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ABSTRACT Strategies are needed to improve the immunogenicity of HIV-1 enve-
lope (Env) antigens (Ag) for more long-lived, efficacious HIV-1 vaccine-induced B-cell
responses. HIV-1 Env gp140 (native or uncleaved molecules) or gp120 monomeric
proteins elicit relatively poor B-cell responses which are short-lived. We hypothesized
that Env engagement of the CD4 receptor on T-helper cells results in anergic effects
on T-cell recruitment and consequently a lack of strong, robust, and durable B-memory
responses. To test this hypothesis, we occluded the CD4 binding site (CD4bs) of gp140
by stable cross-linking with a 3-kDa CD4 miniprotein mimetic, serving to block ligation
of gp140 on CD4� T cells while preserving CD4-inducible (CDi) neutralizing epitopes
targeted by antibody-dependent cellular cytotoxicity (ADCC) effector responses. Im-
portantly, immunization of rhesus macaques consistently gave superior B-cell (P �

0.001) response kinetics and superior ADCC (P � 0.014) in a group receiving the
CD4bs-occluded vaccine compared to those of animals immunized with gp140. Of
the cytokines examined, Ag-specific interleukin-4 (IL-4) T-helper enzyme-linked im-
munosorbent spot (ELISpot) assays of the CD4bs-occluded group increased earlier
(P � 0.025) during the inductive phase. Importantly, CD4bs-occluded gp140 antigen
induced superior B-cell and ADCC responses, and the elevated B-cell responses
proved to be remarkably durable, lasting more than 60 weeks postimmunization.

IMPORTANCE Attempts to develop HIV vaccines capable of inducing potent and
durable B-cell responses have been unsuccessful until now. Antigen-specific B-cell
development and affinity maturation occurs in germinal centers in lymphoid follicles
through a critical interaction between B cells and T follicular helper cells. The HIV
envelope binds the CD4 receptor on T cells as soluble shed antigen or as antigen-
antibody complexes, causing impairment in the activation of these specialized CD4-
positive T cells. We proposed that CD4-binding impairment is partly responsible for
the relatively poor B-cell responses to HIV envelope-based vaccines. To test this hy-
pothesis, we blocked the CD4 binding site of the envelope antigen and compared it
to currently used unblocked envelope protein. We found superior and durable B-cell
responses in macaques vaccinated with an occluded CD4 binding site on the HIV
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envelope antigen, demonstrating a potentially important new direction in future de-
sign of new HIV vaccines.

KEYWORDS B-cell responses, CD4 mimetic, CD4 occluded, nonhuman primates,
T-cell responses, human immunodeficiency virus, vaccines

Antibody (Ab) responses directed to the human immunodeficiency type 1 (HIV-1)
envelope have been correlated with protection from viral infection; however, the

ability to induce the B-cell responses necessary to generate long-lived protective
antibodies by vaccination has proven difficult. Impressive protection from in vivo
challenge has been achieved repeatedly using passive transfer of broadly neutralizing
monoclonal antibodies (bNAb), and these approaches now are being advanced by
multiple groups to clinical proof of concept. Such bNAbs have been cloned from
memory B cells from HIV-1-infected patients, and sequence analysis has revealed
substantial somatic hypermutation (SHM) from the parental Ig germ line (1) character-
istic of high-affinity maturation of antigen-specific B cells in germinal centers. CD4-
positive T follicular helper cells (Tfh) play a fundamental role in Ab maturation by
promoting Ig class switch recombination (CSR), SHM, B-cell selection, and differentia-
tion. A deeper understanding of these events may provide insights for improved HIV
vaccine design.

The close interaction of activated Ag-specific CD4 T cells and major histocompati-
bility complex class II (MHC-II) B cells within germinal centers is critical for optimal
development of anti-HIV Ab responses. Priming of naive CD4� T cells is initiated by
MHC-II-positive dendritic cells in lymph nodes to differentiate into Tfh cells prior to their
migration to the T-cell–B-cell interfaces of germinal centers (GC) (2–4). This promotes
their encounter with B cells that share the same Ag specificity, reinforcing their lineage
commitment and coalescence, mutual activation, and formation of GC. Importantly, it
is the intensity of the Tfh signal which is dictated by the quality and longevity of B-cell
interactions with molecules expressed on the surface of Tfh cells (5). Signals from Tfh
are critical for differentiation of GC B cells into memory B cells and long-lived plasma
cells and their maturation of Ig affinity by CSR and SHM (6). The B cells with the
strongest Tfh cell interactions are those that become memory B cells or leave the
GCs and differentiate into long-lived plasma cells (7). Importantly, the cytokines
interleukin-21 (IL-21), IL-6, and IL-4 play key roles in affinity maturation of Igs in B cells.
IL-21, which is central to Tfh development, is augmented by IL-4, and together they
collaborate to promote Ig responses (8). Additionally, the tight regulatory program
between Ag-specific B cells in germinal centers is enhanced by the circulation and
exchange of Tfh cells between B-cell-rich germinal centers to ensure maximal diversi-
fication of CD4 T-cell help.

Factors which interfere with Tfh activation and collaboration with B-cell develop-
ment have a negative response on maturation of Ig responses and ultimately on their
effector function. Of the viruses which cause persistent infection, HIV is unique in that
it utilizes the CD4 receptor with a specific high-affinity CD4 binding site (CD4bs) on the
envelope subunit gp120. Through the CD4bs, the HIV Env gp120 subunit can bind to
the CD4 receptor in the absence of an intact infectious virion, either as a monomer or
in its trimeric form (gp120 or gp140). Notably, HIV-1, HIV-2, and simian immunodefi-
ciency viruses (SIVs) infect Tfh cells in GCs (9), and the Tfh population serves as the
major T-cell compartment for HIV infection, replication, and production (10), ultimately
contributing to the loss of CD4 T cells and immune deficiency. However, very early in
infection, before numerical CD4 T-cell loss, HIV causes defects in CD4 T-cell and MHC-II
antigen-presenting cell (APC) function, defects which also affect B-cell responses to
infection (11, 12).

A growing number of studies have confirmed that gp120 alone or immune com-
plexed with antibodies is likely to decrease CD4 T-cell function (13). HIV-1 replication is
associated not only with virion-bound Env glycoprotein but also with shedding of
soluble gp120 or gp160 during replication in vivo (14, 15). Soluble gp120 is found in
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plasma (16–18) and lymphoid tissues of HIV� patients (19, 20). This has been found to
correlate with dysfunctional CD4� T-cell responses (18, 21, 22). A number of studies
have demonstrated that gp120 binding to the CD4 receptor interferes with normal
T-cell receptor (TCR)-induced CD4� T cell activation (19–21). The recent confirmation
that gp120-immune complexes also engaged CD4 receptors and prevented subse-
quent TCR-mediated activation of CD4� T cells has raised concerns over immunization
with HIV envelope (13).

Here, we set out to examine the hypothesis that in a vaccine setting, CD4 binding
HIV-1 envelope immunogens could be detrimental to achieving optimal vaccine-
induced B-cell responses. To study this, we compared an HIV-1 gp140 immunogen in
which the binding to CD4 on the surface of T cells was abrogated by stable complexing
of the antigen with a CD4 miniprotein mimetic (termed mini-CD4) that served to
occlude the CD4bs on the Env molecule. For this purpose, as a scaffold molecule we
used scyllatoxin, from the scorpion Leiurus quinquestriatus, which mimics features of the
CD4 receptor that actually binds to the HIV Env glycoprotein (the �-hairpin of scylla-
toxin can be superimposed onto positions 36 to 47 of the CDR2 loop of the CD4
molecule). Subsequent transfer of the side chains of the amino acids of CD4 to the
equivalent positions of scyllatoxin resulted in a minipeptide which specifically binds to
the HIV-1 Env glycoprotein CD4bs with affinity for HIV-1 equivalent to that of CD4 itself
(22). Notably, structural data demonstrate that the M64U1 mimetic occludes the CD4
S-375 HIV-1 protein residue (23), which has been reported to enhance HIV-1 Env CD4
binding and virus replication in macaques (24). Importantly, our design provided both
CD4bs occlusion, blocking high-affinity binding Env residues, such as S-375, while
allowing preservation of CD4-inducible (CD4i) neutralizing antibody epitopes (with
putative antibody-dependent cellular cytotoxicity [ADCC] epitopes), both of which we
have demonstrated in previous structural and small-animal studies (22, 25, 26).

Since nonhuman primates have CD4 receptors on T cells that are functionally and
structurally very similar to human CD4, we studied these receptors using 4 groups with
a total of 24 macaques to determine if vaccine-induced B-cell responses and effector
responses, such as ADCC, could be improved by preventing CD4 engagement. Further-
more, to determine if the effect was determined at the level of CD4 T cells, we
enumerated antigen-specific CD4 T cell subsets that secreted gamma interferon (IFN-�),
IL-2, or IL-4 to determine which of these subsets correlates with the observed B-cell
and/or ADCC responses.

RESULTS
Immunization kinetics of B-cell responses in rhesus macaques immunized with

HIV-1 Env occluded at the CD4 binding site. We set out to test our hypothesis that
CD4 binding HIV-1 envelope immunogens are detrimental to achieving optimal and
durable vaccine-induced B-cell responses. In addition to examining the structural
evidence of occlusion the CD4bs on the Env protein (Fig. 1) (23), we performed an
exploratory fluorescence-activated cell sorting (FACS)-based assay to confirm the in-
hibitory effect of SF162 gp140 on rhesus CD4 T-cell proliferation in the presence of
anti-CD3 in vitro (Fig. 2). This assay confirmed that gp140 inhibition of CD4 T-cell
proliferation was abrogated by using the M48U1 CD4bs-occluded form of Env protein.
The vaccine study was performed in 24 rhesus macaques divided into the immu-
nization-active and long-term follow-up or durability phase, as indicated in Fig. 3.
Animals were immunized four times over 40 weeks (Fig. 3, phase A), and vaccine-
induced antigen-specific B cells in peripheral blood were enumerated.

Throughout the immunization phase (Fig. 4, phase A) of the study, the
gp140CD4bs-x (CD4bs-occluded) vaccine group developed significantly (P � 0.001)
higher numbers of Ag-specific B cells than the gp140 (CD4bs-open) group. Despite the
expected individual variation in the number of circulating Env-specific B-cell immu-
nosorbent spots found, there were consistent and significant differences between the
two Env-vaccinated groups. Two weeks after the second immunization, these numbers
were highest in group 1 (gp140CD4bs-x), ranging between 250 and 1,865 immunosor-
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bent spots/106 peripheral blood mononuclear cells (PBMC) versus a lower range,
between 105 and 975 immunosorbent spots/106 PBMCs, for macaques immunized with
gp140 alone. Both groups reached statistical significance, with the level for the
gp140CD4bs-occluded group being consistently higher by the second immunization
and increasing further after the third immunization, reaching a peak plateau in the
gp140CD4bs-occluded group with a range from 3,630 to 11,823 immunosorbent

FIG 2 SF162 gp140-mediated inhibition of CD3/TCR-induced CD4 T-cell proliferation is prevented by CD4bs occlusion. In each graph, bars are used to indicate
the number of undivided cells (bar on the right) and the number of cells for each cell division within the CD3CD4 population. Note the difference in the fraction
of undivided cells, which is increased after addition of SF162 gp140 (CD4bs-open) but not of SF162 gp140 (CD4bs-occluded).

FIG 1 Zoomed-in view of M48U1 binding site showing close contact (pink dotted line) between M48U1
cyclohexylmethoxy group Phe23 and gp120YU2 Ser375. gp120 is shown as a transparent surface. M48U1
is shown in cyan cartoon representation with its 23 residues represented as sticks. The illustration was
prepared with PyMOL 1.8.2.1 using PDB entry 4JZZ. The interaction between cyclohexylmethoxy (U1) in
M48U1 with both main-chain and side-chain O atoms of Ser375 gp120 (23) is shown.
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spots/106 PBMCs by week 26 (Fig. 4, phase A). Macaques receiving gp140 (CD4bs-open)
required a fourth immunization to reach a plateau, and the responses were at a lower
range, from 1,550 to 4,365 immunosorbent spots/106 PBMCs by week 38 (Fig. 4, phase
A). The CD4bs-occluded group had significantly (P � 0.001) and consistently higher
numbers of circulating Ag-specific B cells than the CD4bs-open group throughout the
immunization schedule. This demonstrated a significant and positive impact on the
kinetics of priming and development of B-cell responses by simply altering the CD4bs
on Env antigen to prevent CD4 receptor binding by Env vaccine antigen. A minor
background response in the CD4 mimetic minipeptide and adjuvant control groups
was detectable at only one time point (week 20) over the entire study.

Antibody titers to total Env are primed first and peak earliest in CD4bs-
occluded Env-immunized animals. During the active immunization phase of the
study, the early appearance of antibodies reflected the early appearance of Ag-specific
B cells in circulation in the CD4bs-occluded Env group compared to the CD4bs-open
gp140 Ag (Fig. 5, phase A). Levels of total Env binding antibodies were detectable and
higher within 6 weeks, 2 weeks after the second immunization in the CD4bs-occluded
Env-immunized group, and they were already comparable to mean Env titers observed
in the gp140 group after the third immunization (Fig. 5, phase A). Titers again increased
markedly after the third immunization, peaking at week 24 and reaching a plateau at
week 40. Antibody titers in these immunized macaques were significantly (P � 0.0001
by two-way analysis of variance [ANOVA]) greater than those induced with gp140
(CD4bs-open) during the active immunization phase (A), 4 weeks after the fourth
immunization, suggesting a positive impact of occluding the CD4bs of gp140 on
priming and the magnitude of anti-Env titers reached during the immediate immuni-
zation period (Fig. 5, phase A).

Neutralizing antibodies peak earlier and show activity against HIV-2 in the
presence of soluble CD4 (sCD4). To accurately assess neutralization of HIV-1 envel-
oped viruses in rhesus macaques, we turned to in vivo rhesus-adapted simian-human

FIG 3 Immunization schedule and long-term (17.5 months/70 weeks) follow-up depicting the immuni-
zation phase (box A) and durability phase (box D).

FIG 4 Env-specific B cells in peripheral blood (ASC/1 � 106 PBMC) per group during the immunization
phase (box A) (at 0, 4, 24, and 36 weeks) and after 70 weeks of long-term follow-up (box D). The
frequency of Env-specific memory B cells was determined by B-cell ELISpot assays in animals immunized
with gp140 CD4bs-occluded group 1 (black diamonds) or gp140 CD4bs-open group 2 (black squares).
Control groups included group 3 (mini-CD4 mimetic only, lower value; black triangle) and group 4 (MF59
only; open squares). Immunizations were given at weeks 0, 4, 24, and 36 (box A). The values (numbers
of ASC per 106 PBMCs) are means from 6 animals per group � standard deviations (error bars). *, P �
0.001 (two-way ANOVA).
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immunodeficiency viruses (SHIV) using the lentivirus pseudotype system to avoid
differences in non-enveloped-encoded differences in their genomes.

Importantly, early in the immunization protocol, CD4bs-blocked gp140-immunized
animals induced the first neutralizing antibody response to the relatively homologous
tier 1 SHIVSF162P4, observed at weeks 22 and 24 (P � 0.001 by one-way ANOVA) (Fig. 6).
Subsequently, neutralizing antibody titers increased after each immunization until the
third immunization, when slower-developing neutralizing titers in the gp140 group had
eventually caught up with the CD4bs-blocked group. By the third immunization (week
24), there was a boost in homologous neutralizing titers in the gp140 group that
reached levels similar to those of the CD4bs-blocked group (Fig. 6). Given that globally
the Env-neutralizing epitopes were otherwise identical in the CD4bs-blocked versus
CD4bs-open gp140, this was not unexpected (with the exception of fine specificity
differences of CD4i epitopes caused by CD4bs-M48U1 cross-linking [27]).

Due to the slower acquisition of heterologous neutralizing antibodies, sera collected
at weeks 38 and 42 (2 or 6 weeks after the 4th immunization) were measured for
neutralization against clade B SHIV virus strains. In the pseudotype system, these
included tier 1 SHIV89.6, SHIVW6.1D, tier 2 SHIVSF162p3, and HIV-2.

HIV-1 gp120 bound to CD4 gives a stable conformation that presents an increased
affinity for the chemokine receptors and CD4i antibodies that also broadly neutralize
HIV-2 (28–31). We used sCD4 in our assays to determine if CD4-inducible neutralizing

FIG 5 Kinetics of anti-Env titers per group during the immunization phase (at 0, 4, 24, and 36 weeks) (box
A) and after 70 weeks of long-term follow-up (box D). HIV-1SF162 gp140-specific binding antibody
responses induced after immunization with gp140 CD4bs-occluded (group 1; black diamonds), gp140
CD4bs open (group 2; black squares), group 3 immunization mini-CD4 mimetic (black triangles), and
control group 4, immunized with MF59 only (open squares). The values (binding endpoint titers) are
means from 6 animals per group � standard deviations (error bars). *, P � 0.0001 (two-way ANOVA).

FIG 6 Early induction of neutralization responses in gp140 CD4bs-occluded (black diamonds) and gp140
CD4bs-open immunized animals (black squares). Neutralization of relatively homologous SHIVSF162p4 by
sera from immunized animals is shown. Antibody titers are expressed as the dilution of serum required
to reduce the luciferase activity in cultures exposed to SHIVSF162p4 pseudovirus alone by 50%. The values
are means from 6 animals per group � standard deviations (error bars). Elevated early responses were
detected 18 and 20 weeks after the second immunization (administered at 4 weeks) and 22 and 24 weeks
after the first immunization. Subsequently, homologous neutralization titers became similar in both Env
immunized groups. *, P � 0.001 (one-way ANOVA).
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antibody responses remained intact in the CD4bs-occluded gp140 group (32). The
mean 50% neutralization titers against tier 2 SHIVSF162p3 were �20 (in the presence or
absence of sCD4) (Fig. 7). Against SHIV89.6, the mean titers were undetectable (without
sCD4) and 1:125 (with sCD4), while against the tier 1 SHIVW6.1D the mean titer was 1:355
(without sCD4) and even higher (with sCD4) in the gp140-immunized group. The mean
titers in the CD4bs-blocked gp140-immunized group were �20 (both against the tier
2 SF162p3 and 89.6 pseudoviruses) and 1:259 against the tier 1 W6.1D virus, all without
sCD4, while the mean titers in the presence of sCD4 were �20, 1:135, and higher than
1:540, respectively. Of note, this gp140 was chosen for this proof-of-concept CD4bs-
occlusion study because the protein was well characterized and used in many previous
studies, not because of the bNAb epitopes it presented. It was also selected because of
its neutralization inducing potential for CD4i, one of the control features for the M48U1
occlusion. Importantly, we observed neutralizing responses against HIV-2 (Y720S) in the
presence of sCD4 in the CD4-bound gp140 group, confirming that the CD4i epitopes
were exposed, functional, and induced by this immunogen (Fig. 7), and this was
independently confirmed by Shen et al. (27).

Superior ADCC responses elicited by immunization with CD4bs-occluded Env
immunogen. Nonneutralizing antibodies are becoming recognized as important
vaccine-induced effector responses in protective HIV-1 immunity. Antibody-dependent
cellular cytotoxicity (ADCC) responses have been correlated with slower disease pro-
gression (33–35) as well as vaccine efficacy (36–38). A high proportion of ADCC
responses in patient sera are directed toward CD4i epitopes (39), the same epitopes we
have preserved by stabilizing them with our CD4bs-linked CD4 mimetic complex, as we
previously validated (22, 40). To determine if ADCC activity was induced by Env

FIG 7 Heterologous neutralizing activity in the presence or absence of soluble CD4 during the immu-
nization phase. Heterologous neutralization of a panel of clade B SHIV pseudoviruses with sera taken at
2 or 6 weeks after the 4th vaccination is shown. Comparison of neutralization activity of sera from animals
immunized with gp140-CD4bs-x (occluded group; circles) in the absence (�sCD4) or presence of sCD4
(�sCD4) versus gp140 CD4bs-open (squares) also is shown. To confirm that the CD4i epitopes in the
gp140-CD4bs-x immunized group (1) were exposed and functional, sera were tested against the
HIV-27312A pseudovirus. Fifty percent inhibitory concentrations (IC50) against different viral isolates are
indicated. The symbols represent values from individual animals, while the horizontal bars are means
from 6 animals per group � standard deviations (error bars).
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immunization with the CD4bs-occluded or CD4bs-open gp140, sera from immunized
animals were assayed at weeks 0 and 26 and after long-term follow-up. ADCC activity
was measured as the serum titer for mediating granzyme B (GzB) release by PBMC upon
incubation with target cells coated with SF162 gp120 protein. Group 1, immunized with
gp140 CD4bs-occluded, had statistically superior ADCC responses compared to group
2, immunized with gp140 with CD4bs-open, with a false discovery rate (FDR) P value of
0.014 (Wilcoxon rank-sum exact test; P values were controlled for FDR with the
Benjamini-Hochberg method) at week 26 (Fig. 8).

Circulating antigen-specific IL-4 CD4 T-cell responses increase early during
immunization with CD4bs-occluded Env immunogen. Immunization with both HIV-1
Env immunogens induced T-cell immunosorbent spots specific for peptides of the
external HIV-1 envelope glycoprotein (gp120) that were detectable during the active
phase of immunization (Fig. 9, phase A) but which tapered off during the long-term
follow-up period (Fig. 9, phase D). These increases were observed with lymphocytes
producing IL-4, IL-2, or IFN-� and reached statistical significance relative to the 2 groups
of control macaques (mimetic and adjuvant controls). These data were analyzed in a
two-way analysis of variance with all time points included where data from all 24
macaques were available.

Importantly, the earliest and most robust T-helper responses were observed in
macaques immunized with gp140-CD4bs-occluded, which induced the highest number
of IL-4-producing immunosorbent spots found at week 26 (P � 0.025) (Fig. 9, phase A)
for both gp120 and gp41 sets of peptides (HIV-1 gp120, P � 0.0001 [Fig. 9, phase A];
HIV-1 gp41, P � 0.0001 [gp41 data not shown]). The highest number of IL-2-producing
immunosorbent spots recognizing HIV-1 gp120 peptides was seen after three immu-
nizations at week 34 (P � 0.01). The IFN-� immunosorbent spots peaked at week 38
(gp120, P � 0.0001) (Fig. 9, phase A). All six gp140-immunized macaques induced more
than 50 IFN-�-producing lymphocytes per million PBMCs at week 38, while five of the
macaques immunized with the CD4bs-occluded Ag induced this same level of ELISpot
activity and four had more than 50 IL-2- and IL-4-producing lymphocytes. While
macaques immunized with gp140 only did not have increased numbers of HIV-1
gp41-specific, IFN-�-producing immunosorbent spots overall, numbers were signifi-
cantly increased, relative to control macaques, at week 38.

Immunizations at weeks 24 and 36 each produced an increase in the number of
T-cell immunosorbent spots recognizing either HIV-1 gp120 or gp41 peptides in both
the gp140-alone and gp140 CD4bs-occluded groups (Fig. 9, phase A, and data not
shown). This pattern was observed following each immunization, with the exception of
IL-2 immunosorbent spots at week 36. Also with the exception of IL-2 at week 38,
immunosorbent spot numbers at weeks 26 and 38 were statistically significantly higher
than those of controls at these time points. Peak levels were found after four immu-
nizations (week 38; �-IFN, P � 0.0001; IL-4, P � 0.0001). The gp140-CD4bs-occluded and
gp140-alone groups induced statistically significant numbers of IL-4-producing, but not

FIG 8 ADCC activity in CD4bs-x (occluded; black diamonds) Env-immunized animals versus CD4bs-open
(black squares) Env-immunized animals. Data shown are 2 weeks after the third immunization and after
long-term follow-up after the 4th immunization (*, P � 0.014). LOD, limit of detection.
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IL-2-producing, immunosorbent spots recognizing peptides from the HIV-1 transmem-
brane envelope glycoprotein (gp41) (data not shown). The numbers of immunosorbent
spots responding to gp41 peptides were smaller and delayed, with the highest levels
seen after five immunizations for all three cytokines (data not shown). In summary,
during the active immunization phase (Fig. 9, phase A), CD4bs-occluded gp140 immu-
nization induced earlier and more robust IL-4 (week 26; P � 0.025), as well as a trend
for earlier IL-2 responses (P � 0.065), suggesting a more vigorous and early
recruitment of CD4� T-helper cells during the inductive phase of the B-cell re-
sponse (Fig. 4, phase A).

Durability of B-cell responses. A key concern of HIV-1 vaccine development has
been the very poor durability of HIV-1 vaccine-induced responses, especially B-cell
responses (38, 41–43). To address this, after an active immunization phase with 4
immunizations given over 40 weeks, we embarked on a long-term follow-up phase
where animals were rested without sedation and protocol bleeds for approximately 70
weeks (1.5 years) to determine the durability of B- and T-cell immune responses.

Importantly, while the plasma antibody titers gradually contracted after boosting,
the superior numbers of Ag-specific B cells in circulation were sustained in the
CD4bs-occluded group throughout the long-term follow-up with a slight decline over
the long 70-week period (Fig. 4, phase D). Despite these impressive and durable levels
of Ag-specific B cells during the active phase (Fig. 4, phase A) and the early higher titers

FIG 9 Env-specific cytokine-secreting T-cell immunosorbent spot assay responses following immunizations at 0, 4, 24, and 36 weeks (immunization phase) (A)
and long-term 70 weeks follow-up (durability phase) (D). Shown are IL-4 (upper row), IL-2 (middle row), and IFN-� (lower row) secreting spot-forming cells over
time. Immunosorbent spot assays from individual animals immunized with gp140-CD4bs-x (occluded group; first column), gp140-CD4bs-open (second column),
mini-CD4 mimetic only (third column), and adjuvant only (fourth column). Background responses (mean numbers of spots plus 2� the standard deviations from
triplicate assays with medium alone) were subtracted. Responses after stimulation with overlapping SF162 gp120 20mer peptides are presented as the number
of spot-forming cells per 106 PBMCs. N.S., no significance.
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and peak of total anti-Env antibodies in the CD4bs-occluded group, during the 70
weeks of observation in the durability phase (Fig. 5, phase D), total Env titers began to
wane. The higher titer of total Env antibodies slowly decayed, and after the 1-year
endpoint (week 107) the levels were similar to those of the gp140-open-immunized
animals (Fig. 5 phase D). This suggested that the global antibody response produced by
the plasma cell pool that had accumulated during immunization had reached a
maximum equilibrium despite the impressive and sustained kinetics of the Ag-specific
memory B cells in circulation.

Control macaques immunized with the CD4 mimetic or adjuvant alone had no
specific antibody to gp140. Macaques immunized with gp140 CD4bs-open produced
low levels of antibodies that transiently cross-reacted with the CD4-mimetic peptide at
week 26 (data not shown). Antibodies to the mimetic peptide were not detectable in
other macaques.

Remarkably, the long-term durability of Env-specific memory B cells in circulation
correlated with more robust ADCC responses (P � 0.001; Spearman’s coefficient, 0.85),
which were also found to be durable during the extended long-term follow-up of more
than 70 weeks (Fig. 8).

DISCUSSION

This study set out to determine if rational HIV-1 Env-antigen design could improve
B-cell responses in primates. High-affinity CD4 binding associated with HIV-1 Env
residue 375 substitutions has been associated with increased virulence in macaques
(44). We reasoned that if we could prevent CD4 binding by envelope antigens yet
preserve key CD4-inducible (CD4i) epitopes, which were important for virus neutral-
ization and rich in ADCC epitopes, then we could provide the basis for an improved
HIV-Env antigen scaffold which could be suitably modified for future presentation of
key broadly neutralizing epitopes and, ultimately, the deletion of dominant noncon-
served antigen decoys. Our design criteria were 2-fold, namely, CD4 binding site
occlusion and preservation of CD4i NAb epitopes, both of which we have demonstrated
in previous structural and small-animal studies (22, 25, 26). Our immunological criteria
required an in vivo primate CD4 T-cell system compatible with HIV-1 Env binding to
study the in vivo inductive events in the presence of functional CD4 gp140 interaction
in vivo. Our immunological criteria included improved B-cell responses with respect to
magnitude and durability, preservation of CD4i epitopes and induction of ADCC, and
evidence for improvement of one or more of the antigen-specific T-cell subsets (IFN-�,
IL-2, and IL-4).

When HIV-1 gp120 binds to CD4, it stabilizes the virus envelope in a conformation
that presents an increased affinity for the chemokine receptors and CD4i antibodies
(28–31). Therefore, the bound envelope glycoproteins offer different targets both to
induce and bind antibodies. Recent studies evaluating the evolution and specificities of
broadly neutralizing antibodies during HIV-1 infection (32, 45, 46) have provided
important insights regarding the significance of CD4i antibodies and their potential role
in vaccines against HIV-1. So far, recombinant monomeric gp120 or oligomeric/trimeric
gp140 glycoproteins have failed to elicit broad and potent neutralizing antibodies in
experimental animal models. Past studies based on gp120-CD4 (or CD4 mimic) com-
plexes or constrained core gp120 antigens have been evaluated as vaccine candidates,
aiming at inducing CD4i antibodies (26, 47–50). Fouts et al. demonstrated that gp120
cross-linked to CD4 D1D2 domains raised antibodies that neutralized primary viruses
regardless of coreceptor usage and genetic subtype in nonhuman primates (48). These
findings were extended in a challenge study by DeVico et al. (47), where macaques
immunized with a single-chain complex containing gp120BaL-rhesus macaque CD4
D1D2 showed improved CD4i antibody responses that correlated with the control of
infection when challenged with SHIVSF162P3. Although this correlation did not prove
that efficacy was mediated by neutralizing CD4i antibodies, it demonstrated that the
presence of CD4i Abs was dependent on the CD4-bound conformation of HIV-1
envelope in vivo. These studies demonstrated the potential importance of strategies
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directed to raising antibodies against the CD4i site. Recently we used the practical
approach of eliciting CD4i epitope-directed virus-neutralizing antibodies using a stably
cross-linked complex of recombinant oligomeric gp140 and CD4 mimetic miniproteins
(mini-CD4) (M64U1-SH) (22, 51) to target the conserved coreceptor binding site of the
HIV-1 Env. In those studies, two mini-CD4 were cross-linked to various forms of HIV-1
Env (M64U1-SH). Based on results from those studies, the M64U1-SH mini-CD4 was
selected for generating the cross-linked gp140 –mini-CD4 complex.

Two important and underappreciated issues were addressed in this study. First was
the observation that binding or cross-linking of the CD4 molecule of T-helper cells
causes functional impairment within germinal centers (11, 12, 52–54). The hypothesis
was that CD4 binding by antigen would impair critical interactions between Ag-specific
CD4 Tfh cells and MHC-II B cells, which are fundamentally important in generating
memory B-cell responses, and functionally important antibody effector responses, such
as NAb and ADCC. The second was that CD4i epitope regions are also rich in ADCC
epitopes (39); thus, stabilizing their presentation would promote such ADCC in naive
vaccinated individuals. Importantly, in this study, by simple cross-linking of the small
CD4 receptor mimetic to the CD4 binding site of gp140, we have been able to
demonstrate (i) preservation of CD4i NAb, (ii) improved and long-term durable B-cell
responses, (iii) early induction of anti-HIV-1 binding and NAbs, and (iv) ADCC. The early
and robust CD4 T-helper responses characterized by IL-4 secretion correlated with the
early induction of B-cell and antibody responses, suggesting that preventing CD4
binding of the Env antigen in B-cell-inductive sites was an underlying and important
feature of this antigen modification. These findings beg mechanistic follow-up studies
to prove this hypothesis and to understand the in vivo half-life and kinetics of gp140 in
the CD4bs-occluded, M48U1-complexed versus the unbound forms in lymph nodes
draining vaccine injection sites. Most notably, the induced B-cell responses were
durable for more than 1.5 years postimmunization, representing a major advance in a
key area of HIV vaccine development. Future modifications to further improve Env
antigen structures with additional modifications to better present and recruit key bNAb
and ADCC epitope-rich regions are likely to ultimately contribute to more highly
effective HIV-1 vaccines.

MATERIALS AND METHODS
As the well-characterized model of HIV-1 immunogen, which has been used in human and nonhu-

man vaccine trials, we used the recombinant HIV-1 gp140 of the subclade B SF162 (55, 56), from which
pathogenic SHIV was developed (57). To prevent CD4 receptor engagement, a mini-CD4 peptide
(M64U1-SH) was used to cross-link gp140dV2SF140, as described by Dereuddre-Bosquet et al. and Van
Herrewege et al. (51, 58). Cross-linking of the minipeptide mimicking the CD4 receptor binding site to
gp140 was described by Martin et al. (22), and it effectively (Fig. 1) (23) occludes critical Env CD4bs sites,
such as residue 375 (44).

Animals and immunizations. A total of 24 mature captive-bred male rhesus macaques (Macaca
mulatta) were housed at the Biomedical Primate Research Centre (BPRC), The Netherlands. The rhesus
macaques were negative for antibodies to SIV, simian type D retrovirus, and simian T-cell lymphotropic
virus at the initiation of the study. The study protocol and experimental procedures were approved by
the institute’s animal ethical care and use committee and were performed in accordance with Dutch law
and international ethical and scientific standards and guidelines. Behavior, discomfort, and appetite were
observed daily during the study by specially trained personnel. Body weight and body temperature were
measured before the start of the experiment and each time the animals were sedated for immunization
and/or blood sampling immediately following sedation of each individual animal.

The study consisted of 24 animals divided into four groups of 6, randomized based on age and
weight. All groups received 0.5 ml of the MF59 adjuvant intramuscularly (i.m.) (upper leg) to formulate
the protein, while the last group served as the adjuvant-only control. Group 1 animals were immunized
with gp140 with its CD4bs blocked (gp140 CD4bs-x; 100 �g of gp140ΔV2SF162 with the CD4bs blocked by
the mimetic M64U1-SH). Group 2 animals were immunized with the same but unblocked gp140 (100 �g
of gp140ΔV2SF162), group 3 received the mimetic M64U1 as a control, and group 4 was the adjuvant-only
control group (0.5 ml of the adjuvant MF59). All animals were immunized at weeks 0, 4, 24, and 36. To
assess the durability of vaccine-induced responses in animals, immune responses were monitored up to
week 107 (71 weeks after the 4th immunization) (Fig. 3).

For immune assays, serum, plasma, and PBMC were isolated from blood samples collected from
sedated animals (ketamine hydrochloride anesthesia at 10 mg/kg of body weight) at regular time
intervals aseptically (Vacutainer; Becton Dickinson). To investigate possible adverse effects, body weight,
rectal temperature, routine hematology, and clinical chemistry were monitored at regular intervals.
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Humoral immune responses: binding antibody titers and neutralization assay. Antibodies to
HIV-1 SF162 Env (gp140) in serum were measured by enzyme-linked immunosorbent assay (ELISA). Plates
were coated overnight with Env in 100 mM NaHCO3 and were blocked for 1 h with 1% nonfat milk before
application of serum serially diluted in 1% bovine serum albumin (BSA)-phosphate-buffered saline (PBS)
buffer. After 1 h, 1 �g/ml anti-human IgG-horseradish peroxidase (HRP) conjugate was added for an
additional hour before the addition of ultra-TMB ELISA development reagent. The reaction was stopped
by addition of 0.5 M H2SO4. Results were expressed as IgG endpoint dilution titers.

For the standardized and validated neutralization assays, the TZM-bl cell line was used (59, 60). It was
obtained through the NIH AIDS Research and Reference Reagent Program, Division of AIDS, NIAID, NIH,
from John C. Kappes, Xiaoyun Wu, and Tranzyme, Inc. The HeLa cell line was engineered to express CD4
and CCR5 receptors. Following infection with SHIV-pseudotyped virus, the cells produce luciferase, the
activity of which was detected by chemiluminescence. Sera were diluted to give a 1:20 dilution and
subsequently in a 3-fold series to a final dilution of 1:43,740. Each dilution was mixed with sufficient
pseudovirus to give 500,000 cps in a Perkin-Elmer Victor 6016971 luminometer. The mixture included 15
�g/ml of DEAE and was incubated for 1 h before 10,000 TZM-bl cells were added. The cells were cultured
for 48 h, the supernatants were removed, and the cells were lysed. The cell lysates were transferred to
black/white plates, britelite reagent was added, and the luciferase activity was quantified. Antibody titers
are expressed as the dilution of serum required to reduce the luciferase activity in cultures exposed to
pseudovirus alone by 50% (61–63). As a positive control for the detection of CD4i neutralizing antibodies,
a modified neutralization assay using HIV-27312A pseudovirus was used as previously described (32).

B-cell ELISpot assays. Antigen-specific B-cell counts were performed as described by Crotty et al.
(64). PBMC were plated in 48-well plates at 1 � 106 cells/ml in complete medium (RPMI 1640 with
L-glutamine, penicillin-streptomycin, HEPES buffer, and 10% fetal bovine serum) containing PWM (poke-
weed mitogen) at a dilution of 1:10,000; SAC (Staphylococcus aureus Cowan strain 1) at a dilution of
1:10,000; �-mercaptoethanol at a dilution of 1:1,000; 20 U/ml IL-2, IL-4, IL-5, and IL-6; and CpG
oligonucleotide at a concentration of 5 �g/ml. Plates were incubated at 37°C, 5% CO2, for 5 days. To
enumerate Ag-specific B-cell antibody-secreting cells (ASC) or spot-forming units (SFU), 96-well plates
were coated with 50 �l/well gp120 SF162 Env antigen at a final concentration of 5 �g/ml. After 18 h,
plates were washed and blocked with 100 �l/well complete medium at 37°C for 1 to 2 h prior to use.

On day 6, the cells were washed thoroughly, plated onto the ELISpot plates, and incubated at 37°C
and 5% CO2 overnight. Plates were washed with PBS followed by PBS containing 0.05% Tween 20 (PBST).
Plates then were incubated overnight in 1 �g/ml biotinylated goat-anti-rhesus Ig (Hybridoma Reagent
Laboratory) in PBST with 2% fetal calf serum (FCS). Plates were washed again, developed using 5 �g/ml
HRP-conjugated avidin diluted in PBST, and incubated for 1 to 2 h at 37°C. Plates were washed again and
then developed using 3-amino-9 ethyl-carbazole (AEC; Sigma), giving spot formation. The reaction was
stopped by washing the plates with tap water. Spots were counted using the A.EL.VIS ELISpot reader.
Data are presented as ASC per 1 � 106 PBMC.

ADCC assays. ADCC assays were performed, as previously described by Pollara et al. (65), using
CEM.NKRCCR5 cells coated with recombinant HIV-1 gp120 SF162 as target cells and PBMC obtained from
an HIV-seronegative donor as effector cells. The ADCC-mediating antibody titer was defined as the
reciprocal of the highest dilution indicating a positive GzB response (�8% GzB activity) after background
subtraction, as previously described (65).

T-cell ELISpot assays. Enumeration of antigen-specific IFN-�, IL-2, and IL-4 cytokines was measured
using an ELISpot assay as described by Koopman et al. (66). Separate peptide pools, consisting of 15mers
with an 11-amino-acid overlap, which covered the entire gp41 and gp120 of SF162 (NIH AIDS Reagent
Program), were used to measure antigen-specific immune responses after each immunization, during
follow-up, and after challenge. Medium alone was used as a negative control, while stimulation with
phorbol myristate acetate (20 ng/ml) plus ionomycin (1 �g/ml) was used as a positive control. In brief,
4 � 106 cells/ml were stimulated in RPMI 1640 medium supplemented with 10% FCS in a 24-well tissue
culture plate for 24 h. For the enumeration of antigen-specific cytokine production, nonadherent cells
were collected and plated at 2 � 105 cells/well in triplicate in a 96-well ELISpot plate with the same
antigen. Microtiter plates were precoated with the following monoclonal antibodies (MAbs): anti-IFN-�
MAb (MD-1; U-Cytech, Utrecht, The Netherlands), anti-IL-4 MAb (QS-4; U-Cytech), and anti-IL-2 MAb
(B-G5; Diaclone Laboratories, Besançon Cedex, France). Detection of the cytokine-secreting cells took
place after 15 h for IL-4 and 4 h for IFN-� and IL-2. The cells were lysed and the debris was washed away
before adding detector antibodies. IFN-�, IL-2, and IL-4 were detected using biotinylated rabbit-anti-
rhesus IL-2, biotinylated rabbit-anti-rhesus IFN-�, or biotinylated mouse-anti-rhesus IL-4 (U-Cytech). Spots
were visualized using streptavidin-HRP and an AEC coloring system.

CD4 T-cell proliferation inhibition assay. PBMC were incubated overnight at 4°C in RPMI with 10%
FCS containing SF162 gp140 (CD4bs-open) (1 �g/ml/106 cells), SF162 gp140CD4bs-occluded (1 �g/ml/
106 cells), or no additions. Cells were subsequently harvested and labeled with CellTrace (20 min of
incubation at 37°C, 1 �l CellTrace/ml/106 cells; CellTrace violet cell proliferation kit; Molecular Probes,
Invitrogen, Carlsbad, CA, USA). Cells then were incubated for 72 h on CD3-coated microwell plates
(coated with 1 �g/ml CD3 clone SP34 [Becton & Dickinson] with 2 h of incubation at 37°C and then 3
washes with PBS) either without additions, with SF162 gp140 (CD4bs-open) (1 �g/ml), or with SF162
gp140CD4bs-occluded (1 �g/ml). Cells were then stained with CD3APC and CD4PE-Cy7, and expression of
CellTrace label was detected by FACS analysis.

Statistical analyses. The statistical significance of differences between responses induced by the
different (CD4bs-occluded or CD4bs-open gp140) immunogens was determined by Dunnett’s multiple-
comparison test (one-way ANOVA), Dunn’s multiple-comparison test (nonparametric test), or Bonferroni
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posttests (two-way ANOVA). For IFN-� and IL-4, the area under the curve (AUC) was calculated for weeks
22 to 26, whereas week 22 data were used for IL-2 (week 26 data were not available). Correlations
between cytokine AUC, B-cell ELISpot assay result, and ADCC were then assessed using Spearman’s rho
(nonparametric test). Immunosorbent spot assay AUC were calculated for the induction phase (weeks 22
to 38), and CD4bs-occluded- or CD4bs-open gp140-immunized groups were compared nonparametri-
cally (Mann-Whitney U test).
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