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Abstract

We examine the fundamental question of velocity measurements in astrophysics. We
show that following the way these measurements are interpreted, a lot of phenomena
appealing for various and distinct paradigms such as dark matter, wave density for the
spiral galaxies, superluminal velocities in jets of active galaxies and ”sleeping” black
holes could strongly be correlated between them and eventually could stem from an
unique paradigm. A test to validate (or not) this paradigm is supplied. The new
paradigm does not alter the phenomena at the scale of a planetary system, nor does
it modify the conclusions based on the standard model of cosmology as for the age of
the Universe, its size, the chain of processes leading to the formation of first stars and
galaxies. The interest of this paradigm is that it does not introduce a new physics (in
the sense that the physics laws are essentially local and very well supported at the
laboratory level), nor a new particle species as usually proposed elsewhere. The non-
appeal to various exotic physics with no support in Earth laboratory experiments
seems to be a positivist view. The present model is also a nice application of the
notion of asymmetric distances to the field of astrophysics.

Séminaire Outils Mathématiques en physique, Université de Picardie
Jules Verne (Amiens, France, février 2020) : (A)symmetry and Uni-
verse

1 Introduction

Today, following the orthodox point of view of astrophysics, it is admitted that
fundamental problems, such as 1. the flat rotation curves of galaxies, 2. the
persistence of the spiral substructures, 3. the superluminal velocities of some
jets in active galactic nuclei (AGN) and 4. the very high velocities for stars
measured near the center of the Milky Way, are definitively solved except for
”some points of detail”. However :

The statement 1. is explained by the presence of a rather gigantic and even
possibly unrealistic quantity of dark matter. However this proposal admitted
by most astrophysicists could be controversial. Other alternative theories have
also been proposed1. Two of them are very important for historical reasons and

1We exclude obviously here some isolated suggestions that the observational estimations of velocity
and density distributions in the galaxies could be strongly biased, such as in Kř́ıžek, 2018.
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also because they have inspired most of the other theories. In 1983, Milgrom
introduces the paradigm MOND to account the mass discrepancies without dark
matter by a slight modification of the Newtonian law of motion at extremely
small accelerations of less than 10−10 ms−2 (Milgrom, 1983; Milgrom, 20192.
On the other hand, modified gravity of Moffat (2006) belongs to the large class
of models with variable fundamental constants.

Today to eliminate the dark matter, a very impressive number of models have
also been produced which suggest to modify the Einstein-Hilbert action fol-
lowing various ways (Moffat, 1995, 2005; Mannheim, 2006; Capozziello and De
Laurentis, 2012, Austin, 2015).

The statement 2. is explained by an artificial mechanism : a stationary density
wave (Shu, 2016), a subtle mechanism but which seems difficult to maintain for
a very long time (the mean age of a galaxy ∼ 1010years).

The statement 3. is explained by appeal to the Relativity, but the mechanism is
well operating if and only if we admit that the jets are mainly directed toward
the observer, in some cases within an angle smaller than 20◦ degrees (Rees,
1966).

The statement 4. requires the presence of a non-active black hole (a so-called
sleeping black hole) at the center of ”normal” galaxies.

We know from the special Relativity that the velocities and lengths are rela-
tive and depend on the observer motion. Here the question of how the length
measurements in space are conducted is raised.
First let us notice that the ratio between the so-called ”classical” electron radius
and one meter is the same that the ratio between one meter and the distance
which separates us from the closest star, i.e. ∼ 10−17 ! We know that the
physics is not the same at the scale of an electron than at the scale of one
meter. However we appply the same physics without any change at the scale
of interstellar distances than at the scale of one meter ! While at the nanoscale
the physics is drastically changed (classical mechanics ⇒ quantum mechanics),
at the interstellar scale, we will see that the physics laws remain exactly the
same than at the scale of one meter, but just with the addition of a simple scale
factor whuch is introduced in the equations.
In physics it is well known that in order to make a length measurement an unit
of length must in advance be defined (for instance the standard meter). The
current definition is : a. one meter is exactly equal to the length of the path
travelled by light in a vacuum in 1

299 792 458
of a second, b. the speed of light is

an universal fundamental constant. The problem with this (circular) definition
is that the vacuum is not itself properly defined ! For an observer located near
the galactic center, the definition would be exactly the same but is the vacuum
over there the same ? In this paper we propose a new definition.
Def : Let lH the radius of a hydrogen atom and cl the speed of light. These
quantities are linked by the relation :

∆tH =
lH
cl

= 1.76 10−16 s (1)

2There exists different relativitic versions of this theory, especially the one built by Bekenstein
(2004).
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We assume that ∆tH is an absolute constant in time and the same everywhere in
the Universe. This is the duration for the light to travel a distance equal to the
radius of a hydrogen atom. The quantity lH is hidden, because measured rela-
tively to itself (likewise for cl); but by abuse in our solar system we put lH = rH
and cl = c. Both the quantities rH or c are respectively the conventional radius
of the hydrogen atom and the speed of light. Any reference length corresponds
to N hydrogen atoms arranged tight next to each other along a straight line.
Once again the meter defined in this way (i.e. the number N = 1.89 1010)
is universal. In astrophysics the reference lengths are the astronomical unit
(AU) or the parsec (pc). These lengths are expressed as N rH , with respectively
N = 2.83 1021 and N = 5.58 1026.
We admit throughout this paper that the lengths which are currently measured
by the observers are accurate (they are obtained by trigonometry for the close
distances and by luminosity measurements for more distant objects). We add
the important requirement that these distances are conventional and relative to
the standard unit length locally defined by us.
We raise also the question : for two observers very far away from each other and
respectively located at the points x and y, is the distance d(x, y) equal to d(y, x)
? It is implicitely admitted that this statement is true but nobody has checked
it (unfortunately we have only one reference point in the Universe : the Earth
located in a very small open set attached to it, i.e. the solar system). Folllowing
Gromov (2007) ”Besides, one insists that the distance function be symmetric,
that is d(x, y) = d(y, x) (this unpleasantly limits many applications)” (for a
presentation of an asymmetric metric theory, see for instance, Mennucci, 2013).
What would be the point of view of an observer located near the galactic centre
compared to ours ? It is maybe possible that the strangeness in the velocity
measurements in some situations (e.g. the flat rotation curve for the galaxies
and the superluminal velocities observed in some quasar jets) be a clear proof
of the relativity of the length measurements. Our aim is to revisit the notion
of length for the very large distance measurements, & 1 pc, i.e. the interstellar
distances. We state here that :

i. For any observer in the Universe making local measurements (at the scale of
a solar system), the physics laws are the same as those known at the terrestrial
level. The fundamental constants are the same everywhere. No new local physics
is introduced, nor new species of exotic particle. The essential difference is rather
in the way whereby distinct observers correlate their measurements of distances.

ii. the measurement of a length is always attached to a local device (e.g. the
radius of an atom or even a device of the size of a few meters) which is always
infinitesimally small compared to the interstellar lengths.

iii. without a pre-existing matter a length remains undefined. A length mea-
surement is depending on a reference unit taken locally (i.e. depending on a
local observer and on the quantity of matter (the mass density) surrounding it).
It is admitted here that only relative lengths (i.e. related to a given observer)
can be defined in the vacuum at a very large scale.

iv. a set of observers assumed to be distributed in the Universe can only transmit
a multiple (integer or not) of the numberN (and not a ”distance” stricto sensu).
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The mechanisms described in the statements 1., 2., 3., 4. listed above are not
antagonist with the new paradigm, but can now be moderated by the latter one
:

The statement 1 : We admit the existence of a (maybe large but not still
observed) quantity of invisible matter but in a baryonic form : rogue planets,
brown dwarfs, neutron stars, stellar black holes, some of them may be far more
massive than expected (Liu, 2019).

The statement 2 : in a self-graviting gaseous disc the formation of a series of
pieces of spiral arms is possible, but in the form of a short-lived, recurrent,
transient pattern (Binney and Tremaine, 2008)).

The statement 3 : the relativistic effect explaining in an usual way the apparent
superluminal velocities in some jets in AGNs is there, but the direction of the
jet can now be fully arbitrary or at least less constrained.

The statement 4 : the sleeping black holes are existing at the center of ”normal”
(non-active) galaxies, but with a weaker mass than usually admitted.

We will see that this new paradigm gives the impression to lead to a modi-
fication of the acceleration term of the newtonian equation of motion. Such
a modification has been initially proposed by Milgrom (1983), even though in
a very different manner (here this modification only applies for a remote ob-
server, not for a local observer, being the local physics is expected to remain
unchanged). Likewise a variable G (the gravitational constant) also appears as
in the Moffat’s proposal (2006), even though the variability is now just apparent
and not real (the constants G and c are the same everywhere). In some sense
the present paradigm could appear as an hybrid one, borrowing some elements
in both previous works.

2 Algebraic details

2.1 Structures on the space vector R3

1. A vector space structure is obtain on R3 once it is equipped with an addition,
+, and a multiplication by a scalar · (Pascoli and Pernas, 2019). For two real
triplets σ = (σx, σy, σz) and σ′ = (σ′x, σ

′
y, σ

′
z) the sum is defined by

σ + σ′ = (σx, σy, σz) + (σ′x, σ
′
y, σ

′
z) = (σx + σ′x, σy + σ′y, σz + σ′z)

and the multiplication of σ by a scalar λ by

λ · σ = λ · (σx, σy, σz) = (λσx, λσy, λσz)

The neutral element for the addition is 0 = (0, 0, 0), the symmetric for the
addition of σ = (σx, σy, σz) is −σ = (−σx,−σy,−σz).
If we set ex = (1, 0, 0), ey = (0, 1, 0) and ez = (0, 0, 1) we obtain the so called
R3 canonical basis.
Two basis define the same orientation of the space when the determinant of the
matrix representing one of the basis in the second is strictly positive.
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2. A Euclidean structure is obtained on R3 when one had chosen a definite
positive bilinear symmetric form on the vector space R3. Such an object is an
application

B : R3 × R3 → R

fullfilling the condition

∀σ,σ′,ψ ∈ R3, ∀λ, λ′ ∈ R, B(λ · σ + λ′ · σ′,ψ) = λB(σ,ψ) + λ′B(σ′,ψ)

∀σ,ψ ∈ R3, B(σ,ψ) = B(ψ,σ)

∀σ ∈ R3 \ {0}, B(σ,σ) > 0

The formula (σ|σ′) = σxσ
′
x + σyσ

′
y + σzσ

′
z defines an Euclidean structure on

R3. However there are plenty of different formulae defining such a structure;
nevertheless each time an Euclidean structure is given on R3 there exist a basis
(u1,u2,u3) of R3 such that in the coordinates associated to that basis the
expression of B(σ,σ′) is

B(σ,σ′) = σ1σ
′
1 + σ2σ

′
2 + σ3σ

′
3

Such a basis is said orthonormal for B.
– Any euclidean structure induces a ”norm” on R3 :

∀σ ∈ Σ, ‖σ‖B =
√
B(σ,σ)

A norm on a vector space E is an appication N : E → R satisfying
– ∀x ∈ E, N(x) ≥ 0
– ∀x ∈ E, N(x) = 0⇐⇒ x = 0
– ∀x, y ∈ E, N(x+ y) ≤ N(x) +N(y)
– ∀x ∈ E, ∀λ ∈ R, N(λ · x) = |λ|N(x)
– To a Euclidean structure is associated a notion of angle between two non

null element of R3. For σ et σ′ in R3, we have

B(σ,σ′) = ‖σ‖B.‖σ‖Bcos(θ)

– When a vector space E is equipped with a norm, a function f : E → R is
différentiable (with respect to the norm N) at the point σ when

– The function f is define on a neighborhood of σ (i.e at least on a N -ball
centered

on σ, BN(σ, r) = {ψ such as N(σ −ψ) < r})
– There exists a function ε defined on BN(0, , r) continuous at 0 and satis-

fying ε(0) = 0.
– There exists a continuous linear form df/σ on E such that

f(σ + η) = f(σ) + df/σ(η) +N(η)ε(η)

The condition of continuity of the linear form df/σ will be always fullfilled in
the space we will be working on, for it being of finite dimension.
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2.2 Action of R+
∗

Let B be a Euclidean structure on R3 and k ∈ R+
∗ , the form

(σ,σ′) 7→ Bk(σ,σ
′) = B(k · σ,k · σ′)

defines another euclidean structure on R3.
– The norms associated to B and Bk are different, explicitely ‖σ‖Bk =

k.‖σ‖B, but the notions of angles defined by means of those two structures
coincides.

– Another fact of importance is that the norms associated to B and to Bk

are equivalent. As we are working on a finite dimension space, it is trivial in
our case, but it would be still true in non finite dimension because of the special
relation between B and Bk. This implies that the differentiability and the value
of the differential of a given function are the same using the structure B or Bk.
Transforming B into Bk mimicks an angular magnification of the space R3.

Figure 1

Thus the direction of a σ ∈ R3 is the same for each structure Bk and likewise
for the angle θ between two distinct directions. For any triangle drawn in R3

one measures the same top angles using any of the structures Bk, while the side
lengths are different but are in the same proportion (similar triangles) (fig. 1).
The coefficient k mimicks an angular magnification of the space Σ. In a practical
way each observer is equipped with a ”perfect lens free from any aberration”.
However the term lens should not be taken at face value. Observing the Moon
with a telescope has no physical impact on its true distance ! Another analogy
derived from the electrostatics can also be made where the coefficient k bears
resemblance to a kind of ”static permittivity of vacuum” (see the paragraph
”applications”). Once again this second analogy should no longer taken too
literally.

– The physics behind the function k ≡ k(σ)
As we will see in the paragraph ”applications”, the function k seems linked to
the density in any very large structure : a galaxy (schematically composed of
a central supermassive black hole, a bulge and a disk for a spiral galaxy), a
galaxy cluster or around a black hole (this one being accompanied or not by an
accretion disk). In fig. 3 for a spiral galaxy k decreases as a function of r (the
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distance to the galactic center), from the bulge (high density) to the outskirt
(weak density). Likewise we observe a similar situation for an active galactic
nucleus, fig. 4). More high is the density, more high is k. Just around a sleeping
black hole we can assume that this one has created a large empty cavity around
it and the density is weak (and k is weak).

2.3 The space Σ

The space Σ is the set R3 equiped with its vector space structure, a Euclidean
structure B and an application k : R3 → R+

∗ . In the sequel we will consider
(ex, ey, ez) an orthonormal basis so the expression of B in the associated coor-
dinate system will be B(σ,σ′) = σxσ

′
x + σyσ

′
y + σzσ

′
z.

2.3.1 The space Σ seen by an observer

To a point O of Σ is associated the Euclidean structure Bk(O), when equipped
with this structure we will say that the space is ”seen by an observer sitting
at the point O”. The Euclidean structure B is a Euclidean structure on R3

hidden to any observer or at least partially hidden as angles measures and
determination of differentials associated to B are accessible through the use of
Bk(O). Therefore, the regularity of any function defined on Σ as well as angles
are independant of the observer.

2.3.2 Lengths

Let σ and σ′ in Σ, the segment [σ,σ′] is the convex hull of those two points,
as the set [σ,σ′] depends only on the vector space structure of Σ, the segments
do not depend on the choice of a particular observer.
An observer O will measure a length

LO([σ,σ′]) = k(O)‖σ − σ′‖
Next to this segment’s length determined by the choice of an O, there is another
way of defining the length of [σ,σ′] : its ”laser length”

Llaser([σ,σ′]) =

∫ σ′

σ

k.dσ

The segment [σ,σ′] is the same for each observer. Then it makes sense to con-
sider a subdivision of the segment [σ,σ′], σ = σ1 < σ2 < · · · < σn = σ′ where
the points σk are in [σ,σ′], the length associated to that subdivision would
be the sum of the lengths Lσi([σi,σi+1]). The ”path” of such a subdivision
depends on the observer who computes it, but all agree when it comes to say
that the path tends to 0. The integral (the laser ranging distance dlaser) is
obtained as the limit value of this sum when the path of the subdivision tends
to 0, the condition of existence for such a limit being the riemann-integrability
of the function k restricted to the segment. Another way to compute this in-
tegral, maybe more satisfactory, would be to interpret Σ as R3 endowed with
some metric defined by the choice of the function k (if k is regular enough), and
use this metric to compute the length of the segment, the segments (straight
Euclidean lines) do not need however to be geodesic segments.
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2.3.3 Computing and comparing lengths

Let [A,B] and [C,D] two distinct segments. An observer O can compare these
two segments by applying to them the operator k(O). Thus it makes sense to say
that LO([A,B]) = k(O)‖A−B‖ can be larger, smaller or equal to LO([C,D]).
We can also compare the lengths of a segment [A,B] measured by two different
observers O1 and O2 by applying the relation

LO1([A,B]) = k(O1)‖A−B‖ =
k(O1)

k(O2)
LO2([A,B])

As an observer O by himself does not have access to the Euclidean structure B,
then he is, de facto, unable to compute any distances, to do so he will need help
of a second observer. Let O and O′ two ”nearby” observers, i.e. O′ = O + ∆σ.
The distances between O and O′ measured by O and O′ are

dO(O,O′) = k(O)‖∆σ‖ = N rH (2)

and

dO′(O,O
′) = k(O′)‖∆σ‖ = k(O)‖∆σ‖+ (

dk

dσ
.∆σ)‖∆σ‖ (3)

(assuming here that k is a differentiable function of σ). At the first order in ∆σ
we have dO(O,O′) = dO′(O

′, O) and this distance is symmetric. This is the base
calibrated by O (with help from O′) of a parallactic triangle O,O′, P where P
is a distant point. By this procedure each observer can calculate the distance
dO(O,P ) of any distant point P in space.
We now have to set an ”universal helper”. Let O be a point and OH another
point such that the radius of a hydrogen atom in its fundamental state would
fit exactly into [O,OH ]. We denote O − OH by σH(O) the element of Σ repre-
senting the radius of a hydrogen atom. Let `H(O) = dO(O,OH), this quantity is
”the same everywhere” (this is rH) and locally all measurements of lengths are
reported to it. The expression ”the same everywhere” is taken in the sense that
if one transports an atom of hydrogen from a point O1 to another very distant
point O2 and compare it to a local hydrogen atom, the radii are the same, but
to say the ”same everywhere” before transport has no signification because `H
is a length defined by reference to itself !
Another way of saying this is that the duration taken by a beam of light to
travel any segment [O,OH ] is the same everywhere (the time is assumed to be
universal in absence of gravity).
By contrast the differences appear if an observer at a position O1 decides to
measure, from where he is, the radius of a hydrogen atom located very far from
him at a position O2. In this case from the position O2 the segment [O2, O2H ]
has length

rH = `O2([O2, O2H ]) = k(O2).‖O2 −O2H‖

While from the position O1 the observer finds an apparent length

`appO1
([O2, O2H ]) = k(O1).‖O2 −O2H‖
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with the ratio
`appO1

([O2,O2H ])

rH
= k(O1).‖O2−O2H‖

k(O1).‖O1−O1H‖
=

k(O2)k(O1).‖O2−O2H‖
k(O2)k(O1).‖O1−O1H‖

= k(O1)
k(O2)

6= 1.

This seems to contradict the preceding statement that the radius rH is ”invari-
able”. In fact there is no contradiction. In reality the observer at the position
1 does not measure the atom at the position 2 itself but attempts to provide
a value to length of the segment [O2, O2H ] where it fits. Very unconsciously
he then applies the operator k(O1) on it and the result of this operation is
`appO1

([O2, O2H ]). It is an apparent length. To make the measurement of the
radius of a hydrogen atom at a very large distance is obviously not practicable;
but maybe a planet with a determined radius (such as for instance a trans-
portable and well calibrated Earth from a point to another point) would be a
more adequate reference. Unfortunately we know that the exoplanets are of all
sizes and this precludes a reference length to be defined. The fact that we have
no reference length in space for measuring very large lengths authorizes various
speculative proposals (dark matter hypothesis, modified gravity theories, this
work, etc).
In Figure 2 N is universal, i.e. another observer will see the same number N ,
but he will attribute a different value to ∆σ applying his proper k. For instance
an observer located at P measures the base OO′ and attributes to it the length
k(P )∆σ.

Figure 2

– The asymmetry of distances
Let two observers A, B. The vector σAB satisfies the relation

σAB = −σBA
and the distances constructed on Σ are symmetric, ‖σAB‖ = ‖σBA‖. On the
other hand the action of k (linked to an observer) makes these distances asym-
metrical, kA‖σAB‖ 6= kB‖σBA‖.
Universes with asymmetric distances are predicted in Mathematics (Gromov,
2007; Mennucci, 2013), but unfortunately this concept is not fully exploited in
physics.
– The absolute luminosity of a star
An observer E measures the absolute luminosity L∗ of a star S starting from
the apparent brightness ϕ∗. He uses the relationship ϕ∗ = L∗

4π(kEσES)2)
. In this
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sense the distance kEσES is a ”true” distance since this data alone (known in
advance by trigonometry) allows to deduce the absolute luminosity of the star
(neglecting the absorption by dust on the travel). The temperature T∗ of the
star is also left unchanged and the Hertzsprung-Russel diagram is not modified.

– The variability of the absolute luminosity of a star
For variable stars (for instance the Cepheids) the pulsation period is left un-
changed by the new paradigm. However if a sudden phenomenon is produced
(for instance a supernova explosion of a massive star) then the delay of recep-
tion of the signal (propagating with the speed c), depends on the so-called laser

distance dlaserE (S,E) =
∫ S
E
k.dσ and not from the distance dE(E, S) = kEσES.

Obviously, a test for the validity (or not) of the present paradigm on the relativ-
ity of interstellar distances would simply be to measure this delay. It is indeed a
practical test, but both our fixed position in space and the absence of a network
of observers unfortunately forbid its use at this time.

2.4 The function k

In reality the function k : R3 → R+
∗ defining the Σ-structure does not need to

be smooth. As R is equipped with a Euclidean structure it is also equipped
with a topology then we can consider on R3 a structure of measured space
(R3,A, µ) where A is the Borel algebra and µ the Lebesgue measure. We will
consider functions k differentiable almost everywhere with null differential where
the differential exists. Such functions exists, if A is a borelian set such that
µ(∂A) = 0, then its characteristic function (IA(x) = 1 on A and 0 on its
complementary) is differentiable everywhere but on ∂A with a null differential.
Of course, all linear combination k of such functions fullfills the condition that
k is almost everywhere differentiable with null differential so locally constant at
each point where it is differentiable.
There are also examples of continuous non constant functions almost everywhere
differentiable with null differential : the Cantor functions.

3 The Fermat principle and the propagation of light

The function k varies continuously as a function of σ. However we can assume
that this function is not absolutely continuous (we can imagine that the repar-
tition of matter in a galaxy is fractal and that this can imply a fractal variation
of k). As a first approximation we can then represent the k-function as a Cantor
function (Bass, 2013).
Let two flat steps on this curve separated by a jump. Let on each step an inertial
observer, resp. L and L′. We have by invariance of (lH ≡ rH)

lH = kLσH = lH′ = kL′σH′

and for the speed of light (cl = c)

cl =
lH
∆t

= cl′ =
lH′

∆t
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When a beam of light moves from a step to another one its speed does not
change. There is no refraction following the Fermat principle. On the other
hand, for a remote observer O, the apparent speed of light makes a sudden
jump from capp = kO

kL
c to c′app = kO

kL′
c. Then the observer O sees the beam

of light to accelerate or to decelerate according to respectively kL > kL′ or
kL < kL′ , while otherwise the beam propagates in straight line for him. This
result is especially important for explaining the superluminal jets observed in
some quasars as we will see a little later.
Likewise a free particle maintains the same velocity when moving from a step
to another one. This particle does not feel the discontinuity (but the apparent
velocity suddenly changes for a remote observer).

In the following the function k is chosen absolutely continuous. A fixed observer
O has a global view on the ray path, but for him the speed of light is variable
(even though this effect is not real but apparent). Let r = kOσ and dr

ds
= kO

dσ
ds

(ds = ‖dr‖). We put kO = 1 with no loss of generality. Our aim is to obtain
an equation expressing the light propagation and also another one for a massive
particle. These motions are perceived by O and for him they are apparent.
Must an apparent motion be constrained by a variational principle ? In fact
no, but we can always try to do that ! As usually we must minimize an action
integral

S =

∫ B

A

Lds

We express the lagrangian L by using the couple of independent variables (R =
kσ, dR

ds
= k dσ

ds
)3. We consider an arbitrary variation (R −→ R + δR, dR

ds
−→

dR
ds

+ δ(dR
ds

))4. The lagrangian is varied as

∂L =
∂L
∂(dR

ds
)
δ(
dR

ds
) +

∂L
∂R

δR

We impose the condition d
ds

(δR) = δ(dR
ds

), that is the parallelogram formed by
the four vectors δR, dR, dR+ δ(dR), δR+ d(δR) is assumed to be closed and
δ(dR) = d(δR). Admitting that δR is taken equal to 0 the extremities of the
integral A and B, this leads to the usual Euler-Lagrange equations

3 a. The vector R = kσ is the same vector as r = kOσ, but its length is measured by the local
observer L located near the current point.

b. In spite of the notation, the displacement dR is not the differential of R, but it is a differential
form. For two non collinear real displacements dR and d′R both issued from R, we have

d(d′R)− d′(dR) = ∂ikdσ
id′σjej − ∂ikd′σidσjej = (∂ikej − ∂jkei)dσid′σj

= (∇k.dσ)d′σ − (∇k.d′σ)dσ 6= 0

The integral of dR on a closed contour over Σ is not necessarily null.

4The arbitrary displacement issued from R, δR, has not the same signification as dR, the latter
one being real and disposed along the trajectory of the particle. We have more freedom with δR.
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d( ∂L
∂( dRds )

)

ds
− ∂L
∂R

= 0

with the lagrangian L =
√

(dR
ds

)
2

, we obtain the corresponding eikonal equation

d

ds

(
dR

ds

)
=

d

ds

(
k
dr

ds

)
= 0 =⇒ d2r

ds2
+ (

d

ds
ln k)

dr

ds
= 0 (4)

– The motion equation of a massive particle
For a particle of mass m submitted to a potential φ, the lagrangian is

L =
1

2
m(

dR

dt
)2 − φ(R)

The motion equations seen by O are

m
d

dt
(k
dr

dt
) +

∂φ

∂(kr)
= 0 (5)

Let us note that the motion seen by O is not real but apparent (relative to
him). With no force applied to the particle, the observer O yet sees the particle
accelerates or decelerates. The principle of impulsion conservation seems to be
violated in the motion, but it is an apparent motion and that this principle be
checked is not necessarily required (however the principle of impulsion conser-
vation must be checked for a local observer L, and indeed it is : d

dt
(mdR

dt
) = 0).

4 The relativistic generalisation

The relativistic generalisation naturally follows. We start from the action

S =

∫ t2

t1

mc

√
1− 1

c2
(
dR

dt
)2dt

We obtain the relativistic motion equation of a particle of mass m

d

dt
(

m√
1− 1

c2
(kdr
dt

)2

k
dr

dt
) = 0

Likewise from a geometric point of view, we take now the action

S =

∫
ηij
dX i

ds

dXj

ds
ds

with ηij = (1,−1,−1,−1), ds2 = c2dt2−dσ2, i, j = 0, 1, 2, 3, dX0 = cdt, dXα =
kdσα (α = 1, 2, 3). We deduce the equation of the motion projected on the Σ
space
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d

ds
(
dXα

ds
) = 0⇒ d2xα

ds2
+ (

dln k

ds
)
dxα

ds
= 0

or

d2xα

ds2
+
∂ln k

∂xβ
dxβ

ds

dxα

ds
= 0

This equation can be rewritten in the form

d2xα

ds2
+ Γαβγ

dxβ

ds

dxγ

ds
= 0

We find by identification the connexion symbols (let us note that these coeffi-
cients are not symmetric)

Γαβγ =
∂ln k

∂xβ
δαγ

The Ricci tensor is

Rαβ = ∂µΓµβα − ∂βΓµµα + ΓµµλΓ
λ
βα − ΓµβλΓ

λ
µα

and by simple calculations

Rαβ = (
∂ln k

∂xµ∂xβ
− ∂ln k

∂xβ∂xµ
)δµα + (

∂ln k

∂xµ
∂ln k

∂xβ
− ∂ln k

∂xβ
∂ln k

∂xµ
)δµλδ

λ
α = 0

The metric for any observer O is Ricci-flat.
Taking account now the gravity, the usual Einstein equations for a observer O
are left unchanged, but with χapp = kE

kL
χ (kL local value of k).

5 Application

A local observer L applies the gravitational Newtonian law in situ where the
gravitational force acts, i.e. on him or on a mass m located near him (the label-
vector σ goes from the mass M to the mass m). We assume that the attractive
mass, M , is concentrated in a central zone, i.e. the bulge of the galaxy (it
is a drastic simplification but sufficient here for an illustrative purpose). The
dimensionality of the constant G will be adequately redefined in order to respect
the homogeneity. For instance G → Ḡ = G

r3g
where rg is the scale factor for a

galaxy. This reference length is taken equal to the distance galactic center-Sun,
∼ 8 kpc. It is the mean radius measured by any observer located inside it.
This radius is the apparent distance separating him from the galactic center
(and measured by him), which is the same measured by all observers located in
the outskirt of a galaxy (the habitable zone). First we must derive determined
quantities. For any local observer we assume the usual law :

d

dt
(m

dR

dt
) = −GMm

R

‖R‖3 (6)
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from which it follows that

mrg
d

dt
(k.

dσ

dt︸ ︷︷ ︸)local observer = −ḠMmrg
k.σ

(k. ‖σ‖)3︸ ︷︷ ︸
Influence of the attractive
centre, the vector σ points
toward the local observer

(7)

with R = rgkσ and dR = rgkdσ
5,

The gravitational force (right side) can be derived from a potential6

The expression (eq. 3) is still copied from the classic law with the change
r → R = k.σ and dr → dR = k.dσ. Newton’s laws do not work at the

5here σ is dimensionless. Cf. note 1 for the signification of the ”d” in dR.
6We can cut the bulge of mass M in a series of spherical concentric shells. For a spherical shell of

mass dM with its center located at the galactic center, we have

d3Φ = − Ḡdm

k(‖σ − σ′‖)
where

dm = mHn
′(k′σ)/(k′σ′)2d(k′σ′)/sinθdθdϕ

denotes the mass element surrounding the point A′ (n′ ≡ n′(k′σ′) is the particle density seen by the
current observer located at A′). On the other hand the angles θ, ϕ, their differentials and dm are
invariant).
By an usual integration over θ and ϕ, we obtain

dΦf = − ḠdM
kσ

The effect of a spherical shell is the same as a point mass dM placed at the galactic center.

Φ = − ḠM
kσ

by application of the operator ∇kσ.
The k-factor in k‖σ − σ′‖ is k and not k′. This can be still derived from the analogy with the
electrostatic interaction in a medium with a variable permittivity (see for instance Landau and
Lifshitz, 1984).
Let a free charge Q placed at the centre of a dielectric ball of permittivity ε(r). The displacement
vector D is

divD = Qδ(r) rotD = 0

Combining the spherical symmetry with the Gauss law immediately gives the solution D = Q
4π

r
r3

.
Admitting now the constitutive relation D = ε(r)E (see Landau and Lishitz, 1984, eq. 7.1), we
deduce the electric field

E(r) =
Q

4π

r

εr3

The force acting on a trial particle of charge q located at a distance r from the centre is

F (r) =
Qq

4π

r

εr3

Then by analogy using the transform Q, q ⇒M,m, r ⇒ σ, ε(r)⇒ k2(σ)

F (r) = −GMm
kσ

(k(σ)σ)3

Let us however notice that even though such an analogy gives the same result that using the right
procedure, i.e. by passing from eq. 6 to eq. 7, it should not taken at face value.
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nanoscopic scale of atoms and molecules and we need to use quantum mechanics.
At a very large scale, i.e. in the galaxy realm, we assume that the newtonian
gravitational law is still valid even though now expressed as above (eq. 7).
The motion of a star is grossly circular in a galaxy, then (k is assumed to be
a function of the radial distance σ, then for a circular motion dk

dt
= dk

dσ
dσ
dt

= 0).
The first member simpiflies as

d

dt
(k.

dσ

dt
) =

dk

dt

dσ

dt
+ k

d2σ

dt2
' k

d2σ

dt2

If we assume that all observers in the outskirt of a galaxy are equivalent, the
quantity k.σ is the same everywhere in this region. The basis of this assumption
is obviously reflected in the galactic flat curve for the velocities. Subsequently
any observer in a galaxy supplies the same estimation of the distance for the
galactic centre, after comparison with its proper local reference (but for each of
them this distance is a true distance). Unfortunately at the present time this
assumption is impossible to check ! The quantity k.σ can be put equal to 1 in
the outskirt of a galaxy. Then we obtain :

rgk.σ̈ = −ḠM rgk.σ

On the other hand (the index O designing an outer observer) :

rgk0.σ̈ + ḠMrgk0σ = 0

(the dot notation above a quantity is used here to represent the time derivative).
Eventually putting r = rgk0σ :

r̈ + ḠMr = 0

We recognize the equation of the harmonic oscillator. For a circular motion
rθ̇ ∝ r (we recall that the angle and its time derivative are defined quantities and
the same for all observers). This relationship expresses a quasi-rigid body-like
rotation and any spiral structure, once built-up, is conservative (without outer
ingredients artificially added to the theory such as, for instance, the density wave
hypothesis needed to maintain this structure). However the velocity v measured

locally is rg(k.σ)θ̇, and this is the same value measured by any inertial observer
located along the galactic radius (this so-called inertial observer is a fictive
observer who does not participate to the rotation of the galaxy). Evaluating
the frequency ratio we find ∆ν

ν
= v

c
= Constant. Any outer observer measuring

this ratio (this is the same ratio because the speed of light and the frequency
are universal quantities and v

c
= vapp

capp
) immediately deduces an apparent flat

rotation curve as attested by spectroscopic measurements (Metzger, Calwell,
Schechter, 1998).
The spiral structure and the flat galactic curve are no longer independent but
are now conjugate phenomena by an ”universal law” k.σ = 1 in the outskirt of
a galaxy. In other words a spiral substructure can be permanent, compatible
with a flat rotation curve (as observed spectroscopically), but with no winding
problem.
The figure 3 describes the typical variation of k over a large spectrum of dis-
tances, starting from the singularity (a sleeping black hole), assumed to be
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present at the center of a ”normal” galaxy, up to the size of a galaxy cluster.
The mean curve, which aims to be universal, is parametrized by rref which could
be linked to the mass of the central black hole MBH (may be this link could
be established from straightforward numerical simulations but which remain to
be done). If we report us to the paragraph 5.3 on the AGNs (assumed to be
equipped of a supermassive active black hole), replacing the bulge by the accre-

tion disk surrounding the black hole, a law rref ∼M
− 1

2
BH could be suggested7).

We can also propose a simple relationship between k and the density ρ (in the
case of the Milky Way rref ' 8 kpc)

e−[( 1
(k−0.16)

−1.19] =
ρ

ρref
(8)

This law is assumed to be univeral and applicable to other spiral galaxies (but
with another couple rref , ρref ). For 0.5rred < r < 3rref , we have

e−[( 1
(k−0.16)

−1.19] =
ρ

ρref
∼ e

− r
rref ⇒ k ∼ rref

r
(9)

The figure 4 reproduces the corresponding curve for the velocities (radius of the
bulge ∼ 3 kpc and mean density ρb ∼ 0.18 M�pc

−3; Galactic disk treated as a
thin disk (thickness ∼ 300 pc) with an exponential decreasing surface density
(stars + gas), taking ρD = 0.14 M�pc

−3 at rref = 8 kpc). We can see an
oscillating series of pieces of pseudo keplerian curves superimposed to a mean
flat plateau. This oscillation is characteristic of most observational velocity
profiles supplied for the Milky Way (see the figure 10 of Chemin, Renaud and
Soubiran (2015) and the figure 2 of Morz et al (2019)). We can note that the
pseudo-keplerian behavior in the solar neighborood perturbing the mean flat
plateau can lead to conflicting measurements (to compare Bovy and Tremaine,
2012 and Moni Bidin et al, 2014).
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7Even though in a different context, a connection between a ”dark matter effect” (whose extension
zone is linked to rref ) with the galaxy center and the supermassive black hole has ben suggested
(Bogdán and Goulding, 2015).
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– The case of the elliptical, dwarfs and large ultradiffuse galaxies
An elliptical galaxy can approximately be represented by a triaxial spheroid.
Both radial velocity measurements (Méndez et al, 2001, Romanowsky et al.,
2003; Lane, Salinas and Richtler, 2014) and estimations of mass-to-light ratios
in elliptical galaxies deduced from gravitational lensing (Treu, 2010), seem to
suggest that the ”dark matter effect” is weak. Transposed in the context of the
new paradigm this could signify that the mean value of k is much higher in these
objects than in the outskirt of the spiral galaxies (grossly an elliptical galaxy is
a kind of ”big bulge” with high k). However, in any case, these observational
data are still disputed and there exits no consensus on the rate of dark matter
in the elliptical galaxies. Consequently, it is difficult to fix k in these objects,
but we can suggest k ∼ Const ' 1 (no ”dark matter effect”).
At the opposite side the dwarf galaxies or the large ultradiffuse galaxies are
dominated by a strong ”dark matter effect” (Kormendy and Freeman 2016)
and the k is weak (1 > k > 0.16).

– Self-gravity in a galaxy
Let a cluster composed of N stars in a galaxy. The stars interact between them.
The effect of the star j on the star i is expressed by (i 6= j).

mirg
d

dt
(ki.

dσi
dt

) = −
N∑
j=1

Ḡmimj

(ki.‖σi − σj‖)3 rgki.(σi − σj) (10)

and with ki = ki
kO
kO (and assuming | 1

ki

dki
dt
| � | σ̈i

σ̇i
| for a cluster whose radius is

� rg):

rgkO.σ̈i = −
N∑
j=1

(
kO
ki

)3
Ḡmj

(kO.‖σi − σj‖)3 rgkO.(σi − σj)

Putting ri,j = rgkO.σi,j we obtain (following the global point of view of an outer
observer O)

d2ri

dt2
= −

N∑
j=1

(
kO
ki

)3
Gmj

‖ri − rj‖ 3 (ri − rj) (11)
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This is the usual equation but with a factor
(
kO
ki

)3

which in appearance strongly

amplifies the phenomenon of self-interaction in the outer region of the galaxy
(with ki < kO). Let us notice that we obtain the same equation by replacing
in the classical equation the gravitational constant G by the apparent constant

Gapp =
(
kO
ki

)3

G. We could thus mimic the effect of dark matter by a ”variable”

gravitational constant as some authors have made (Moffat, 2006) (with the
sole, but though important, difference that here the variability is not real but
apparent (measured locally the gravitational constant is G).

d2ri

dt2
= −

N∑
j=1

Gappmj

‖ri − rj‖ 3 (ri − rj) (12)

However for an inertial observer placed at i, putting Ri,j = rgki.σi,j in eq. (5)
gives

d2Ri

dt2
= −

N∑
j=1
i 6=j

Gmj

‖Ri −Rj‖ 3 (Ri −Rj)

i.e. the standard form. Thus a local measurement (within the extrasolar solar
system under consideration) would provide G.
For an outer observer, G varies as r3 in the outskirt of a galaxy. But beyond in
the intergalactic medium following this rule, the Gapp coefficient would diverge
which is not observed. We must thus assume that there certainly exists a cut-
off value, for r of the order of a few rg, which limits this effect. Fixing this
cut-off value (or in other words the width of the bump of the function k) is
difficult because the galactic velocity curve shows no evidence of a decline at
some distance.
For the Milky Way a refinement of the function k needs a deep knowledge of the
galatic rotation curve. Unfortunately the observational data diverge according
to the authors. For instance Gnaciński (2018) finds that the Milky Way rotation
curve has its shape between keplerian and flat in the outskirt while, on the
contrary, Sofue, Honma and Omodaka (2009) or Russeil et al (2017) find is
some cases (following the parametrization) a rising rotation curve.

– The central black hole
At the opposite side for r → 0, Gapp → 0 and again it is not a realistic situation.
A natural manner to remedy to that is to imagine that Gapp tends toward a finite
limit 6= 0. However may be can we also imagine that Gapp strongly increases
toward the infinite near the centre and mimics a galactic black hole.
It is well admitted that a supermassive black hole (SMBH) resides at the cen-
ter of any galaxy (including ours) with a mass varying from 106 to 1010 M�
(Marziani and Sulentic, 2011, Fig. 9). It is a real singularity of the space-time
of which it is hard to get rid off (a black hole is a zero-volume object into which
the entire mass is concentrated, a concept where modern physics breaks down).
The paradigm with Gapp → ∞ when r → 0 reproduces the same phenomena
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(the observation of very high apparent velocities around the galactic center),
but the great advantage now is that the singularity is no longer real but is just
an apparent effect from the point of view of a distant observer. An apparent
infinite appears much less severe than an actual infinite. Limiting us just for a
moment to a continuous physics (without mathematical infinite), if an observer
goes to the center of the Galaxy and measures the gravitational constant, he
obtains the usual value of G. Moreover nothing is abnormal for him because
the singularity has disappeared. However today there exists a large consensus
that black holes seem to be present in most galaxies (indifferently ”active” or
”normal”). In this case we must necessarily keep the idea that a (sleeping) black
hole is existing at the center of a ”normal” galaxy as ours, but that its mass is
lower than expected by some factor that is to be determined (taken into account
of the broader array of values of the masses of galactic black holes (Marziani and
Sulentic, 2011), their estimate could possibly be subject to a large uncertainty).
By contrast we must specify that to attribute a very large mass to supermassive
black holes, living at the center of the active galaxies, appear inevitable (these
objects are actively accreting black holes). The reason is that the radiations
emitted by these objects are indeed very energetic (high frequencies and very
high luminosities), while in the framework of the present paradigm the frequen-
cies ν are left unchanged (ν = c

λ
(the apparent speed of light c and the apparent

wavelength λ vary in the same way, the ratio is left invariant).
On the other hand the fact that the quasars were much more numerous at high
redshift than today seems to suggest that sleeping SMBHs are maybe hidden in
many nearby ”normal” galaxies. The frontier between ”active” and ”normal”
galaxies can be a bit fuzzy.

– The galactic bulge
Otherwise let us note now from the figure 3, that an extrasolar system located
in the bulge of the Galaxy must appear weakly bounded from the point of view
of a terrestrial observer. Let vb the velocity measured locally by an observer
located in the bulge and vappE the same velocity (in fact more precisely the
motion projected on the sky plane) measured from the Earth. We have

kb
kE
∼ 0.78 =⇒ vappE

vb
∼ 0.78

That is for a Sun (mass M)-Earth (mass m) system transported in the bulge b
of the Galaxy : i.e. (S,E) → (Eb, Sb), we have vappE ∼ 23 km s−1. Obviously
the local observer at b does not remark nothing of special. For him vb is still
equal to 30 km s−1 (the mean velocity of the Earth around the Sun). We can
also study the phenomenon starting from the Newton’s gravitational equation.
In the bulge

mrgkb.σ̈Eb = − ḠMm

(kb.‖σEb − σSb‖)
3 rgkb.(σEb − σSb)

Or, putting RE = rgkb.σEb and RS = rgkb.σSb, we find the usual equation with
the same G as those measured on Earth
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d2RE

dt2
= − GM

‖RE −RS‖ 3 (RE −RS)

On the other hand from the point of view of a terrestrial observer

mrgkE.σ̈Eb = −
(
kE
kb

)3
ḠMm

(kE.‖σE − σS‖)3
rgkE.(σEb − σSb)

Putting now rE = rgkE.σEb and rS = kE.σSb leads to the equation with appar-
ent Gapp :

d2rE

dt2
= −Gapp

M

‖rE − rS‖ 3 (rE − rS)

For Gapp ∼ 0.48 G we see that the apparent acceleration is reduced by a factor
2.

– The vicinity of the black hole
A contrario, near the galactic center, the motions (seen from the Earth) appear
amplified by a very high Gapp near this centre, even if the central black hole
has a mass weaker than admitted (i.e. ∼ 4 106 M�). The noticeable fact with
the empirical curve reported in fig. 3 is that now both the dark matter and
black hole effects, even though very different in nature, are treated on the same
plane through an unique paradigm (an apparent G). Another interest is that
the black hole mass can appear strongly magnified from the point of view of
a distant observer. In the ”normal” galaxies as ours the central black hole
does not appear energetically very active; for instance we do not observe the
spectacular jets or strong emissions of gamma rays or X-rays which characterize
the active galactic nuclei such as quasars and blazars. The sole noticeable effect
produced by the center of the Galaxy is essentially kinematic with an apparent
amplification of velocities of nearest objects. Let C and E the indexes which
respectively label the velocities measured near the core, and on Earth. We have
for the tangential components

vtappE =

(
kE
kC

)
vtC

and for the radial components

vrE = vrC = vtC

(assuming a velocity inclined to 45◦ on the line of sight for the second equality).
We do not label ”app” the radial velocities because these ones are true velocities
(measured by spectroscopy and the ratio ∆ν

ν
is universal).

vrE
vtappE

=
vtC
vtappE

=

(
kC
kE

)
If kC � kE then vrE � vtE. This result is a criterion of falsifiability of the
model. The orbits appear squeezed on the sky plane (perpendicular to the line
of sight).
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A possible conclusion is that the black holes residing at the center of ”normal”
(not active) galaxies, as in the case of the Milky Way, could be smaller than
usually admitted (by a factor which needs to be determined), hence their ”lack
of vigour”. On the contrary the black holes assumed to be at the center of active
galaxies (Seyfert and quasars) can obviously be very massive.

5.1 The consideration of the galactic translation

An observer O located outside a galaxy measures the velocity of an object P
assumed to be located inside this galaxy. The point of view of the observer O
differs from that of a series of local inertial observers L,L′, ... attending to the
translation of the galaxy as a whole (but not to its rotation). However we admit
the relation of velocity composition

v(P/O) =
kO
kL
v(P/L) + v(L/O)

with

v(P/O) = kO.σ̇(P/O) v(P/L) = kL.σ̇(P/L)

and

v(L/O) = kO.σ̇(L/O) independent of L

For two distinct inertial observers L,L′, we have

v(L/O) = v(L′/O)

v(L′/L) = kLσ̇(L′/L) = kL(σ̇(L′/O)− σ̇(L/O)) = 0

as appropriate.

– Point of view of an inner (local and inertial) observer L
The inertial observer L, accompagnying the translation of the galaxy as a whole,
is assumed to be placed on the line PO near P . The unit vector of this line
is labelled by n and any vector perpendicular to it is denoted by t. We recall
that the directions are univocally defined by all observers (especially here L
and O). Both orthoradial and radial motions respectively following n and t
(measurements made by the inner observer L) can be composed in a natural
manner to give the vector relation

v(P/L) = vn (P/L)n+ vt (P/L) t

From spectroscopic measurements we have (r for radial)

∆ν

ν
(P/L) =

vn (P/L)

c
≡ vr (P/L)

c

– Point of view of an outer observer O
A important point is that the tangential and radial motions are not treated in
the same manner by an outer observer. The tangential motions are obtained by
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proper motion measurements and the radial motions by spectroscopic measure-
ments.
Tangential motion (perpendicular to the line of sight with unit vector t), is-
sued from proper motion measurements made by the observer O located outside
the galaxy

vt (P/O) = v (P/O) .t

Radial motion (along the line of sight with unit vector n) issued from spec-
troscopic measurements made by this observer :

∆ν

ν
(P/O) =

vr (P/O)

c
=
vr (P/L) + vr (L/O )

c

Substracting the constant term vr (L/O), the ∆ν
ν

is the same seen by O and L.

5.2 The spiral galaxies

There exists a current consensus that the disk-like galaxies (e.g. the Milky Way)
gradually form from a slow accretion of gas (Mo, Van Den Bosch and White,
2010; Naab and Ostriker, 2017).
In an obvious scenario the formation of the spiral substructure can be produced
by the encounter of two galaxies with a statistically non-null impact parame-
ter, but it is a rare phenomenon. Another more general way to form a spiral
morphology is still to consider it as an instability which spontaneously develops
in a self-graviting homogeneous disk with a bar-shaped concentration of mass
in the central regions (on the other hand it is well known that computer simu-
lations spontaneously develop disks with transient spiral like morphologies, see
for instance the figure 2 of Naab and Ostriker, 2017). The difficulty is therefore
not in the build-up of a spiral substructure, which seems to be an inevitable
process, but rather in its conservation over times larger than 1 − 2 billions of
years. Regardless of the mode of formation of the spiral substructure this one
can be maintained for a very long time (of the order of the Universe age) in
view of the paradigm described in the present paper.
The equation of an ideal rotating-in-block logarithmic spiral (representing a
spiral arm) with rotational velocity Ω is given by (we denote by ob any object
in the galaxy)8

Zob(t) = aobe
(θob+iΩt)

We introduce a bit more of physics if we admit that the spiral arm posesses
a thickness and that the motion of various objects which compose it is not
perfectly circular. Then we can now associate to each type of objects ob a
complex number

Zob(t) = [aob + bobe
i(ωt+ηob)]e

(θob+iΩt)

8We must note that the global solid body rotation of any distant galaxy cannot be perceived by
a terrestrial observer. Rather spectroscopic measurements provide indeed a flat rotation curve (the
proper motions are very small and not measurable in a distant galaxy).
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where bob � aobe
θob , ηob is an arbitrary phase and ω is an epicyclic frequency.

Then, at this highly idealized stage, the spiral substructure can be seen as a
series of stars or patches of gas which oscillate around a mean position (the
spiral substructure can periodically distort over time : to pulsate in block or to
vary its thickness).
Eventually ”rotating in block” does not mean that everything is immutable or
just periodic in a disk-like galaxy or still that the latter one is a solid structure!
The reason is that the various objects such as stars, HII regions, giant molecular
clouds, etc, possess random velocities. A rapid examination of the stellar kine-
matics near the Sun suffices to convince ourself that the peculiar velocities can
be high and strongly depending on the type (the mass, the age, the metallicity,
etc) of stars (old metal-poor red dwarfs, K Giants or young metal-rich A dwarfs,
etc).
Moreover once formed the spiral substructure acts as a potential well which
attracts molecular clouds and these ones collide with one another. This phe-
nomenon drives shock waves through the gas triggering the production of new
HII regions and OB stars which, in turn, stochastically underlines the spiral
substructure.
Evidence against long-lived spiral arms has been suggested on the basis that, in
the wave density model, the star formation sequence (SF) should then show a
spatial ordering (dense HI ⇒ molecular gas ⇒ stars dust-enshrouded ⇒ young
stars ⇒ unobscured young stars ⇒ clusters), a processs which is not observed
(Foyle et al, 2010). A contrario, in the framework of the present paradigm, it is
clear that a stationary dynamical spiral pattern of well-defined speed (but it is
not here a wave density) can coexist with no spatial ordering for the formation
sequence.
There exists another source which also alters the body solid rotation of the
galaxies. The function r −→ k is represented in fig. 3 by a staircase function
surimposed to a mean continuous curve. Only a few steps are reproduced, even
though this structure is likely fractal (a Cantor function). For the Galaxy, the
rotation curve exhibits a clear wavy behavior (see the figure 10 of Chemin,
Renaud and Soubiran (2015) and the figure 2 of Morz et al (2019)). These
oscillations are attributed to the presence of local rings or arm pieces, and here
this behavior is mimicked by the fractal nature of k (however at a large scale
and at a lower resolution, for instance for a remote galaxy, the function k would
appear continuous). We can fix the step of the function k to approximately 1 kpc
wide near the Sun (i.e. grossly the thickness of the Orion arm). Obviously on
each step determined by k = Const, the matter cannot rotate as a rigid ring and
the rotation becomes naturally differential (as this is the case in the vicinity of
the Sun as attested by proper motions measurements, Olling and Dehnen, 2003;
Bovy, 2017). Then how to conciliate this differential rotation with a sustainable
spiral substructure (i.e. a global solid body rotation)? The figure 4 (not to scale
for the distances and the velocities)9 shows that such a situation can easily be
realized if we assume that streams of stars (and of other objects) in the form of
vortices of all sizes are disposed along the spiral substructure. These vortices

9The black arrows indicate the rigid motion of a piece of the long-lived spiral arm and the triple
arrows indicate the differential motions within this arm.
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could have persisted since the Galaxy formation. According to theories and
dedicated laboratory experiments, we know that the apparition of a hierarchy
of vortices is possible at any scale, in any rotating gaseous system (for a proto-
planetary system, see Ataiee et al, 2014; Regály, Juhász and Nehéz, 2017). It is
likely the same thing in the disk of a spiral galaxy (at the initial stage this disk
is formed from accretion of gas). The figure 5 is obviously oversimplified and
the center of the vortex is coincident with the Sun itself assumed to be fixed10 .
The vortices, which depend on the type of stars, can be distorted or can merge
over time, the mean velocity in a vortex can be taken of the order of 20 kms−1,
with a size (λ)-velocity (v) relation of the type v ∼ λ

1
3 ).

Figure 4

Let a local cartesian basis with unit vectors ex, ey, respectively pointing in
directions l = 0◦ and l = 90◦ (l is the galactic longitude). The origin is coincident
with the Sun. Let Ω the galactic angular velocity and ωv the angular velocity
of the vortex (the center of the vortex is the Sun). The difference v between
the velocity at some point R in the Galaxy and that at the Sun R0 may be
expanded in a Taylor series as a function of the components of r = R − R0.
We have

v = (Ω×R−Ω0 ×R0) + ωv × [α(xcosγ + ysinγ)ex + β(−xsinγ + ycosγ)ey]

= Ω0 × r + ∆Ω×R0 + ωv × [α(xcosγ + ysinγ)ex + β(−xsinγ + ycosγ)ey]

with

∆Ω = Ω0(
R0

R0 − x
)
3
2 − Ω0 '

3

2
Ω0

x

R0

10In reality this center is relative and the proper velocity of the Sun estimated in the Local Standard
of Rest (assumed here to participate to the global (solid body) rotation of the Galaxy) is ∼ 14 kms−1.

24



(on a step of the function k, Ω varies in a keplerian manner, i.e. as R−
3
2 ).

The parameters α and β respectively represent the minor and major axes of
the vortex, assumed to be elliptical, and γ is the orientation of the major axis
related to ex). We can put α + β = 1.
The comparison with the expression (2) of Olling and Dehnen (2003) immme-
diately gives

(
ωvβsinγ −1

2
Ω0 + ωvαcosγ

−Ω0 − ωvβcosγ ωvαsinγ

)
=

(
K + C A−B
A+B K − C

)
From Bovy (2017), we have (unit expressed in km s−1 kpc−1)

(
K + C A−B
A+B K − C

)
=

(
−6.5 27.2
3.4 −0.1

)
(13)

The fit Ω0 = −27.5, ωv = 43, α = 1
3
, γ = −13◦ provides the matrix coefficients

(
−7.3 26.3
2.1 −3.6

)
(14)

The comparison between (10 and (11) shows that the paradigm proposed in the
present paper gives an acceptable representation for the solar environment.

5.3 Relativistic jets in AGNs

Close to the core of active galaxies (AGNs), some collimated relativistic jets
of matter are observed with superluminal expansion (Thomson, MacKay and
Wright, 1993; Biretta, Sparks, Macchetto, 1999; Blandford, Meier, Readhead,
2019). The usual explanation is that the jet is directed toward us and that
the illusion of a superluminal velocity results from a relativistic effect. The
interpretation proposed in the present context is not antithetical with this idea
but rather intervenes as a complementary aspect11. In these jets, the apparent
speed of light seems to increase from low values∼ 0.01 c to high values 2−3 c and
sometimes more, over a distance of a few parsecs. For a quasar we can still report
us to the figure 3, but with the change rref = rg ∼ 8 kpc −→ 102rS ∼ 100 pc (rS
denotes the Schwarzchild radius of the central black hole) (this meant shrinking
the curve following the abscissa but with no change of the ordinate) (fig.6). Let a
jet with an apparent velocity vapp. Seen from the Earth this jet will appear such
as vapp > c (c being the speed of light measured in the laboratory). However
we shall have vapp < capp. The apparent speed of a photon estimated by a
terrestrial observer can then be larger than c, whereas its true speed estimated
locally would be always c. For an inertial observer placed near the jet the
velocity of a blob of gas is always subluminal and smaller than c (respecting the

11It should be made clear that the mechanism responsible of the formation of these relativistic jets
is left unchanged, i.e. the presence of a supermassive black hole (SMBH) surrounded by an accretion
disk which powered the jet up to velocities with a very high Lorentz factor.
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causality principle). Contrarily to the orthodox interpretation, the interest is,
here, that the jet has no preferential orientation. Another interesting point is
that from the Earth the jets are seen accelerating whereas, locally, the velocity is
constant. This acceleration is apparent and no mechanism such as for instance
a MHD-powered one as early proposed (see for a short review Asada et al, 2014)
is needed.
Let J a particle in the jet, L an local observer at rest relatively to O. We have

v(J/O) =
kO
kL
v(J/L) + v(L/O) =

kO
kL
v(J/L)

For v(J/L) ∼ c and kO
kL
∼ 6, we obtain v(J/O) . 6 c.

The usual relativistic mechanism proposed by Rees (Rees, 1966) can also occur
together with the one that we propose in this paper, especially in the rare cases
when the speed of the jet is ≥ 6 c (with a record ∼ 50 c measured in PKS
0805-07, Blandford, 2019).
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The figure 7 provides the result of a depending on time numerical simulation of
a relativistic jet, emitted from the outer rim of an accretion disk, surrounding
a SMBH of mass M ∼ 109 M�

12. The density plot ρ is given in gray scale (we
must note that the very weak nebulosity is not visible, only the very luminous
central point (the quasar) and the jet can appear on a snapshot, however see
the figure at a very large scale of Blandford, Meier, and Readhead, 2019). The
jet is perpendicular to the line of view. The calculations have been made with
the PLUTO code which targets high Mach number flows in astrophysical fluid
dynamics (Mignone at al, 2015). The RMHD (relativistic MHD equations)
module expressed in spherical coordinates has been used throughout with the
ideal equation of state.

12We assume here a more simplified model than the usual accretion-ejection mechanism in SMBHs
(see Asada et al, 2008, for a short review). A similar accretion-ejection mechanism (but with a more
weaker energetics) is also acting in TT-Tauri stars (Ferreira, J., Pelletier, G. and Appl, S, 2000). Let
us note that in the present model the matter is not emitted along the pole axis but is issued from
the outskirt of the disk. A weak magnetized nebulosity is formed wuth an empty large cavity above
the accretion disc. The jet is produced by a pinch effect
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The initial conditions are the following : an homogeneous magnetized torus of
major radius equal to rM = 10 rS ∼ 10 pc (or 1/10 of the reference radius rref )
and minor radius equal to 5 rS with an uniform density of particle ∼ 106 cm−3

and temperature ∼ 106 K. The magnetic field in the torus is fully azimuthal and
of the order of 0.3 Gs. The velocity of the barycenter of a section is assumed be
of the order of 0.5c. This initial velocity is communicated to the torus by a MHD
process which is not questioned here. Ley us specify that the model exposed
above is far removed from the standard model of AGNs, but it is presented
as just an illustrative way for a simple comparison of the kinematics (true or
apparent) of the jet.
After expansion fig. 7 shows that the velocity of the gas decreases as a function
of the distance r and the velocity of the jet goes from 0.5c at r = rM to 0.3c
at r = 10 rM . The jet13 develops by magnetic striction and the part which
is represented is of the order of 1 kpc long (but it can be much longer before
decollimation). In spite of this decrease a remote observer will see the velocity
of the jet increases from 0.2c to 1.8c, fictitiously suggesting to this observer that
a driving mechanism is really at work. The jet has been taken perpendicular to
the line of view and the quasars is obscured by the dusty torus surrounding it
(and therefore is not visible). Of course the model also indifferently works if the
jet is inclined on the line of view at any angle, and the quasar made visible (for
a study on torus-obscured and unobscured quasars, see for instance DiPompeo
et al, 2016).

Figure 7

The explanation is the following. Let vtrue the true velocity (locally measured)
and vapp the apparent velocity (measured by a remote observer O). We have
the relationship

13A counter-jet is existing but it is weaker. The toroidal magnetic field has not be taken symmetric
with respect to the mean plane of the equatorial disk (there exists absolutely no reason why such a
symmetry should be realized (Sparks et al, 1992)).
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vapp =
kO
k
vtrue

Correspondingly the link between the true and apparent accelerations (denoted
by a point) is

v̇app =
kO
k

(− k̇
k
vtrue + v̇true) (

k̇

k
< 0)

We can distinguish four cases

i. vtrue < 0 a. ( |k̇|
k
> |v̇true|

vtrue
⇒ vapp > 0 b. ( |k̇|

k
< |v̇true|

vtrue
⇒ vapp < 0

ii. vtrue = 0⇒ vapp > 0
iii. vtrue > 0⇒ vapp > 0

The figure 5 corresponds to the case i.a, but the AGNs can certainly produce
all possible situations described above.

5.4 The gravitational lensing

Especially for the deviation angle α of light beams emitted from a very distant
object and deflected by a close cluster of galaxies, we have

α =
Gapp

G
(
c

capp
)2 2GM

c2b
= (

capp
c

)
2GM

c2b

where b is the impact parameter measured by the terrestrial observer E. With
capp = 6 c in a galaxy cluster we can deduce that the deviation angle is ∼ 6
times the value calculated with just the visible matter and without dark matter.
Starting from the equation (7), an usual calculation gives

rck.σ̈ = − GMvis

(rck.σ)3
rck.σ

(rc designs the mean galaxy cluster radius and the origin of σ is taken at the
center of the galaxy cluster, assumed to be spherically symmetric) and

rck.
σ̇2

σ
= −(

GMvis

rck.σ
)2

The velocity measured by spectroscopy (i. e. the radial velocity, γ is the angle
between the velocity vector and the line of sight) is

vr = (
GM

rck.σ
)
1
2 cosγ = (

k

kE
)
1
2 (
GMvis

rckE.σ
)
1
2 cosγ

Once again the amplification factor ( k
kE

)
1
2 mimics a dark matter effect. With

k
kE
' 6, we find Mvis ' 0.17(MDM + Mvis) (for Abell 2744 the observational

data supplies a slightly higher ratio ' 0.25 corresponding to an amplification
factor k

kE
' 4).
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6 The standard model of cosmology

The Friedmann equations is

H2 = (
ȧ

a
)2 =

8πG

3
(ρvis + ρDM)− κc2

a2
+

Λc2

3
(15)

where H is the Hubble parameter, a the dimensionless scale factor, κ the cur-
vature, Λ the cosmological constant, ρvis the density of visible matter, ρDM the
dark matter density. The new paradigm leaves unchanged all the conclusions of
the standard model of cosmology but without dark matter. Within the present
fomalism, it would a priori seem that we can directly rewrite the Friedmann
equation as

(
kEσ̇

kEσ
)2 =

8πGapp

3
ρvis −

κc2
app

(kEσ)2
+

Λc2
app

3

However the velocity which is measured is not kEσ̇ but kσ̇ (we recall that the
radial velocity is measured by spectroscopy). With the adequate change we
obtain the equation

H2 = (
kσ̇

kEσ
)2 =

8π( k
kE

)2Gapp

3
ρvis −

κ( k
kE

)2c2
app

(kEσ)2
+

Λ( k
kE

)2c2
app

3

Eventually

H2 = (
kσ̇

kEσ
)2 =

8π kE
k
G

3
ρvis −

κc2

(kEσ)2
+

Λc2

3
(16)

An estimation of the amplification factor kE
k

is supplied by the Planck data
(2018)

kE
k

=
ρvis + ρDM

ρvis
' 6.36

7 Conclusion

In the framework of the standard astrophysics, we must do appeal for ingredients
such as dark matter (not directly observed), wave density (difficult to maintain),
or relativistic effects for the quasar jets (but with a strong constraint on the jet
direction, which has to be skillfully oriented toward the observer). All these
hints are eliminated here. Moreover the physics laws are not modified in their
local form.
The fundamental constants G, c, ... are universal (the same everywhere), how-
ever the measurement process done by an observer makes them appear as pseu-
dovariables Gapp, capp, ... (while the observer does not perceive them as well and
rather introduces various artificial effects : dark matter in galaxies and galaxy
clusters, density waves in spiral galaxies, or sleeping black holes (assumed to
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be located at the center of ”normal” galaxies). Even though this new idea still
needs a lot more work, the present draft suggests that the representation we
have of the Universe could be seen different following we consider the tangential
velocities (which are apparent) or the radial velocities (real and measured by
spectroscopy). Whereas we can say as in the standard astrophysics that the unit
length is the same everywhere (there are not ”small” and ”large” meters), this
is the remote measurement which makes them different. The paradigm exposed
will be maybe falsifiable (in the Karl Popper sense) with the next generation of
telescopes. A main conclusion is that the measurement of the proper motions
in a galaxy or a cluster of galaxies is then expected to show that the mean tan-
gential (apparent) velocities are smaller or larger than the mean radial (true)
velocities measured by spectroscopy by a factor ∼ kE

k
comprised between 0.78

(minimum) and ' 6.36 (maximum) (following the region which is observed).
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