 3GH-BPP-O compared to the algorithms from [START_REF] Puchinger | Models and algorithms for three-stage two-dimensional bin packing[END_REF] and [START_REF] Alvelos | A Hybrid Heuristic Based on Column Generation for Two-and Three-Stage Bin Packing Problems[END_REF] for 3GH-BPP-O and 2NEGH-BPP-O,

Knapsack Problems

Results for Knapsack Problems are summarized in Table 2. We include comparisons with algorithms designed for the non-staged variants. In these cases, PackingSolver usually fails to find the best solutions.

It seems likely that they often cannot be reached with only 3 stages. However, its average gap to best is generally less than 1% and on datasets "velasco2019" it is even better than the recent algorithm from Velasco and Uchoa (2019). The same happens on dataset "fayard1998" for G-KP-R, but the algorithm developed by [START_REF] Bortfeldt | A genetic algorithm for the two-dimensional knapsack problem with rectangular pieces[END_REF] seems to perform significantly worse than more recent algorithms and none of them has been tested on this dataset.

On 3NEGV-KP-O, the average gap to best of PackingSolver is better than [START_REF] Cui | Heuristic for constrained two-dimensional three-staged patterns[END_REF], but at the expense of longer computation times. For 2NEGH-KP-O, as [START_REF] Alvarez-Valdes | GRASP and Path Relinking for the Two-Dimensional Two-Stage Cutting-Stock Problem[END_REF], it finds all the best solutions, but faster. Compared to the algorithm from [START_REF] Hifi | Algorithms for the Constrained Two-Staged Two-Dimensional Cutting Problem[END_REF], it performs slightly worse on dataset "alvarez2002" (even if the average gap is 0.0, it fails to find the best solution on two instances) but better on dataset "hifi2012".

On variants 2NEG-KP-R, 2G-KP-O, 2GH-KP-O, and 2GV-KP-O for which [START_REF] Lodi | Integer linear programming models for 2-staged two-dimensional Knapsack problems[END_REF] and [START_REF] Hifi | Approximate and Exact Algorithms for Constrained (Un) Weighted Two-dimensional Twostaged Cutting Stock Problems[END_REF] developed exact algorithms, PackingSolver finds all optimal solutions in reasonable computation times.

Note that, to the best of our knowledge, only [START_REF] Cui | An algorithm for the constrained two-dimensional rectangular multiple identical large object placement problem[END_REF] proposed an algorithm for a variant of a Multiple Knapsack Problem. However, they consider homogenous T-shaped patterns which we do not consider in this article.

Strip Packing Problems

Not many variants of guillotine Strip Packing Problems have been studied in the literature; only G-SPP-O, G-SPP-R, and 2NEGH-SPP-O. This makes comparisons with PackingSolver difficult since it is limited to three-staged patterns, and 2NEGH-SPP-O has several specific structural properties that dedicated algorithms can exploit, but not a more generic one. We still provide computational experiments for these variants in Table 3. As expected, PackingSolver does not perform as well. Still, on dataset "bwmv", it returns strictly better average solutions on 16 out of 50 groups of instances for G-SPP-O and on 14 out of 50 groups of instances for G-SPP-R than the algorithm from [START_REF] Wei | A block-based layer building approach for the 2D guillotine strip packing problem[END_REF]. To highlight a bit more the contribution of our algorithm for Strip Packing Problems, we provide a comparison of the solutions from

Discussion

In this section, we discuss some items related to the algorithm. Growth factor of the queue size threshold:. In Section 3.1, we indicated that we set the growth factor of the queue size threshold to 1.5. The greater the threshold, the better the solutions will be, but the longer MBA* will take to terminate. Furthermore, for Bin Packing and Strip Packing Problems, full solutions are usually found shortly before it terminates. Therefore, by choosing a too large value for the growth factor, we take the risk to reach the time limit having to spend a lot of time with a given threshold without obtaining any solutions from it. On the other hand, if the growth factor is too small, then only small thresholds value will be explored and no good solutions will be found. In our experiments, 1.5 proved to be a good compromise.

Choice of guide functions:. The effectiveness of MBA* highly relies on the definition of its guide function.

For MBA*, the guide function should be relevant to compare two nodes at different stages of the tree.

Therefore, the waste-percentage c 0 appears much more relevant than the waste alone for Bin Packing and Strip Packing variants. Guide function c 1 is adapted from c 0 , but it favours solutions containing larger items. This helps to avoid situations where all small items are packed in the first bins and the last bins get all the large items, creating large waste areas. Guide function c 2 is adapted from c 1 : indeed, even if c 1 favors large items first, solutions with no waste at all will always be extracted first, even if they contain only small items. The constant in c 2 aims at fixing this behavior and will lead to better solutions on instances in which optimal solutions contain significant waste (more than 10%). c 3 is adapted from c 2 and favours even more large items first. This guide function is useful for some instances containing several very large items. Finally, c 4 is a natural adaption of c 0 for Knapsack variants. An experimental comparison of several guide functions for the 2018 ROADEF/EURO challenge glass cutting problem is presented in Libralesso and Fontan (2020).

Depth of the symmetry breaking strategy:. In exact tree search algorithms, it is usually worth breaking symmetries. However, this is not the case when the tree is not meant to be explored completely. For example, consider two symmetrical nodes, the first one normally appearing in the queue, but the second one never being added to the queue because one of its ancestors has been removed to reduce the size of the queue.

If the first one is not explored because the symmetry has been detected, then this solution will not be found during the search. How to determine the ideal depth of the symmetry breaking strategy for an instance is not clear yet. The relative size of the items compared to the bin might be an influential factor. For the experiments, we chose 2 or 3 as "standard" values. For some instances containing many items (more than 1000), only a value of 4 ensures finding a feasible solution quickly; in contrast, for some knapsack instances with few first-level sub-plates, a value of 1 gives access to better solutions. An experimental evaluation of the influence of the symmetry breaking strategy for the 2018 ROADEF/EURO challenge glass cutting problem is presented in Libralesso and Fontan (2020).

MBA* vs Beam Search:. Beam Search is another popular tree search algorithm in the packing literature.

Beam Search also starts with a queue containing only the root node. However, at each iteration, all nodes of the queue are expanded, and as in MBA*, if the size of the queue goes over a pre-defined threshold, the worst nodes are discarded. Thus, at each iteration, the queue always contains nodes belonging to the same level of the tree. Beam Search seems therefore effective when the guide function is relevant to compare nodes belonging to the same level. This is for example generally not the case in Branch-and-Cut trees where branching consists in fixing a variable to 0 or 1. With our branching scheme for Packing Problems, it is easier to compare such solutions, but the guide functions we presented in Section 3 make it even possible to compare nodes at different levels of the search tree. Thus, Beam Search expands many nodes which are not that much interesting, whereas MBA* always expands only the best current node. An experimental comparison of MBA* and Beam Search for the 2018 ROADEF/EURO challenge glass cutting problem is presented in Libralesso and Fontan (2020). It shows that MBA* finds significantly better solutions than the equivalent Beam Search implementation.

Higher staged guillotine cuts:. Our branching scheme generates up to three-staged patterns. One could wonder whether it could be possible to adapt it for four-staged or non-staged guillotine patterns. However, if a similar branching scheme seems possible, it may significantly increase symmetry issues. We believe that this would be prohibitive. MBA* might be used to solve these variants, but new branching schemes need to be designed.

Item-based vs block-based:. Many researchers highlighted the benefits of using block-based approaches, i.e.

inserting several items at each stage of the tree [START_REF] Bortfeldt | A tree search algorithm for solving the multi-dimensional strip packing problem with guillotine cutting constraint[END_REF][START_REF] Wei | A block-based layer building approach for the 2D guillotine strip packing problem[END_REF], Lodi et al. 2017). It is interesting to note that it is not what we implemented, yet our algorithm is competitive.

Conclusion and future work

We showed that the algorithm proposed by Libralesso and Fontan (2020) for the 2018 ROADEF/EURO challenge glass cutting problem is actually also very competitive compared to other dedicated algorithms for guillotine Packing Problems from the literature, and is even able to return state-of-the-art solutions on several variants. Its performances seem to rely on two key components: a branching scheme which limits symmetry issues; and a tree search algorithm fully exploiting guide functions which make it possible to compare nodes at different levels of the search tree.

In addition to effectiveness, the choice of a tree search algorithm makes the algorithm attractive for problems with additional side constraints. Indeed, new constraints are likely to reduce the size of the search tree.

Figure 1 :

 1 Figure 1: Pattern type examples

 BPP-O: (non-guillotine) Bin Packing Problem, Oriented • G-BPP-R: Guillotine cuts, Bin Packing Problem, Rotation • 2G-KP-O: 2-staged exact guillotine cuts, first cut horizontal or vertical, Knapsack Problem, Oriented • 3NEGH-SPP-O: 3-staged non-exact guillotine cuts, first cut horizontal, Strip Packing Problem, Oriented We also use the following vocabulary: a k-cut is a cut performed in the k-th stage. Cuts separate bins into k-th level sub-plates. For example, 1-cuts separate the bin in several first level sub-plates. S denotes a solution or a node in the search tree (a partial solution).

 are the left and right coordinates of the last first level sub-plate; y prev 2 (S) and y curr 2 (S) are the bottom and top coordinates of the last second level sub-plate; and x prev 3 (S) and x curr 3 (S) are the left and right coordinates of the last third level sub-plate. Figure 2 presents a usage example of these definitions.

Figure 2 :

 2 Figure 2: Last bin of a solution which does not contain all items. The area is the whole hatched part and the waste in the grey hatched part.

 However, items in a solution are inserted according to the following order: rightmost first level sub-plates first; within a first level sub-plate, bottommost second level sub-plates first; and within a second level subplate, rightmost items first. Thus, a new item can be inserted in a new bin; in a new first level sub-plate to the right of the current one; in a new second-level sub-plate above the current one; in a new third-level sub-plate, to the right of the last added item. If the cuts of the first stage can be vertical or horizontal, then two different insertions in a new bin are considered: an insertion in a new bin with vertical cuts in the first stage, and an insertion in a new bin with horizontal cuts in the first stage.

Figure 3 :

 3 Figure 3: Solution (a) dominates solution (b) because the hatched area will not be used

•

 The lower the value of the guide function is, the better the solution. For Bin Packing and Strip Packing Problems, we designed the following guide functions: c 0 (S) = waste_percentage(S) Algorithm 1 Memory Bounded A* (MBA*) 1: queue ← {root} 2: while |queue| = ∅ and time < timelimit do waste_percentage(S) = waste(S)/area(S);

 [START_REF] Lodi | Models and Bounds for Two-Dimensional Level Packing Problems[END_REF] and from[START_REF] Cui | Triple-solution approach for the strip packing problem with two-staged patterns[END_REF] for 2NEGH-SPP-O with the solutions returned by PackingSolver for 2NEGH-SPP-R, i.e. when item rotation is allowed. The average solutions returned by PackingSolver are strictly better on each of the 50 groups of instances of dataset "bwmv".

Table 1 :

 1 Results on Bin Packing Problems

4.1. Bin Packing Problems

Results for Bin Packing Problems are summarized in Table

1

. On 2NEGH-BPP-O and 2NEGH-BPP-R, PackingSolver respectively needs fewer bins than the algorithms from

[START_REF] Cui | Heuristic for the rectangular two-dimensional single stock size cutting stock problem with two-staged patterns[END_REF]

and

Cui et al.

Table 3 :

 3 Results on Strip Packing Problems

https://github.com/fontanf/packingsolver

https://github.com/fontanf/packingsolver/releases/tag/0.2

https://github.com/fontanf/packingsolver/blob/0.2/results_rectangleguillotine.ods

Article / Parameters Gap Time (s) G-KP-O, "fayard1998" [START_REF] Velasco | Improved state space relaxation for constrained two-dimensional guillotine cutting problems[END_REF] 0.00 0.06