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 for a complete review. The recent ISMC scheme described in [2] presents many advantages (no teleportation error, converging behaviour with respect to the spatial and time discretisations). But it is rather different from the IMC one (it is based on a different linearisation and needs a slightly different code architecture). On another hand, legacy codes are often based on IMC implementations. For this reason, it remains important to be able to cancel the teleportation error within IMC codes. Cancelling the teleportation error within the IMC framework is also important for fair comparisons between both the IMC and the ISMC linearisations. This paper aims at suggesting some simple corrections to apply to an IMC implementation to completely cancel the teleportation error.

Introduction

Monte-Carlo (MC) schemes for photonics have been intensively studied throughout the past decades, see [START_REF]The calculation of nonlinear radiation transport by a monte carlo method[END_REF][START_REF] Fleck | An implicit monte-carlo scheme for calculating time and frequency dependent nonlinear radiation transport[END_REF][START_REF] Carter | Nonlinear radiation transport simulation with an implicit monte carlo method[END_REF][START_REF] Densmore | Asymptotic equilibrium diffusion analysis of time-dependent monte carlo methods for grey radiative transfer[END_REF][START_REF] Irvine | Reducing the spatial discretization error of thermal emission in implicit monte carlo simulations[END_REF][START_REF] Ahrens | A semi-analog monte carlo method for grey radiative transfer problems[END_REF][START_REF] Mckinley | Comparison of implicit and symbolic implicit monte carlo line transport with frequency weight vector extension[END_REF][START_REF] Clouët | Asymptotic diffusion limit of the symbolic monte-carlo method for the transport equation[END_REF][START_REF] Wollaber | On the stability of the ahrens-larsen or smc equations for thermal radiative transfer[END_REF][START_REF] Cleveland | Mitigating teleportation error in frequency-dependent hybrid implicit monte carlo diffusion methods[END_REF] and the references in review paper [START_REF] Wollaber | Four decades of implicit monte carlo[END_REF]. From the seminal work of Fleck [START_REF]The calculation of nonlinear radiation transport by a monte carlo method[END_REF] 1 , to the implicitation of the solver [START_REF] Fleck | An implicit monte-carlo scheme for calculating time and frequency dependent nonlinear radiation transport[END_REF] 2 , and some numerous corrections [START_REF] Cleveland | Mitigating teleportation error in frequency-dependent hybrid implicit monte carlo diffusion methods[END_REF][START_REF] Irvine | Reducing the spatial discretization error of thermal emission in implicit monte carlo simulations[END_REF][START_REF] Mckinley | Comparison of implicit and symbolic implicit monte carlo line transport with frequency weight vector extension[END_REF], 1] 3 , until the recent ISMC scheme [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF] 4 , many consequential improvements have been made. The recent ISMC scheme described in [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF] presents many advantages and is amongst the most efficient MC scheme for photonics. But it is rather different from the IMC one (it is based on a different linearisation and needs a slightly different code architecture). On another hand, legacy codes are often based on IMC implementations. For this reason, it remains important to be able to cancel the teleportation error within IMC codes. Cancelling the teleportation error within the IMC framework is also important for fair comparisons between both the IMC and the ISMC linearisations. This paper aims at suggesting some simple corrections to apply to an IMC implementation to obtain similar properties: completely cancelling the teleportation error and the competing behaviour of the spatial and time discretisation put forward in [START_REF] Irvine | Reducing the spatial discretization error of thermal emission in implicit monte carlo simulations[END_REF] and analysed in [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF]. Care is also taken to compare both 'teleportation error free' MC schemes (the new IMC one of the present paper and ISMC) to highlight their respective strengths and weaknesses.

The paper is organised as follows: in section 2, we briefly present the system we are interested in together with the asymptotic limit we aim at capturing accurately (namely the equilibrium diffusion limit). In section 3, we present the IMC linearisation [START_REF] Fleck | An implicit monte-carlo scheme for calculating time and frequency dependent nonlinear radiation transport[END_REF] on which many solvers (and also the original solver of this paper) are based. In section 4, we describe an original way to discretise, with an MC scheme, the IMC system. The new MC solver is not based on 'source sampling' hence does not foster any teleportation errors, see [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF]. Care will be taken to highlight how an already implemented IMC solver can be easily corrected to cancel the teleportation error. The paper ends with benchmarks (in section 5) in which we verify numerically the aforementioned properties and put forward the fact that the new solver does not have some competing discretisation parameters. We also systematically compare the new IMC scheme to ISMC.

The system and its asymptotic limit of interest

In this article, we are interested in the Monte-Carlo (MC) resolution of the time-dependent, nonlinear, radiative transfer equations. The model has general form (see [START_REF] Mihalas | Foundations of Radiation Hydrodynamics[END_REF]):

       1 c ∂ t I + ω • ∇I + σ t I = σ a B(T m ) + σ s 4π I dω 4π , ∂ t E(T m ) = 4π cσ a I 4π -B(T m ) dω . (1) 
In the above equations, I = I(t, x, ω) and T m (t, x) are the unknowns of the system and stand respectively for the intensity of radiation energy and the material temperature. Variables t ≥ 0, x ∈ Ω ⊂ R 3 and ω ∈ S 2 are respectively the time, space and angle variables. The cross-sections σ t = σ t (x, t), σ a = σ a (x, t) and σ s = σ s (x, t) are given functions of (x, t). They stand for the total, absorption and scattering opacities. In particular, we have σ t = σ a + σ s . The density of internal energy E depends on T m via an equation of state dE = ρC v (T m )dT m with ρ the mass density and C v the heat capacity (constant for a perfect gas). The quantity B(x, t) = aT 4 m (x, t)/4π is the frequency-integrated Planck function with a the radiative constant. The quantity c denotes the speed of light. In this paper, we are particularly interested in being able to accurately capture a particular regime: in diffusive media, system (1) behaves, at leading order, like the nonlinear diffusion equation on Φ r (T r ) = aT 4 r = 4π

I 4π dω ∂ t (Φ r (T r ) + E(T r )) -∇ • c 3σt ∇(Φ(T r ) = O(δ), Φ r (T r ) = 4π I 4π dω = B(T m ) + O(δ). (2) 
With 4π B(Tm) 4π dω = aT 4 m and Φ r (T r ) = aT 4 r , the second equation is equivalent to T m = T r : the radiative and matter temperatures are at equilibrium. In the above equation, δ ∼ 0 is a small parameter characterising what is commonly called the equilibrium5 diffusion6 limit [6, 7, 1].

The limit can be defined by introducing a characteristic length X , a characteristic time T and a characteristic collision rate λ and assuming we have cT

X = O( 1 δ ), cT λ = O( 1 δ 2 ), (3) 
with δ ∼ 0 small. System (1) and its limit [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF] are relevant to model photons incoming into opaque media [START_REF] Mihalas | Foundations of Radiation Hydrodynamics[END_REF][START_REF] Castor | Radiation hydrodynamics[END_REF][START_REF] Pomraning | The equations of radiation hydrodynamics[END_REF]. In this article, due to the high-dimensional problem we aim at tackling, we only focus on MC based numerical solvers.

The aim of this paper is to provide a new and original correction fitted to the IMC linearisation to cancel the teleportation error and the competing behaviours of the spatial and time discretisations (studied in [START_REF] Irvine | Reducing the spatial discretization error of thermal emission in implicit monte carlo simulations[END_REF][START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF]). For this reason, we briefly describe IMC in the next section together with the drawbacks of having to resort to source sampling within the MC discretisation.

The Implicit Monte Carlo (IMC) method and the drawbacks of source sampling

Let us first describe the IMC (for Implicit Monte-Carlo) linearisation. IMC has been introduced in [START_REF] Fleck | An implicit monte-carlo scheme for calculating time and frequency dependent nonlinear radiation transport[END_REF]. The idea is to introduce some sort of implicitness on B in the time discretization scheme in order to mitigate the effects of the stiff coupling between radiation and material. Implicit time discretization of (1) yields the following linear system:

       1 c ∂ t I + ω • ∇I + σ n t I = σ n a B n+1 + σ n s 4π I dω 4π , ∂ t E = 4π cσ n a I 4π -B n+1 dω . (4) 
To solve system (4) using an MC scheme, one has to provide an estimation of the source term σ n a B n+1 which is unknown at the beginning of the time step. In [START_REF] Fleck | An implicit monte-carlo scheme for calculating time and frequency dependent nonlinear radiation transport[END_REF], the authors propose a particular estimation of B n+1 that leads to the Fleck and Cummings equations that approximate the original system [START_REF] Wollaber | Four decades of implicit monte carlo[END_REF]. We sum up the construction of B n+1 in the few next lines for the grey approximation. System (1) can be rewritten with respect to variables (I, Φ ≡ aT 4 m ) instead of variables (I, T m ):

       1 c ∂ t I + ω • ∇I + σ t I = σ a Φ + σ s 4π I dω 4π , ∂ t Φ = 4π cσ a β(Φ) I 4π dω -cσ a β(Φ)Φ, with β = dΦ dE . (5) 
Note that β = dΦ dE has been introduced to express ∂ t E with respect to ∂ t Φ. In a sense, this term deals with all the physics relative to the equation of state (eos) E(T m ) = E(T m (Φ)) together with making sure the system can be closed using variables (I, Φ).

The above system is still nonlinear. A linearisation is mandatory to apply an MC scheme. Integration of the radiation-material energy balance equation on time step [t n , t n+1 ], using the backward Euler scheme for Φ and the forward Euler scheme for σ a and β yields:

Φ n+1 = Φ n + t n+1 t n 4π cσ n a β n I 4π dω -cσ n a β n ∆tΦ n+1 . (6) 
The MC solver resulting from the above hypothesis is commonly called implicit but strictly speaking, it looks more like an explicit-implicit7 discretization of the second equation of [START_REF] Carter | Nonlinear radiation transport simulation with an implicit monte carlo method[END_REF]. Still, in this paper, to remain consistent with the literature, we use the term implicit to describe the solver. The above expression (6) can be easily inverted in term of Φ n+1 to give:

Φ n+1 = f n Φ n + (1 -f n ) t n+1 t n 4π I 4π dω dt ∆t , with f n = 1 1 + cσ n a β n ∆t .
The quantity f n is the so-called Fleck factor. Replacing the time integral by its instantaneous value and using the approximation of Φ n+1 in the transport equation yields the time-discretized IMC system:

       1 c ∂ t I + ω • ∇I + σ n t I = f n σ n a Φ n + [σ n s + (1 -f n )σ n a ] 4π I dω 4π , (7a) 
∂ t E = cf n σ n a 4π I 4π dω -Φ n . ( 7b 
)
Notice that by redefining Σ n a ← f n σ n a and Σ n s ← σ n s + (1f n )σ n a , Σ n t = σ n t one obtains a transport equation similar to the first equation of (4) except that the emission term S = f n σ n a Φ n is now known because it is evaluated at the beginning of the time step. The time-discretized transport equation above has been supplemented by the proper material energy equation. Choosing to work on E instead of Φ here ensures, by construction, the conservation of the total energy for the system matter+photons provided Φ n+1 can be deduced from E n+1 (using the eos).

Equations [START_REF] Irvine | Reducing the spatial discretization error of thermal emission in implicit monte carlo simulations[END_REF] form a closed linear system on time step [t n , t n+1 ]. Obtaining a numerical approximation for equation [START_REF] Wollaber | Four decades of implicit monte carlo[END_REF] then consists in solving successively the two equations of system [START_REF] Irvine | Reducing the spatial discretization error of thermal emission in implicit monte carlo simulations[END_REF] IMC: N x convergence study IMC: ∆t convergence study within every time step. During time step [t n , t n+1 = t n + ∆t],

IMC N x = 20 IMC N x = 40 IMC N x = 80 IMC N x = 160 IMC N x = 320 IMC N x = 640 IMC N x = 1280 IMC N x =
( * ) the transport equation (7a) is solved with an MC method. The source term is classically treated with a source sampling strategy. Source sampling relies on the application of Duham-mel's principle stating that if I 1 is solution of

1 c ∂ t I 1 + ω • ∇I 1 + σ n t I 1 = [σ n s + (1 -f n )σ n a ] 4π I 1 dω 4π , I 1 (x, t = 0, ω) = I(x, t = 0, ω) = I 0 (x, ω), (8) 
and I 2 is solution of

1 c ∂ t I 2 + ω • ∇I 2 + σ n t I 2 = f n σ n a Φ n + [σ n s + (1 -f n )σ n a ] 4π I 2 dω 4π , I 2 (x, t = 0, ω) = 0, (9) 
then I 1 + I 2 is solution of (7a). This implies one can track the already existing MC particles with an MC scheme (I 1 ) and sample 'source MC particles' (I 2 ) and track them independently to add them up, see [START_REF] Poëtte | [END_REF]. ( * * ) The material energy E n+1 is updated solving (7b) by tallying the radiation energy deposit in the material with a track length estimator [START_REF] Lapeyre | Méthodes de Monte Carlo pour les équations de transport et de diffusion[END_REF] during the MC resolution.

Basically, the problem comes from point ( * ) above and the use of source sampling to take into account the source term S(x) = f n σ n a Φ n (x), as detailed in [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF]. In [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF], the teleportation error occurring when a small spatial discrepancy δ x within Φ n is studied:

Φ n (x) = Φ n approx (x) + O(δ k x ).
In the above expression, k is the order of the spatial approximation of x → Φ n (x) within each cell. Typically, IMC as in [START_REF] Fleck | An implicit monte-carlo scheme for calculating time and frequency dependent nonlinear radiation transport[END_REF] (i.e. no tilt) corresponds to taking k = 1 and constant approximations in each cell i, i.e. Φ n i (x) ≡ Φ n i . Tilted IMC, known to mitigate the teleportation error [START_REF] Cleveland | Mitigating teleportation error in frequency-dependent hybrid implicit monte carlo diffusion methods[END_REF][START_REF] Irvine | Reducing the spatial discretization error of thermal emission in implicit monte carlo simulations[END_REF][START_REF] Wollaber | Four decades of implicit monte carlo[END_REF], corresponds to taking k ≥ 2: a first order tilt (k = 2) consists in evaluating coefficients8 (Φ n i,0 , Φ n i,1 ) and assuming that Φ n (x), in cell i, is close to linear, i.e. Φ n i (x) ≡ Φ n i,0 + Φ n i,1 x. Of course, more elaborated (second order, continuous etc.) tilts exist [START_REF] Cleveland | Mitigating teleportation error in frequency-dependent hybrid implicit monte carlo diffusion methods[END_REF][START_REF] Irvine | Reducing the spatial discretization error of thermal emission in implicit monte carlo simulations[END_REF][START_REF] Mckinley | Comparison of implicit and symbolic implicit monte carlo line transport with frequency weight vector extension[END_REF][START_REF] Wollaber | Four decades of implicit monte carlo[END_REF], but they all suppose having a finite spatial accuracy, here denoted by O(δ k x ) with k the order of the approximation. In the equilibrium diffusion limit, it has been shown in [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF][START_REF] Poëtte | [END_REF] that, during time step [t n , t n+1 ], as N M C → ∞, at leading order with respect to δ and δ x in the equilibrium diffusion regime characterised by (3), system [START_REF] Irvine | Reducing the spatial discretization error of thermal emission in implicit monte carlo simulations[END_REF] behaves like (see [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF][START_REF] Poëtte | [END_REF]):

     ∂ t Φ r -∇ c 3σ n t ∇Φ r + D k δ k x 2∆t ∇ k Φ r = O δ k+1 x ∆t + O(δ), ∂ t E = 1 β n ∆t [Φ r -Φ n ] + O(δ) + O(δ k+1 x ). (10) 
From the comparison of ( 2) and [START_REF] Clouët | Asymptotic diffusion limit of the symbolic monte-carlo method for the transport equation[END_REF], one can expect the numerical solution obtained from any MC scheme -to exhibit isotropy for Φ r (given enough MC particles),

-to recover the equilibrium property Φ r = Φ of (2) but only up to a ∆t accuracy (i.e. Φ r -Φ n = O(∆t)) once the IMC linearisation applied, see [START_REF] Clouët | Asymptotic diffusion limit of the symbolic monte-carlo method for the transport equation[END_REF],

-but to exhibit a competing behaviour between ∆t and δ x :

-for a first order O(δ k=1

x ) approximation (corresponding to the original IMC solver of [START_REF] Fleck | An implicit monte-carlo scheme for calculating time and frequency dependent nonlinear radiation transport[END_REF]) of Φ n , a numerical advection term D 1 δx ∆t ∇Φ r appears. The spatial discrepancy δ x must be small with respect to the time step ∆t to be able to recover a diffusive behaviour.

-for a second order O(δ k=2 x ) approximation of Φ n (commonly called a tilt in the literature), an additional diffusive term D 2 δ 2

x ∆t ∇ 2 Φ r appears. In this case, the limit equation is a diffusion one but to recover the good diffusion coefficient ( c

3σ n t ), δ 2
x must be small with respect to ∆t.

-for a third order (and also for k ≥ 3) reconstruction, the good diffusion coefficient is recovered but the competing behaviour remains, even if lessened by the fact δ x is put to the power 3 (or more if k + 1 > 3). Still, on coarse meshes, this may be problematic (see the examples given in [START_REF] Irvine | Reducing the spatial discretization error of thermal emission in implicit monte carlo simulations[END_REF][START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF]).

-and to recover the diffusion coefficient c 3σ n t provided a fine tuning between the spatial discretization and the time step as explained above and in [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF].

Let us end this section with the results obtained with IMC and source sampling on a benchmark presented in [START_REF] Irvine | Reducing the spatial discretization error of thermal emission in implicit monte carlo simulations[END_REF]. A short description is provided in Appendix A. The aim of the next figures is to illustrate the previous points. Figure 1 presents two convergence studies: the first one is with respect to the spatial parameter N x = {20, 40, 80, 160, 320, 640, 1280, 2560} for ∆t = 5 × 10 -2 and N M C ≈ 10 7 on the left hand side and the second one is with respect to ∆t ∈ {10 0 , 10 -1 , 10 -2 , 10 -3 } for N x = 10 (coarse mesh = important δ x ) and the same number of MC particles on the right hand side. The figure displays the material temperature at time t * = 500 for the above meshes and time steps. The reference solution, obtained from a (finely resolved) deterministic solver for the equilibrium diffusion limit [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF], is also plotted. With figure 1 (left), we recover the fact that for fixed ∆t, the IMC solver converges toward the reference solution. But the convergence is slow. The finer the mesh, the noisier the results as we kept the number of MC particles N M C almost constant (up to source sampling fluctuations). With this study, we emphasize the stakes of having a faster convergence with respect to N x : less cells will be needed but also less MC particles, hence a potential important gain (see [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF]). With figure 1 (right), we recover that for a fixed spatial discretization N x = 10, the IMC results are worse and worse as ∆t decreases. With this study, we briefly put forward the diverging behaviour (closely related to the δ x discrepancy introduced by source sampling) of the scheme with respect to the time step for a fixed spatial discretization (more details are given in [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF]). Remark 3.1. This diverging phenomemon when decreasing the time step for a fixed grid is what we call a competing behavior between the spatial and the time discretizations. Now, figure 2 presents the same convergence studies but with the ISMC scheme of [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF]. For ISMC, the equilibrium diffusion limit during time step [t n , t n+1 ], as N M C → ∞, at leading order with respect to δ , see [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF], is given by

   Φ r = Φ + O(∆t) + O(δ), ∂ t (E + Φ r ) -∇ c 3σ n t ∇Φ r = O(δ), (11) 
It echoes [START_REF] Clouët | Asymptotic diffusion limit of the symbolic monte-carlo method for the transport equation[END_REF] for IMC. From [START_REF] Wollaber | On the stability of the ahrens-larsen or smc equations for thermal radiative transfer[END_REF], we can see that ISMC does not suffer from any spatial discrepancy related to the grid, at least at first order with ∆t and δ: it does not suffer the teleportation error ISMC: N x convergence study ISMC: ∆t convergence study on the diffusion equation. Furthermore, equilibrium is fulfilled provided a small enough time step.

ISMC N x = 20 ISMC N x = 40 ISMC N x = 80 ISMC N x = 160 ISMC N x = 320 ISMC N x = 640 ISMC N x = 1280 ISMC N x =
The ISMC solver (see left picture of figure 2) shows a fast spatial (N x ) convergence toward the reference solution. Furthermore, the results obtained with the ISMC solver (left picture of figure 2) tend to show that the new MC scheme is not sensitive (at least in a diverging way) to a decrease of ∆t: every curves for ∆t ∈ {10 0 , 10 -1 , 10 -2 , 10 -3 } are indistinguishable. This benchmark confirms the new ISMC scheme has no teleportation error and allows avoiding the competing behaviour of ∆t and δ x .

The question now is: why describing a new MC scheme in this paper if ISMC provides the desired properties? The ISMC does have them but is based on a different linearisation leading to a different code architecture, see [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF]. Many legacy codes are based on the IMC linearisation. The stakes of this paper are to be able to build an IMC solver without teleportation error and without a competitive behaviour between the spatial and time discretizations. We even aim at doing it with minimal modifications of an already existing IMC implementation. Once this is done, fair comparisons between the new IMC solver and the ISMC one of [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF] can be done (see section 5 of this paper).

Avoiding source sampling for the MC discretization of the IMC linearisation

As explained in the previous section, regarding the teleportation error/slow spatial convergence rate and the competing behaviour of spatial and time discretisations, source sampling is incriminated (more details about this point are given in [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF]). It is besides a parallel contention point, see [START_REF] Dureau | Hybrid Parallel Programming Models for AMR Neutron Monte-Carlo Transport[END_REF]. In this section, we present a different way to take into account a source term. The idea is to make sure we have, by construction, δ x = 0 within the IMC linearisation.

Let us introduce a spatial grid of N x non-overlapping cells such that the spatial domain

x ∈ Ω ⊂ R 3 is tesselated into Ω = Ω Nx = Nx i=1 Ω i .
We rely on constant per cell discretisations of the opacities and source term. As a consequence, we assume we have access, at every beginning of time steps [t n , t n + ∆t], to quantities

σ n α (x) ≈ Nx i=1 σ n,i α 1 Ωi (x), ∀α ∈ {s, t, a}, ψ n (x) ≈ Nx i=1 ψ n,i 1 Ωi (x), ∀ψ ∈ {β, I, E, f }, with 1 Ωi (x) denoting the indicatrix 9 of cell Ω i .
In particular, we have

E n,i = 1 |Ωi| Ωi E(x, t n )dx and I n,i = 1 |Ω i | Ωi 4π I(x, t n , ω) 4π dxdω, β n,i ≈ β(Φ n,i ) and f n,i ≈ f (σ n,i a , β n,i ).
In other words, all the above quantities are constant in each cell of the mesh 10 . In the following paragraphs, we assume every above quantities are approximated on the N x point grid even if not (abusively) reminded in the notations.

To describe the scheme, we first focus on equation (7a) which can be recast as

∂ t I + cω • ∇I + cΣ t I = S + cΣ s 4π I dω 4π , (12) with 
Σ t (x) = σ n t (x), Σ s (x) = σ n s (x) + (1 -f n )σ n a (x) and S(x) = cf n (x)σ n a (x)Φ n (x)
defined on the mesh Ω Nx . The idea is to avoid having to resort to source sampling and take the source term into account on-the-fly during the MC resolution. For this, we suggest rewriting (12) as11 

∂ t I + cω • ∇I + cΣ t I = S + cΣ s 4π I dω 4π , = 4π S 4π dω + cΣ s 4π I dω 4π , = 4π S I + cΣ s I dω 4π , = 4π (s(I) + cΣ s ) I dω 4π , (13) 
where s(x, I(x, t, ω)) = S(x) I(x,t,ω) is a nonlinear term. As a consequence, we are going to need an additional linearisation hypothesis at this stage.

Remark 4.1. This may represent a first drawback with respect to IMC (with source sampling) or ISMC. With ISMC, an MC solver without source sampling can be built without additional hypothesis as soon as the time discretisation (and implicitation) is introduced, see [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF].

To suggest a relevant linearisation hypothesis here, we make an analogy between Quasi-Static methods, well-known and commonly applied for the linear Boltzmann equation coupled to the Bateman system (neutronics), see [START_REF] Henry | The Application of Reactor Kinetics to the Analysis of Experiments[END_REF][START_REF] Henry | Verification of a Method for Treating Neutron Space-Time Problems[END_REF][START_REF] Ott | Accuracy of the Quasistatic Treatment of Spatial Reactor Kinetics[END_REF][START_REF] Dahmani | Résolution des équations de la cinétique des réacteurs par la méthode nodale mixte duale utilisant le modèle quasi-statique amélioré et implémentation dans le code CRONOS[END_REF][START_REF] Patricot | Couplages multi-physiques : évaluation des impacts méthodologiques lors de simulations de couplages neutronique/thermique/mécanique[END_REF][START_REF] Bernede | An Unsplit Monte-Carlo solver for the resolution of the linear Boltzmann equation coupled to (stiff) Bateman equations[END_REF]. Quasi-static methods are closely related to Asymptotic-Preserving schemes (see [START_REF] Poëtte | [END_REF]) and suppose identifying a relevant reduced model before plugging it into [START_REF] Mihalas | Foundations of Radiation Hydrodynamics[END_REF]. For this reduced model, we suggest the isotropic homogeneous one within each cell of Ω Nx defined by

∂ t U i (t) = S i -cΣ i a U i (t), U i (0) = U i 0 , ∀i ∈ {1, ..., N x }, (14) 
with Σ i a = Σ i t -Σ i s ∀i ∈ {1, ..., N x }. We insist ( 14) is solved within each cell (Ω i ) i∈{1,...,Nx} in which constant per cell quantities are considered. Reduced model ( 14) has above all been chosen because -it treats the source term, -it can be solved analytically within each cell Ω i and is consequently cheap to evaluate: its solution is given by

U i (t) = U i 0 e -cΣ i a t + S i 1 -e -cΣ i a t cΣ i a . ( 15 
)
We will assume ( 14) is valid per cell for all x ∈ Ω i and along any characteristics x + cωt ∈ Ω i , ∀i ∈ {1, ..., N x }. With the above hypothesis, (13) becomes

∂ t I + cω • ∇I + cΣ t I = 4π S U + cΣ s I dω 4π , = cΣ S 4π I dω 4π , (16) 
and is now linear. Above, we implicitly defined cΣ S = S U + cΣ s . We will also intensively use the notation Σ A = Σ t -Σ S . It only remains to design an MC scheme to solve [START_REF] Poëtte | [END_REF]. An MC particle is defined by

i p (x, t, ω) = w p (t)δ x (x p (t))δ ω (ω p (t)), (17) 
where w p (t) is the weight of the MC particle, x p (t) its position and ω p (t) its angle, every one of them at time t. Several MC schemes are at hand. Their descriptions come with the descriptions of the operations one must apply to (w p , x p , ω p ) p∈{1,...,N M C } to make sure every (i p ) p∈{1,...,N M C } are solutions of [START_REF] Poëtte | [END_REF]. MC schemes intensively use the linearity of ( 16): if ∀p ∈ {1, ..., N M C }, i p is of the form [START_REF] Lapeyre | Méthodes de Monte Carlo pour les équations de transport et de diffusion[END_REF] and is solution of ( 16), then

N M C p=1 i p (x, t, ω
) is solution of ( 16) and approximates I(x, t, ω). In the following paragraphs, we describe briefly two converging (in law 12 ) strategies (cf. theorem 3.2.1 of [START_REF] Lapeyre | Méthodes de Monte Carlo pour les équations de transport et de diffusion[END_REF]) and justify our choice:

-the non-analog MC scheme (see [START_REF] Bernede | An Unsplit Monte-Carlo solver for the resolution of the linear Boltzmann equation coupled to (stiff) Bateman equations[END_REF][START_REF] Poëtte | [END_REF]) requires that, -on any interval of time [0, t] the particle position is updated according to x p (t) = x p (0) + cω p (0)t.

-The weight is modified along the flight path of each MC particle: on any interval of time [0, t] such that the particle remains within cell Ω i , the weight of the MC particle is multiplied by w p (t) = w p (0)e -t 0 cΣ i A (α)dα . A few computations show that

w p (t) = w p (0)e -t 0 cΣ i A (α)dα = w p (0) U i (t) U i (0) = w p (0) e -cΣ i a t + S i 1 -e -cΣ i a t cΣ i a U i 0 . (18) 
This is equivalent to solving [START_REF] Castor | Radiation hydrodynamics[END_REF] along the flight path of each MC particle. If S = 0, we recover the classical weight modification w p (t) = w p (0)e -cΣ i a t = w p (0

) V i (t) V i (0) solution of ∂ t V i (t) = -cΣ i a V i (t), V i (0) = V i 0 ,
for the non-analog MC scheme without source term.

-Let τ denote a collision time: the MC tracking needs the sampling of a new scattering angle ω p (τ ) = W . In this paper, scattering being isotropic, the sampled angle W must be drawn from the uniform distribution on S 2 and ω p (τ ) is independent of ω p (0). The reader interested on the construction of anisotropic scattering distributions can refer to [START_REF] Poëtte | [END_REF].

-The sampling of the collision time τ within cell Ω i must be made thanks to Σ i S (t) from the probability measure

f τ (t) = cΣ i S (t)e -t 0 cΣ i S (α)dα .
The interaction time τ can be sampled from an uniform law U on [0, 1] by inversing the cumulative density function associated 13 to f τ . This leads to (see [START_REF] Poëtte | [END_REF][START_REF] Bernede | An Unsplit Monte-Carlo solver for the resolution of the linear Boltzmann equation coupled to (stiff) Bateman equations[END_REF])

-ln(U) = τ 0 cΣ i S (α)dα.
The integral on the right hand side can be computed exactly, but the inversion needed afterward is, to our knowledge, impossible to carry out analytically. A newton or an iterative method could be used (as in [START_REF] Bernede | An Unsplit Monte-Carlo solver for the resolution of the linear Boltzmann equation coupled to (stiff) Bateman equations[END_REF] for example) but we here aim at dealing with diffusive media (which would need many on-the-fly costly calls to the inversion algorithm). An approximation could be made (see remark 10.3 of [START_REF] Poëtte | [END_REF]) but we here would like to avoid it as the MC scheme presented in this paper has already one more assumption than the ISMC solver of [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF], see remark 4.1. For this reason, the nonanalog scheme is here discarded despite its good property with respect to the weight modification.

-On another hand, the semi-analog MC scheme (see [START_REF] Poëtte | [END_REF]) requires that -on any interval of time [0, t] the particle position is updated according to x p (t) = x p (0) + cω p (0)t.

-the weight of the MC particles remains unchanged if no collision occurs between times 0 and t so that w p (t) = w p (0).

-Let τ denote a collision time:

-the MC tracking needs the sampling of a new scattering angle ω p (τ ) at the collision location x(τ ) = x p (0) + cω p (0)τ and collision time τ . Once again, scattering being isotropic, the sampled angle ω p (t) = W must be drawn from the uniform distribution on S 2 . -Furthermore, the weight of the MC particle encountering a collision within cell Ω i must be multiplied by w p (τ ) = w p (0)

Σ i S (τ ) Σ i t (τ )
. As a consequence, for our problem of interest, the weight modification at the collision point is given by

Σ i S (τ ) Σ i t (τ ) = S i U i (τ ) + cΣ i s cΣ i t = 1 cΣ i t     S i U i 0 e -cΣ i a t + S i 1 -e -cΣ i a t cΣ i a + cΣ i s     , (19) 
and is analytical (no additional hypothesis required for efficiency). Note that once again, if S = 0, we recover the classical weight modification

Σ i s Σ i t
for the semi-analog MC scheme without source term.

-Finally, the sampling of the collision time within cell Ω i must be made thanks to Σ i t (t) from the probability measure

f τ (t) = cΣ i t (t)e -t 0 cΣ i t (α)dα .
The interaction time τ can be sampled from an uniform law U on [0, 1] as

-ln(U) = τ 0 cΣ i t (α)dα,
see [START_REF] Poëtte | [END_REF][START_REF] Bernede | An Unsplit Monte-Carlo solver for the resolution of the linear Boltzmann equation coupled to (stiff) Bateman equations[END_REF]. In our context, Σ i t (t) = Σ i t = σ n,i t remains constant with respect to time, as a consequence, τ = -ln(U )

cΣ i t = -ln(U ) cσ n,i t is simple to sample.
-For the semi-analog MC scheme, neither the expression of the weight modification nor the expression of the collision time require any additional approximation. For this reason, the semi-analog MC scheme will be chosen for the next computations even if known to have a slightly bigger variance than the non-analog MC scheme (see [START_REF] Poëtte | [END_REF] section 9.7). Note that in an HPC context in which replication domain 14 (see [START_REF] Dureau | Hybrid Parallel Programming Models for AMR Neutron Monte-Carlo Transport[END_REF]) is intensively applied, this excess of variance is quite easy to compensate: with a small increase of replicated domains, we can easily absorb the excess of variance of the semi-analog MC scheme (intensively used in neutronics for example, and called implicit capture see [START_REF] Brun | Tripoli-4 R , cea, edf and areva reference monte carlo code[END_REF]) with respect to the non-analog MC one. Of course, asymptotically with the number of MC particles, both the non-analog and the semi-analog MC schemes for ( 16) converge toward the solution of ( 16).

-Of course, the analog MC scheme could be used (or even others, some of them probably even more relevant), but this is beyond the scope of this paper. We here focus on MC scheme which can be found in legacy IMC codes.

To end the time step, it remains to detail the track length estimator needed to consistently update the material energy from equation (7b), see point ( * * ), page 5. By consistent tally, we here aim at having a conservative scheme. In order to ensure conservativity for the system 'photons+matter', each time a collision occurs, we make sure that matter tallies, in cell i, from particle p,

∆E i p = (w p (τ -) -w p (τ + ))1 Ωi (x p (τ )), = w p (τ -) 1 - Σ i S (τ ) Σ i t (τ ) ∆e i p 1 Ωi (x p (τ )), = w p (τ -)     1 - S i U i (τ ) + cΣ i s cΣ i t     1 Ωi (x p (τ )), = w p (τ -) cΣ i t cΣ i a -S i U i (τ ) 1 Ωi (x p (τ )). (20) 
Note that in above expression, τ -(respectively τ + ) denotes the time just before (respectively after) the collision occuring at time τ . We insist the notations above are in agreement with the fact that the contribution of particle p is zero if particle p does not encounter a collision within cell i. Of course, the matter energy within each cell i is updated by tallying every (non-zero) contributions of every MC particles within cell i as

E n i = E 0 i + N M C p=1 ∆E i p .
The last expression allows ending the description of the scheme. Remark 4.2. Note that the MC scheme described here to solve (13) is general enough and could benefit other physics (neutronics for example, see [START_REF] Bernede | An Unsplit Monte-Carlo solver for the resolution of the linear Boltzmann equation coupled to (stiff) Bateman equations[END_REF]).

The new MC scheme we just described is called, for the sake of conciseness, nssIMC (for no source sampling IMC) in the following paragraphs. We next take some time describing some of its singular properties. We would like to decompose the discussion into two points:

-the first point concerns continuous considerations. We compare the stake of having to resort to IMC or nssIMC asymptotically as N M C → ∞:

-IMC solves (13) with Φ n (x) = Φ n approx + O(δ x ) leading to the discretisation of ( 8)-( 9), whereas nssIMC solves (13) assuming S I = S U + O( ) leading to the discretisation of ( 16). We will study the extent of this O( ) approximation on S I just as we studied the extent of the O(δ x ) approximation on Φ n for IMC in [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF].

-The second point aims at focusing on the MC discretisations. IMC usually uses a non-analog MC scheme to discretise (8)- [START_REF] Mckinley | Comparison of implicit and symbolic implicit monte carlo line transport with frequency weight vector extension[END_REF]. With nssIMC, as explained above, we can either use the previously presented non-analog MC scheme or the semi-analog one to discretise [START_REF] Poëtte | [END_REF]. In this second point, we compare the non-analog IMC scheme and the non-analog 15 nssIMC one. We comment on the operations and restrictions induced by both schemes.

Let us begin by the first point above and the comparison of the continuous equations ( 13) and ( 16): [START_REF] Poëtte | [END_REF] has been built from [START_REF] Mihalas | Foundations of Radiation Hydrodynamics[END_REF] with the linearisation hypothesis of remark 4.1, consisting in plugging the solution of equation ( 14) within [START_REF] Mihalas | Foundations of Radiation Hydrodynamics[END_REF]. This choice has been driven by the fact that -the source term is treated within the solution of (13) (without source sampling),

-and by the fact that an accurate and cheap solution, given by ( 15), is available for [START_REF] Castor | Radiation hydrodynamics[END_REF].

We here want to insist on the fact that the choice of resorting to the homogeneous equation ( 14) as a reduced model, motivated mainly by the above two practical considerations, may not be the best choice to capture of the equilibrium diffusion limit 16 . To better understand what happens, let us first rewrite [START_REF] Mihalas | Foundations of Radiation Hydrodynamics[END_REF] in term of nondimensional quantities (upperscript * will be used to denote them). Introduce

x = x * X , c = c * C, t = t * T , Σ α = Σ * α 1 Λ α , ∀α ∈ {s, t, a}, (21) 
together with I * (x * , t * , ω) = I(x, t, ω) and S * (x * , t * ) = S(x, t) = cΣ a Φ n (x). Then by noticing that

1 T ∂ t * I * (x * , t * , ω) = ∂ t I(x, t, ω), 1 X ∂ x * I * (x * , t * , ω) = ∂ x I(x, t, ω), (13) 
can be equivalently rewritten (we drop the dependences for conciseness)

∂ t * I * + CT X c * ω • ∇ x * I * + CT Λ s c * Σ * s + CT Λ a c * Σ * a I * = T C Λ a c * Σ * a Φ n, * + CT Λ s c * Σ * s 4π I * dω 4π .
The homogeneous equation ( 14) can be recovered from the above expression assuming

CT X = O( ) = CT Λ s , CT Λa = O(1), (22) 
with ∼ 0 small. With the above nondimensional quantities, we can have an idea of what [START_REF] Poëtte | [END_REF] misses with respect to (13) (first bullet below) and compare regimes characterised by with ( 22) and δ with (3) (second bullet below).

• Let us first compare more quantitatively ( 13) and ( 16): this can be done performing a Hilbert development [START_REF] Hilbert | Begrundung der kinetischen gastheorie[END_REF] of I * = I 0 + I 1 + 2 I 2 + O( 3 ), plugging it in [START_REF] Mihalas | Foundations of Radiation Hydrodynamics[END_REF] and identifying the equations satisfied by the leading order I 0 :

O(1) ∂ t I 0 + cΣ a I 0 -S = 0, O( ) ...
From the first equation, we recover that I 0 coincides with U (given the same initial conditions). This means that

I 0 = U = S cΣ a + e -cΣat U 0 -S cΣ a , = Φ n + e -cσ n a f n t (U 0 -Φ n ) , (23) 
where x, ω are only parameters. Of course we could go further in the development but the first order is enough for the rest of the discussion. We can then replace I by U + I 1 + O( 2) in ( 13) to get

∂ t I + cω • ∇I + cΣ t I = 4π S I + cΣ s I dω 4π , = 4π S I 0 + I 1 + O( 2 ) + cΣ s I dω 4π . (24) 
Performing the development as ∼ 0 finally leads to

∂ t I + cω • ∇I + cΣ t I = 4π S U + cΣ s I dω 4π (16) 
- 4π S I 1 U 2 I dω 4π K1 + O( 2 )
what ( 16) misses w.r.t. (13)

.

With the above equation, we characterised what is missed when solving (16) instead of [START_REF] Mihalas | Foundations of Radiation Hydrodynamics[END_REF].

Let us briefly study K 1 :

K 1 (x, t) = 4π cσ n a (x)f n (x)Φ n (x) I 1 (x, t, ω ) U 2 (x, t) I(x, t, ω ) dω 4π . = 4π cΣ (x, t, ω )I(x, t, ω ) dω 4π . (26) 
At first order with O( ), ( 16) lacks a kind of scattering term. We will need its expression in the next point below.

• Let us finally study how hypothesis (22) impacts the equilibrium diffusion limit. For this, just as in [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF] in which we performed both a Hilbert development with respect to δ and a Taylor one with respect to δ x in the IMC linearisation [START_REF] Irvine | Reducing the spatial discretization error of thermal emission in implicit monte carlo simulations[END_REF], we suggest performing a Hilbert development with respect to δ and a Taylor one with respect to in [START_REF] Irvine | Reducing the spatial discretization error of thermal emission in implicit monte carlo simulations[END_REF]. The calculation are somewhat easier than in [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF] because does not affect the Fleck factor as δ x does (see [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF]).

With nssIMC, on time step [0, t = ∆t], we aim at solving the conservative system

       ∂ t I + cω • ∇I + cσ n t I = 4π cf n σ n a Φ n U + c(σ n s + (1 -f n )σ n a ) I dω 4π , (27a) 
∂ t E = cf n σ n a 4π I 4π 1 - Φ n U dω. (27b) 
Let us first make the Taylor development with respect to appear in [START_REF] Hilbert | Begrundung der kinetischen gastheorie[END_REF]: the previous calculations showed that U = I -

I 1 + O( 2 ). Plugging U = I -I 1 + O( 2 ) into (27) leads to        ∂ t I + cω • ∇I + cσ n t I = cf n σ n a Φ n + c[σ n s + (1 -f n )σ n a ] 4π I dω 4π + K 1 + O( 2 ),( 28a 
)
∂ t E = cf n σ n a 4π I 4π dω -Φ n -K 1 O( 2 ). ( 28b 
)
Let us now perform a Hilbert development17 of I = I 0 + δI 1 + O(δ 2 ) with respect to δ into, first, K 1 . Few calculations using the expression ( 23) in ( 26) lead to:

K 1 ∼ δ∼0 δ 2 I 0 1 Φ n β n ∆t(Φ n + e -t β n ∆t (-Φ n + U 0 )) +O(δ 4 ) + O( 2 ), ∼ δ∼0 δ 2 K 0 1 +O(δ 4 ) + O( 2 ),
If we now perform the Hilbert development of I with respect to δ satisfying (3) and identify the leading orders in the first equation of (28), we obtain 18O(δ 0 ) :

I 0 = 4π I 0 dω 4π = Φ 0 r , O(δ 1 ) : cω • ∇I 0 + cσ t I 1 = 0, O(δ 2 ) : ∂ t I 0 + 4π cω • ∇I 1 dω 4π = 1 ∆tβ n I 0 -Φ n,0 + K 0 1 + O( 2 ).
Performing the same calculations on the second equation of (28) leads to

O(δ 2 ) : ∂ t E 0 = -1 ∆tβ n I 0 -Φ n,0 -K 0 1 + O( 2 ).
Finally for nssIMC, during an arbitrary time step [t n , t n+1 ], as N M C → ∞, at leading order with respect to δ and in the equilibrium diffusion regime characterised by (3), system (7) behaves like19 

       ∂ t (E + Φ r ) -∇ c 3σ n t ∇Φ r = O( 2 ) + O(δ), ∂ t E = 1 β n ∆t [Φ r -Φ n ] - I 0 1 Φ n β n ∆t(Φ n + e -t β n ∆t (-Φ n + U 0 )) + O(δ) + O( 2 ). ( 29 
)
The limit equation ( 29) for nssIMC must be compared to [START_REF] Clouët | Asymptotic diffusion limit of the symbolic monte-carlo method for the transport equation[END_REF] for IMC and to [START_REF] Wollaber | On the stability of the ahrens-larsen or smc equations for thermal radiative transfer[END_REF] for ISMC. Note that with = 0, the analysis recovers the one of [START_REF] Densmore | Asymptotic equilibrium diffusion analysis of time-dependent monte carlo methods for grey radiative transfer[END_REF] for IMC (without spatial discrepancy δ x ). The nssIMC linearisation ensures cancelling δ x induced by source sampling within the IMC linearisation. For this reason, we consider nssIMC is a teleportation error free 20 MC solver for [START_REF] Irvine | Reducing the spatial discretization error of thermal emission in implicit monte carlo simulations[END_REF]. But nssIMC has to deal with a different type of error O( ). At first glance, (29) does not necessarily look better than [START_REF] Clouët | Asymptotic diffusion limit of the symbolic monte-carlo method for the transport equation[END_REF] with k = 1 or k = 2 (i.e. IMC and tilted IMC). The first equation of ( 29) is a diffusion equation with the good c 3σt coefficient. But the equilibrium equation is perturbed by the O( ) term. As ∆t goes to zero, the second equation of (29) behaves as

O(∆t) = Φ r -Φ n -I 0 1 .
Of course, if or I 0 1 are small, then equilibrium is recovered. Otherwise, it is not fulfilled. It is certainly still possible to consider higher order reduced models with respect to , i.e. try to build 21 a tilt I = U + O( k ) with k > 1 with respect to . Or we could rely on a reduced model based on better suited hypothesis than [START_REF] Dahmani | Résolution des équations de la cinétique des réacteurs par la méthode nodale mixte duale utilisant le modèle quasi-statique amélioré et implémentation dans le code CRONOS[END_REF]. These possible extensions are beyond the scope of this paper but attest that nssIMC could be improved thanks to quite classical methods. At this stage of the discussion, one natural question remains: is having an O( ) error really better than having an O(δ x ) one? The benchmarks of section 5 tend to show that the O( ) term is preferable on coarse meshes.

Let us tackle the second point and the implications of having to resort to the non-analog nssIMC scheme for ( 16) instead of the non-analog IMC one for ( 8)-( 9). These are more practical considerations about not relying on source sampling anymore. With this new MC solver, there is not anymore a distinction between 'initial' and 'source' particles as with IMC. The weight of each MC particle with nssIMC takes the source term into account. Let us focus on the weight modification and the particle to matter contribution. For this, we suggest comparing their expressions for an IMC particle and for an nssIMC particle:

• for the (non-analog) IMC solver, the weight modification is

w p (t) = w p (0)e -cΣ i a t ≥ 0.
It is a decreasing quantity (as Σ i a ≥ 0). The contribution to matter of the same particle p is given by ∆E i p (t) = w p (0)(1e -cΣ i a t ) = w p (0)∆e i p (t) ≥ 0. As Σ i a ≥ 0, the weight of an IMC particle can only decrease and lead to a conservative increase of the matter energy. At the end of a time step [0, t = ∆t], the update of the matter energy is given by 22

E i (t) = E 0 i -cσ 0 a f 0 β 0 ∆t + N M C p=1 Np j=1 w p (t j p )∆e i p (t j+1 p -t j p ), ( 30 
)
20 ISMC is an implicitation of SMC, see [START_REF] Ahrens | A semi-analog monte carlo method for grey radiative transfer problems[END_REF][START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF], which by construction is a teleporation error free solver. 21 Just as tilted IMC consider higher orders of Φ n (x) = Φ n approx (x) + O(δ k>1

x ) with respect to δx. 22 One can check that in a closed cell, every time intervals become (only interval) [0, t] and conservativity is ensured.

where [t j p , t j+1 p ] i∈{1,...,Np} denotes N p intervals of time spent by particle p within cell i. The positiveness of the energy E i (t) at the end of the time step is ensured provided a small enough time step which can be prescribed a priori: it is enough choosing ∆t ≤ E 0 i cσ 0 a f 0 β 0 , (remember each ∆e i p (t) ≥ 0). It may be too constraining/suboptimal: for example, in a configuration with important incoming particle to matter contributions in cell i, bigger time step could be used and still ensure positiveness.

• For the nssIMC solver, it is easy checking that if U i 0 , Σ i a , Σ i s , c, S i are all positive quantities, the weight ( 18)

w p (t) = w p (0) e -cΣ i a t + S i 1 -e -cΣ i a t cΣ i a U i 0 ≥ 0,
remains positive. But it is not necessarily decreasing as for IMC. Indeed, if emission compensates absorption, which occurs as soon as S i -cΣ i a U i 0 > 0 independently of the time step, emission is preponderant and the weight of a particle traveling within cell i increases. The contribution to matter of the same particle p is given by

∆E i p (t) = w p (0) 1 -e -cΣ i a t + S i 1 -e -cΣ i a t cΣ i a U i 0 = w p (0)∆e i p (t), (31) 
and is conservative but unsigned. In fact, ∆e i p (t) is

-positive 0 ≤ ∆e i p (t) < 1 -S i cΣ i a U i 0 if absorption is preponderant (if S i -cΣ i a U i 0 ≤ 0), -negative 0 > ∆e i p (t) > 1 -S i cΣ i a U i 0 if emission is preponderant (if S i -cΣ i a U i 0 > 0),
independently of the time step.

The matter energy at the end of the time step [0, t = ∆t] is given by

E i (t) = E 0 i + N M C p=1 Np j=1 w p (t j p )∆e i p (t j+1 p -t j p ),
where [t j p , t j+1 p ] i∈{1,...,Np} denotes N p intervals of time spent by particle p within cell i. One can check that in a closed cell, every time intervals become (only interval) [0, t] and conservativity is ensured. From the above expression, we can see that in an emissive cell i (S i -cΣ i a U i 0 > 0), the sum of negative particle contributions can make E i (t) become negative. The positive and negative contributions are not as decoupled as in the IMC formalism, see (30). As a consequence, from (31), it is possible in practice (a) to have an estimation of the time step limitation ∆t ≤ ∆t max needed in order to make sure that ∀j ∈ {1, ..., N p }, ∆e i p (t j+1 p t j p )) remain greater (because negative) than a prescribed quantity ∆e min p :

∆t ≤ ∆t max = - 1 cΣ i a ln S i + (∆e min p -1)U 0 i cΣ i a S i -U 0 i cΣ i a .
Just as for IMC, this limitation may be suboptimal.

(b) nssIMC also allows another possibility: for a fixed time step t = ∆t, it is possible to limit the maximum initial weight max p (w p (0)) = ∆E min p ∆e i p (t) of each particle p so that ∆E i p (t) remains below a prescribed value w p (0)∆e i p (t) ≤ ∆E min p .

The previous points (a) time step limitation and (b) weight limitation constitute our main levers to ensure the positiveness of the matter energy at the end of the time step for nssIMC.

We now suggest implementing nssIMC and comparing it to IMC and ISMC on some benchmarks from the literature. To give an idea of the minimal modifications needed to implement the new MC scheme within a legacy IMC code, we rely on algorithm 1 in Appendix C.

Numerical results

In this section, we first compare our new IMC solver with the ISMC solver [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF] on the Marshak wave test-case presented in [START_REF] Irvine | Reducing the spatial discretization error of thermal emission in implicit monte carlo simulations[END_REF]. It is, to our knowledge, the only benchmark of the literature putting forward the competing behaviour between the spatial and time discretisation (i.e. with a convergence study with respect to ∆t for a fixed spatial discretisation). The new solver is called nssIMC (for no source sampling IMC) for conciseness. The results obtained with nssIMC are displayed figure 3. They can be directly compared to the results of figure 1 for IMC (without tilt) nssIMC: N x convergence study nssIMC: ∆t convergence study and of figure 2 for ISMC. First, comparing figures 3 (left) and 1 (left) allows highlighting the gain of the nssIMC scheme with respect to IMC: the spatial convergence is fast once source sampling is avoided (i.e. once we make sure δ x = 0 by construction): indeed, every spatial discretisation (from the coarser N x = 20 to the finer N x = 2560) allows recovering the reference solution. The ISMC scheme, see figure 2 (left), already exhibited such fast spatial convergence (it is also, by construction, such that δ x = 0, see [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF]). In this sense, the nssIMC scheme allows cancelling the teleportation error.

nssIMC N x = 20 nssIMC N x = 40 nssIMC N x = 80 nssIMC N x = 160 nssIMC N x = 320 nssIMC N x = 640 nssIMC N x =
On another hand, the right pictures of figures 1-2-3 display a convergence study with respect ∆t for fixed spatial discretisation N x = 10 (coarse mesh, as in [START_REF] Irvine | Reducing the spatial discretization error of thermal emission in implicit monte carlo simulations[END_REF] from which the benchmark is taken) and for fixed number of MC particles (up to source sampling fluctuations for the IMC solver). First, the IMC solver exhibits a diverging behaviour with respect to ∆t (intensively studied in [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF]), see figure 1 (right). This diverging behaviour is explained by the appearance of a numerical advection term (see [START_REF] Clouët | Asymptotic diffusion limit of the symbolic monte-carlo method for the transport equation[END_REF] for k = 1 and [2] and remark 3.1). On another hand, the new nssIMC does not exhibit this diverging behaviour with respect to ∆t. On the contrary, the behaviour is converging: the finer the time step, the closer to the reference solution the nssIMC solution is, see figure 3 (right). But the convergence with respect to ∆t is slower than for the ISMC scheme for which every curves with every time steps are undistinguishable from one another, see figure 2. This is another point in favor of ISMC: it seems to have a faster ∆t-convergence rate than nssIMC. Still, both teleportation error free solvers, ISMC and nssIMC, do not present the competing behaviour between the spatial and the time discretisation defined in remark 3.1.

The next benchmark is taken from [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF]. Its description is given in Appendix B. From now on, we only display the results obtained from ISMC and the new nssIMC solvers (and rely on [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF] for IMC vs. ISMC comparisons).

Let us begin by some ∆t convergence studies and ISMC vs. nssIMC comparisons. These are displayed figure 4: the left column presents ISMC results and the right column presents the nssIMC ones for N x = 40 cells 23 , N M C = 8.8 × 10 5 and several time steps ∆t = {5 × 10 -9 , 10 -10 , 10 -11 , 10 -12 }. For the coarser time step ∆t = 5 × 10 -9 , as expected from [START_REF] Wollaber | On the stability of the ahrens-larsen or smc equations for thermal radiative transfer[END_REF] for ISMC and (29) for nssIMC, equilibrium is not fulfilled. For a finer time step ∆t = 10 -10 , ISMC already ensures capturing the equilibrium diffusion limit. On another hand, the time step is too coarse for nssIMC to give as good results as ISMC. But for the last time steps, ∆t = 10 -11 and ∆t = 10 -12 , both ISMC and nssIMC presents accurate results with respect to the reference solution, even if nssIMC seems to be slightly noisier. For ∆t = 10 -10 and nssIMC, the plot display a mix between numerical noise from the MC discretisation and numerical instabilities due to a too coarse time step. Once ∆t below 10 -11 , only remains numerical noise from the MC discretisation. The fact that the ∆t = 10 -12 curve seems to be noisier than the ∆t = 10 -11 is only due to (a lack of?) luck. For different initial random seeds, the curves could have been smoother or even seem less noisy for ∆t = 10 -12 than for ∆t = 10 -11 .

Figure 5 presents a spatial convergence study for both ISMC and nssIMC for fixed time step ∆t = 10 -12 . On the first line of figure 5, the curves for N x = 20 and N M C = 8.8×10 5 are displayed. Both curves testify to a fast spatial convergence rate for both ISMC and nssIMC. Still, the results for ISMC are slightly better than for nssIMC: this is visible especially in the vicinity of x = 0.5, where nssIMC fail to resolve the peak of temperature as sharply as ISMC. Note that the nssIMC results remain way more accurate than (tilted or not) IMC ones, for both the peak of temperature and the wavefronts, see [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF]. Let us consider some more quantitative results: 
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-diffusion:

T (t = 10 -8 , x = 0.5) = 1.652136 × 10 7 (reference), -IMC:

T (t = 10 -8 , x = 0.5) = 7.642123 × 10 6 with a relative error of 53.74, -tilted IMC: T (t = 10 -8 , x = 0.5) = 1.187466 × 10 7 with a relative error of 28.12, -ISMC:

T (t = 10 -8 , x = 0.5) = 1.630483 × 10 7 with a relative error of 1.310, -nssIMC:

T (t = 10 -8 , x = 0.5) = 1.580614 × 10 7 with a relative error of 4.329. From the above relative error, we can estimate gains on the peak of temperature observables:

-tilted IMC leads to a gain ×1.91 w.r. -Let us now consider the left wavefront x w26 as observable. For N x = 20 and ∆t = 10 -12 , the different solvers give -diffusion:

x w (t = 10 -8 ) = 3.130 × 10 -1 (reference), -IMC:

x w (t = 10 -8 ) = 7.500 × 10 -2 , leading to a relative error of 0.76, -tilted IMC: x w (t = 10 -8 ) = 1.125 × 10 -1 , leading to a relative error of 0.64, -ISMC:

x w (t = 10 -8 ) = 2.750 × 10 -1 , leading to a relative error of 0.12, -nssIMC:

x w (t = 10 -8 ) = 2.750 × 10 -1 , leading to a relative error of 0.12. From the above relative error, we can estimate gains on the wavefront:

-tilted IMC leads to a gain ×1. N x = 40 Let us once again consider the peak of temperature (at x = 0.5) as an observable of interest.

For N x = 40 and ∆t = 10 -12 , the different solvers give 2728 -diffusion T (t = 10 -8 , x = 0.5) = 1.652136 × 10 7 (reference), -IMC T (t = 10 -8 , x = 0.5) = 8.792122 × 10 6 with a relative error of 0.467, -tilted IMC T (t = 10 -8 , x = 0.5) = 1.579830 × 10 7 a relative error of 0.044, -ISMC T (t = 10 -8 , x = 0.5) = 1.622959 × 10 7 with a relative error of 0.017, -nssIMC T (t = 10 -8 , x = 0.5) = 1.613410 × 10 7 with a relative error of 0.023. From the above relative error, we can estimate gains on the peak of temperature observables:

-tilted IMC leads to a gain ×10.68 w.r. -Let us now consider the left wavefront x w29 as observable. For N x = 40 and ∆t = 10 -12 , the different solvers give -diffusion x w (t = 10 -8 ) = 3.130 × 10 -1 (reference), -IMC

x w (t = 10 -8 ) = 1.625 × 10 -1 , leading to a relative error of 0.481, -tilted IMC x w (t = 10 -8 ) = 2.625 × 10 -1 , leading to a relative error of 0.161, -ISMC

x w (t = 10 -8 ) = 3.125 × 10 -1 , leading to a relative error of 0.001, -nssIMC

x w (t = 10 (N M C is recalled in red for nssIMC). The computation for nssIMC with N M C = 8.8 × 10 5 failed to run: negative matter energies were produced by the nssIMC. The problem anticipated in section 4 occurs in practice. Recall that ISMC, on another hand, is a positive scheme31 . Now, with nssIMC, using more MC particles (N M C = 4.4 × 10 6 , see point (b) at the end of section 4) leads to more robust calculations, as predicted by the discussion.

In practice, the previously described robustness problem could probably be lessened by astute strategies: the element of solution presented at the end of section 4 are relevant. We already used the weight limitation (point (b)). Using splitting on-the-fly at the collision to prevent the weight from increasing too much could be even more efficient. But the comparisons between ISMC and nssIMC would not be fair anymore (different numbers of MC particles). Clever time step limitations (point (a)) are also efficient. But once again, the comparisons with ISMC et IMC would not anymore be in the same conditions. We could consider plugging the solution U of a more relevant reduced model than [START_REF] Castor | Radiation hydrodynamics[END_REF], fitted to regime (3), within [START_REF] Mihalas | Foundations of Radiation Hydrodynamics[END_REF]. In practice, such reduced model may not have an analytical solution: its use within a legacy IMC implementation would remain possible (see [START_REF] Bernede | An Unsplit Monte-Carlo solver for the resolution of the linear Boltzmann equation coupled to (stiff) Bateman equations[END_REF] in which an ODE solver is embedded within the MC framework) but would probably be much more complex and costly. In other words, the new nssIMC solver can certainly be improved thanks to more or less classical strategies (splitting, time step limitation, more relevant reduced model, tilts with respect to , see the discussion at the end of section 4). But our objective here is to compare the nssIMC and the ISMC linearisations/solvers on common grounds and ISMC presents the advantage of avoiding those additional considerations. Improving nssIMC is therefore beyond the scope of this paper.

Conclusion

In this paper, we presented a new and original Monte-Carlo scheme to cancel the teleportation error and its drawbacks (competing behaviours between the time and spatial discretisation parameters as defined and illustrated in section 3, remark 3.1) within an IMC framework for photonics. Care has been taken to highlight how minimal modifications to an already existing legacy IMC implementation can be made to recover the results of this paper.

The main idea is to avoid having to resort to source sampling to solve the transport equation resulting from the IMC linearisation of the model. For this, a reduced model which can be analytically solved and takes into account the source term is introduced and plugged in to the IMC transport equation. The source term is consequently taken into account on-the-fly during the MC resolution. The resulting scheme is conservative, converging but demands an additional linearisation hypothesis (if compared to IMC with source sampling or ISMC for example).

The modified IMC solver, as expected, cancels the teleportation error. The corrections/modifications considerably improve the spatial convergence rate with respect to IMC with source sampling. Benchmarks testify that the time and spatial discretisation parameters are not competing anymore (see remark 3.1).

The new nssIMC (for no source sampling IMC) solver is finally numerically compared to the ISMC solver of [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF] which also cancels the teleportation error, avoids competing discretisation parameters32 but can not be put into an IMC framework and consequently needs more significant (even if relatively simple) modifications of a code. On the benchmarks of this paper, nssIMC shows a slower convergence rate than ISMC with respect to both the spatial and time discretisations. It even presents some robustness problems which are not encountered with the ISMC scheme (which is positive, under relatively mild conditions on the time step, see [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF]). Still, due to the fact that the solver can be implemented with minimal modifications of an IMC implementation and display important gains with respect to IMC, the strategy deserved, in our opinion, to be investigated and documented. Besides, the original (to our knowledge) strategy to take into account a source term on-the-fly during the MC resolution (without relying on source sampling) could certainly benefit other solvers/physics. if τ > ∆t then #move the particle p, update s p to end the treatment of the current particle x p = x p + ω p × (tτ ), s p ←t #tally the contribution of particle p in the in which it ends: U ip + = w p end else #move the particle p, update the life time of particle p x p ←x pω p τ , s p ←s p + τ < t #keep the old weight into memory w 0 p = w p #change the particle weight w p ←w p × Σ n,ip 

Figure 1 :

 1 Figure1: Convergence studies on the material temperature profiles T (x, t * = 500) at t * = 500 for the IMC scheme, with respect to Nx = {20, 40, 80, 160, 320, 640, 1280, 2560} (left) and to ∆t ∈ {10 0 , 10 -1 , 10 -2 , 10 -3 } (right).

Figure 2 :

 2 Figure2: Convergence studies on the material temperature profiles T (x, t * = 500) at t * = 500 for the ISMC scheme of[START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF], with respect to Nx = {20, 40, 80, 160, 320, 640, 1280, 2560} (left) and to ∆t ∈ {10 0 , 10 -1 , 10 -2 , 10 -3 } (right).

Figure 3 :

 3 Figure3: Convergence studies on the material temperature profiles T (x, t * = 500) at t * = 500 for the nssIMC scheme, with respect to Nx = {20, 40, 80, 160, 320, 640, 1280, 2560} and ∆t = 5 × 10 -3 (left) and to ∆t ∈ {10 0 , 10 -1 , 10 -2 , 10 -3 } and Nx = 10 (right).
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 4555 Figure 4: Comparisons of the material and radiative temperatures Tm and Tr obtained from (reference solution) a deterministic solver for the equilibrium diffusion limit (2), the ISMC and the nssIMC approximations for Nx = 40, N M C ≈ 8.8 × 10 5 MC particles and ∆t = {5 × 10 -9 , 10 -10 , 10 -11 , 10 -12 }.

  ip e -cΣ n,ip a τ + S ip 1e -cΣ n,conservatively) the contribution to matter ∆E ip + = w 0 pw p #Sample the angle W of particle p after the collision from the scattering law ω p = W end end end Algorithm 1: To implement nssIMC into a legacy IMC code (semi-analog MC scheme), disable source sampling and change the weight modification of the MC particles encountering a collision.

  18 w.r.t. IMC, -ISMC leads to a gain ×6.26 w.r.t. IMC, ×5.27 w.r.t. tilted IMC, -nssIMC leads to a gain ×6.26 w.r.t. IMC, ×5.27 w.r.t. tilted IMC.

  -8 ) = 2.875 × 10 -1 , leading to a relative error of 0.081. From the above relative error, we can estimate gains on the wavefront:-tilted IMC leads to a gain ×2.983 w.r.t. IMC, -ISMC leads to a gain ×301.0 w.r.t. IMC, ×101.0 w.r.t. tilted IMC, -nssIMC leads to a gain ×5.901 w.r.t. IMC, ×1.980 w.r.t. tilted IMC. The previous quantitative results are displayed for N x = 20 and N x = 40 mainly because finer meshes would need much more MC particles to avoid having noisy results. Besides, we are more interested in the gains on coarse meshes (the ones which are practically of interest for production codes). Let us comment on the previous gains on the temperature peak and on the wavefront: first, nssIMC always ensures gains with respect to both IMC and tilted IMC, on both observables and both grids: from ×5.901 up to ×19.95 with respect to IMC and from ×1.86 up to ×6.49 for tilted IMC. As already qualitatively put forward on figure 5, ISMC does generate even better gains: from ×6.26 up to ×301.0 with respect to IMC and from ×2.47 up to ×101.0 with respect to tilted IMC. On figure 5, for N x = 40 and N x = 80, both teleportation error free solvers present accurate results, even if nssIMC seems to be slightly noisier. The curves and quantitative results tend to show ISMC spatially converges faster than nssIMC. Note that this point 30 could be investigated more thoroughly but we think the spatial convergence of nssIMC deserves more attention, mainly because of the results of the last line of figure 5: on the last line of figure 5 are displayed the results obtained with ISMC and nssIMC with N x = 320 but with different number of MC particles N M C

Equilibrium means Tm = Tr.

Diffusion refers to the presence of the second order spatial term in (2).

explicit with respect to σ, β, implicit with respect Φ.

Usually, Φ n approx is based on a Taylor development and Φ n i,1 is a first order spatial derivative.

i.e. we have1 Ω i (x) = 1 if x ∈ Ω i , 1 Ω i (x) = 0 if x / ∈ Ω i .

i.e. no need for a tilt or any spatial reconstructions within the cells.

To go from the first to the second equation, the isotropy of the source term is used.

Convergence in law is also commonly called weak convergence and is defined as such: a sequence of probability measures ( dµn) n∈N is said to convergence in law toward measure dµ if f (x) dµn(x) converges toward f (x) dµ(x) as n goes to infinity for all bounded Lipshitz function f . In our MC context, n echoes N M C and dµn = n p=1 ip(x, t, ω) (the Dirac δx, δω in (17) are measures with our notations).

Introduce Fτ the integral of fτ , then by definition, see[START_REF] Saporta | Probabilités, Analyse de Données et Statistique[END_REF], τ = F -1 τ (U ) where U is uniformly distributed on [0, 1].

Replication domain consists in replicating the geometry on several processors and tracking several MC particles populations with different initial seeds in every replicated domains. At the end of the time steps, the contribution of every processors are averaged. This parallel strategy is particularly well suited to MC codes, taking advantage of the independence of the MC particles.

In the next numerical section 5, we do use the semi-analog MC scheme for[START_REF] Poëtte | [END_REF] for the practical reason previously exposed. But it is way easier comparing both non-analog MC schemes on the paper. This does have a sense as both semi-analog and non-analog MC scheme recover asymptocally the same solution: the comments on the non-analog nssIMC can be transposed, without loss of generality, to the semi-analog nssIMC one.

Still, it does cancel the teleportation error.

Note that the upperscripts are relative to the δ development whereas the lowerscripts are relative to the one.

The calculations are similar to the ones performed in[START_REF] Densmore | Asymptotic equilibrium diffusion analysis of time-dependent monte carlo methods for grey radiative transfer[END_REF][START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF]. The last equation is integrated with respect to ω.

We drop the 0 upperscripts for convenience.

Note that there are Nx = 40 cells instead of only 20 as in[START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF].

Note that the results from IMC are not displayed but can be found in[START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF].

Note that the results tilted IMC are not displayed but can be found in[START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF].

i.e. the last cell in which the radiative temperature Tr is different than the initial temperature.

Note that the results from IMC are not displayed but can be found in[START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF].

Note that the results from tilted IMC are not displayed but can be found in[START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF].

i.e. the last cell in which the radiative temperature Tr is different than the initial temperature.

The faster spatial convergence rate of ISMC with respect to nssIMC.

As soon as the modified Fleck factor is positive, the artificial opacities are positive and the MC scheme to discretise both photons and matter ensure the positiveness of both quantities for stable calculations, see[START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF].

in the sense nssIMC converges as the time step goes to zero for a fixed grid whereas IMC presents a diverging behavior in the same conditions, see the definition in remark 3.1 and the illustration in section 3.

n,ip t

Appendix A. Short description of the Marshak benchmark of [START_REF] Irvine | Reducing the spatial discretization error of thermal emission in implicit monte carlo simulations[END_REF] The test-case corresponds to the study of a 1D Marshak wave [START_REF] Mihalas | Foundations of Radiation Hydrodynamics[END_REF] with dimensionless units. A black body heats the left boundary of the domain x ∈ D = [0, 4] with temperature T (x = 0) = 1. The radiation constant is a = 1 and so is the speed of light c = 1. There is no scattering (i.e. σ s = 0) and σ t (T m ) = σ a (T m ) = 10 T 3 m . Note that this benchmark will demonstrate our new MC solver can be used with temperature dependent opacities. Besides, the test-problem considers a perfect gas eos with ρ = 1 and C v = 7.14. The medium is initially cold as T (x, t = 0) = T 0 (x) = 10 -2 ∀x ∈ D = [0, 4]. We are here interested in the (material and radiative) temperature profiles at t * = 500. Appendix B. Details about the second benchmark (see [START_REF] Poëtte | A new Implicit Monte-Carlo scheme for photonics (without teleportation error and without tilts)[END_REF])

The and boundary conditions together with the problem justifications are provided here for both, the sake of conciseness of the paper and of reproducibility of the results. This second benchmark can be described as follows: let us consider a 1D spatial domain such that x ∈ Ω = [0, 1]. The domain is filled with a diffusive media σ t = 2000, with no (physical) scattering, i.e. σ s = 0 and σ t = σ a . Initially, temperature of 2.3 × 10 7 for x ∈ [0.4, 0.6] and 2.3 × 10 4 elsewhere. In other words, we have at t = 0:

Note that 1 Ω (x) denotes the indicatrix of domain Ω. The initial condition is displayed in figure B.6 together with the solution of system (2) at final time T = 10 -8 . This reference solution has been obtained solving (2) with a deterministic solver (with a fine mesh).

Note that for time t ∈ [0, T ], the solution does not reach the boundaries. This test-case has been chosen precisely in order to avoid having to resort to the sampling of boundary particles so that there are no sampled particles for t > 0 (as both nssIMC and ISMC avoid source sampling). The radiative constant is set to a = 10 -14 , the speed of light to c = 3 × 10 10 . A perfect gas is considered to that E(T m ) = ρC v T m with ρ = 20, C v = 4 × 10 7 . The configuration may not appear particularly physical but is still relevant for real life encountered difficulties.

Appendix C. Minimal modifications to implement nssIMC into a legacy IMC solver #BEGINNING OF TIME STEP [t n , t n + ∆t] for i ∈ {1, ..., N x } do #Compute (Φ n,i ) i∈{1,...,Nx} from the energy array (E n,i ) i∈{1,...,Nx} Φ n,i = eos(E n,i ), β n,i = β(E n,i ) #Update the Fleck factor and the absorption and scattering opacities

#keep the density of photon into memory and build the source term U 0,i = U i , S i = cσ n,i a f n,i Φ n,i #Set to zero the (mesh) arrays in which will be tallied the MC particle contributions U i = 0, ∆E i = 0 end #disable source sampling ( ( ( ( ( ( ( ( SourceSampling() for p ∈ {1, ..., N M C } do set s p = 0 #this will be the current time of particle p #i p is such that 1 Ωi p (x p (s p )) = 1 (current cell for particle p) while s p < ∆t do if x p / ∈ D then apply boundary conditions(x p , s p , v p ) end #sample the collision time from an uniform sampling U τ = -ln(U) cσ