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Abstract

Monte-Carlo (MC) schemes for photonics have been intensively studied throughout the past decades,
see [1] for a complete review. The recent ISMC scheme described in [2] presents many advantages
(no teleportation error, converging behaviour with respect to the spatial and time discretisations).
But it is rather different from the IMC one (it is based on a different linearisation and needs
a slightly different code architecture). On another hand, legacy codes are often based on IMC
implementations. For this reason, it remains important to be able to cancel the teleportation error
within IMC codes. Cancelling the teleportation error within the IMC framework is also important
for fair comparisons between both the IMC and the ISMC linearisations. This paper aims at
suggesting some simple corrections to apply to an IMC implementation to completely cancel the
teleportation error.
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1. Introduction

Monte-Carlo (MC) schemes for photonics have been intensively studied throughout the past
decades, see [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] and the references in review paper [1]. From the seminal
work of Fleck [3]1, to the implicitation of the solver [4]2, and some numerous corrections [12, 7, 9, 1]3,
until the recent ISMC scheme [2]4, many consequential improvements have been made. The recent
ISMC scheme described in [2] presents many advantages and is amongst the most efficient MC
scheme for photonics. But it is rather different from the IMC one (it is based on a different
linearisation and needs a slightly different code architecture). On another hand, legacy codes are
often based on IMC implementations. For this reason, it remains important to be able to cancel the
teleportation error within IMC codes. Cancelling the teleportation error within the IMC framework
is also important for fair comparisons between both the IMC and the ISMC linearisations. This
paper aims at suggesting some simple corrections to apply to an IMC implementation to obtain

Email addresses: gael.poette@cea.fr (Gaël Poëtte), xavier.valentin@cea.fr (Xavier Valentin),
a.bernede@protonmail.com (Adrien Bernede)

1whose linearisation demands unaffordable time steps.
2leading to affordable time steps but introducing the teleportation error.
3tilts of different order or different nature, on-the-fly resampling etc.
4by construction without teleportation error nor competing behavior between the spatial and time discretisations.
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similar properties: completely cancelling the teleportation error and the competing behaviour of
the spatial and time discretisation put forward in [7] and analysed in [2]. Care is also taken to
compare both ’teleportation error free’ MC schemes (the new IMC one of the present paper and
ISMC) to highlight their respective strengths and weaknesses.

The paper is organised as follows: in section 2, we briefly present the system we are interested
in together with the asymptotic limit we aim at capturing accurately (namely the equilibrium
diffusion limit). In section 3, we present the IMC linearisation [4] on which many solvers (and also
the original solver of this paper) are based. In section 4, we describe an original way to discretise,
with an MC scheme, the IMC system. The new MC solver is not based on ’source sampling’ hence
does not foster any teleportation errors, see [2]. Care will be taken to highlight how an already
implemented IMC solver can be easily corrected to cancel the teleportation error. The paper ends
with benchmarks (in section 5) in which we verify numerically the aforementioned properties and
put forward the fact that the new solver does not have some competing discretisation parameters.
We also systematically compare the new IMC scheme to ISMC.

2. The system and its asymptotic limit of interest

In this article, we are interested in the Monte-Carlo (MC) resolution of the time-dependent,
nonlinear, radiative transfer equations. The model has general form (see [13]):

1

c
∂tI + ω · ∇I + σtI = σaB(Tm) + σs

∫
4π

I
dω′

4π
,

∂tE(Tm) =

∫
4π

cσa

(
I

4π
−B(Tm)

)
dω′.

(1)

In the above equations, I = I(t, x, ω) and Tm(t, x) are the unknowns of the system and stand
respectively for the intensity of radiation energy and the material temperature. Variables t ≥ 0,
x ∈ Ω ⊂ R3 and ω ∈ S2 are respectively the time, space and angle variables. The cross-sections
σt = σt(x, t), σa = σa(x, t) and σs = σs(x, t) are given functions of (x, t). They stand for the
total, absorption and scattering opacities. In particular, we have σt = σa + σs. The density of
internal energy E depends on Tm via an equation of state dE = ρCv(Tm)dTm with ρ the mass
density and Cv the heat capacity (constant for a perfect gas). The quantity B(x, t) = aT 4

m(x, t)/4π
is the frequency-integrated Planck function with a the radiative constant. The quantity c denotes
the speed of light. In this paper, we are particularly interested in being able to accurately capture
a particular regime: in diffusive media, system (1) behaves, at leading order, like the nonlinear
diffusion equation on Φr(Tr) = aT 4

r =
∫

4π
I

4πdω{
∂t(Φr(Tr) + E(Tr))−∇ ·

(
c

3σt
∇(Φ(Tr)

)
= O(δ),

Φr(Tr) =
∫

4π
I

4πdω = B(Tm) +O(δ).
(2)

With
∫

4π
B(Tm)

4π dω = aT 4
m and Φr(Tr) = aT 4

r , the second equation is equivalent to Tm = Tr:
the radiative and matter temperatures are at equilibrium. In the above equation, δ ∼ 0 is a
small parameter characterising what is commonly called the equilibrium5 diffusion6 limit [6, 7, 1].

5Equilibrium means Tm = Tr.
6Diffusion refers to the presence of the second order spatial term in (2).
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The limit can be defined by introducing a characteristic length X , a characteristic time T and a
characteristic collision rate λ and assuming we have{

cT
X = O( 1

δ ),
cT
λ = O( 1

δ2 ),
(3)

with δ ∼ 0 small. System (1) and its limit (2) are relevant to model photons incoming into opaque
media [13, 14, 15].

In this article, due to the high-dimensional problem we aim at tackling, we only focus on MC
based numerical solvers.

The aim of this paper is to provide a new and original correction fitted to the IMC linearisation to
cancel the teleportation error and the competing behaviours of the spatial and time discretisations
(studied in [7, 2]). For this reason, we briefly describe IMC in the next section together with the
drawbacks of having to resort to source sampling within the MC discretisation.

3. The Implicit Monte Carlo (IMC) method and the drawbacks of source sampling

Let us first describe the IMC (for Implicit Monte-Carlo) linearisation. IMC has been introduced
in [4]. The idea is to introduce some sort of implicitness on B in the time discretization scheme
in order to mitigate the effects of the stiff coupling between radiation and material. Implicit time
discretization of (1) yields the following linear system:

1

c
∂tI + ω · ∇I + σnt I = σnaB

n+1 + σns

∫
4π

I
dω′

4π
,

∂tE =

∫
4π

cσna

(
I

4π
−Bn+1

)
dω′.

(4)

To solve system (4) using an MC scheme, one has to provide an estimation of the source term
σnaB

n+1 which is unknown at the beginning of the time step. In [4], the authors propose a particular
estimation of Bn+1 that leads to the Fleck and Cummings equations that approximate the original
system (1). We sum up the construction of Bn+1 in the few next lines for the grey approximation.
System (1) can be rewritten with respect to variables (I,Φ ≡ aT 4

m) instead of variables (I, Tm):
1

c
∂tI + ω · ∇I + σtI = σaΦ + σs

∫
4π

I
dω′

4π
,

∂tΦ =

∫
4π

cσaβ(Φ)
I

4π
dω − cσaβ(Φ)Φ, with β =

dΦ

dE
.

(5)

Note that β = dΦ
dE has been introduced to express ∂tE with respect to ∂tΦ. In a sense, this term

deals with all the physics relative to the equation of state (eos) E(Tm) = E(Tm(Φ)) together with
making sure the system can be closed using variables (I,Φ).

The above system is still nonlinear. A linearisation is mandatory to apply an MC scheme.
Integration of the radiation-material energy balance equation on time step [tn, tn+1], using the
backward Euler scheme for Φ and the forward Euler scheme for σa and β yields:

Φn+1 = Φn +

∫ tn+1

tn

∫
4π

cσnaβ
n I

4π
dω − cσnaβn∆tΦn+1. (6)
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The MC solver resulting from the above hypothesis is commonly called implicit but strictly speaking,
it looks more like an explicit-implicit7 discretization of the second equation of (5). Still, in this paper,
to remain consistent with the literature, we use the term implicit to describe the solver.
The above expression (6) can be easily inverted in term of Φn+1 to give:

Φn+1 = fnΦn + (1− fn)

∫ tn+1

tn

∫
4π

I

4π
dω

dt

∆t
, with fn =

1

1 + cσnaβ
n∆t

.

The quantity fn is the so-called Fleck factor. Replacing the time integral by its instantaneous
value and using the approximation of Φn+1 in the transport equation yields the time-discretized
IMC system: 

1

c
∂tI + ω · ∇I + σnt I = fnσnaΦn + [σns + (1− fn)σna ]

∫
4π

I
dω′

4π
, (7a)

∂tE = cfnσna

(∫
4π

I

4π
dω − Φn

)
. (7b)

Notice that by redefining Σna ← fnσna and Σns ← σns + (1− fn)σna , Σnt = σnt one obtains a transport
equation similar to the first equation of (4) except that the emission term S = fnσnaΦn is now
known because it is evaluated at the beginning of the time step. The time-discretized transport
equation above has been supplemented by the proper material energy equation. Choosing to work
on E instead of Φ here ensures, by construction, the conservation of the total energy for the system
matter+photons provided Φn+1 can be deduced from En+1 (using the eos).

Equations (7) form a closed linear system on time step [tn, tn+1]. Obtaining a numerical ap-
proximation for equation (1) then consists in solving successively the two equations of system (7)

IMC: Nx convergence study IMC: ∆t convergence study
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Figure 1: Convergence studies on the material temperature profiles T (x, t∗ = 500) at t∗ = 500 for the IMC scheme,
with respect to Nx = {20, 40, 80, 160, 320, 640, 1280, 2560} (left) and to ∆t ∈ {100, 10−1, 10−2, 10−3} (right).

within every time step. During time step [tn, tn+1 = tn + ∆t],

(∗) the transport equation (7a) is solved with an MC method. The source term is classically
treated with a source sampling strategy. Source sampling relies on the application of Duham-

7explicit with respect to σ, β, implicit with respect Φ.
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mel’s principle stating that if I1 is solution of{
1
c∂tI1 + ω · ∇I1 + σnt I1 = [σns + (1− fn)σna ]

∫
4π
I1
dω′

4π ,
I1(x, t = 0, ω) = I(x, t = 0, ω) = I0(x, ω),

(8)

and I2 is solution of{
1
c∂tI2 + ω · ∇I2 + σnt I2 = fnσnaΦn + [σns + (1− fn)σna ]

∫
4π
I2
dω′

4π ,
I2(x, t = 0, ω) = 0,

(9)

then I1 + I2 is solution of (7a). This implies one can track the already existing MC particles
with an MC scheme (I1) and sample ’source MC particles’ (I2) and track them independently
to add them up, see [16].

(∗∗) The material energy En+1 is updated solving (7b) by tallying the radiation energy deposit in
the material with a track length estimator [17] during the MC resolution.

Basically, the problem comes from point (∗) above and the use of source sampling to take into
account the source term S(x) = fnσnaΦn(x), as detailed in [2]. In [2], the teleportation error
occurring when a small spatial discrepancy δx within Φn is studied:

Φn(x) = Φnapprox(x) +O(δkx).

In the above expression, k is the order of the spatial approximation of x→ Φn(x) within each cell.
Typically, IMC as in [4] (i.e. no tilt) corresponds to taking k = 1 and constant approximations
in each cell i, i.e. Φni (x) ≡ Φni . Tilted IMC, known to mitigate the teleportation error [12, 7, 1],
corresponds to taking k ≥ 2: a first order tilt (k = 2) consists in evaluating coefficients8 (Φni,0,Φ

n
i,1)

and assuming that Φn(x), in cell i, is close to linear, i.e. Φni (x) ≡ Φni,0 + Φni,1x. Of course, more
elaborated (second order, continuous etc.) tilts exist [12, 7, 9, 1], but they all suppose having a
finite spatial accuracy, here denoted by O(δkx) with k the order of the approximation.

In the equilibrium diffusion limit, it has been shown in [2, 16] that, during time step [tn, tn+1],
as NMC → ∞, at leading order with respect to δ and δx in the equilibrium diffusion regime
characterised by (3), system (7) behaves like (see [2, 16]): ∂tΦr −∇

[
c

3σnt
∇Φr

]
+Dk

δkx
2∆t∇

kΦr = O
(
δk+1
x
∆t

)
+O(δ),

∂tE = 1
βn∆t

[Φr − Φn] +O(δ) +O(δk+1
x ).

(10)

From the comparison of (2) and (10), one can expect the numerical solution obtained from any MC
scheme

– to exhibit isotropy for Φr (given enough MC particles),

– to recover the equilibrium property Φr = Φ of (2) but only up to a ∆t accuracy (i.e. Φr−Φn =
O(∆t)) once the IMC linearisation applied, see (10),

– but to exhibit a competing behaviour between ∆t and δx:

8Usually, Φnapprox is based on a Taylor development and Φni,1 is a first order spatial derivative.
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– for a first order O(δk=1
x ) approximation (corresponding to the original IMC solver of [4])

of Φn, a numerical advection term D1
δx
∆t∇Φr appears. The spatial discrepancy δx must

be small with respect to the time step ∆t to be able to recover a diffusive behaviour.

– for a second order O(δk=2
x ) approximation of Φn (commonly called a tilt in the literature),

an additional diffusive term D2
δ2
x

∆t∇2Φr appears. In this case, the limit equation is a
diffusion one but to recover the good diffusion coefficient ( c

3σnt
), δ2

x must be small with

respect to ∆t.

– for a third order (and also for k ≥ 3) reconstruction, the good diffusion coefficient is
recovered but the competing behaviour remains, even if lessened by the fact δx is put to
the power 3 (or more if k+ 1 > 3). Still, on coarse meshes, this may be problematic (see
the examples given in [7, 2]).

– and to recover the diffusion coefficient c
3σnt

provided a fine tuning between the spatial dis-

cretization and the time step as explained above and in [2].

Let us end this section with the results obtained with IMC and source sampling on a benchmark
presented in [7]. A short description is provided in Appendix A. The aim of the next figures is
to illustrate the previous points. Figure 1 presents two convergence studies: the first one is with
respect to the spatial parameter Nx = {20, 40, 80, 160, 320, 640, 1280, 2560} for ∆t = 5× 10−2 and
NMC ≈ 107 on the left hand side and the second one is with respect to ∆t ∈ {100, 10−1, 10−2, 10−3}
for Nx = 10 (coarse mesh = important δx) and the same number of MC particles on the right hand
side. The figure displays the material temperature at time t∗ = 500 for the above meshes and
time steps. The reference solution, obtained from a (finely resolved) deterministic solver for the
equilibrium diffusion limit (2), is also plotted. With figure 1 (left), we recover the fact that for
fixed ∆t, the IMC solver converges toward the reference solution. But the convergence is slow.
The finer the mesh, the noisier the results as we kept the number of MC particles NMC almost
constant (up to source sampling fluctuations). With this study, we emphasize the stakes of having
a faster convergence with respect to Nx: less cells will be needed but also less MC particles, hence
a potential important gain (see [2]). With figure 1 (right), we recover that for a fixed spatial
discretization Nx = 10, the IMC results are worse and worse as ∆t decreases. With this study, we
briefly put forward the diverging behaviour (closely related to the δx discrepancy introduced by
source sampling) of the scheme with respect to the time step for a fixed spatial discretization (more
details are given in [2]).

Remark 3.1. This diverging phenomemon when decreasing the time step for a fixed grid is what
we call a competing behavior between the spatial and the time discretizations.

Now, figure 2 presents the same convergence studies but with the ISMC scheme of [2]. For
ISMC, the equilibrium diffusion limit during time step [tn, tn+1], as NMC → ∞, at leading order
with respect to δ , see [2], is given by Φr = Φ +O(∆t) +O(δ),

∂t(E + Φr)−∇
[
c

3σnt
∇Φr

]
= O(δ),

(11)

It echoes (10) for IMC. From (11), we can see that ISMC does not suffer from any spatial discrepancy
related to the grid, at least at first order with ∆t and δ: it does not suffer the teleportation error
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ISMC: Nx convergence study ISMC: ∆t convergence study
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Figure 2: Convergence studies on the material temperature profiles T (x, t∗ = 500) at t∗ = 500 for the ISMC scheme
of [2], with respect to Nx = {20, 40, 80, 160, 320, 640, 1280, 2560} (left) and to ∆t ∈ {100, 10−1, 10−2, 10−3} (right).

on the diffusion equation. Furthermore, equilibrium is fulfilled provided a small enough time step.
The ISMC solver (see left picture of figure 2) shows a fast spatial (Nx) convergence toward the
reference solution. Furthermore, the results obtained with the ISMC solver (left picture of figure 2)
tend to show that the new MC scheme is not sensitive (at least in a diverging way) to a decrease of
∆t: every curves for ∆t ∈ {100, 10−1, 10−2, 10−3} are indistinguishable. This benchmark confirms
the new ISMC scheme has no teleportation error and allows avoiding the competing behaviour of
∆t and δx.

The question now is: why describing a new MC scheme in this paper if ISMC provides the
desired properties? The ISMC does have them but is based on a different linearisation leading to
a different code architecture, see [2]. Many legacy codes are based on the IMC linearisation. The
stakes of this paper are to be able to build an IMC solver without teleportation error and without
a competitive behaviour between the spatial and time discretizations. We even aim at doing it
with minimal modifications of an already existing IMC implementation. Once this is done, fair
comparisons between the new IMC solver and the ISMC one of [2] can be done (see section 5 of
this paper).

4. Avoiding source sampling for the MC discretization of the IMC linearisation

As explained in the previous section, regarding the teleportation error/slow spatial convergence
rate and the competing behaviour of spatial and time discretisations, source sampling is incrimi-
nated (more details about this point are given in [2]). It is besides a parallel contention point, see
[18]. In this section, we present a different way to take into account a source term. The idea is to
make sure we have, by construction, δx = 0 within the IMC linearisation.

Let us introduce a spatial grid of Nx non-overlapping cells such that the spatial domain x ∈
Ω ⊂ R3 is tesselated into Ω = ΩNx =

⋃Nx
i=1 Ωi. We rely on constant per cell discretisations of the

opacities and source term. As a consequence, we assume we have access, at every beginning of time

7



steps [tn, tn + ∆t], to quantities

σnα(x) ≈
Nx∑
i=1

σn,iα 1Ωi(x),∀α ∈ {s, t, a},

ψn(x) ≈
Nx∑
i=1

ψn,i1Ωi(x),∀ψ ∈ {β, I, E, f},

with 1Ωi(x) denoting the indicatrix9 of cell Ωi. In particular, we have

En,i = 1
|Ωi|

∫
Ωi

E(x, tn)dx and In,i =
1

|Ωi|

∫
Ωi

∫
4π

I(x, tn, ω)

4π
dxdω,

βn,i ≈ β(Φn,i) and fn,i ≈ f(σn,ia , βn,i).

In other words, all the above quantities are constant in each cell of the mesh10. In the following
paragraphs, we assume every above quantities are approximated on the Nx point grid even if not
(abusively) reminded in the notations.

To describe the scheme, we first focus on equation (7a) which can be recast as

∂tI + cω · ∇I + cΣtI = S + cΣs

∫
4π

I
dω′

4π
, (12)

with Σt(x) = σnt (x), Σs(x) = σns (x) + (1− fn)σna (x) and S(x) = cfn(x)σna (x)Φn(x) defined on the
mesh ΩNx . The idea is to avoid having to resort to source sampling and take the source term into
account on-the-fly during the MC resolution. For this, we suggest rewriting (12) as11

∂tI + cω · ∇I + cΣtI = S + cΣs

∫
4π

I
dω′

4π
,

=

∫
4π

S

4π
dω′ + cΣs

∫
4π

I
dω′

4π
,

=

∫
4π

(
S

I
+ cΣs

)
I
dω′

4π
,

=

∫
4π

(s(I) + cΣs) I
dω′

4π
,

(13)

where s(x, I(x, t, ω)) = S(x)
I(x,t,ω) is a nonlinear term. As a consequence, we are going to need an

additional linearisation hypothesis at this stage.

Remark 4.1. This may represent a first drawback with respect to IMC (with source sampling)
or ISMC. With ISMC, an MC solver without source sampling can be built without additional
hypothesis as soon as the time discretisation (and implicitation) is introduced, see [2].

9i.e. we have 1Ωi (x) = 1 if x ∈ Ωi, 1Ωi (x) = 0 if x /∈ Ωi.
10i.e. no need for a tilt or any spatial reconstructions within the cells.
11To go from the first to the second equation, the isotropy of the source term is used.
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To suggest a relevant linearisation hypothesis here, we make an analogy between Quasi-Static
methods, well-known and commonly applied for the linear Boltzmann equation coupled to the
Bateman system (neutronics), see [19, 20, 21, 22, 23, 24]. Quasi-static methods are closely related
to Asymptotic-Preserving schemes (see [16]) and suppose identifying a relevant reduced model before
plugging it into (13). For this reduced model, we suggest the isotropic homogeneous one within
each cell of ΩNx defined by {

∂tU
i(t) = Si − cΣiaU i(t),

U i(0) = U i0,∀i ∈ {1, ..., Nx},
(14)

with Σia = Σit−Σis ∀i ∈ {1, ..., Nx}. We insist (14) is solved within each cell (Ωi)i∈{1,...,Nx} in which
constant per cell quantities are considered. Reduced model (14) has above all been chosen because

– it treats the source term,

– it can be solved analytically within each cell Ωi and is consequently cheap to evaluate: its
solution is given by

U i(t) =

(
U i0e

−cΣiat + Si
1− e−cΣiat

cΣia

)
. (15)

We will assume (14) is valid per cell for all x ∈ Ωi and along any characteristics x + cωt ∈ Ωi,
∀i ∈ {1, ..., Nx}. With the above hypothesis, (13) becomes

∂tI + cω · ∇I + cΣtI =

∫
4π

(
S

U
+ cΣs

)
I
dω′

4π
,

= cΣS

∫
4π

I
dω′

4π
,

(16)

and is now linear. Above, we implicitly defined cΣS = S
U + cΣs. We will also intensively use the

notation ΣA = Σt − ΣS .
It only remains to design an MC scheme to solve (16). An MC particle is defined by

ip(x, t, ω) = wp(t)δx(xp(t))δω(ωp(t)), (17)

where wp(t) is the weight of the MC particle, xp(t) its position and ωp(t) its angle, every one of
them at time t. Several MC schemes are at hand. Their descriptions come with the descriptions of
the operations one must apply to (wp, xp, ωp)p∈{1,...,NMC} to make sure every (ip)p∈{1,...,NMC} are
solutions of (16). MC schemes intensively use the linearity of (16): if ∀p ∈ {1, ..., NMC}, ip is of

the form (17) and is solution of (16), then
∑NMC
p=1 ip(x, t, ω) is solution of (16) and approximates

I(x, t, ω). In the following paragraphs, we describe briefly two converging (in law12) strategies (cf.
theorem 3.2.1 of [17]) and justify our choice:

12Convergence in law is also commonly called weak convergence and is defined as such: a sequence of prob-
ability measures ( dµn)n∈N is said to convergence in law toward measure dµ if

∫
f(x) dµn(x) converges toward∫

f(x) dµ(x) as n goes to infinity for all bounded Lipshitz function f . In our MC context, n echoes NMC and
dµn =

∑n
p=1 ip(x, t, ω) (the Dirac δx, δω in (17) are measures with our notations).
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– the non-analog MC scheme (see [24, 16]) requires that,

– on any interval of time [0, t] the particle position is updated according to xp(t) = xp(0)+
cωp(0)t.

– The weight is modified along the flight path of each MC particle: on any interval of
time [0, t] such that the particle remains within cell Ωi, the weight of the MC particle is

multiplied by wp(t) = wp(0)e−
∫ t
0
cΣiA(α)dα. A few computations show that

wp(t) = wp(0)e−
∫ t
0
cΣiA(α)dα = wp(0)

U i(t)

U i(0)
= wp(0)

(
e−cΣ

i
at + Si

1− e−cΣiat
cΣiaU

i
0

)
. (18)

This is equivalent to solving (14) along the flight path of each MC particle. If S = 0, we

recover the classical weight modification wp(t) = wp(0)e−cΣ
i
at = wp(0) V

i(t)
V i(0) solution of{

∂tV
i(t) = −cΣiaV i(t),

V i(0) = V i0 ,

for the non-analog MC scheme without source term.

– Let τ denote a collision time: the MC tracking needs the sampling of a new scattering
angle ωp(τ) = W . In this paper, scattering being isotropic, the sampled angle W must
be drawn from the uniform distribution on S2 and ωp(τ) is independent of ωp(0). The
reader interested on the construction of anisotropic scattering distributions can refer to
[16].

– The sampling of the collision time τ within cell Ωi must be made thanks to ΣiS(t) from
the probability measure

fτ (t) = cΣiS(t)e−
∫ t
0
cΣiS(α)dα.

The interaction time τ can be sampled from an uniform law U on [0, 1] by inversing the
cumulative density function associated13 to fτ . This leads to (see [16, 24])

− ln(U) =

∫ τ

0

cΣiS(α)dα.

The integral on the right hand side can be computed exactly, but the inversion needed
afterward is, to our knowledge, impossible to carry out analytically. A newton or an
iterative method could be used (as in [24] for example) but we here aim at dealing
with diffusive media (which would need many on-the-fly costly calls to the inversion
algorithm). An approximation could be made (see remark 10.3 of [16]) but we here
would like to avoid it as the MC scheme presented in this paper has already one more
assumption than the ISMC solver of [2], see remark 4.1. For this reason, the non-
analog scheme is here discarded despite its good property with respect to the weight
modification.

– On another hand, the semi-analog MC scheme (see [16]) requires that

13Introduce Fτ the integral of fτ , then by definition, see [25], τ = F−1
τ (U) where U is uniformly distributed on

[0, 1].
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– on any interval of time [0, t] the particle position is updated according to xp(t) = xp(0)+
cωp(0)t.

– the weight of the MC particles remains unchanged if no collision occurs between times
0 and t so that wp(t) = wp(0).

– Let τ denote a collision time:

– the MC tracking needs the sampling of a new scattering angle ωp(τ) at the collision
location x(τ) = xp(0) + cωp(0)τ and collision time τ . Once again, scattering being
isotropic, the sampled angle ωp(t) = W must be drawn from the uniform distribution
on S2.

– Furthermore, the weight of the MC particle encountering a collision within cell Ωi

must be multiplied by wp(τ) = wp(0)
ΣiS(τ)

Σit(τ)
. As a consequence, for our problem of

interest, the weight modification at the collision point is given by

ΣiS(τ)

Σit(τ)
=

Si

U i(τ)
+ cΣis

cΣit
=

1

cΣit

 Si(
U i0e

−cΣiat + Si 1− e
−cΣiat

cΣia

) + cΣis

 , (19)

and is analytical (no additional hypothesis required for efficiency). Note that once

again, if S = 0, we recover the classical weight modification
Σis
Σit

for the semi-analog

MC scheme without source term.

– Finally, the sampling of the collision time within cell Ωi must be made thanks to
Σit(t) from the probability measure

fτ (t) = cΣit(t)e
−

∫ t
0
cΣit(α)dα.

The interaction time τ can be sampled from an uniform law U on [0, 1] as

− ln(U) =

∫ τ

0

cΣit(α)dα,

see [16, 24]. In our context, Σit(t) = Σit = σn,it remains constant with respect to

time, as a consequence, τ = − ln(U)
cΣit

= − ln(U)

cσn,it
is simple to sample.

– For the semi-analog MC scheme, neither the expression of the weight modification nor the
expression of the collision time require any additional approximation. For this reason,
the semi-analog MC scheme will be chosen for the next computations even
if known to have a slightly bigger variance than the non-analog MC scheme (see [16]
section 9.7).
Note that in an HPC context in which replication domain14 (see [18]) is intensively

14Replication domain consists in replicating the geometry on several processors and tracking several MC particles
populations with different initial seeds in every replicated domains. At the end of the time steps, the contribution
of every processors are averaged. This parallel strategy is particularly well suited to MC codes, taking advantage of
the independence of the MC particles.
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applied, this excess of variance is quite easy to compensate: with a small increase of
replicated domains, we can easily absorb the excess of variance of the semi-analog MC
scheme (intensively used in neutronics for example, and called implicit capture see [26])
with respect to the non-analog MC one. Of course, asymptotically with the number of
MC particles, both the non-analog and the semi-analog MC schemes for (16) converge
toward the solution of (16).

– Of course, the analog MC scheme could be used (or even others, some of them probably even
more relevant), but this is beyond the scope of this paper. We here focus on MC scheme
which can be found in legacy IMC codes.

To end the time step, it remains to detail the track length estimator needed to consistently up-
date the material energy from equation (7b), see point (∗∗), page 5. By consistent tally, we here aim
at having a conservative scheme. In order to ensure conservativity for the system ’photons+matter’,
each time a collision occurs, we make sure that matter tallies, in cell i, from particle p,

∆Eip = (wp(τ
−)− wp(τ+))1Ωi(xp(τ)),

= wp(τ
−)

(
1− ΣiS(τ)

Σit(τ)

)
︸ ︷︷ ︸

∆eip

1Ωi(xp(τ)),

= wp(τ
−)

1−
Si

U i(τ)
+ cΣis

cΣit

1Ωi(xp(τ)),

=
wp(τ

−)

cΣit

(
cΣia − Si

Ui(τ)

)
1Ωi(xp(τ)).

(20)

Note that in above expression, τ− (respectively τ+) denotes the time just before (respectively after)
the collision occuring at time τ . We insist the notations above are in agreement with the fact that
the contribution of particle p is zero if particle p does not encounter a collision within cell i. Of
course, the matter energy within each cell i is updated by tallying every (non-zero) contributions

of every MC particles within cell i as Eni = E0
i +

∑NMC
p=1 ∆Eip. The last expression allows ending

the description of the scheme.

Remark 4.2. Note that the MC scheme described here to solve (13) is general enough and could
benefit other physics (neutronics for example, see [24]).

The new MC scheme we just described is called, for the sake of conciseness, nssIMC (for no
source sampling IMC) in the following paragraphs. We next take some time describing some of its
singular properties. We would like to decompose the discussion into two points:

– the first point concerns continuous considerations. We compare the stake of having to resort
to IMC or nssIMC asymptotically as NMC →∞:

– IMC solves (13) with Φn(x) = Φnapprox +O(δx) leading to the discretisation of (8)–(9),

– whereas nssIMC solves (13) assuming S
I = S

U +O(ε) leading to the discretisation of (16).

We will study the extent of this O(ε) approximation on S
I just as we studied the extent of

the O(δx) approximation on Φn for IMC in [2].
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– The second point aims at focusing on the MC discretisations. IMC usually uses a non-analog
MC scheme to discretise (8)–(9). With nssIMC, as explained above, we can either use the
previously presented non-analog MC scheme or the semi-analog one to discretise (16). In this
second point, we compare the non-analog IMC scheme and the non-analog15 nssIMC one. We
comment on the operations and restrictions induced by both schemes.

Let us begin by the first point above and the comparison of the continuous equations (13) and (16):
(16) has been built from (13) with the linearisation hypothesis of remark 4.1, consisting in plugging
the solution of equation (14) within (13). This choice has been driven by the fact that

– the source term is treated within the solution of (13) (without source sampling),

– and by the fact that an accurate and cheap solution, given by (15), is available for (14).

We here want to insist on the fact that the choice of resorting to the homogeneous equation (14) as
a reduced model, motivated mainly by the above two practical considerations, may not be the best
choice to capture of the equilibrium diffusion limit16. To better understand what happens, let us
first rewrite (13) in term of nondimensional quantities (upperscript ∗ will be used to denote them).
Introduce {

x = x∗X , c = c∗C, t = t∗T ,
Σα = Σ∗α

1
Λα

,∀α ∈ {s, t, a}, (21)

together with I∗(x∗, t∗, ω) = I(x, t, ω) and S∗(x∗, t∗) = S(x, t) = cΣaΦn(x). Then by noticing that

1
T ∂t∗I

∗(x∗, t∗, ω) = ∂tI(x, t, ω), 1
X ∂x∗I

∗(x∗, t∗, ω) = ∂xI(x, t, ω),

(13) can be equivalently rewritten (we drop the dependences for conciseness)

∂t∗I
∗ + CTX c∗ω · ∇x∗I∗ +

[CT
Λs

c∗Σ∗s + CTΛa c
∗Σ∗a

]
I∗ = T CΛa

c∗Σ∗aΦn,∗ + CTΛs c
∗Σ∗s

∫
4π

I∗
dω′

4π
.

The homogeneous equation (14) can be recovered from the above expression assuming

CT
X = O(ε) = CTΛs ,
CT
Λa

= O(1),
(22)

with ε ∼ 0 small. With the above nondimensional quantities, we can have an idea of what (16)
misses with respect to (13) (first bullet below) and compare regimes characterised by ε with (22)
and δ with (3) (second bullet below).

15In the next numerical section 5, we do use the semi-analog MC scheme for (16) for the practical reason previously
exposed. But it is way easier comparing both non-analog MC schemes on the paper. This does have a sense as both
semi-analog and non-analog MC scheme recover asymptocally the same solution: the comments on the non-analog
nssIMC can be transposed, without loss of generality, to the semi-analog nssIMC one.

16Still, it does cancel the teleportation error.
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• Let us first compare more quantitatively (13) and (16): this can be done performing a Hilbert
development [27] of I∗ = I0 + εI1 + ε2I2 + O(ε3), plugging it in (13) and identifying the
equations satisfied by the leading order I0:{

O(1) ∂tI0 + cΣaI0 − S = 0,
O(ε) ...

From the first equation, we recover that I0 coincides with U (given the same initial conditions).
This means that

I0 = U = S
cΣa

+ e−cΣat
(
U0 − S

cΣa

)
,

= Φn + e−cσ
n
a f

nt (U0 − Φn) ,
(23)

where x, ω are only parameters. Of course we could go further in the development but the
first order is enough for the rest of the discussion. We can then replace I by U + εI1 +O(ε2)
in (13) to get

∂tI + cω · ∇I + cΣtI =

∫
4π

(
S

I
+ cΣs

)
I
dω′

4π
,

=

∫
4π

(
S

I0 + εI1 +O(ε2)
+ cΣs

)
I
dω′

4π
.

(24)

Performing the development as ε ∼ 0 finally leads to

∂tI + cω · ∇I + cΣtI =

∫
4π

(
S

U
+ cΣs

)
I
dω′

4π︸ ︷︷ ︸
(16)

− ε
∫

4π

[
S
I1

U2

]
I
dω′

4π︸ ︷︷ ︸
K1

+O(ε2)

︸ ︷︷ ︸
what (16) misses w.r.t. (13)︸ ︷︷ ︸

(13)

.

(25)

With the above equation, we characterised what is missed when solving (16) instead of (13).
Let us briefly study K1:

K1(x, t) =

∫
4π

cσna (x)fn(x)Φn(x)
I1(x, t, ω′)

U2(x, t)
I(x, t, ω′)

dω′

4π
.

=

∫
4π

cΣε(x, t, ω
′)I(x, t, ω′)

dω

4π
.

(26)

At first order with O(ε), (16) lacks a kind of scattering term. We will need its expression in
the next point below.

• Let us finally study how hypothesis (22) impacts the equilibrium diffusion limit. For this, just
as in [2] in which we performed both a Hilbert development with respect to δ and a Taylor one
with respect to δx in the IMC linearisation (7), we suggest performing a Hilbert development
with respect to δ and a Taylor one with respect to ε in (7). The calculation are somewhat
easier than in [2] because ε does not affect the Fleck factor as δx does (see [2]).
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With nssIMC, on time step [0, t = ∆t], we aim at solving the conservative system
∂tI + cω · ∇I + cσnt I =

∫
4π

[
cfnσna

Φn

U
+ c(σns + (1− fn)σna )

]
I
dω′

4π
, (27a)

∂tE = cfnσna

∫
4π

I

4π

(
1− Φn

U

)
dω. (27b)

Let us first make the Taylor development with respect to ε appear in (27): the previous
calculations showed that U = I − εI1 +O(ε2). Plugging U = I − εI1 +O(ε2) into (27) leads
to 

∂tI + cω · ∇I + cσnt I = cfnσnaΦn + c[σns + (1− fn)σna ]

∫
4π

I
dω′

4π
+K1ε+O(ε2),(28a)

∂tE = cfnσna

(∫
4π

I

4π
dω − Φn

)
−K1ε+O(ε2). (28b)

Let us now perform a Hilbert development17 of I = I0 + δI1 +O(δ2) with respect to δ into,
first, K1. Few calculations using the expression (23) in (26) lead to:

εK1 ∼
δ∼0

εδ2 I0
1

Φn

βn∆t(Φn + e−
t

βn∆t (−Φn + U0))
+O(δ4) +O(ε2),

∼
δ∼0

εδ2 K0
1 +O(δ4) +O(ε2),

If we now perform the Hilbert development of I with respect to δ satisfying (3) and identify
the leading orders in the first equation of (28), we obtain18

O(δ0) : I0 =

∫
4π

I0 dω

4π
= Φ0

r,

O(δ1) : cω · ∇I0 + cσtI
1 = 0,

O(δ2) : ∂tI
0 +

∫
4π

cω · ∇I1 dω

4π
=

1

∆tβn
(
I0 − Φn,0

)
+ εK0

1 +O(ε2).

Performing the same calculations on the second equation of (28) leads to

O(δ2) : ∂tE
0 = − 1

∆tβn
(
I0 − Φn,0

)
− εK0

1 +O(ε2).

Finally for nssIMC, during an arbitrary time step [tn, tn+1], as NMC → ∞, at leading order
with respect to δ and ε in the equilibrium diffusion regime characterised by (3), system (7)
behaves like19

∂t(E + Φr)−∇
(

c
3σnt
∇Φr

)
= O(ε2) +O(δ),

∂tE = 1
βn∆t

[Φr − Φn]− εI0
1 Φn

βn∆t(Φn + e−
t

βn∆t (−Φn + U0))
+O(δ) +O(ε2).

(29)

17Note that the upperscripts are relative to the δ development whereas the lowerscripts are relative to the ε one.
18The calculations are similar to the ones performed in [6, 2]. The last equation is integrated with respect to ω.
19We drop the 0 upperscripts for convenience.
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The limit equation (29) for nssIMC must be compared to (10) for IMC and to (11) for ISMC. Note
that with ε = 0, the analysis recovers the one of [6] for IMC (without spatial discrepancy δx).
The nssIMC linearisation ensures cancelling δx induced by source sampling within the IMC lineari-
sation. For this reason, we consider nssIMC is a teleportation error free20 MC solver for (7). But
nssIMC has to deal with a different type of error O(ε). At first glance, (29) does not necessarily
look better than (10) with k = 1 or k = 2 (i.e. IMC and tilted IMC). The first equation of (29)
is a diffusion equation with the good c

3σt
coefficient. But the equilibrium equation is perturbed by

the O(ε) term. As ∆t goes to zero, the second equation of (29) behaves as

O(∆t) = Φr − Φn − εI0
1 .

Of course, if ε or I0
1 are small, then equilibrium is recovered. Otherwise, it is not fulfilled. It is

certainly still possible to consider higher order reduced models with respect to ε, i.e. try to build21

a tilt I = U +O(εk) with k > 1 with respect to ε. Or we could rely on a reduced model based on
better suited hypothesis than (22). These possible extensions are beyond the scope of this paper
but attest that nssIMC could be improved thanks to quite classical methods.
At this stage of the discussion, one natural question remains: is having an O(ε) error really better
than having an O(δx) one? The benchmarks of section 5 tend to show that the O(ε) term is prefer-
able on coarse meshes.

Let us tackle the second point and the implications of having to resort to the non-analog nssIMC
scheme for (16) instead of the non-analog IMC one for (8)–(9). These are more practical consid-
erations about not relying on source sampling anymore. With this new MC solver, there is not
anymore a distinction between ’initial’ and ’source’ particles as with IMC. The weight of each MC
particle with nssIMC takes the source term into account. Let us focus on the weight modification
and the particle to matter contribution. For this, we suggest comparing their expressions for an
IMC particle and for an nssIMC particle:

• for the (non-analog) IMC solver, the weight modification is

wp(t) = wp(0)e−cΣ
i
at ≥ 0.

It is a decreasing quantity (as Σia ≥ 0). The contribution to matter of the same particle p is
given by

∆Eip(t) = wp(0)(1− e−cΣiat) = wp(0)∆eip(t) ≥ 0.

As Σia ≥ 0, the weight of an IMC particle can only decrease and lead to a conservative increase
of the matter energy. At the end of a time step [0, t = ∆t], the update of the matter energy
is given by22

Ei(t) = E0
i − cσ0

af
0β0∆t+

NMC∑
p=1

Np∑
j=1

wp(t
j
p)∆e

i
p(t

j+1
p − tjp), (30)

20ISMC is an implicitation of SMC, see [8, 2], which by construction is a teleporation error free solver.
21Just as tilted IMC consider higher orders of Φn(x) = Φnapprox(x) +O(δk>1

x ) with respect to δx.
22One can check that in a closed cell, every time intervals become (only interval) [0, t] and conservativity is ensured.
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where [tjp, t
j+1
p ]i∈{1,...,Np} denotes Np intervals of time spent by particle p within cell i.

The positiveness of the energy Ei(t) at the end of the time step is ensured provided a small

enough time step which can be prescribed a priori: it is enough choosing ∆t ≤ E0
i

cσ0
af

0β0 ,

(remember each ∆eip(t) ≥ 0). It may be too constraining/suboptimal: for example, in a
configuration with important incoming particle to matter contributions in cell i, bigger time
step could be used and still ensure positiveness.

• For the nssIMC solver, it is easy checking that if U i0,Σ
i
a,Σ

i
s, c, S

i are all positive quantities,
the weight (18)

wp(t) = wp(0)

(
e−cΣ

i
at + Si

1− e−cΣiat
cΣiaU

i
0

)
≥ 0,

remains positive. But it is not necessarily decreasing as for IMC. Indeed, if emission com-
pensates absorption, which occurs as soon as Si− cΣiaU i0 > 0 independently of the time step,
emission is preponderant and the weight of a particle traveling within cell i increases. The
contribution to matter of the same particle p is given by

∆Eip(t) = wp(0)

(
1−

(
e−cΣ

i
at + Si

1− e−cΣiat
cΣiaU

i
0

))
= wp(0)∆eip(t), (31)

and is conservative but unsigned. In fact, ∆eip(t) is

– positive 0 ≤ ∆eip(t) < 1− Si

cΣiaU
i
0

if absorption is preponderant (if Si − cΣiaU i0 ≤ 0),

– negative 0 > ∆eip(t) > 1− Si

cΣiaU
i
0

if emission is preponderant (if Si − cΣiaU i0 > 0),

independently of the time step.
The matter energy at the end of the time step [0, t = ∆t] is given by

Ei(t) = E0
i +

NMC∑
p=1

Np∑
j=1

wp(t
j
p)∆e

i
p(t

j+1
p − tjp),

where [tjp, t
j+1
p ]i∈{1,...,Np} denotes Np intervals of time spent by particle p within cell i. One can

check that in a closed cell, every time intervals become (only interval) [0, t] and conservativity
is ensured.
From the above expression, we can see that in an emissive cell i (Si− cΣiaU i0 > 0), the sum of
negative particle contributions can make Ei(t) become negative. The positive and negative
contributions are not as decoupled as in the IMC formalism, see (30). As a consequence, from
(31), it is possible in practice

(a) to have an estimation of the time step limitation ∆t ≤ ∆tmax needed in order to make
sure that ∀j ∈ {1, ..., Np}, ∆eip(t

j+1
p − tjp)) remain greater (because negative) than a

prescribed quantity ∆emin
p :

∆t ≤ ∆tmax = − 1

cΣia
ln

(
Si + (∆emin

p − 1)U0
i cΣ

i
a

Si − U0
i cΣ

i
a

)
.

Just as for IMC, this limitation may be suboptimal.
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(b) nssIMC also allows another possibility: for a fixed time step t = ∆t, it is possible to

limit the maximum initial weight maxp(wp(0)) =
∆Emin

p

∆eip(t) of each particle p so that ∆Eip(t)

remains below a prescribed value wp(0)∆eip(t) ≤ ∆Emin
p .

The previous points (a) time step limitation and (b) weight limitation constitute our main
levers to ensure the positiveness of the matter energy at the end of the time step for nssIMC.

We now suggest implementing nssIMC and comparing it to IMC and ISMC on some benchmarks
from the literature. To give an idea of the minimal modifications needed to implement the new MC
scheme within a legacy IMC code, we rely on algorithm 1 in Appendix C.

5. Numerical results

In this section, we first compare our new IMC solver with the ISMC solver [2] on the Marshak
wave test-case presented in [7]. It is, to our knowledge, the only benchmark of the literature
putting forward the competing behaviour between the spatial and time discretisation (i.e. with a
convergence study with respect to ∆t for a fixed spatial discretisation). The new solver is called
nssIMC (for no source sampling IMC) for conciseness. The results obtained with nssIMC are
displayed figure 3. They can be directly compared to the results of figure 1 for IMC (without tilt)
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Figure 3: Convergence studies on the material temperature profiles T (x, t∗ = 500) at t∗ = 500 for the nssIMC
scheme, with respect to Nx = {20, 40, 80, 160, 320, 640, 1280, 2560} and ∆t = 5 × 10−3 (left) and to ∆t ∈
{100, 10−1, 10−2, 10−3} and Nx = 10 (right).

and of figure 2 for ISMC.
First, comparing figures 3 (left) and 1 (left) allows highlighting the gain of the nssIMC scheme

with respect to IMC: the spatial convergence is fast once source sampling is avoided (i.e. once we
make sure δx = 0 by construction): indeed, every spatial discretisation (from the coarser Nx = 20
to the finer Nx = 2560) allows recovering the reference solution. The ISMC scheme, see figure 2
(left), already exhibited such fast spatial convergence (it is also, by construction, such that δx = 0,
see [2]). In this sense, the nssIMC scheme allows cancelling the teleportation error.

On another hand, the right pictures of figures 1–2–3 display a convergence study with respect ∆t
for fixed spatial discretisation Nx = 10 (coarse mesh, as in [7] from which the benchmark is taken)
and for fixed number of MC particles (up to source sampling fluctuations for the IMC solver). First,
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the IMC solver exhibits a diverging behaviour with respect to ∆t (intensively studied in [2]), see
figure 1 (right). This diverging behaviour is explained by the appearance of a numerical advection
term (see (10) for k = 1 and [2] and remark 3.1). On another hand, the new nssIMC does not
exhibit this diverging behaviour with respect to ∆t. On the contrary, the behaviour is converging:
the finer the time step, the closer to the reference solution the nssIMC solution is, see figure 3
(right). But the convergence with respect to ∆t is slower than for the ISMC scheme for which
every curves with every time steps are undistinguishable from one another, see figure 2. This is
another point in favor of ISMC: it seems to have a faster ∆t-convergence rate than nssIMC. Still,
both teleportation error free solvers, ISMC and nssIMC, do not present the competing behaviour
between the spatial and the time discretisation defined in remark 3.1.

The next benchmark is taken from [2]. Its description is given in Appendix B. From now on,
we only display the results obtained from ISMC and the new nssIMC solvers (and rely on [2] for
IMC vs. ISMC comparisons).

Let us begin by some ∆t convergence studies and ISMC vs. nssIMC comparisons. These
are displayed figure 4: the left column presents ISMC results and the right column presents
the nssIMC ones for Nx = 40 cells23, NMC = 8.8 × 105 and several time steps ∆t = {5 ×
10−9, 10−10, 10−11, 10−12}. For the coarser time step ∆t = 5 × 10−9, as expected from (11) for
ISMC and (29) for nssIMC, equilibrium is not fulfilled. For a finer time step ∆t = 10−10, ISMC
already ensures capturing the equilibrium diffusion limit. On another hand, the time step is too
coarse for nssIMC to give as good results as ISMC. But for the last time steps, ∆t = 10−11 and
∆t = 10−12, both ISMC and nssIMC presents accurate results with respect to the reference solu-
tion, even if nssIMC seems to be slightly noisier. For ∆t = 10−10 and nssIMC, the plot display a
mix between numerical noise from the MC discretisation and numerical instabilities due to a too
coarse time step. Once ∆t below 10−11, only remains numerical noise from the MC discretisation.
The fact that the ∆t = 10−12 curve seems to be noisier than the ∆t = 10−11 is only due to (a lack
of?) luck. For different initial random seeds, the curves could have been smoother or even seem
less noisy for ∆t = 10−12 than for ∆t = 10−11.

Figure 5 presents a spatial convergence study for both ISMC and nssIMC for fixed time step
∆t = 10−12. On the first line of figure 5, the curves for Nx = 20 and NMC = 8.8×105 are displayed.
Both curves testify to a fast spatial convergence rate for both ISMC and nssIMC. Still, the results
for ISMC are slightly better than for nssIMC: this is visible especially in the vicinity of x = 0.5,
where nssIMC fail to resolve the peak of temperature as sharply as ISMC. Note that the nssIMC
results remain way more accurate than (tilted or not) IMC ones, for both the peak of temperature
and the wavefronts, see [2]. Let us consider some more quantitative results:

Nx = 20 Let us first consider the peak of temperature (at x = 0.5) as an observable of interest. For

Nx = 20 and ∆t = 10−12, the different solvers give2425

23Note that there are Nx = 40 cells instead of only 20 as in [2].
24Note that the results from IMC are not displayed but can be found in [2].
25Note that the results tilted IMC are not displayed but can be found in [2].
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Figure 4: Comparisons of the material and radiative temperatures Tm and Tr obtained from (reference solution) a
deterministic solver for the equilibrium diffusion limit (2), the ISMC and the nssIMC approximations for Nx = 40,
NMC ≈ 8.8× 105 MC particles and ∆t = {5× 10−9, 10−10, 10−11, 10−12}.
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Figure 5: Comparisons of the material and radiative temperatures Tm and Tr obtained from (reference solution)
a deterministic solver for the equilibrium diffusion limit (2), the ISMC and the nssIMC approximations for Nx ∈
{20, 40, 80, 160, 320}, ∆t = 10−12 and NMC ≈ 8.8 × 105 MC particles (except for nssIMC Nx = 320 for which we
needed NMC = 4.4× 106).
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– diffusion: T (t = 10−8, x = 0.5) = 1.652136× 107 (reference),
– IMC: T (t = 10−8, x = 0.5) = 7.642123× 106 with a relative error of 53.74,
– tilted IMC: T (t = 10−8, x = 0.5) = 1.187466× 107 with a relative error of 28.12,
– ISMC: T (t = 10−8, x = 0.5) = 1.630483× 107 with a relative error of 1.310,
– nssIMC: T (t = 10−8, x = 0.5) = 1.580614× 107 with a relative error of 4.329.

From the above relative error, we can estimate gains on the peak of temperature observables:
– tilted IMC leads to a gain ×1.91 w.r.t. IMC,
– ISMC leads to a gain ×41.0 w.r.t. IMC, ×21.4 w.r.t. tilted IMC,
– nssIMC leads to a gain ×12.4 w.r.t. IMC, ×6.49 w.r.t. tilted IMC.

– Let us now consider the left wavefront xw
26 as observable. For Nx = 20 and ∆t = 10−12, the

different solvers give
– diffusion: xw(t = 10−8) = 3.130× 10−1 (reference),
– IMC: xw(t = 10−8) = 7.500× 10−2, leading to a relative error of 0.76,
– tilted IMC: xw(t = 10−8) = 1.125× 10−1, leading to a relative error of 0.64,
– ISMC: xw(t = 10−8) = 2.750× 10−1, leading to a relative error of 0.12,
– nssIMC: xw(t = 10−8) = 2.750× 10−1, leading to a relative error of 0.12.

From the above relative error, we can estimate gains on the wavefront:
– tilted IMC leads to a gain ×1.18 w.r.t. IMC,
– ISMC leads to a gain ×6.26 w.r.t. IMC, ×5.27 w.r.t. tilted IMC,
– nssIMC leads to a gain ×6.26 w.r.t. IMC, ×5.27 w.r.t. tilted IMC.

Nx = 40 Let us once again consider the peak of temperature (at x = 0.5) as an observable of interest.

For Nx = 40 and ∆t = 10−12, the different solvers give2728

– diffusion T (t = 10−8, x = 0.5) = 1.652136× 107 (reference),
– IMC T (t = 10−8, x = 0.5) = 8.792122× 106 with a relative error of 0.467,
– tilted IMC T (t = 10−8, x = 0.5) = 1.579830× 107 with a relative error of 0.044,
– ISMC T (t = 10−8, x = 0.5) = 1.622959× 107 with a relative error of 0.017,
– nssIMC T (t = 10−8, x = 0.5) = 1.613410× 107 with a relative error of 0.023.

From the above relative error, we can estimate gains on the peak of temperature observables:
– tilted IMC leads to a gain ×10.68 w.r.t. IMC,
– ISMC leads to a gain ×26.49 w.r.t. IMC, ×2.47 w.r.t. tilted IMC,
– nssIMC leads to a gain ×19.95 w.r.t. IMC, ×1.86 w.r.t. tilted IMC.

– Let us now consider the left wavefront xw
29 as observable. For Nx = 40 and ∆t = 10−12, the

different solvers give
– diffusion xw(t = 10−8) = 3.130× 10−1 (reference),
– IMC xw(t = 10−8) = 1.625× 10−1, leading to a relative error of 0.481,
– tilted IMC xw(t = 10−8) = 2.625× 10−1, leading to a relative error of 0.161,
– ISMC xw(t = 10−8) = 3.125× 10−1, leading to a relative error of 0.001,
– nssIMC xw(t = 10−8) = 2.875× 10−1, leading to a relative error of 0.081.

From the above relative error, we can estimate gains on the wavefront:

26i.e. the last cell in which the radiative temperature Tr is different than the initial temperature.
27Note that the results from IMC are not displayed but can be found in [2].
28Note that the results from tilted IMC are not displayed but can be found in [2].
29i.e. the last cell in which the radiative temperature Tr is different than the initial temperature.
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– tilted IMC leads to a gain ×2.983 w.r.t. IMC,
– ISMC leads to a gain ×301.0 w.r.t. IMC, ×101.0 w.r.t. tilted IMC,
– nssIMC leads to a gain ×5.901 w.r.t. IMC, ×1.980 w.r.t. tilted IMC.

The previous quantitative results are displayed for Nx = 20 and Nx = 40 mainly because finer
meshes would need much more MC particles to avoid having noisy results. Besides, we are more
interested in the gains on coarse meshes (the ones which are practically of interest for production
codes). Let us comment on the previous gains on the temperature peak and on the wavefront: first,
nssIMC always ensures gains with respect to both IMC and tilted IMC, on both observables and both
grids: from ×5.901 up to ×19.95 with respect to IMC and from ×1.86 up to ×6.49 for tilted IMC.
As already qualitatively put forward on figure 5, ISMC does generate even better gains: from ×6.26
up to ×301.0 with respect to IMC and from ×2.47 up to ×101.0 with respect to tilted IMC.
On figure 5, for Nx = 40 and Nx = 80, both teleportation error free solvers present accurate
results, even if nssIMC seems to be slightly noisier. The curves and quantitative results tend to
show ISMC spatially converges faster than nssIMC. Note that this point30 could be investigated
more thoroughly but we think the spatial convergence of nssIMC deserves more attention, mainly
because of the results of the last line of figure 5: on the last line of figure 5 are displayed the results
obtained with ISMC and nssIMC with Nx = 320 but with different number of MC particles NMC

(NMC is recalled in red for nssIMC). The computation for nssIMC with NMC = 8.8× 105 failed to
run: negative matter energies were produced by the nssIMC. The problem anticipated in section 4
occurs in practice. Recall that ISMC, on another hand, is a positive scheme31. Now, with nssIMC,
using more MC particles (NMC = 4.4 × 106, see point (b) at the end of section 4) leads to more
robust calculations, as predicted by the discussion.

In practice, the previously described robustness problem could probably be lessened by astute
strategies: the element of solution presented at the end of section 4 are relevant. We already used the
weight limitation (point (b)). Using splitting on-the-fly at the collision to prevent the weight from
increasing too much could be even more efficient. But the comparisons between ISMC and nssIMC
would not be fair anymore (different numbers of MC particles). Clever time step limitations (point
(a)) are also efficient. But once again, the comparisons with ISMC et IMC would not anymore
be in the same conditions. We could consider plugging the solution U of a more relevant reduced
model than (14), fitted to regime (3), within (13). In practice, such reduced model may not have
an analytical solution: its use within a legacy IMC implementation would remain possible (see [24]
in which an ODE solver is embedded within the MC framework) but would probably be much
more complex and costly. In other words, the new nssIMC solver can certainly be improved thanks
to more or less classical strategies (splitting, time step limitation, more relevant reduced model,
tilts with respect to ε, see the discussion at the end of section 4). But our objective here is to
compare the nssIMC and the ISMC linearisations/solvers on common grounds and ISMC presents
the advantage of avoiding those additional considerations. Improving nssIMC is therefore beyond
the scope of this paper.

30The faster spatial convergence rate of ISMC with respect to nssIMC.
31As soon as the modified Fleck factor is positive, the artificial opacities are positive and the MC scheme to

discretise both photons and matter ensure the positiveness of both quantities for stable calculations, see [2].
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6. Conclusion

In this paper, we presented a new and original Monte-Carlo scheme to cancel the teleportation
error and its drawbacks (competing behaviours between the time and spatial discretisation param-
eters as defined and illustrated in section 3, remark 3.1) within an IMC framework for photonics.
Care has been taken to highlight how minimal modifications to an already existing legacy IMC
implementation can be made to recover the results of this paper.

The main idea is to avoid having to resort to source sampling to solve the transport equation re-
sulting from the IMC linearisation of the model. For this, a reduced model which can be analytically
solved and takes into account the source term is introduced and plugged in to the IMC transport
equation. The source term is consequently taken into account on-the-fly during the MC resolution.
The resulting scheme is conservative, converging but demands an additional linearisation hypothesis
(if compared to IMC with source sampling or ISMC for example).

The modified IMC solver, as expected, cancels the teleportation error. The corrections/modifi-
cations considerably improve the spatial convergence rate with respect to IMC with source sampling.
Benchmarks testify that the time and spatial discretisation parameters are not competing anymore
(see remark 3.1).

The new nssIMC (for no source sampling IMC) solver is finally numerically compared to the
ISMC solver of [2] which also cancels the teleportation error, avoids competing discretisation pa-
rameters32 but can not be put into an IMC framework and consequently needs more significant
(even if relatively simple) modifications of a code. On the benchmarks of this paper, nssIMC shows
a slower convergence rate than ISMC with respect to both the spatial and time discretisations. It
even presents some robustness problems which are not encountered with the ISMC scheme (which
is positive, under relatively mild conditions on the time step, see [2]). Still, due to the fact that
the solver can be implemented with minimal modifications of an IMC implementation and display
important gains with respect to IMC, the strategy deserved, in our opinion, to be investigated and
documented. Besides, the original (to our knowledge) strategy to take into account a source term
on-the-fly during the MC resolution (without relying on source sampling) could certainly benefit
other solvers/physics.
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CRONOS, PhD thesis, Faculté des Sciences de Rabat, Maroc (1999).

[23] C. Patricot, Couplages multi-physiques : évaluation des impacts méthodologiques lors de
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Appendix A. Short description of the Marshak benchmark of [7]

The test-case corresponds to the study of a 1D Marshak wave [13] with dimensionless units. A
black body heats the left boundary of the domain x ∈ D = [0, 4] with temperature T (x = 0) = 1.
The radiation constant is a = 1 and so is the speed of light c = 1. There is no scattering (i.e. σs = 0)
and σt(Tm) = σa(Tm) = 10

T 3
m

. Note that this benchmark will demonstrate our new MC solver can

be used with temperature dependent opacities. Besides, the test-problem considers a perfect gas
eos with ρ = 1 and Cv = 7.14. The medium is initially cold as T (x, t = 0) = T0(x) = 10−2

∀x ∈ D = [0, 4]. We are here interested in the (material and radiative) temperature profiles at
t∗ = 500.
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Tm = Tr, equilibrium diffusion t=0
Tm = Tr, equilibrium diffusion t=1.e-8
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Figure B.6: Initial and final spatial profile of the temperatures (Tm = Tr) in the equilibrium diffusion limit for the
’fil rouge’ test-problem of this paper.

Appendix B. Details about the second benchmark (see [2])

The initial and boundary conditions together with the problem justifications are provided here
for both, the sake of conciseness of the paper and of reproducibility of the results. This second
benchmark can be described as follows: let us consider a 1D spatial domain such that x ∈ Ω = [0, 1].
The domain is filled with a diffusive media σt = 2000, with no (physical) scattering, i.e. σs = 0
and σt = σa. Initially, temperature of 2.3× 107 for x ∈ [0.4, 0.6] and 2.3× 104 elsewhere. In other
words, we have at t = 0:

Tm(x, t = 0) = Tr(x, t = 0) = 2.3× 1071[0.4,0.6](x) + 2.3× 1041[0,1]\[0.4,0.6](x).

Note that 1Ω(x) denotes the indicatrix of domain Ω. The initial condition is displayed in figure B.6
together with the solution of system (2) at final time T = 10−8. This reference solution has been
obtained solving (2) with a deterministic solver (with a fine mesh).

Note that for time t ∈ [0, T ], the solution does not reach the boundaries. This test-case has
been chosen precisely in order to avoid having to resort to the sampling of boundary particles so
that there are no sampled particles for t > 0 (as both nssIMC and ISMC avoid source sampling).
The radiative constant is set to a = 10−14, the speed of light to c = 3 × 1010. A perfect gas is
considered to that E(Tm) = ρCvTm with ρ = 20, Cv = 4× 107. The configuration may not appear
particularly physical but is still relevant for real life encountered difficulties.
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Appendix C. Minimal modifications to implement nssIMC into a legacy IMC solver

#BEGINNING OF TIME STEP [tn, tn + ∆t]
for i ∈ {1, ..., Nx} do

#Compute (Φn,i)i∈{1,...,Nx} from the energy array (En,i)i∈{1,...,Nx}
Φn,i = eos(En,i), βn,i = β(En,i)
#Update the Fleck factor and the absorption and scattering opacities
fn,i = 1

1+c∆tσn,ia βn,i
, Σn,ia = σn,ia fn,i, Σn,is = σn,ia (1− fn,i) + σn,is

#keep the density of photon into memory and build the source term
U0,i = U i, Si = cσn,ia fn,iΦn,i

#Set to zero the (mesh) arrays in which will be tallied the MC particle contributions
U i = 0, ∆Ei = 0

end
#disable source sampling

(((
((((

(
SourceSampling()
for p ∈ {1, ..., NMC} do

set sp = 0 #this will be the current time of particle p
#ip is such that 1Ωip

(xp(sp)) = 1 (current cell for particle p)

while sp < ∆t do
if xp /∈ D then

apply boundary conditions(xp, sp,vp)
end
#sample the collision time from an uniform sampling U
τ = − ln(U)

cσ
n,ip
t

if τ > ∆t then
#move the particle p, update sp to end the treatment of the current particle
xp = xp + ωp × (t− τ), sp ←− t
#tally the contribution of particle p in the in which it ends:
U ip+ = wp

end
else

#move the particle p, update the life time of particle p
xp ←− xp − ωpτ , sp ←− sp + τ < t
#keep the old weight into memory
w0
p = wp

#change the particle weight

���
���

���
wp ←− wp × Σn,ips

Σ
n,ip
t

wp ←− wp ×

Σn,ips

Σ
n,ip
t

+ Sip

cΣ
n,ip
t

(
U0,ipe−cΣ

n,ip
a τ + Sip

1− e−cΣ
n,ip
a τ

cΣn,ipa

)


#tally (conservatively) the contribution to matter
∆Eip+ = w0

p − wp
#Sample the angle W′ of particle p after the collision from the scattering law
ωp = W ′

end

end

end
Algorithm 1: To implement nssIMC into a legacy IMC code (semi-analog MC scheme), disable
source sampling and change the weight modification of the MC particles encountering a collision.
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