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Abstract : Filled elastomers exhibit complex dependence of their viscoelastic modulus, both 

as a function of temperature and frequency. Otherwise, recent observations on thin polymer 

films have shown that their glass transition temperature depends on their thickness. Based on 

these recent results, and on a recent model, we propose that the mechanical behaviour of the 

filled elastomer is strongly influenced by a gradient of the glass transition temperature in the 

vicinity of the particles. This allows us to suggest a specific temperature-frequency 

superposition law for filled rubbers. This law seems to apply very successfully on two 

systems with different dispersion qualities, revealing the existence of a glass transition 

temperature gradient in the vicinity of the particles. 

  

Introduction 

Filled elastomers are dispersions of solid particles in a polymeric network. They are 

commonly used in industry, but up to now, the origins of their mechanical properties are very 

unclear: all the previous analyses indicate that the properties of the polymer chains are 
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strongly modified by the presence of solid particles. For instance, contrary to the pure 

elastomers, filled rubbers have precocious non-linear elastic responses known as the Payne 

effect [1]. They exhibit also important and sometime recoverable hysteresis when submitted 

to large deformations [2]. Moreover, their elastic modulus can even decreases with 

temperature while the one of the non reinforced matrix increases with  temperature [3]. In this 

paper, we explain how the temperature dependence of the modulus can be interpreted in 

regards to the existence of a gradient of the glass transition temperature for the matrix in the 

vicinity of the interface with the particles.  

More than 20 years ago, the existence of a glassy layer, or of a glassy interphase had 

already been suggested by some authors [4-5], for interpreting NMR measurements [6], and 

also some mechanical data [7-11]. However, the description has remained at a very qualitative 

level in particular, regarding the dependence on temperature of this layer, as well as regarding 

the underlying mechanism. 

On the other hand, measurements of the glass transition temperature Tg on polymer 

films by various authors and various methods have shown over the last few years that the 

glass transition of a polymer film depends on its thickness, and can either decrease or increase 

depending on the nature of the interaction between the film and its substrate [12-19]. This 

appears as a shift of the glass transition temperature near the interface. This shift is typically 

of order of 30 K for 10 nm thick films. Note that these are enormous effects when considering 

the viscosity of these films close to Tg and amount for the latter to an increase –for adsorbed 

films- or a decrease – for suspended films – by 3 or 4 orders of magnitude. Actually this shift 

can be interpreted as a gradient of the glass transition temperature induced by the interface 

[20]. The rigidity of the substrate – or its softness – can propagate over large distances in the 

sample leading to a dependence of the glass transition temperature with the distance to the 

interface. 
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In this paper, we present mechanical results of filled elastomers. We interpret the 

results based on the concept of the dependence of the glass transition temperature with the 

distance to the interface. Our interpretation in terms of gradient of glass transition temperature 

is confirmed  by both N.M.R. observations published in [21] and mechanical results. We 

finally claim that in filled rubbers, a gradient of the glass transition temperature is responsible 

for the temperature and frequency dependence of the viscoelastic modulus. This concept of 

gradient of glass transition temperature leads to a new specific temperature-frequency 

superposition. Finally we conclude that the mechanical behaviour of filled rubbers is 

controlled by spatial modification of the glass transition temperature similarly to thin polymer 

films.  

The paper is organised as follows. We present the procedure used for the synthesis of 

our samples, and summarise N.M.R and structural measurements published elsewhere 

[21,24]. We then briefly describe mechanical results, which are however classical for these 

types of materials. We introduce the concept of the gradient of glass transition temperature. 

We explain how this concept allows to build a temperature-frequency superposition for filled 

rubbers. We have successfully tested this law for two sets of samples having different 

dispersion qualities. We finally discuss the role of this gradient on the viscoelastic modulus. 

 

Samples preparation and characterization 

We have prepared two types of polyethylacrylate samples filled with spherical silica 

particles. The particles are grafted either with 3-(trimethoxysilyl)propylmethacrylate (TPM) 

or with acetoxyethyl dimethylchlorosilane (ACS). The grafting density  was checked by 

elemental analysis. The sample were prepared using the method developed by Ford [22]. The 

details of the sample preparation and analysis are given in [21, 24] 
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Table I : Characteristics of the Reinforced Sample Sets and the Nonreinforced 

Elastomer Matrix 

 
Samples names Mean Silica 

diameter 

(nm) 1 

Grafting  

Density 


(nm-2) 

eGraft 

(nm) 

Crosslinker 

Concentration 2  

(%) 
 

<fsi
N>  

 

(nm-2) 3 

tot/e
3 

EA - - - 0.3 - 1.58 

ACS* 54  7 2  0.5 0.3 0.3 0 1.58 

TPM_I** 50  7 3.3  0.5 0.7 0.3 1.1 [1.66 ,1.89]4 

 

1 : from SANS measurements [22]. Dispersion state from SANS measurements * : presence of large aggregates; 

** : there is the coexistence of any linear aggregates with single particles. 2 : per mole of ethylacrylate 

monomers. 3 : from 1H NMR measurements [19], 4 : depending on the silica volume fraction. 
 

In practice, silica particles of 50 nm diameter are prepared according to the classical 

Stöber method [23]. Their mean size and polydispersity were characterized by Small Angle 

Neutron Scattering (SANS) measurements which have shown that the particle surface are 

smooth [24]. The particles are first grafted in the initial Stöber solution. They are transferred 

by successive dialysis first in methanol, and then in ethylacrylate monomer. Lastly, a 

photosensitive initiator - Irgacure from CIBA- and a cross-linker - butanedioldiacrylate - are 

added, and polymerisation is done by U.V. illumination. For each silica volume fraction, the 

cross-linker concentration was kept equal to 0.3% per mol of acrylate monomers.  

The chemical structure of the covering by the grafters molecules were analysed by 29Si 

NMR measurements [24,28]. We observed that the TPM molecules form a dense shell around 

the particles. Indeed, after hydrolysis the TPM molecules have three hydroxyl groups which 

can form a covalent bond either at the silica surface or with other TPM molecules. A 

polycondensation between neighboring TPM molecules occurs leading to a dense structure at 

the particle surface. At the opposite, there is no polycondensation between ACS grafts due to 

their chemical structure.  The ACS grafts form brushes over the particle surface. We can 

deduce the thickness eGraft of the grafting layer applying the relation 
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where MG
mol and G are  the molar weight and the density of the 

graft molecules, Na the Avogadro number,  the grafting density and d the particle diameter. 

 

The interactions of the TPM and ACS grafters with the ethylacrylate monomers are 

different. The TPM coupling agent have one methacrylate group which can react with the 

acrylate monomers during the polymerisation step. TPM silica particles are then covalently 

bound to the acrylate matrix. On the contrary, the ACS coupling agents do not possess such 

methacrylate ending and they are not connected to the elastomeric network. This was 

confirmed by 1H NMR measurements of the average density of topological constraints tot 

[21] performed on each reinforced sample. We shown that tot is the sum of three 

contributions : tot = (e+ c G). The first two contributions are due to entanglements (e) 

and to the crosslinker molecules (c) as in non reinforced elastomers. The third one (G) is 

proportional to both silica particle concentration and the grafting density . This third 

contribution reveals the anchorage points between  the particles and the elastomer matrix. The 

anchorage points introduced by the particles are localized at the particle surface. The particle 

functionality <fSi
N> was deduced for the two kinds of grafted silica particles. The 

characteristics for the both sets of filled elastomers are reported in table I.  

Thus, we have obtained a polymeric network of cross-linked polyethylacrylate chains 

either connected (TPM-Silica) or not (ACS-silica) to particles. The elastic properties of the 

elastomer matrix located far from the particles have been probed by 1H NMR and swelling 

measurements. We have especially analysed the influence of the anchorage points on the 

elastic properties of the elastomer matrix. From the NMR measurements we deduce that the 

crosslinker molecules react only with the acrylate monomers such that the crosslink density c 

is not changed by the introduction of the grafted silica particles and is only determined by the 
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initial cross-linker concentration (0.3% mol/mol of acrylate) [21]. The swelling measurements 

have confirmed this result [29]. The anchorage points lead to a swelling restriction at the 

particle surface due to mechanical constraints but the swelling behaviour of the elastomer 

matrix located far from the particles is only determined by the cross-linker concentration [29]. 

Thus the morphology of the elastomer matrix does not depend nor on the presence of particles 

neither on the one of the grafter. We can thus deduce  that far above Tg, the properties of the 

polymeric network in the bulk (i.e. far from the particles) are the same as those of the non 

reinforced matrix and are not modified by the filler concentration. Thus the elastic modulus of 

the matrix as well as its bulk glass transition temperature can be considered as independent of 

the filler concentration [21,29]. Moreover the cross-linker density is large enough so that we 

can consider that between two neighbouring particles the elastomer behave as a continuous 

elastic body. 

Finally samples reinforced with TPM grafted silica particles - TPM_I samples- are 

optically transparent, and SANS measurements have revealed that at low q values the 

structure factor is proportional to q-0.7. the presence of few linear aggregates which coexist 

with individual particles [24]. On the contrary, samples filled with ACS silica particles – ACS 

samples- contain compact agglomerates [24]. 

 

N.M.R. results 

We will first recall the results obtained by N.M.R. on TPM_I samples, that 

demonstrate the presence of a glassy layer with a temperature dependent thickness in our 

sample [21]. We have measured the transverse magnetisation relaxation in the filled system 

Mfil(t, T) of the protons belonging to the polymeric chains as a function of temperature T. We 

have observed that Mfil(t, T) is a linear combination of the magnetization relaxation of the 

pure matrix at the same temperature and at a temperature below Tg : 
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)T,t(M).1()K5T,t(M.)T,t(M matgmatfil     (1) 

In NMR experiments, the signals from rigid - glassy - monomers and from mobile 

monomers are discriminated with respect to a typical frequency, which is given by the nuclear 

interactions involved in the NMR signal. The interaction relevant here is the dipolar 

broadening of the proton signal, which is of the order of 20 kHz. Thus the Tg is determined 

here according to the WLF law extrapolated to the frequency 20 kHz.. This experimental 

result is observed for T>Tg+50 K. It evidences the presence of a polymer shell around the 

particles exhibiting a glassy behaviour. Moreover the glassy fraction  decreases as 

temperature increases. This means that the thickness of the glassy polymer shell decreases 

with temperature as shown in figure 1. The method has been explained in more details in [21]. 

Note that similar results were observed previously by Kaufmann [6] on other filled 

elastomers. Contrary to the case of TPM_I samples, in the case of ACS sample we will not 

able to detect any significant contribution of a glassy shell to the N.M.R. signal.  

 

Figure 1: Variation of the thickness eg of the glassy shell around the particles versus 

temperature. Data from N.M.R measurements :  (
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Mechanical measurements 

We have performed mechanical measurements far above Tg, on the rheometrics RDA 

II in simple shear flow with a plate-plate geometry. Samples were disks of 8 mm diameter and 

2 mm thickness. They were glued with a cyanoacrylate glue (loctite) on the plates of the 

rheometer. 

We have also performed mechanical measurements in the vicinity of Tg, with a 

Metravib viscoanalyzer. In that case, we have used sheets of dimension 2 x 35 x 7 mm3. The 

geometry was simple shear-torsion mode - and the sample were fixed with standard "clamps". 

For each sample we have measured both the elastic and the loss moduli as a function of 

frequency and temperature. We have always checked that we were in the linear regime. We 

have obtained the linear viscoelastic modulus in a broad range of temperature and frequency 

for the matrix and the filled samples of various concentrations. 

 

Figure 2 : Temperature dependence of the real part of the shear modulus G’(T) in the 

linear regime for different silica concentrations : () : =0, (=0.16 TPM_I 

sample, (=0.18 ACS sample. Insert: Temperature dependence of the 

reinforcement for the TPM_I sample containing a silica volume fraction =0.16. 
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The elastic modulus of the matrix, as plotted in figure 2 exhibits a plateau at low 

temperature, then a sharp decrease in the glass transition domain followed by a slight 

increase. These results are classical, and follow the usual WLF law in the glass transition 

domain. The sample presents a classical entropic behaviour at high temperature - the elastic 

modulus is proportional to the temperature and independent of frequency. In the following we 

will call Tg
the temperature for which the loss modulus is maximum at the frequency We 

have measured this temperature Tg
 for frequencies varying from 10-2 to 10 Hz. We found 

Tg
=244K at =0.01Hz, Tg

=248K at =0.1Hz, Tg
=253K at =1Hz, Tg

=257K at =10 

Hz. We will use these values in the analysis of the data. 

 

The results for TPM_I and ACS filler rubbers are qualitatively similar to the many 

other data obtained on various reinforced systems [4-5]. The elastic modulus exhibits a 

decrease in the glass transition domain which is broader than the pure matrix. This decrease - 

for the samples described here - extends in the entropic regime of the matrix. 

In Figure 3, we have reported for the TPM_I samples the temperature dependence of 

the elastic modulus for different silica concentration in the entropic regime of the matrix. It 

shows that for low silica volume fraction, the system exhibits an entropic regime at high 

temperature, similar to the one of the matrix. This entropic growth of the modulus 

progressively disappears as the concentration increases. 
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Figure 3 : Temperature dependence of the real part of the shear modulus G'(T) for 

TPM_I samples having varying silica concentration for temperatures T higher than Tg
 

+50K. () : = 0.07 ; (): = 0.09; (): = 0.12; (): = 0.14; (): = 0.15; (): 

= 0.16; (): = 0.18. 

 

For the ACS sample, the decreases of the elastic modulus with temperature –see figure 

2 – is extremely slow. We did not observe any entropic growth even for silica volume fraction 

as low as 0.07. 

One could think that the slow decrease of the elastic modulus with temperature 

corresponds simply to a broadening of the glass transition. In this case the classical time-

temperature superposition law should apply for filled rubber, though with a different rescaling 

than for the polymer in the bulk. Let us recall that it consists in an horizontal shift - for the 

modulus as a function of the logarithm of the frequency- that superimposes the responses 

performed at various temperatures. Thus we have measured the frequency dependence of the 

shear modulus for various temperatures. In figure 4, the elastic modulus is plotted for a 

volume fraction equal to 16% as a function of frequency and for various temperatures. The 
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time-temperature superposition evidently fails for these systems - the slope of the elastic 

modulus with the logarithm of frequency clearly depends on the temperature. 

 

Figure 4 : Variation of the frequency dependence of the real part of the shear modulus 

with  the temperature for a filled TPM_I elastomer with a silica volume fraction =0.16. 

(= 323 K, (T = 343K, ( : T = 363K The straight lines are eyes guide 

showing the variation of the temperature dependence of the slope of G’(). 

 

All these results, as well as all other results on other filled elastomers, show that this 

systems do not behave like a simple polymeric matrix containing solid particles. Indeed, in 

this case, the reinforcement R(T,,) defined as the ratio of the viscoelastic modulus Gfil of 

the filled elastomer with Gmat the one of the non reinforced polymer matrix would not depend 

on temperature and frequency for T > Tg
 +50K for each sample; it would be controlled only 

by the topological constraints density tot and the particle volume fractions .  
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Figure 5 : Temperature and frequency dependence of the reinforcement R(T, ,) for 

T> Tg +50K and two frequencies =1Hz (open) and=0.01Hz (filled). a) TPM_I 

samples;  () : = 0.07 ; (): = 0.12; (): = 0.15; (): = 0.18. b) ACS samples 

(): = 0.12; (): = 0.18. 

 

Figures 5a and 5b clearly show that it is not the case here and that the reinforcement is both 

temperature and frequency dependent for temperatures higher than Tg + 50K. Thus, the 

presence of solid particles modifies the dynamics of the chains in the matrix, as already 

noticed a few decade ago [4-5]. In order to account for these results, we have developed an 

approach based on recent results on the glass transition in thin polymer films. 
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Theoretical backgrounds : glass transition near a surface  
 

One of the main features of reinforced elastomers, is that many polymer chains are in 

contact with the particle surfaces. And it has been noticed that the surface of the fillers slows 

down the polymer chains dynamics [5,21] . A similar effect has been observed in details in 

thin polymer films coating  surfaces [12,13].  More precisely, the glass transition temperature 

of a thin polymer film appears to be shifted as compared to the one of the bulk. This shift is 

positive for a polymer film strongly anchored on a solid substrate [17,18 ] and negative in 

other cases [12-16]. This shift varies typically as the inverse of the film thickness and is about 

30K for a thickness of 10 nm. Recently, it has been proposed [20] that the surface induces a 

gradient of glass transition temperature in its vicinity. We will briefly resume the main 

concepts leading to this statement.   

The basis of the model is the existence of strong dynamical heterogeneities observed 

in glassy polymers [25,26]. These heterogeneities lead to ratio of local dynamics of about 3 to 

4 orders of magnitude over  typical lengths of 2 nm. The model describes explicitly these 

heterogeneities as originating from thermal fluctuations of density. And the heterogeneous 

nature of the dynamics originates from the high non-linear dependence of the dynamics with 

the density. Finally, the model [20] claims that the macroscopic dynamical properties of a 

glass is governed by those of a skeleton constituted by the slowest domains of the sample. 

Thus the dynamical properties of a glass should be controlled by the percolation of these 

slowest domains.  

Otherwise, the percolation is modified by the dimension of the object. For instance, 

the percolation threshold for a 2-dimension object is lower than for a 3-dimension one. Thus 

one expects the dynamics to be modified in the vicinity of a surface. We will now precise how 

the percolation is modified near a surface. 



 14 

As the percolation corresponds to the connection of the slowest domains, it can be 

seen as the existence of infinite paths going only through slow domains. We will call these 

paths slow paths. Let us now consider a part of the sample located at a distance z of an 

interface with a substrate. The dynamics, as compared to the bulk one, will be modified by the 

many slow paths emerging from the interface. If the substrate is rigid and the anchoring with 

the substrate strong enough, all the slow paths that emerge from the surface can be considered 

as slow. Thus the dynamics is slowed down near the surface. More precisely the minimum 

volume fraction necessary to constitute a skeleton is in this case smaller than the one for the 

bulk. This induces an increase of the glass transition temperature near the interface. On the 

opposite, if the substrate is not rigid - liquid or gaseous for instance - or if the anchoring is too 

weak , all the paths that would have been slow in a bulky sample, and that emerge from the 

interface are not anymore slow. Thus in that case, one expects that the dynamics near the 

interface is faster than the bulk one. 

Thus the dynamics is modified near the surface because the slow skeleton that confers 

on the system its dynamics, is itself modified by the surface. Thus taking explicitly into 

account the dynamical fluctuations, the model gives the following results : the glass transition 

temperature 
gT (z) depends on the distance z from the surface according to :  

 


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TzT gg      (2) 

where 

gT  is the glass transition in the bulk at the frequency ,  a length of the order of the 

nanometer, that depends on the anchorage at the interface and =.88 the exponent for the 

correlation length in 3-dimensions percolation. The sign plus has to be considered in the case 

of an interface with a rigid body and a strong anchorage. The sign minus corresponds to an 
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interface with a fluid body or with a rigid body and a weak anchorage. This result is in good 

agreement with the various experiments on thin films [12-19].  We will now apply this 

approach to filled elastomers.  

 

Consequences for filled elastomers: establishment of a new T- 

superposition law. 

 

Let us now consider the consequence of this effect on filled elastomers. We will limit 

ourselves to a positive shift of the glass transition near the particles, which is the case for our 

samples, as explained later on. We can use eq.(2) to estimate the properties of the polymer 

near the interface with the filler. A shift in glass transition will lead to spatial variations of the 

elastic modulus. Thus the elastic modulus of the matrix G at position x will depend on the 

distance z between the position x and the nearest interface, as expressed by : 

),
)(z

TT(G),T,(G

/1

gmat 






 






x
x      (3) 

Gmat(T’, ) is the modulus of the polymer matrix in the absence of filler, as a function of 

temperature T’ and frequency .  

 

Thus, let us define the reinforcement R as the ratio : 

),T(G

),T(G
),T(R

mat

fil




        (4) 

of Gfil, the viscoelastic modulus of the filled elastomer, with Gmat the one of the polymer 

without particles.  In the absence of any modification of the dynamics of the polymer induced 

by the particles, the sample is composed by an homogeneous viscoelastic matrix containing 

solid inclusions. In that case, the reinforcement R is just a geometrical function which 
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depends only on the respective position of the particles. So, for any given sample, R is 

independent of T and . This statement holds whatever the spatial arrangement of the 

particles – even if the particles form aggregates. The fact that in most of filled rubbers the 

reinforcement R depends both on T and  is a signature of the modifications of the dynamics 

of the polymer chains near the particle surfaces. In the frame of our assumption -glass 

transition temperature gradient in the vicinity of the particles – we will now introduce a 

temperature –frequency superposition law for filled rubbers. First let us go back to the local 

variation of the modulus described by equation (3) 

Thus the difference between the room temperature and the local glass transition 

temperature changes of sign from the particle surface to the bulk matrix. Thus one expects a 

corresponding huge decrease of the elastic modulus from 109 Pa to 105 Pa as presented in 

figure 6 as a function of z. 

 

Figure 6 : Schematic representation of the variation of the modulus of the polymer 

chains near a particle (in black) versus the distance to the particle surface. For z < eg, 

the polymer is in a glassy state G=Gglass. At z > eg+z G=GN where GN is the plateau 

modulus of the elastomer matrix.  

 

We will first make a coarse grained approximation, assuming that the spatial variation 

of the modulus is extremely sharp. Thus the modulus can be considered as infinite for z<eg  
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and as equal to the one of the matrix for z>eg, where eg is the distance to the particle where the 

glass transition temperature is equal to the room one. Then eg can be seen as the thickness of 

the glassy shell surrounding the particles. It can be derived from equation (2) : 









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Here the frequency dependence of the glass transition temperature has been explicitly taken 

into account and leads to the variation of the thickness with frequency. However, for a given 

temperature T, it is always possible to find a frequency  such that eg(T, ) is equal to a given 

thickness e. Thus in the frame of this coarse grained analysis, the reinforcement for a given 

thickness e is a geometrical function. It depends only on the respective positions of the 

particles and on the thickness e of their surrounding solid shell. Thus, as the thickness is a 

function of Tg
/(T- Tg

), we expect that for any given sample the reinforcement is a function 

only of : 

)
T

TT
(R),T(R

g

g






    (6) 

where R is a function that varies from sample to sample. 

Let us now generalize this frequency-temperature law to systems with any dispersion 

state, including the ones where particles can be bridged by their glassy shell. In that case, the 

gradient of glass transition, at a given position in the sample, can originate from the surfaces 

of more than one particle. Thus the expression (5) will no longer be valid as we have to 

include the influence of all the surrounding particles. However, it is then easy to show – 

taking account in (2) and (3) of the contribution of many particles- that whatever the 

complexity of the particles arrangement, the position of the interface between molten and 

glassy polymer is a function only of Tg
/(T- Tg

). Thus equation (6) applies whatever the 



 18 

dispersion quality. But of course the absolute value of the function R depends each sample, 

and varies with the dispersion state.  

This is the temperature-frequency superposition law that we suggest for filled 

elastomers. If the dependence of R in Tg
/(T- Tg

 ) is expected to depend dramatically with 

the volume fraction and the state of dispersion of the particles , this law is expected to apply 

for every sample, whatever the complex arrangement of the particles and their glassy shells 

including the presence of aggregates resulting from particles connected by glassy bridges. 

Effectively, whatever the structure of the glassy bridges and particles, it will not evolve if the 

temperature and the frequency are shifted such that Tg
/(T- Tg

 ) remains constant. Let’s note 

that the modulus of the matrix increases with temperature at high temperature – it is the well-

known entropic behaviour. By dividing the modulus of the filled elastomer by the one of the 

non reinforced matrix, we take into account this effect.  

According to this superposition law, the reinforcement exhibited by a given sample at 

various frequencies and temperature may collapse on a single curve if plotted as a function of 

Tg
/(T- Tg

) Before checking the validity of this law on various systems, we will now discuss 

the limitation of this law, which is only valid in the frame of our coarse-grained 

approximation 

 

Limitation of the time-temperature superposition law for filled rubber 

Let us first recall the time-superposition law for glassy polymer systems. This law 

deals with a precise situation : the viscoelastic modulus as a function of frequency at a given 

temperature, is equal to the one at another temperature, but for frequencies multiplied by a 

constant shift factor. On the opposite the elastic moduli of a polymer measured as a function 

of temperature at two different frequencies do not superimpose by a constant shift in 

temperature. This is discussed in details in [27]. 
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 Let us now go back to the viscoelastic modulus of the polymer in a filled rubber. 

When a measurement is performed, all the matrix is submitted to an oscillatory strain at the 

same frequency but its glass transition temperature varies.  As explained above changing the 

frequency does not correspond to a constant temperature shift for the polymer in the whole 

sample from place to place. Thus the distribution of elastic modulus in the sample is not 

homogeneously shifted by a frequency change. Thus the gradient of the elastic modulus near 

eg(T, ) depends on the temperature and frequency of the measurement even if the thickness 

of the glassy layer eg(T, ) is kept constant. In other words, our temperature-frequency 

superposition law for filled rubber requires the coarse grained approximation. In the case 

where the elastic modulus varies smoothly from place to place, no superposition law could 

apply.  

More precisely, this coarse-grained approximation is valid only if the domain where 

the elastic modulus goes from its glassy value to its rubbery one is small compared to the 

distance between neighbouring particles. This intermediate domain corresponds roughly to a 

variation in the shift in glass transition temperature of the order of  T20 K. 

Thus differentiating equation (5), we get a thickness z for this intermediate domain 

of the order of : 





 




/1

/11
g

g

e

T

T
z     (7) 

The coarse-grained approximation will be valid as long as  z remains smaller than 

characteristic distances of the elastic problem, typically the particle diameter. For diameter of 

50nm, it requires  z smaller than 5nm. This corresponds to a glassy thickness of 7.5 nm, and 

thus to a value of  (T - Tg
)/Tg

 of 0.1. Thus, we expect our  temperature frequency 

superposition law for filled rubber to be valid only for of  (T - Tg
)/Tg

 larger than 0.1. We 

will come back to this point later. 
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Rescaling our data 

 We have plotted on figure 7a - respectively 7b - the reinforcement R(T, ) of the 

TPM_I and ACS samples as a function of Tg
 /(T - Tg

) - for various silica concentrations, 

and  for frequencies and temperatures varying respectively between from 10-2 to 10 Hz, and 

from 30 to 100°C . We see figure 7a that, in agreement with relation (9) all the data collapse 

on a single curve for each concentration for the TPM_I samples. The reinforcement R is 

always an increasing function of Tg
 /(T - Tg

). Moreover, R increases with silica particles 

volume fraction and its slope versus the reduced variable increases also. 
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Figure 7 : a) Variation of the reinforcement R versus Tg
/(T-Tg

) for different 

frequencies  and different silica concentrations for the TPM_I sample : () : =10 Hz, 

( =1 Hz, ( : =0.1 Hz, ( : =0.01 Hz. =0.18; (2)=0.15 ;  (3) : =0.12; 

(4) : =0.08. b) Variation of the reinforcement R versus Tg
/(T-Tg

) for different 

frequencies  and different silica concentrations for the ACS sample : for (1) =0.18 

and (3) =0.12  () : =10 Hz, ( =1 Hz, ( : =0.1 Hz, ( : =0.01 Hz . For  

(2) =0.15 and  (4) =0.09 , () : =10 Hz, ()  =1 Hz, () :=0.1 Hz, (): 

=0.01 Hz. 
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This behaviour is similar for the ACS sample as shown on figure 7b. Both the value of 

R and its slope increases with the filler volume fraction. Moreover the slope of R versus Tg
 

/(T - Tg
) is larger for the ACS samples than for the TPM_I one at similar volume fraction in 

particles.  Otherwise the superposition for ACS samples is less satisfactory than for TPM_I 

samples and fails for Tg
 /(T - Tg

) larger than 3.5. Thus despite these differences between the 

two systems, the frequency-temperature superposition that we have suggest is very 

satisfactory. 

 

Discussion  

Let us now discuss our results. At first the reinforcement R is not a constant but 

depends both on frequency and on temperature. This fact - as explained above - proves that 

the polymer dynamics is modified by the particles, and more precisely that the viscoelastic 

modulus is no longer homogeneous in the sample. Moreover, as R is an increasing function of 

Tg
 /(T - Tg

) for both our samples in the temperature domain considered here – which 

corresponds to temperature above Tg + 50K - the dynamics is slowed down by the particles. 

This is consistent with N.M.R. results that exhibit the existence of a glassy shell for the 

TPM_I samples. Moreover N.M.R. results show that the glassy layer thickness decreases with 

temperature in agreement with eq. 5. as shown in figure 1. This observation is reminiscent of 

the results obtained for thin polymers films [12-19]. Furthermore, as explained above, the 

assumption that the particles induce a gradient of glass transition temperature in their vicinity, 

leads to a temperature-frequency superposition, which is validated by our experimental data. 

This is actually the main results of our paper. 

 

More precisely, for TPM_I samples containing only few small aggregates [24], the 

rescaling is very satisfactory for T- Tg
 larger than 20K.  
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But for ACS samples that contain large agglomerates, the superposition is less 

satisfactory for T- Tg
< 60K. This can probably be related to the fact - in this last case - that 

the polymer situated in some of the smallest gaps between particles may strongly contribute to 

the sample elastic modulus. This idea is  coherent with the fact that the reinforcement R is 

increasing extremely rapidly with Tg
 /T- Tg

 . For these samples, the volume fraction of the 

glassy shell is too small to be detected by N.M.R., but the presence of agglomerates amplifies 

deeply the surface effect. Thus, the gradient of glass transition temperature has - for 

macroscopic sample - a consequence that depends both on its amplitude but also on the spatial 

arrangement of the particles.  

 

Conclusion 

The reinforcement of the filled elastomers depends both on temperature and frequency 

revealing that the dynamics of polymer chains is modified near the particle surfaces.  We have 

analysed this temperature-frequency behavior in the frame of a variation of the glass transition 

temperature near the particle surface. We have deduced from a model predicting the existence 

of a glass transition gradient a new temperature-frequency superposition law validated by 

experiments. The agreement between experimental results and theoretical predictions shows 

that the temperature and frequency dependence observed on filled elastomers is related to a 

glass transition temperature gradient in the vicinity of the particles. Its impact on the 

mechanical properties - for instance the absolute values of the reinforcement - is highly 

sensitive to the dispersion state. This last effect will be discussed in future papers. 
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