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Perfect(oid) Algebraic Geometry

come    

This tract is inspired by the work of Scholze [START_REF] Scholze | Perfectoid spaces[END_REF], and it constructs algebraic version of perfectoid geometry without using valuations or Witt vectors. The study of algebraic geometry begins with zeros of polynomials in a ring k [X]. In this paper it is shown the ideas of algebraic geometry can be naturally carried over to polynomials of degree Z[1/p], for example X 1/p 2 -X 2 = 0, or more concretely for p = 5 the polynomial X 1/5 2 -X 2 = 0. The ring of such polynomials will be denoted as k[X 1/p ∞ ], where k is algebraically closed and is thus of infinite cardinality.

In section 1 the polynomial rings with degree Z[1/p] are constructed via direct limit and affine algebraic sets are defined in section 2. The Nullstellensatz is proven in theorem 2.8.

Theorem. 2.8 Let

I k[T 1/p ∞ 1 , . . . , T 1/p ∞ n
] be a proper ideal with k algebraically closed and uncountable. Then V (I) is non empty.

Finite fields with degree Z[1/p] ≥0 are introduced in section 3.1 and the following result for finite fields is proved in theorem 3.4.

Theorem. 3.4 Let V ⊂

A n , W ⊂ A m and U ⊂ A be algebraic sets as defined in section 3.1.

A polynomial map

φ : V → W induces a k-algebra homomorphism φ * : k[W ] → k[V ], defined by composition of functions; that is, if g ∈ k[W ] is a polynomial function then so is φ * (g) = g • φ.
2. If φ : V → W and ϕ : W → U are polynomial maps then (ϕ

• φ) * = φ * • ϕ * . 3. If Φ : k[W ] → k[V ]
then it is of the form Φ = φ * where φ : V → W is a unique polynomial map.

Projective geometry begins in section 4, tangent spaces are constructed in section 6 and schemes are described in section 7. All the above sections are adapted from [START_REF] Bedi | deg Q Algebraic Geometry[END_REF].

The perfectoid algebras are introduced in section 9, a natural order on these rings is described. This section also discusses admissibility of rings and ends with the proof of lemma 9.2.

Lemma. Let R be an admissible ring with ideal of definition a, then the ring

A = R X 1/p ∞ 1 , . . . , X 1/p ∞ r is admissible.
The Weierstraß division theorem and the maximum principle are proven in section 10. First the Gauß Norm and Units are described, these are identical to the case for Tate Algebras.

Corollary. An arbitrary series f ∈ K X 1/p ∞ is a unit iff |ff (0)| < |f (0)|. In other words the absolute value of other coefficients of f are less than the absolute value of the constant coefficient.

(0.1) K X 1/p ∞ × =        i a i X i ∈ K X 1/p ∞ : |a 0 | > |a i | for all i 0 and i ∈ (Z[1/p] ≥0 ) n       
The definition of distinguished order is adapted to the case at hand. Let R n := K X

1/p ∞ 1 , . . . , X 1/p ∞ n
, the Weierstraß division theorem 10.6 holds as given below.

Theorem. Let g ∈ R n be X n distinguished of some order s. Then, for any f ∈ R n , there is a unique series q ∈ R n and a

unique polynomial r ∈ R n-1 [X 1/p ∞ n
] of degree r < s satisfying

(0.2) f = qg + r
Furthermore, |f | = max(|q||g|, |r|).

In the section 11 new subring of Perfectoid algebras is constructed. This ring is much simpler and all Weierstraß theorems 11.3 hold in this ring.

The discrete valuation ring can be made into a continuous valuation ring, this shown in section 12 where eka p rings are introduced. These rings are critical in proving the coherence as shown in theorem 13.1.

Theorem. Let K be a perfectoid field with ring of integers o K such that o K is p adic completion of an eka p ring A with uniformizer p. Then the following rings are coherent.

1. A[X 1/p ∞ 1 , . . . , X 1/p ∞ n ]. 2. o K X 1/p ∞ 1 , . . . , X 1/p ∞ n . 3. K X 1/p ∞ 1 , . . . , X 1/p ∞ n .
The line bundles O (n), n ∈ Z[1/p] are constructed in section 8 and their cohomology computed in the following theorems.

Theorem. 8.4 Let

S = R[X 1/p ∞ 0 , . . . , X 1/p ∞ n
] and X = Proj S, then for any n ∈ Z[1/p] 1. There is an isomorphism S ⊕ n∈∆ H 0 (X, O X (n)).

2. H n (X, O X (-n -1)) is a free module of infinite rank.

Theorem. 8.7 Let

S = R[X 1/p ∞ 0 , . . . , X 1/p ∞ n
] and X = Proj S, then H i (X, O X (m)) = 0 for 0 < i < n.

The perfectoid version of the above theorems is proved in section 14. An analogue of Scholze's tilting functor is constructed in section 15. Finally, as an application the Perfectoid Tate Curve is constructed in section 16 and its cohomology computed via Čech complex.

The Degree Z[1/p]

The ring of degree Z[1/p] can be constructed by formally attaching X 1/p i , i ∈ Z >0 to the ring k[X] and is denoted

as k[X 1/p ∞ ].
It is also possible to use direct limit for construction of k[X 1/p ∞ ]. The advantage of this construction is the fact that direct limit is an exact functor, thus short exact sequences in k[X] can be carried over to k[X 1/p ∞ ].

degree Z[1/p] via Direct Limit

1.1 Construction. Consider the following inclusions

(1.1) k[X] ⊆ k[X 1/p ] ⊆ k[X 1/p 2 ] ⊆ . . . ⊆ lim --→ i k[X 1/p i ] = i k[X 1/p i ]
The above construction can be carried onto multiple variables

(1.2) k[X 1 , . . . , X n ] ⊆ k[X 1/p 1 , . . . , X 1/p n ] ⊆ . . . ⊆ lim --→ i k[X 1/p i 1 , . . . , X 1/p i n ] = i k[X 1/p i 1 , . . . , X 1/p i n ] 5 
1.2 Definition. The following notation will be used throughout

(1.3) k[X 1/p ∞ ] := i k[X 1/p i ] and k[X 1/p ∞ 1 , . . . , X 1/p ∞ n ] := i k[X 1/p i 1 , . . . , X 1/p i n ]
1.3 Remark.

1. The construction 1.1 can be generalized for Z[1/d], by simply replacing p with d.

2. Every extension is integral, this can be observed from the following

(1.4) k[X 1/p i+1 ] = R[Y ] Y p i+1 -X where R = k[X 1/p i ].
Thus, k[X 1/p ∞ ] is an infinite tower of integral extensions.

Further constructions for multivariate case are as follows:

1.4 Construction.

1. The multivariate case can also be obtained inductively. First construct the ring k[X 1/p ∞ ] and denote it as R and attach Y 1/p i , i ∈ Z >0 as in (1.1) to get

R[Y 1/p ] ⊆ R[Y 1/p 2 ] ⊆ . . . ⊆ lim --→ i R[Y 1/p i ] = i R[Y 1/p i ] = k[X 1/p ∞ , Y 1/p ∞ ].
2. Construction via tensor products

(1.5) k[X 1/p ∞ 1 , . . . , X 1/p ∞ n ] = k[X 1/p ∞ 1 ] ⊗ k • • • ⊗ k k[X 1/p ∞ n ],
where each k[X

1/p ∞ i
] is constructed as in (1.1). In fact, the above construction is an application of direct limit to tensor product and the observation that lim --→

(A ⊗ B) = lim --→ A ⊗ lim --→ B. k[X 1/p ∞ , Y 1/p ∞ ] = lim --→ i k[X 1/p i ] ⊗ k lim --→ i k[Y 1/p i ] = lim --→ i k[X 1/p i , Y 1/p i ]
Recall that Bézout domain is an integral domain in which every finitely generated ideal is generated by one element.

Lemma.

1. The ring k[T 1/p i ] is a principal ideal domain.

The ring k[T

1/p i ] is noetherian and k[T 1/p ∞ ] is non-noetherian. 3. The ring k[T 1/p ∞ ] is a Bézout domain.
Proof.

1. Changing the variable T 1/p i → X gives the ring k[X] which is a principal ideal domain.

2. The first part follows from above, for the second part consider the chain of ideals

(1.6) X ⊂ X 1/p ⊂ X 1/p 2 ⊂ • • • ⊂ X 1/p i ⊂ . . .

Let I be a finitely generated ideal in the ring

k[T 1/p ∞ ] = ∪ i k[T 1/p i ],
then the finiteness forces I to lie in one of the rings k[T 1/p i ] which is a principal ideal domain. Thus, I is generated by a single element. Note that k[T 1/p ∞ ] is not a principal ideal domain since the ideal X, X 1/p , X 1/p 2 , . . . cannot be generated by a single element.

1.6 Lemma. Let f ∈ k[T 1/p ∞ ],
then f has only finitely many zeros.

Proof. It is well known that a polynomial with integer degree has finitely many zeros. The idea is to convert any rational degree polynomial into an integer degree polynomial by a change of variable

T 1/p i → X giving a polynomial in k[X].
The solution X = a becomes the solution T = a p i .

Affine Algebraic Sets

Fix a field k an integer n and

A := k[T 1/p ∞ 1 , . . . , T 1/p ∞ n
] the polynomials with rational degrees in n indeterminates and coefficients in k.

If F(T 1 , . . . , T n ) ∈ A, a point x = (x 1 , . . . , x n ) ∈ k n is a zero of F if F(x 1 , . . . , x n ) = 0. 2.1 Definition. Let S be a subset of k[T 1/p ∞ 1 , . . . , T 1/p ∞ n
] and let V (S) denote the subset of k n formed by common zeros of all elements of S. The subsets of k n of this type will be called affine algeraic set defined by S.

(2.1)

V (S) = {x ∈ k n such that F(x) = 0 for all F ∈ S}.
The affine algebraic sets form the closed sets of the Zariski Topology on k n , some of its properties are listed below.

Remark. Let

A = k[T 1/p ∞ 1 , . . . , T 1/p ∞ n ] 1. V is inclusion reversing, for S 1 ⊆ S 2 ⊆ A then V (S 1 ) ⊇ V (S 2 ).
2. Multiple polynomials can define the same affine algeraic set. For example, V (T p ) = V (T ) = V (T 1/p ).

Definition.

Let a be an ideal of k[T

1/p ∞ 1 , . . . , T 1/p ∞ n
], then the set V (a) will be called the closed sets of k n .

Proposition. The closed sets define the Zariski topology.

Proof.

Let A = k[T 1/p ∞ 1 , . . . , T 1/p ∞ n ] 1. V (0) = k n and V (1) = ∅. 2. V (ab) = V (a ∩ b) = V (a) ∪ V (b) for a, b ∈ A. Since, ab ⊆ a ∩ b ⊆ a, b applying V (-) reverses the inclusion V (ab) ⊇ V (a ∩ b) ⊇ V (a) ∪ V (b).
On the other hand, if x V (a) and x ∈ V (ab), there exists a ∈ a such that

a(x) 0 and for all b ∈ b, a(x)b(x) = 0 implying b(x) = 0 or x ∈ V (b).

For a family of ideal a

i ∈ A with i ∈ I the following holds (2.2) i∈I V (a i ) = V        i∈I a i        = V        i∈I a i       

Non Unique evaluation maps

Recall that C[X]/(Xa) = C for a ∈ C, this can be re-written as

(2.3) C[X] (X -a), (X 2 -a 2 ), • • • , (X i -a i ), • • • = C[X] X -a = C for i ∈ Z >0 .
The first equality comes from the fact that

(X -a) ⊃ (X 2 -a 2 ) ⊃ • • • ⊃ (X i -a i ) ⊃ • • • .
Thinking, in terms of evaluation maps this is evaluation at (X, X 2 , X 3 , . . .) → (a, a 2 , a 3 , . . .), but the uniqueness of a i , i ∈ Z >0 reduces this map to X → a. This idea can be transferred to rational degree by considering the evaluation map

(2.4) (X, X 1/p , X 1/p 2 , . . .) → (a, a 1/p , a 1/p 2 , . . .),
with a particular choice for a 1/p i (since it might not be unique). Thus, corresponding to a there could be many maps as given in 2.4.

The above can be adapted for

C[X 1/p ∞ ] as (2.5) C[X 1/p ∞ ] (X -a), . . . , (X 1/p i -a 1/p i ), . . . = C for i ∈ Z >0 ,
giving an example of a infinitely generated maximal ideal in the ring C[X 1/p ∞ ]. The same argument works for any algebraically closed field k. Hence, for any evaluation map at a ∈ k the associated maximal ideal in k[X 1/p ∞ ] is generated by the family {(X 1/p ia 1/p i )} i∈Z >0 . For example, the evaluation map at a = 0 gives the maximal ideal (2.6) q := {X 1/p i } i∈Z >0 and q 2 = q.

Similarly, the maximal ideal associated to evaluation at (a 1 , . . . , a n ) ∈ k n in the ring k[T

1/p ∞ 1 , . . . , T 1/p ∞ n
] is generated by the family {(T

1/p i 1 -a 1/p i 1 ), . . . , (T 1/p i n -a 1/p i n )} i∈Z >0 .
For a ∈ k there could be infinitely many maximal ideals associated with it, each depending upon the choice of a 1/p i . This is in stark contrast to standard algebraic geometry where a single ideal is associated with a ∈ k.

It is necessary to have k as algebraically closed, so that all roots of a ∈ k can be obtained by solving equations of the form X p ia = 0, i ∈ Z >0 . For example 2 ∈ Q and the corresponding ideal would be {(X

1/p i -2 1/p i )} i∈Z >0 in the ring Q[X 1/p ∞ ]. But this gives (2.7) Q[X 1/p ∞ ] {(X 1/p i -2 1/p i )} i∈Z >0 = Q[2 1/p i ] i∈Z >0 Q. Notice that Q[2 1/p i ] i∈Z >0 is a field formed by union of field inclusions Q ⊂ Q[2 1/p ] ⊂ Q[2 1/p 2 ] ⊂ . . .. The standard
argument of Zorn's Lemma shows that every proper ideal of the ring k[T

1/p ∞ 1 , . . . , T 1/p ∞ n
] is contained within a maximal ideal m.

All is not lost, one can consider rings of the form Z[X 1/p ∞ ], with only two possible evaluation maps X → 0 and X → 1. This is a blessing and not a curse, it helps construct a bridge to finite fields as shown in section 15.

Ideal

The affine algebraic set V can be defined by different polynomials of A. There exists a natural way to assign an ideal in the ring A to the set V .

2.5 Definition. Let V be a subset of k n ; the ideal of V , denoted as I(V ), is the set of polynomials vanishing on V .

(2.8)

I(V ) = {f ∈ k[T 1/p ∞ 1 , . . . , T 1/p ∞ n ] such that f (x) = 0 for all x ∈ V }.
The regular functions on V are defined as k[T

1/p ∞ 1 , . . . , T 1/p ∞ n
]/I(V ) also called the affine algebra of V and is

denoted as k[V ] or Γ (V ) (global sections).
Some properties are listed below, these are all analogous to the case of standard algebraic geometry.

1. V ⊂ V (I(V )) and V (I(V )) is the closure of V in the Zariski topology. If V is affine algebraic set then V (I(V )) = V .
2. S ⊂ I(V (S)).

I(∅) = A

2.6 Proposition. For all irreducible affine algebraic sets, it is necessary and sufficient that the ideal is prime.

Proof. The proof is word for word the same as in [START_REF] Reid | Undergraduate Algebraic Geometry[END_REF]pp. 61] The above proposition can be expressed by saying that A/I(V ) is integral.

Corollary.

If k is infinite, then k n is irreducible.

Proof. Since, k is infinite, the polynomials vanishing on all of k n is just zero. This gives I(k n ) = (0) a prime ideal.

The first sentence follows from the fact that every polynomial with rational degree can be converted to an integer degree polynomial by a change of variable, and the corresponding statement holds for integer degree polynomials as shown in [MP07, pp 12, Prop 2.4].

Nullstellensatz

In 

:= T 1/p i j mod m i ∈ Z >0 . If P (T 1 , . . . , T n ) ∈ m then P (a 1 , . . . , a n ) = 0 or the point (a 1 , . . . , a n ) ∈ k n is in V (I).
2.9 Corollary. Let J be a finitely generated ideal of A,then I(V (J)) = rad(J).

Proof. The proof is via Rabinowitsch's trick as in [START_REF] Hulek | American Mathematical Society. Elementary Algebraic Geometry. Student mathematical library[END_REF]pp. 25]. Let J be a finitely generated ideal of

A = k[T 1/p ∞ 1 , . . . , T 1/p ∞ n
] and f ∈ I(V (J)) an arbitrary element, it needs to be shown that f N ∈ J for some N ∈ Z >0 .

The trick is to introduce a new variable t and define (2.12)

J := (J, f t -1) A[t],
which implies that (2.13)

V (J ) = {(a 1 , . . . , a n , b) ∈ k n+1 such that (a 1 , . . . , a n ) ∈ V (J) and bf (a 1 , . . . , a n ) = 1}
Let π be the projection of V (J ) to the first n coordinates giving π(V (J )) ⊂ V (J) such that f (c 1 , . . . , c n ) 0 for

(c 1 , . . . , c n ) ∈ π(V (J )). Since, f ∈ I(V (J)) hence V (J ) = ∅. Hence, J = A[t] by theorem 2.8. Since 1 ∈ A[t] = J , this implies (2.14) 1 = r i=1 g i f i + g 0 • (f t -1) ∈ A[t],
where f 1 , . . . , f r generate J and g 0 , g 1 , . . . , g r ∈ A[t]. The variable t might appear in all the polynomials g 0 , . . . , g r , let N ∈ Z >0 be the highest degree of t in all the g i . Multiplying the above equation with f N allows to set (f t) d = 1

for d ≤ N in the polynomials g i and giving us new polynomials

G i in A[f ] = A.
(2.15)

f N = r i=1 f N g i f i + f N g 0 • (f t -1), = r i=1 f N g i f i mod (f t -1) set f t = 1 to get ≡ r i=1 G i f i where G i ∈ A[f ] = A Since f i generate J this gives us that f N ∈ J in the ring A[t]/(f t -1).
Note that there is an injection A → A[t]/(f t -1) since A is an integral domain and theorefore injects into localization. Thus, the relation f N ∈ J also holds in A.

Rational functions and Morphisms

3.1 Definition. Let V ⊂ k n and W ⊂ k m be two affine algebraic sets and let φ = (φ 1 , . . . , φ m ) with φ i : V → k such that there is a map φ :

V → W . Then φ is called regular if every φ i ∈ k[V ].
The composition of two polynomials with rational degree might not be polynomial with a rational degree but a series associated with Newton's fractional Binomial expansion. For example let f 1 = 1 + X 1/2 + X 2 and f 2 = 1 + X, then (3.1)

f 1 • f 2 = 1 + (1 + X) 1/2 + (1 + X) 2 k[X 1/2 ∞ ]
On the other hand an evaluation at the point x ∈ k leads to the equality

(3.2) (f 1 • f 2 )(x) = f 1 (f 2 (x)) ∈ k for all x ∈ k algebraically closed.
Thus, it is not possible to obtain an antiequivalence of categories from morphism of varieties V → W to a ring

homomorphism k[W ] → k[V ].
This also shows that morphism of schemes is the correct approach to the problem.

Definition.

1. Let k(V ) denote the field of fractions of k[V ], the elements f ∈ k(V ) are called rational functions on V .

2. The rational function f is regular at a point p ∈ V if there is a representation of the form f = g/h with h(p) 0. The domain of definition of f is given as

(3.3) dom(f ) := {p ∈ V such that f is regular at p}.
3. The local ring of V at p is given as

(3.4) O V ,p = {f ∈ k(V ) such that f is regular at p} = k[V ][1/h] such that h(p) 0.
The maximal ideal is m V ,p = {f ∈ O V ,p such that f (p) = 0}.

Finite Fields

In this section let k be an algebraically closed field of char p, then (X 1/p +Y 1/p ) p = X +Y or X 1/p +Y 1/p = (X +Y ) 1/p in the ring k

[X 1/p ∞ , Y 1/p ∞ ]. Since, (X 1 + . . . + X n ) 1/p = X 1/p 1 + . . . + X 1/p
n the composition of two polynomials with a rational degree is a polynomial and the (3.1) can now be expressed as

(3.5) f 1 • f 2 = 1 + (1 + X) 1/2 + (1 + X) 2 = 1 + 1 + X 1/2 + (1 + X) 2 ∈ k[X 1/2 ∞ ]
In what follows, [START_REF] Reid | Undergraduate Algebraic Geometry[END_REF] and [START_REF] Hulek | American Mathematical Society. Elementary Algebraic Geometry. Student mathematical library[END_REF] are adapted to the case at hand.

Definition. Let

V ⊂ A n k and W ⊂ A n k be algebraic sets, a map φ : V → W is a polynomial map if there are φ 1 , . . . , φ m ∈ k[X 1/p ∞ 1 , . . . , X 1/p ∞ n ] such that (3.6) φ(p) = (φ 1 (p), . . . , φ m (p)) for all p ∈ V .
Since composition of two polynomials with degree Z[1/p] over a field of char p is again an element of

k[X 1/p ∞ 1 , . . . , X 1/p ∞ n
], the maps between algebraic sets can be composed. If V ⊂ A n , W ⊂ A m and U ⊂ A are algebraic sets, and φ :

V → W , ϕ : W → U are polynomial maps then ϕ • φ : V → U is again a polynomial map.
If φ is given by (φ 1 , . . . , φ m ) and ϕ by (ϕ 1 , . . . , ϕ ), then ϕ • φ is given by

(3.7) ϕ 1 (φ 1 , . . . , φ m ), . . . , ϕ (φ 1 , . . . , φ m ) ∈ k[X 1/p ∞ 1 , . . . , X 1/p ∞ n ]
The following is an analogue of [Rei88, pp 73]

3.4 Theorem. Let V ⊂ A n , W ⊂ A m and U ⊂ A be algebraic sets as above.

1. A polynomial map φ : V → W induces a k-algebra homomorphism φ * : k[W ] → k[V ], defined by composition of functions; that is, if g ∈ k[W ] is a polynomial function then so is φ * (g) = g • φ. 2. If φ : V → W and ϕ : W → U are polynomial maps then (ϕ • φ) * = φ * • ϕ * . 3. If Φ : k[W ] → k[V ] then it is of the form Φ = φ * where φ : V → W is a unique polynomial map. Proof. 1. For g ∈ k[W ] define φ * (g) = g •φ = g(φ 1 , . . . , φ m ) ∈ k[V ]. The map φ * is a ring homomorphism since (3.8) φ * (g 1 + g 2 ) = (g 1 + g 2 ) • φ = g 1 • φ + g 2 • φ = φ * (g 1 ) + φ * (g 2 ) φ * (g 1 • g 2 ) = (g 1 • g 2 ) • φ = (g 1 • φ) • (g 2 • φ) = φ * (g 1 ) • φ * (g 2 ) 2. Let h ∈ k[U ] (3.9) (ϕ • φ) * (h) = h • ϕ • φ = ϕ * (h) • φ = φ * • ϕ * (h). 3. Since, W ⊂ A m k this gives (3.10) k[W ] = k[Y 1/p ∞ 1 , . . . , Y 1/p ∞ m ] I(W ) = k[y 1/p ∞ 1 , . . . , y 1/p ∞ m
] where y

1/p j i = Y 1/p j i + I(W ) Since, Φ : k[W ] → k[V ] is given define φ i ∈ k[V ] as φ i = Φ(y i ) This gives a polynomial map φ := (φ 1 , . . . , φ m ) : V → A m . First, it is shown that f (V ) ⊂ W . Let G ∈ I(W ) ⊂ k[Y 1/p ∞ 1 , . . . , Y 1/p ∞ m ]; then (3.11) G(y 1 , . . . , y n ) = 0 ∈ k[W ],
which is simply substitution of Y i with y i . This gives

Φ(G(y 1 , . . . , y m )) = 0 ∈ k[V ]. Since Φ is a k algebra homomorphism (3.12) 0 = Φ(G(y 1 , . . . , y m )) = G(Φ(y 1 ), . . . , Φ(y m )) = G(φ 1 , . . . , φ m ) ⇒ f (V ) ⊂ W .
It needs to be checked that φ * = Φ and it is enough to check on the generators of

k[W ], that is Φ(y i ) = φ * (y i ) = φ i .
But, this holds since it is the definition of φ i . This also shows that φ = (φ 1 , . . . , φ m ) is the unique polynomial with Φ = φ * .

Projective Geometry

A definition analogous to that of affine varieties is needed, but the problem is that the homogeneous coordinates

(x 0 : • • • : x n
) not being uniquely defined, even the value of polynomial at the point is not unique. In fact, only the zeros of the polynomials are of interest us. These will be defined for a certain category of polynomials.

Definition

. A rational degree polynomial f ∈ k[T 1/p ∞ 1 , . . . , T 1/p ∞ n ] is homogeneous of degree d ∈ Z[1/p] ≥0 if (4.1) f = i 0 ...i n a i 0 ...i n T i 0 0 • • • T i n n with a i 0 ...i n 0 only if i 0 + . . . + i n = d. Any f ∈ k[T 1/p ∞ 1 , . . . , T 1/p ∞ n
] has a unique expression f = f 0 + . . . + f N with terms arranged with increasing degree

in which each f d is homogeneous of degree d ∈ Z[1/p] ≥0 . 4.2 Proposition. If f is homogeneous of degree d then (4.2) f (λT 0 , . . . , λT n ) = λ d f (T 0 , . . . , T n ) for all λ ∈ k; if k is infinite then converse holds too.
Proof. Only the converse needs to be proved. If k is infinite then f (X) vanishes on a finite set of k. Thus,

f (λT 0 , . . . , λT n ) = λ d f (T 0 , . . . , T n ) for almost all k implying homogeneous of degree d. An immediate consequence is that if F is homogeneous for λ ∈ k\{0} F(x 1 , . . . , x 0 ) = 0 ⇐⇒ F(λx 0 , . . . , λx n ) = 0.

Graded Rings and Homogeneous Ideals

Recall that a ring or a module can be graded over a commutative monoid ∆ as shown in [Bou98a, p 363, Chapter II, §1].

The graded polynomial ring is given as

(4.3) A = d∈Z[1/p] ≥0 A d ,
where

A d = {f ∈ k[T 1/p ∞ 0 , . . . , T 1/p ∞ n ] such that f is homogeneous of degree d} ∪ {0} 4.3 Definition. An ideal I k[T 0 , . . . T n ] Q is homogeneous if for all f ∈ I, there is a homogeneous decomposition of f (4.4) f = f 0 + . . . + f N , f i ∈ I is homogeneous of degree d i for all i.
The homogeneous ideal satisifes

I = d≥0 (I ∩ A d ).
4.4 Definition. The irrelevant ideal is given by (4.5)

A + = d>0 A d .
The above can also be expressed as

A + = i∈Z >0 (T 1/p i 0 , . . . , T 1/p i n
).

Definition

. 1. Let S ⊂ k[T 1/p ∞ 0 , . . . , T 1/p ∞ n
] be a set of homogeneous polynomials, the projective algebraic set defined by S is given as

(4.6) V p (S) = {x ∈ P n k such that F ∈ S for all F(x) = 0}. 2. Let V ⊂ P n k , then the ideal of V is given as (4.7) I p (V ) = {F ∈ k[T 1/p ∞ 0 , . . . , T 1/p ∞ n ] such that F(x) = 0 for all x ∈ V }.
This is a homogeneous ideal.

3. The graded ring associated to projective algebraic set V is given as the graded quotient ring

(4.8) Γ h (V ) = k[T 1/p ∞ 0 , . . . , T 1/p ∞ n ]/I p (V ) 4. Let f ∈ Γ h (V ) such that deg f > 0,
the open sets are given as (4.9)

D + (f ) = {x ∈ V such that f (x) 0}
Since, the rings at hand are non-noetherian it cannot be assumed that the set S is finite. Once again, V (I(V )) is closure of V .

Example.

The hyperplane at infinity is given by (4.10)

H i = {(x 0 , x 1 , • • • : x n ) ∈ P n k such that x i = 0}.
Since, k is a field this also translates to

x j i = 0 for j ∈ Z[1/p] >0 .
The corresponding open set is given as

(4.11) U i = {(x 0 , x 1 , • • • , x n ) ∈ P n k such that x i 0}.
The above example gives a covering of

P n k = U 0 ∪ . . . ∪ U n .
There is a bijection (4.12)

j i : U i → A n k (x 0 , . . . , x i , . . . : x n ) → x 0 x i , . . . , x n x i
5 Projective Nullstellensatz

Affine cone

Let π : A n+1 k {0, . . . , 0} → P n k be the canonical projection and

I ⊂ k[T 1/p ∞ 0 , . . . , T 1/p ∞ n
] a homogeneous ideal. There are two sets corresponding to this ideal the projective zero set V (I) ∈ P n k and the affine zero set V a (I) ⊂ A n k , also called the affine cone over projective set Y = V (I) and denoted as C(Y ).

(5.1)

V a (I) = π -1 (V (I)) ∪ {0, . . . , 0} for I k[T 0 , . . . , T n ] Q . (x 0 , . . . , x n ) ∈ V a (I) ⇐⇒ (λx 0 , . . . , λx n ) ∈ V a (I) for all λ ∈ k × . If I = k[T 1/p ∞ 0 , . . . , T 1/p ∞ n
] then C(Y ) = 0. The affine cone often helps to reduce a projective problem to an affine problem.

Theorem. Let k be an algebraically closed field and J

⊂ k[T 1/p ∞ 0 , . . . , T 1/p ∞ n+1 ] a finitely generated homogeneous ideal, then: 1. V (J) = ∅ if and only if rad(J) ⊃ (T 0 , . . . , T n ). 2. If V (J) ∅, then I(V (J)) = rad(J). Proof. 1. Let x ∼ y iff x = λy, λ ∈ k × for x, y ∈ V a (J), then (5.2) P n k ⊃ V (J) = (V a (J) -{0, . . . , 0})/ ∼ or V (J) = ∅ ⇐⇒ V a (J) ⊂ {0, . . . , 0}
Affine Nullstellensatz then gives rad(J) ⊃ (T 0 , . . . , T n ).

2. If V (J) ∅, then from affine Nullstellensatz

(5.3) f ∈ I(V (J)) ⇐⇒ f ∈ I(V a (J)) ⇐⇒ f ∈ rad(J).

Standard Affine Charts

Let X ⊂ P n k be an algebraic set not contained in any of the hyperplanes of P n k , then X can be covered with

X (i)
where each X (i) = X ∩ U i . Hence, each X (i) ⊂ A n k is an affine algebraic set. If I(X) is the homogeneous ideal associated to X and X (n) = X ∩ U n , then the following hold

(5.4)

I(X (n) ) = {f (T 0 , . . . , T n-1 , 1) such that f ∈ I(X)} I(X) d = T d n • f T 0 T n , . . . , T n-1 T n such that f ∈ I(X (n) ) and deg f ≤ d
where I(X) d denotes the degree d homogeneous part. Hence, there is a correpondence

(5.5) {algebraic sets X ⊂ P n k such that X H i } ↔ {algebraic sets X (i) ⊂ U i A n k }

Tangent Space

The tangent space is defined as its analogue in differential geometry.

6.1 Definition. Let f be an irreducible polynomial of rational degree in k[X

1/p ∞ 1 , . . . , X 1/p ∞ n
], then the tangent

space at P = (a 1 , . . . , a n ) ∈ V (f ) is defined as (6.1) T P (V ) := n i=1 ∂f ∂X i (P )(X i -a i ) = 0.
The maximal ideal of the ring k[X

1/p ∞ 1 , . . . , X 1/p ∞ n
] corresponding to a point (a 1 , . . . , a n ) is given as m below (also shown in remark 2.1).

(6.2)

m := {X 1/p i 1 -a 1/p i 1 , . . . , X 1/p i n -a 1/p i n } i∈Z >0 , and m = m 2 , implying m/m 2 = 0.
Thus, it is not possible to express the tangent space as dual of m/m 2 .

Jacobian Criterion

If the irreducible hypersurface is generated by

(f 1 , . . . , f r ) ∈ k[X 1/p ∞ 1 , . . . , X 1/p ∞ n
] then the tangent space is given as the cokernel of the map k r → k n , where the map is the Jacobian matrix.

(6.3)

                   ∂f 1 ∂x 1 (p) • • • ∂f r ∂x 1 (p) . . . . . . . . . ∂f 1 ∂x n (p) • • • ∂f r ∂x n (p)                    .

Schemes

Let X = Spec A endowed with Zariski topology and f ∈ A, the open set and closed sets given as

(7.1) D(f ) : Spec A\V (f ) V (f ) := {p ∈ Spec A such that f ∈ p}
Recall that Spec A is quasicompact and V (I) ⊂ V (J) if and only if J ⊂ rad I. Thus it is possible to cover the space with finitely open sets {D(f i )} which form the base of the space and define the sheaf on open sets as

O X (D(f )) = A f .
The localization is done at the multiplicatively closed set {1, f , f 2 , f 3 , . . .}. Hence, the affine scheme is of the form

(7.2) (Spec k[T 1/p ∞ 1 , . . . , T 1/p ∞ n ], O Spec k[T 1/p ∞ 1 ,...,T 1/p ∞ n ] ).
The affine pieces can be glued together to get projective space. Let 0 ≤ i, j ≤ n and (7.3)

X i = Spec k       T 0 T i 1/p ∞ , . . . , T n T i 1/p ∞       , X ij = D T j T i ⊂ X i .
Note that X ii = D(1) and thus corresponds to all of X i (none of the prime ideals of X i contain 1). This gives (7.4)

O X i (X ij ) = k       T 0 T i 1/p ∞ , . . . , T j T i 1/p ∞ , . . . T n T i 1/p ∞       localised at T j T i O X i (X ij ) = k       T 0 T i 1/p ∞ , . . . , T j T i 1/p ∞ , . . . , T n T i 1/p ∞ , T i T j 1/p ∞       Change Variable to get an isomorphism = k       T 0 T j 1/p ∞ , . . . , T i T j 1/p ∞ , . . . , T n T j 1/p ∞ , T j T i 1/p ∞       = k       T 0 T j 1/p ∞ , . . . , T i T j 1/p ∞ , . . . , T n T j 1/p ∞       localised at T i T j = O X j (X ji ) 7.1 Remark. The ring k[X 1/p ∞ , Y 1/p ∞ ]
can be localized at the mulitplicatively closed set {X r } r∈Z[1/p] ≥0 or at the multiplicatively closed set {1, X, X 2 , . . .} = {X r } r∈Z ≥0 , it will yield the same ring.

Let Proj A denote the set of prime ideals of A that do not contain A + := ⊕ d>0 A d , then Proj A can be endowed with the structure of a scheme. The closed and open sets for homogeneous ideals I are of the form

(7.5) V + (I) := {p ∈ Proj A such that I ⊆ p} D + (f ) := Proj A\V (f A).

Localization

The 

M (f ) ⊂ M f and A (f ) ⊂ A f , furthermore, M (f ) is an A (f ) module.

Multiplicatively Closed Set

It is always possible to localize at the multiplicatively closed set S = {1, f , f 2 , . . .} = {f } n∈Z ≥0 for any (non nilpotent)

f in the ring. This is very useful for the cases at hand, since it might not be possible to take rational degrees of f and still remain in the ring. For example f 1/p , when expanded using Newton's fractional binomial might give a power series which does not lie in the base ring. But, again the focus is on muliplicatively closed set S which lies within the ring.

8 Twisting Sheaves O (n) 

Let n ∈ Z[1/p] and a Z[1/p] graded A module, define a new graded A module A(n) d := A n+d for all d ∈ Z[1/p], define O X (n) := A(n) .
O X (n)| D + (f ) = f n O X | D + (f ) , furthermore, the usual equality holds O X (n) ⊗ O X O X (m) = O X (n + m).
8.1 Remark. For some cases the set f n , n ∈ Z[1/p] makes sense. For example, for R a perfect ring of char p and ∆ = Z[1/p] it is always possible to take pth power roots and thus

f n , n ∈ Z[1/p] always makes sense for R[X 1/p ∞ 0 , . . . , X 1/p ∞ n ].

O (1)

Let k be a field and consider Proj k[X

1/p ∞ 0 , X 1/p ∞ 1 ], the affine open sets are U 0 = D(X 0 ) = Spec k[(X 1 /X 0 ) 1/p ∞ ] and U 1 = D(X 1 ) = Spec k[(X 0 /X 1 ) 1/p ∞ ].
For example, for p = 5, consider the section of degree one.

(8.1)

Global Section X 0 + X 1/5 0 X 4/5 1 + X 1 U 1 (X 0 /X 1 ) + (X 0 /X 1 ) 1/5 + 1

U 0 1 + (X 1 /X 0 ) 4/5 + (X 1 /X 0 )
The transition function from U 1 to U 0 is given as X 1 /X 0 .

It is evident that the global sections of O (1) are infinitely generated by monomials of the form X 0 , X 1 , X r 0 X

(1-r) 1

where r ∈ Z[1/p] ∩ (0, 1). For example consider the following degree one sections for p = 2

(8.2) X 0 , X 1 , X 1/2 0 X 1/2 1 , X 1/4 0 X 3/4 1 , . . . , X 1/2 i 0 X 1-1/2 i 1 , . . . .

Computing Cohomology

The global sections of degree 2 of Proj R[X, Y ] are generated by X 2 , XY , Y 2 , where as the global sections of degree 8.3 Example. The degree p i sections of P 1 as given as X p i , Y p i , X a Y b with a + b = p i . These sections can be transformed to degree one by a change of variable as X, Y , X a/p i Y b/p i . More concretely for p = 3 and i = 1 gives the following transformation from deg 3 to deg 1

2 of Proj R[X 1/p ∞ , Y 1/p ∞ ] are given as X 2 , Y 2 , XY , X r i Y 2-r i for r i ∈ Z[1/p] ∩ (0,
(8.3) (X 3 , Y 3 , X 2 Y , XY 2 ) → (X, Y , X 2/3 Y 1/3 , X 1/3 Y 2/3
).

i = 2 gives the following transformation from deg p i = 3 2 = 9 to deg 1

(8.4) (X 9 , Y 9 , X 8 Y , . . . , X a Y b , . . .) → (X, Y , X 8/9 Y 1/9 , . . . , X a/9 Y b/9 , . . .).
Notice how the degree one sections increase from i = 1 to i = 2, in the direct limit there are infinitely many sections.

Once, again zero sections can be only transformed to zero sections.

Theorem

. Let S = R[X 1/p ∞ 0 , . . . , X 1/p ∞ n
] and X = Proj S, then for any

n ∈ Z[1/p] 1. There is an isomorphism S ⊕ n∈∆ H 0 (X, O X (n)). 2. H n (X, O X (-n -1)
) is a free module of infinite rank.

Proof.

1. Take the standard cover by affine sets U = {U i } i where each U i = D(X i ), i = 0, . . . , n. The global sections are given as the kernel of the following map (8.5)

S X i 0 -→ S X i 0 X i 1
The element mapping to the Kernel has to lie in all the intersections S = ∩ i S X i , as given on [START_REF] Hartshorne | Algebraic Geometry[END_REF]pp 118] and is thus the ring S itself.

2.

H n (X, O X (-m)) is the cokernel of the map (8.6) d n-1 : k S X 0 ••• Xk •••X n -→ S X 0 •••X n S X 0 •••X n is a free R module with basis X l 0 0 • • • X l n n with each l i ∈ Z[1/p].
The image of d n-1 is the free submodule generated by those basis elements with atleast one l i ≥ 0. Thus H n is the free module with basis as negative monomials

(8.7) {X l 0 0 • • • X l n n } such that l i < 0
The grading is given by l i and there are infinitely many monomials with degree -n-where is something very small and ∈ Z[1/p]. Recall, that in the standard coherent cohomology there is only one such monomial

X -1 0 • • • X -1 n .
For example, in case of P 2 we have X -1 0 X -1 1 X -1 2 but here we also have

X -1/2 0 X -1/2 1 X -2 2 for p = 2.
Recall that in coherent cohomology of P n the dual basis of

X m 0 0 • • • X m n n is given by X -m 0 -1 0 • • • X -m n -1 n
and the operation of multiplication gives pairing. We do not have this pairing here, but we can pair X m 0 0 with X -m 0 0

.

Zero Cohomology

The zero cohomology will be shown by constructing a direct limit functor which is known to be exact, and thus zero cohomology is carried over to zero cohomology in the limit. Recall the construction of R[X

1/p ∞ 0 , . . . , X 1/p ∞ n ]
as a direct limit of the inclusions below

(8.8) R[X 0 , . . . , X n ] ⊂ R[X 1/p 0 , . . . , X 1/p n ] ⊂ • • • R[X 1/p i 0 , . . . , X 1/p i n ] ⊂ • • • ,
the essential idea is to carry zero cohomology groups from each of the rings above to R[X

1/p ∞ 0 , . . . , X 1/p ∞ n
], using the exactness of direct limit.

Lemma

. Let X = Proj R j where R j = R[X 1/p j 0 , . . . , X 1/p j n ] then H i (X, O X (m)) = 0 for 0 < i < n. Proof. The ring R[T 0 , . . . , T n ] is isomorphic to rings R[X 1/p j 0 , . . . , X 1/p j n ] by a change of variabel T i → X 1/p j i
. The Čech complex of Proj R[T 0 , . . . , T n ] yields H i (X, O X (m)) = 0 for 0 < i < n. This Čech complex carries over by isomorphism (change variables) to R j give zero cohomology groups.

Lemma. Let

s R = R[X 1/p s 0 , . . . , X 1/p s n
] and S = lim --→s s R. Consider the localizations (as in Čech complex)

(8.9) s R X i = s R[1/X i ], s R X i X j = s R[1/(X i X j )], . . . . . . , s R X 0 ••• Xi •••X n = s R[1/(X 0 • • • Xi • • • X n )], . . . , s R X 0 •••X n = s R[1/(X 0 • • • X n )]
where Xi denotes left out X i . Then the following equalities hold, (8.10)

S X i = (lim --→ s s R)[1/X i ] = lim --→ s s R[1/X i ], S X i X j = (lim --→ s s R)[1/(X i X j )] = lim --→ s s R[1/(X i X j )] . . . = . . . S X 0 •••X n = (lim --→ s s R)[1/(X 0 • • • X n )] = lim --→ s s R[1/(X 0 • • • X n )].
Proof. The first equality of 8.10 holds by definition of S, the second equality comes from the fact that direct limit commutes with localization.

Theorem. Let

S = R[X 1/p ∞ 0 , . . . , X 1/p ∞ n
] and X = Proj S, then H i (X, O X (m)) = 0 for 0 < i < n.
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Proof. The Čech complex for S is given as

(8.11) n i=0 S X i → 0≤i<j≤n S X i X j → • • • → n i=0 S X 0 ••• Xi •••X n → • • • → S X 0 •••X n Let s R = R[X 1/p s 0 , . . . , X 1/p s n ]
as in lemma 8.6 with associated Čech complex (8.12)

n i=0 s R X i → 0≤i<j≤n s R X i X j → • • • → n i=0 s R X 0 ••• Xi •••X n → • • • → s R X 0 •••X n .
Taking direct limit of 8.12 gives 8.11 as shown in lemma 8.6. But, the cohomology groups associated to s R are zero as given in lemma 8.5. Since, direct limit is an exact functor, the cohomology groups for 0 < i < n associated with 8.11 are zero, proving the result.

Kunneth Formula

We can produce a complex for P n × P m by taking tensor product of the corresponding Čech complex associated with each space, and by the Theorem of Eilenberg-Zilber we get (8.13)

H i (P n × P m , O (a, b)) = i j=0 H j (P n , O (a)) ⊗ H i-j (P m , O (b)) a, b ∈ Z[1/p]
Furthermore, we can define a cup product following [START_REF] Liu | Algebraic Geometry and Arithmetic Curves[END_REF]pp 194] to get a homomorphism 

Derived Functor and Čech Cohomology

Recall the following theorem (see for example, [Vak17, pp 637, 23.5.1 ])

Theorem. If F is a quasicoherent sheaf on a quasicompact separated scheme X, then the Čech cohomology agrees with derived functor cohomology.

Proposition. Let

S = R[X 1/p ∞ 0 , . . . , X 1/p ∞ n
] and X = Proj S and F be the sheaf associated with Čech complex, then the Čech cohomology agrees with derived functor cohomology.

Proof. Using the theorem above it needs to be shown that projective space associated with S is quasicompact, quasicoherent and separated. 

U i × U j = Spec R       X 0 X i 1/p ∞ , . . . , X n X i 1/p ∞ , Y 0 Y j 1/p ∞ , . . . , Y n Y j 1/p ∞       X i X i -1, Y i Y i -1 .
The diagonal morphism corresponds to the map U i ∩ U j → U i × A U j leading to a surjective mapping of rings (8.16)

R       X 0 X i 1/p ∞ , . . . , X n X i 1/p ∞ , Y 0 Y j 1/p ∞ , . . . , Y n Y j 1/p ∞       → R       X 0 X i 1/p ∞ , . . . , X n X i 1/p ∞ , X j X i -1/p ∞       X k X i → X k X i and Y k Y j → X k X i X i X j ,
which implies separatedness.

Perfectoid Algebras

Let K be a perfectoid field and o K be its ring of integers which is p adically complete (as introduced in [Sch12]), and the neighborhood of zero is generated by the prime p. For example,

K = Q p (p 1/p ∞ ) ∧ and o k = Z p [p 1/p ∞ ] ∧ = (∪ i∈N Z p [p 1/p i ]) ∧
where ∧ denotes the p adic completion.

In this section restricted power series K X 1/p ∞ are constructed via direct limit as introduced in this manuscript.

Consider the ring of polynomials with degree Z[1/p] and coefficients in o K (9.1)

o K [X 1/p ∞ ] = lim --→ i o K [X 1/p i ] = i o K [X 1/p i ].
The ring o K [X 1/p ∞ ] can be completed with respect to prime p to obtain the restricted power series ring o K X 1/p ∞ .

The construction of restricted power series is shown in [Bou98b, pp 213, §4.2].

Similarly, the ring o

K [X 1/p ∞ 0 , . . . , X 1/p ∞ n
] can be completed p adically (via inverse limit lim ← --

) to give (9.2) o K X 1/p ∞ 0 , . . . , X 1/p ∞ n := lim ← -- lim --→ i o K [X 1/p i 1 , . . . , X 1/p i n ].
More concretely the ring o K X 1/p ∞ 0 , . . . , X 1/p ∞ n consists of power series whose coefficients converge p adically to zero as given below.

(9.3)

j∈Z[1/p] n ≥0 a i 1 ...i n X i 1 1 • • • X i n n , a j ∈ o K , lim j→∞ a j = 0,
where j is a multi index representing the tuple (i 1 , . . . , i n ). Taking the generic fiber gives the rings

(9.4) K X 1/p ∞ = K ⊗ o K o K X 1/p ∞ = K X 1/p ∞ and K ⊗ o K o K X 1/p ∞ 1 , . . . , X 1/p ∞ n = o K X 1/p ∞ 1 , . . . , X 1/p ∞ n
The above rings are simply rational degree avatars of Tate Algebras.

Ordering the elements

We start by describing the elements of f ∈ K X 1/p ∞ . The elements are power series of the form (9.5)

i a i X i , |a i | → 0 where i ∈ Z[1/p].
The above naturally generalizes to multivariate series, just as in Tate Algebras. It is possible to write down the

elements of K X 1/p ∞ 1 , . . . , X 1/p ∞ n
with a natural order. We now describe an order on f ∈ K X 1/p ∞ . Recall that we can order rational numbers a/b by considering them as a tuple (a, b), we will use the same ordering. The terms of f consist of X a/p b with a ∈ Z >0 and b ∈ Z ≥0 , we arrange the terms by ordering the tuple (a, b) as in rational numbers, or one could simply consider lexicographic order.

Since almost all a i tend to zero after putting an order on i ∈ Z[1/p], power series element in (9.5) can also be written as

(9.6) i∈Z[1/p]
a i X i , with finitely many |a i | ≥ for any given positive real number .

Admissible Rings

In [Gro60, §7.5] or [Bou98b, pp 212-213] the restricted power series are constructed. Let A be a topological ring , linearly topologized, separated and complete; let (I λ ) be a fundamental system of neighborhoods of 0 in

A formed by open ideals, so that A is canonically identified with lim ← --

A/I λ . For all λ, let B λ = (A/I λ )[T 1 , ....T r ],
where the T i are the indeterminates ; it is clear that the B λ form a projective system of discrete rings. We set lim ← --B λ = A{T 1 , . . . T n }, and this topological ring is independent of fundamental system of ideals (I λ ) considered.

More precisely, let A be a sub ring of the ring of formal series A[[T 1 , . . . , T r ]] formed by formal series α c α T α (with α = (α 1 , . . . , α r ) ∈ N r ) such that lim c α = 0; we say that these series are the formal series restricted in the T i , with coefficients in A. In this tract we re-write A = A T 1 , . . . , T r . There is a topological isomorphism between A and lim ← --λ B λ and is shown on [Gro60, §7.5].

The neighborhoods of 0 can be defined explicitly in A . For all neighborhoods V of 0 in A, let V be the set of x = α c α T α ∈ A such that c α ∈ V for all α. The V form a fundamental system of neighborhoods of 0 defining on A a topology of a separated ring.

9.1 Remark. [Gro60, §7.5.4].

1. If A is an admissible, so is A = A T 1 , . . . , T r .

2. Let A be an adic ring, I is an ideal of definition of A such that I/I 2 be of finite type on A/I. If we denote I = IA , A is then a I adic ring and I /I 2 is of finite type on A /I . If in addition A is Noetherian, so is A .

Lemma. Let R be an admissible ring with ideal of definition a, then the ring

A = R X 1/p ∞ 1 , . . . , X 1/p ∞ r is admissible.
Proof. The construction in (1.1) and remark 9.1 gives the admissibility. More precisely (following [Gro60, §7.5]), A is formed by formal series α c α X α (with α = (α 1 , . . . , α r ) ∈ (N[1/p]) r ) such that lim c α = 0; (ordering the monomials by rational degree). The neighborhoods of 0 can be defined explicitly in A. For all neighborhoods V of 0 in R, let V be the set of x = α c α X α ∈ A such that c α ∈ V for all α. The V form a fundamental system of neighborhoods of 0 defining on A a topology of a separated ring.

Another proof can be given by adapting the proof of Proposition 3 from [Bou98b, pp 213] by changing the map φ a n 1 ,...,n r with (n 1 , . . . , n r ) ∈ N[1/p],

(9.7)

φ a n 1 ,...,n r : (A/a)[X 1/p ∞ 1 , . . . , X 1/p ∞ r ] → A/a
which maps every polynomial to the coefficient of

X n 1 1 • • • X n r
r in this polynomial. The inverse limit is formed by a over the neighborhood of zero as in the cited reference.

Remark. Let o K be an admissible ring and define

A = o K X 1/p ∞ 1 , . . . , X 1/p ∞ r
, then A is admissible by the lemma 9.2 and Spf A consists of open prime ideals of A , that is the prime ideals that contain p. Thus there is a canonical isomorphism Spf A Spec A/p. Let f ∈ A, then D(f ) be the set of prime ideals in Spf A that do not contain f . The presheaf is defined as

(9.8) D(f ) → A f -1 = lim ← -- i (A/p i [f -1 ]).
Further details are given on [START_REF] Bosch | Lectures on Formal and Rigid Geometry[END_REF]pp 158].

Weierstraß Theorems

In this section we discuss the analogues of Weierstraß theorems in multivariate complex analysis for perfectoid algebras K X

1/p ∞ 1 , . . . , X 1/p ∞ n
. The Weierstraß theorems were first presented [START_REF] Das | Vector Bundles on Perfectoid Spaces[END_REF], the units and maximum principle, distinguished order and algebraic geometry on perfectoid algebras was first presented in [START_REF] Bedi | Line bundles of Rational Degree on Perfectoid Spaces[END_REF]. The results in this section are a simple adaptation of corresponding results for Tate algebras in [Bos14, Chapter 2].

Gauß Norm and Units

We can define a Gauß norm on the series

(10.1) |f | = max |a i | for f = i a i X i
which satisfies the conditions of a K algebra norm. Let R be the valuation ring and m the maximal ideal where (10.2)

R = {a ∈ K | |a| ≤ 1} m = {a ∈ K | |a| < 1} k = R/m
The reduction map is given as

(10.3) R X 1/p ∞ → k[X 1/p ∞ ] f → f . 10.1 Proposition. K X 1/p ∞ is complete with respect to Gauß Norm.
Proof. This proof is an adaptation of a similar proposition for Tate Algebras as given in [Bos14, Proposition 3,p14].

We start with a Cauchy sequence i f i and end up showing that it lies in K X 1/p ∞ .

(10.4)

lim i→∞ f i = 0 where f i = v c iv X v ∈ K X 1/p ∞ First note that (10.5) |c iv | ≤ |f i | thus lim i→∞ |c iv | = 0 for all v.
Thus, the limit c v = ∞ i=0 c iv exists (note that we are using Gauß norm). To finish the proof we need to show that the series f = v c v X v is strictly convergent and f = i f i . For any given > 0 there is an integer N such that |c iv | < for i ≥ N and all v. Since coefficients of the series f 0 , . . . , f N -1 form a zero sequence, and almost all the coefficients of these sequences would have an absolute value less than . Thus, the elements |c iv | form a zero sequence in K. Since the non Archimedean triangle inequality generalizes for a convergent series to an inequality below (10.6)

∞ i=0 α v ≤ max i=0,...,∞ |α v | we get that power series f = i f i and f ∈ K X 1/p ∞ . 10.2 Corollary. A series f ∈ K X 1/p ∞ with |f | = 1 is a unit iff its reduction f ∈ k × .
Proof. Without loss of generality we can consider only elements with

f ∈ K X 1/p ∞ with Gauß norm 1. If f is a unit in K X 1/p ∞ it is also a unit in R X 1/p ∞ , where (10.7) R = {a ∈ K | |a| ≤ 1} m = {a ∈ K | |a| < 1} k = R/m R X 1/p ∞ → k[X 1/p ∞ ] f → f Thus, f is a unit in k[X 1/p ∞ ] and hence in f ∈ k × . Conversely, if f ∈ k × , the constant term f (0) satisfies |f (0)| = 1 (since f = 0 iff |f | < 1)
. But then we can put f = 1g with |g| < 1, giving us an inverse of f as a series ∞ i=0 g i .

In the above corollary we showed f is of the type f = 1g with |g| < 1. Thus, we can restate the above corollary as below.

Corollary. An arbitrary series

f ∈ K X 1/p ∞ is a unit iff |f -f (0)| < |f (0)|.
In other words the absolute value of other coefficients of f are less than the absolute value of the constant coefficient.

(10.8) K X 1/p ∞ × =        i a i X i ∈ K X 1/p ∞ : |a 0 | > |a i | for all i 0 and i ∈ (Z[1/p] ≥0 ) n       

Weierstraß Division

Let us start by fixing notation and defining distinguished order as in [Bos14, p 15] (10.9)

R n := K X 1/p ∞ 1 , . . . , X 1/p ∞ n
10.4 Remark. The symbol R (reflected R) looks like pra in Devnagri (implying perfectoid). This can be obtained by \DeclareMathOperator{\rr}{\reflectbox{\ensuremath{R}}} in the preamble and using \rr to get R.

Definition

. Let f ∈ R n with f = ∞ v=0 g v X v n ∈ R n-1 X 1/p ∞ n is called X n distinguished of order s ∈ Z[1/p] if the following hold 1. g s is a unit in R n-1 . 2. |g s | = |f | and |g s | > |g v | for v > s.
10.6 Theorem. Let g ∈ R n be X n distinguished of some order s. Then, for any f ∈ R n , there is a unique series q ∈ R n and a unique polynomial

r ∈ R n-1 [X 1/p ∞ n
] of degree r < s satisfying

(10.10) f = qg + r Furthermore, |f | = max(|q||g|, |r|).
Proof. By the Weierstraß division formula, we get an equation (10.11)

X s n = qg + r
where q ∈ R n and there is a polynomial

r ∈ R n-1 [X 1/p ∞ n
] with deg r < s and |r| ≤ 1. We can put φ = X s nr to get φ = qg which satisfies φ = 1 and is X n distinguished for order s. To show that g decomposes as qg, we need to show q is a unit of R n . If we assume that |g| = |q| = 1, we can look at the reduced equation φ = q • ḡ.Since, both φ and ḡ are polynomials of degree s in X n , and since φ is monic, it follows that q ∈ K × . This implies that q ∈ R n is a unit.

To prove uniqueness, we start by defining r = X s nφ and decomposing g = eφ to get (10.12) X s n = e -1 g + r and the uniqueness of Weierstraß division shows us the uniqueness of e -1 and r and, hence of e and φ.

Maximum Principle

In this section we prove the maximum principle for perfectoid following the case of Tate Algebras as given in 

→ k[X 1/p ∞ 1 , . . . , X 1/p ∞ n ] (10.13) R n k[X 1/p ∞ 1 , . . . , X 1/p ∞ n ] R k π eval eval
Let π(f ) = f be the non-trivial polynomial which will not be zero at some x ∈ kn , where k is algebraic closure of k. Consider R as valuation ring of K and k as the residue field. We choose a lifting x of x ∈ B n ( K), we get

f (x) = 1 = |f |.

Direct Limit of Perfectoid Algebras

The proof of Weierstraß preparation theorem does not extend to elements with decreasing degree, for example consider the series with distinguished order one (11.1) X + pX 1/p + p 2 X 1/p 2 + p 3 X 1/p 3 + . . . + p i X 1/p i + . . . .

It is not possible to express this as a unit times a polynomial using the techniques of the proof in [START_REF] Bosch | Lectures on Formal and Rigid Geometry[END_REF]. Thus a new ring is constructed below which explictly avoids elements with decreasing degree.

11.1 Construction. Consider the following rings obtained by attaching X 1/p i j at the i th level.

(11.2)

R 0 = K X 1 , . . . , X n R 1 = K X 1/p 1 , . . . , X 1/p n R 2 = K X 1/p 2 1 , . . . , X 1/p 2 n . . . = . . . R i = K X 1/p i 1 , . . . , X 1/p i n . . . = . . .
The above rings can be ordered by inclusion

(11.3) R 0 ⊂ R 1 ⊂ • • • ⊂ R i ⊂ • • • ⊂ lim --→ i R i = i≥0 R i and let R n = lim --→ i R i .
11.2 Remark. The following are important to note and will be useful later in the manuscript.

1. Notice that the element in (11.1) does not lie in R n since it does not lie in any of the rings K X

1/p i 1 , . . . , X 1/p i n
for any i. Thus, this shows that R n R n . In fact, this gives example of the fact that inverse and direct limit do not commute. More concretely,

(11.4) lim --→ i lim ← --o K [X 1/p i ] = i o K X 1/p i o K X 1/p ∞ = lim ← -- lim --→ i o K [X 1/p i ]
where lim ← --denotes the p adic completion.

2. The rings K X

1/p i 1 , . . . , X 1/p i n
are much easier to deal with since a change of variable X 1/p i j → T j gives the ring K T 1 , . . . , T n (a Tate algebra).

Theorem. [Weierstraß Theorems

] Let g ∈ R n be X n distinguished of order d.
1. For any f ∈ R n , there are a unique series q ∈ R n and a unique polynomial 

r ∈ R n-1 [X n ] such that deg r < d and satisfies f = qg + r, moreover |f | = max(|q| |g| , |r|).

There exists a unique monic polynomial

h ∈ R n-1 [X n ] of degree d such that g = uh, such that u is a unit in R n and |h| = 1 with distinguished order d. Proof. Let f ∈ R n of distinguished

Eka Valuation Ring

Let (R, π, κ) be a discrete valuation ring with maximal ideal generated by π, and κ = R/ π . Following the

construction 1.4 consider the ring R[π 1/p ∞ ] := lim --→i R[π 1/p i ] given below (12.1) R ⊂ R[π 1/p ] ⊂ R[π 1/p 2 ] ⊂ R[π 1/p 3 ] ⊂ • • • ⊂ R[π 1/p i ] ⊂ • • • ⊂ lim --→ i R[π 1/p i ] = i R[π 1/p i ].
The ring R[π 1/p ∞ ] is called eka p valuation ring.

12.1 Definition. Let (R, π, κ) be a discrete valuation ring, then the ring R[π 1/p ∞ ] is called eka p valuation ring.

12.2 Remark. The word 'eka' means one in Hindi. These rings were first introduced in [START_REF] Bedi | Formal Schemes of Rational Degree[END_REF].

12.3 Lemma. The eka p valuation ring R[π 1/p ∞ ] is a direct limit of Noetherian rings.

Proof. This follows from the construction of eka p valuation ring. Each ring R[π 1/p i ] is a discrete valuation ring with uniformizer π, and eka p is obtained as a direct limit of these rings.

12.4 Construction. Let (R, π, κ) be a discrete valuation ring.

1. The ring R[π 1/d ∞ ] is obtained from (12.1) by replacing p with d ∈ Z >0 , such a ring will be called eka d valuation ring.

The ring R[π]

Q := lim --→i R[π 1/2 , . . . , π 1/i ] as given below (12.2) is called eka Q valuation ring. (12.2) R ⊂ R[π 1/2 ] ⊂ R[π 1/2 , π 1/3 ] ⊂ • • • ⊂ R[π 1/2 , • • • , π 1/i ] ⊂ • • • ⊂ lim --→ i R[π 1/2 , . . . , π 1/i ] = i R[π 1/2 , . . . , π 1/i ]
12.5 Example. Consider the DVR (Z p , p, F p ), the following can be constructed 1. The ring eka p given as

Z p [p 1/p ∞ ].
2. The ring eka d given as

Z p [p 1/d ∞ ].
3. The ring eka Q given as Z p [p] Q .

Eka Admissible Rings

The above constructions can be carried out for a completed ring R with ideal of definition generated by .

12.6 Definition. Let R be an admissible ring with ideal of definition generated by , the ring R[ 1/p ∞ ] ∧ completed with respect to ideal will be called completed eka p and denoted by eka p∧ (or simply eka ∧ ).

12.7 Lemma. Let R be an admissible ring with ideal of definition generated by , then the completed eka ∧ is also admissible.

Proof. The ideal of definition is is still generated by in the ring eka ∧ , and by construction the ring eka ∧ is complete. It needs to be shown that it is separated. Since, ring R is admissible ∩ i i = 0 in the ring R. In the ring R[π 1/p ] consider the following inclusion

(12.3) 1/p ⊃ ⊃ 2 ⊃ • • • ⊃ i ⊃ • • • ⊃ ∩ i i = 0,
implying separability. The same conclusion holds for every R[ 1/p i ] for each i ∈ Z >0 , and thus for the ring

R[ 1/p ∞ ] = ∪ i R[ 1/p i ].
Hence, the ring R[ 1/p ∞ ] is separated and thus its completion.

Another proof follows from lemma 9.2 by setting X = in the ring R X 1/p ∞ .

12.8 Remark. 1. Notice that I = , 1/p , 1/p 2 , . . . , 1/p i , . . . is not an ideal of definition since, I 2 = I thus I n does not tend to zero. But the ideal J i = 1/p i is an ideal of definition for every i ∈ Z ≥0 .

2. Recall that the completion is agnostic to the ideal of definition used. Thus, eka ∧ does not depend upon which J i is used for completion.

12.9 Example. Consider the DVR (Z p , p, F p ), the following can be constructed 1. The ring eka p ∧ given as

Z p [p 1/p ∞ ] ∧ .
2. The ring eka d ∧ given as

Z p [p 1/d ∞ ] ∧ . 3. The ring eka ∧ Q given as Z p [p] ∧ Q .
12.10 Lemma. Let R be an eka d ring with uniformizer π, then Frac R = R[1/π]. This is also true for eka d∧ .

Proof. Since, eka d and eka d∧ are valuation rings which are π adically separated hence,

Frac R = R[1/π].

Perfectoid Algebras as Eka rings

In this section the theory of eka p rings is linked to perfectoid algebras to prove coherence.

Let K be a perfectoid field with ring of integers as o K such that o K is p adic completion of an eka p ring, for

example o K = Z p [p 1/p ∞ ] ∧ .
In this case coherence can be obtained in a straightforward manner. Furthermore, the lemma 12.10 ensures that

K = o K [1/p].

Mittag Leffler System

The inverse limit functor lim ← --is not an exact functor, but it becomes an exact functor if it satisfies Mittag Leffler condition. For the case at hand the inverse limit is simply a p adic completion. The following cases satisfy Mittag Leffler and will be used later.

1. Let (f 1 , . . . , f j ) be a finitely generated ideal in the ring o

K X 1/p ∞ 1 , . . . , X 1/p ∞ n
, then this ideal can be approximated as a Mittag Leffler system (13.1) . . . → (f 1 , . . . , f j )

p i → . . . → (f 1 , . . . , f j ) p 2 mod p -------→ (f 1 , . . . , f j ) p . 2. The ring o K X 1/p ∞ 1 , . . . , X 1/p ∞ n is obtained from p adic completion of o K [X 1/p ∞ 1 , . . . , X 1/p ∞ n
] given by the Mittag Leffler system

(13.2) . . . → o K [X 1/p ∞ 1 , . . . , X 1/p ∞ n ] p i → . . . → o K [X 1/p ∞ 1 , . . . , X 1/p ∞ n ] p 2 mod p -------→ o K [X 1/p ∞ 1 , . . . , X 1/p ∞ n ] p .
13.1 Theorem. Let K be a perfectoid field with ring of integers o K such that o K is p adic completion of an eka p ring A with uniformizer p. Then the following rings are coherent.

1. A[X 1/p ∞ 1 , . . . , X 1/p ∞ n
].

14.0.1 Homogeneous elements of degree d and Proj

Let o K [X 1/p ∞ 0 , . . . , X 1/p ∞ n
] d be the space of homogeneous polynomials of degree d in n + 1 variables. This space is infinite dimensional and generated by X

a 0 0 X a 1 1 • • • X a n n with i a i = d and each a i ∈ Z[1/p] ≥0 . Simi- larly, let o K X 1/p ∞ 0 , . . . , X
1/p ∞ n d be the space of homogeneous restricted series of degree d in n + 1 variables.

This space is also infinitely generated with the same basis as

o K [X 1/p ∞ 0 , . . . , X 1/p ∞ n ] d . Furthermore, the rings K[X 1/p ∞ 0 , . . . , X 1/p ∞ n ] d and K X 1/p ∞ 0 , . . . , X 1/p ∞ n d also have the basis generated by X a 0 0 X a 1 1 • • • X a n n with i a i = d
and each a i ∈ Z[1/p] ≥0 , only the coefficients change from o K to K.

14.1 Example. o K [X 1/p ∞ , Y 1/p ∞ ] 1 is infinitely generated by X, Y , X a , Y b such that a + b = 1. The same elements also generate o K X 1/p ∞ , Y 1/p ∞ 1 .
Let ∈ o K be a pseudounifomizer, the following are examples of degree one elements.

(14.1) 1. Then the localizations associated with Čech complex of B are obtained as the following p adic completions

X + Y + 2 X 1/p 2 Y 1-1/p 2 ∈ o K [X 1/p ∞ , Y 1/p ∞ ] 1 ⊂ K[X 1/p ∞ , Y 1/p ∞ ] 1 , X + Y + X 1/p Y 1-1/p + 2 X 1/p 2 Y 1-1/p 2 + . . . + i X 1/p i Y 1-1/p i + . . . ∈ o K X 1/p ∞ , Y 1/p ∞ 1 ⊂ K X 1/p ∞ , Y 1/p ∞ 1 . Let A d = o K X 1/p ∞ 0 , . . . , X 1/p ∞ n d and A = ⊕ d≥0 A d , A + = ⊕ d>0 A d . ( 14 
(14.3) D(X i ) → B 1/X i = lim ← -- s (B/p s [1/X i ]) = lim ← -- s (A/p s [1/X i ]) D(X i X j ) → B 1/(X i X j ) = lim ← -- s (B/p s [1/(X i X j )]) = lim ← -- s (A/p s [1/(X i X j )]) . . . = . . . D(X 0 • • • X n ) → B 1/(X 0 • • • X n ) = lim ← -- s (B/p s [1/(X 0 • • • X n )]) = lim ← -- s (A/p s [1/(X 0 • • • X n )]).
2. Each of the rings B 1/X i , B 1/(X i X j ) , . . . , B 1/(X 0 • • • X n ) is obtained via a Mittag-Leffler system.

3. The Čech complex of B can be obtained from p adic completion of Čech complex of A.

Proof.

1. The first equality follows from the fact that B is admissible as shown in lemma 9.2 and remark 9.3.

The second equality follows from the fact that B is p adic completion of A.

2. The Mittag Leffler system is obtained via the surjective mod p i maps (14.4)

• • • → A p i+1 1 f mod p i --------→ • • • → A p 2 1 f mod p -------→ A p 1 f ,
where f could be any element from the set {X i , X i X j , . . . , X 0 • • • X n }.

3. As shown above each of localizations of B in the Čech complex can be obtained from p adic completion of A. Note that each of product in Čech complex is finite. Therefore, p adic completion of Čech complex of A

gives Čech complex of B.

14.3 Remark. Let us describe the localized rings a bit more concretly. If

B = o K X 1/p ∞ 0 , . . . , X 1/p ∞ n
, then (14.5)

B 1/X i = lim ← -- s o K /p s [(X 0 /X 1 ) 1/p ∞ , . . . , (X n /X i ) 1/p ∞ ] = o K (X 0 /X i ) 1/p ∞ , . . . , (X n /X i ) 1/p ∞ . 14.4 Theorem. Let S = o K X 1/p ∞ 0 , . . . , X 1/p ∞ n and X = Proj S, then H i (X, O X (m)) = 0 for 0 < i < n.
Proof. Setting d = p and R = o K in theorem 8.7 gives zero cohomology groups (0 < i < n) for the Čech complex

of o K [X 1/p ∞ 0 , . . . , X 1/p ∞ n
]. But p adic completion is an exact functor since it satsifies the Mittag-Leffler condition (as given in proposition 14.2 ). Thus, the Čech complex of o K X 1/p ∞ 0 , . . . , X 1/p ∞ n again gives zero cohomology for 0 < i < n.

14.5 Remark. Note that inverse limit is left exact and that is enough for the proof of theorem above. After all the end terms are not being considered (only 0 < i < n). Since, K ⊗ -is right exact, the theorem also carries over to the ring K X 1/p ∞ 0 , . . . , X 1/p ∞ n .

Non Zero Cohomology

The proof carries over from theorem 8.4. The Proj construction for perfectoid Tate algebras is given in section 14.0.1.

Theorem. Let

S = o K X 1/p ∞ 0 , . . . , X 1/p ∞ n and X = Proj S, then for any n ∈ Z[1/p] 1. There is an isomorphism S ⊕ n∈∆ H 0 (X, O X (n)). 2. H n (X, O X (-n -1)
) is a free module of infinite rank.

Proof.

1. Take the standard cover by affine sets U = {U i } i where each U i = D(X i ), i = 0, . . . , n. The global sections are given as the kernel of the following map (14.6)

S X i 0 -→ S X i 0 X i 1
The element mapping to the Kernel has to lie in all the intersections S = ∩ i S X i , as given on [START_REF] Hartshorne | Algebraic Geometry[END_REF]pp 118] and is thus the ring S itself. Note that (14.7)

S X i = o K (X 0 /X i ) 1/p ∞ , . . . , (X n /X i ) 1/p ∞
as shown in remark 14.3.

2. H n (X, O X (-m)) is the cokernel of the map (14.8)

d n-1 : k S X 0 ••• Xk •••X n -→ S X 0 •••X n S X 0 •••X n is a free R module with basis X l 0 0 • • • X l n n with each l i ∈ Z[1/p].
The image of d n-1 is the free submodule generated by those basis elements with atleast one l i ≥ 0. Thus H n is the free module with basis as negative monomials (14.9)

{X l 0 0 • • • X l n n } such that l i < 0
The grading is given by l i and there are infinitely many monomials with degree -n-where is something very small and ∈ Z[1/p]. Recall, that in the standard coherent cohomology there is only one such monomial

X -1 0 • • • X -1 n .
14.7 Remark. The proof of above theorem carries word for word to the ring K X

1/p ∞ 0 , . . . , X 1/p ∞ n .

Tilting

In this section an equivalence between categories of char 0 and char p is constructed using a simple modulo p mapping. This is an analogue of Scholze's tilting functor but is a competely different approach.

Let us start with a motivating example below, where the maps are given as evaluation maps (X → n ∈ Z) and

t → F 2 (15.1) X Z[X] F 2 [X] X n Z F 2 t mod 2 mod 2
There are infinitely many arrows X → n ∈ Z which get mapped to two arrows X → t ∈ F 2 . This can be fixed by attaching pth roots of X and considering compatible maps.

(15.2)

X Z[X 1/p ∞ ] F 2 [X 1/p ∞ ] X n Z F 2 t mod 2 mod 2
Now X can only mapto n = {0, 1} = t, since {0, 1} are the only elements which have all pth roots in Z. Thus, there is one to one correspondence between arrows on the left side (char 0) and arrows on the right (char 2). The objective is to have a compatibility for all p which can be done by constructing a neighborhood of p.

Preserving Injection

Let Mor( ) be given by evaluation maps X → (•) and a modulo p mapping given as

(15.3) Mor(Z p [X], Z p [X]) mod p -------→ Mor(F p [X], F p [X]) X → 0 and X → p mod p -------→ X → 0
The modulo p map is not one to one and the problem arises from the fact that X → 0 and

X → p i , i ∈ Z >0 will mapto X → 0 in Mor(F p [X], F p [X]
). In other words the Ker mod p is non empty. This problem can be averted by attaching pth power roots and considering compatible morphisms.

Compatible Morphisms

A compatible morphism is a well defined homomorphism given by an evaluation map which is compatible with pth power roots.

For example, consider Mor

(Z p [X 1/p ∞ ], Z p [X 1/p ∞ ])
given by compatible evaluation maps, that is X → t is equivalent to the following map (15.4) (X, X 1/p , X 1/p 2 , . . . , X 1/p i , . . .) → (t, t 1/p , t 1/p 2 , . . . , t 1/p i , . . .).

In particular,

X → p in Mor(Z p [X 1/p ∞ ], Z p [X 1/p ∞ ]) since p 1/p i Z p [X 1/p ∞ ]
and thus there cannot be a compatible tuple of the form (p, p 1/p , p 1/p 2 , . . .). Similarly X → p j , j ∈ Z >0 , since for i big enough

p j/p i Z p [X 1/p ∞ ].
Hence, the following map is an injection

(15.5) Mor(Z p [X 1/p ∞ ], Z p [X 1/p ∞ ]) mod p -------→ Mor(F p [X 1/p ∞ ], F p [X 1/p ∞ ]) X → 0 mod p -------→ X → 0,
since the kernel just consists of zero.

Although the injectivity problem is fixed, there are more maps in Mor

(F p [X 1/p ∞ ], F p [X 1/p ∞ ]) and they do not lift to Mor(Z p [X 1/p ∞ ], Z p [X 1/p ∞ ]), but to formal schemes, that is Mor(Z p X 1/p ∞ , Z p X 1/p ∞ ).
This problem is solved in rest of the section.

15.1 Construction Definition. Consider the polynomial algebra Z p [X 0 , . . . , X n ] attach all the pth roots of p and the intedeterminates X i , the resulting ring is called Z p eka p polynomial algebra, and reduction mod p is denoted as F p eka p polynomial algebra.

Example.

The following examples illustrate the construction and definition above.

Z p Algebra Z p eka p Algebra F p eka p Algebra Z p [X] Z p [p 1/p ∞ , X 1/p ∞ ] F p [p 1/p ∞ , X 1/p ∞ ] Z p [X, Y ] Z p [p 1/p ∞ , X 1/p ∞ , Y 1/p ∞ ] F p [p 1/p ∞ , X 1/p ∞ , Y 1/p ∞ ]
15.3 Notation. Let A denote the category with objects as Z p eka p algebra and morphisms as compatible evaluation maps as given in example above. Let B denote the category obtained from A by application of modulo p map.

Hence, B has objects as F p eka p polynomial algebra and morphisms as compatible evaluation maps.

Proposition.

Let A be the category of Z p eka p polynomial algebras and the morphisms are compatible evaluation maps, and B be the category of F p eka p polynomial algebras and the morphisms are compatible evaluation maps. Let F : A → B be a functor modulo p, then F is essentially surjective and faithful.

Proof. essential surjectivity The objects of category B are obtained from A by construction (see 15.3 ).

injectivity/ faithful

The kernel of modulo p map consists of the set S = 0 ∪ i p i , i ∈ Z >0 . Thus for an evaluation morphism to lie in the kernel the mapping has to be an indeterminate mapping to p i , say X → p i which would imply X 1/p j → p i/p j , but p i/p j S for j big enough. Thus, the kernel does not contain any of the mappings X → p i and the only map in the kernel is X → 0 proving injectivity.

Tilting Equivalence

15.5 Notation. Let C be the category with objects as p adically completed Z p eka p polynomial algebras (also denoted as Z p eka ∧ ) and morphisms as compatible evaluation maps and B be the category of F p eka p algebras with morphisms as compatible evaluation maps.

15.6 Lemma. Let B, C be categories as above, and F : C → B be a functor mod p. Then F is essentially surjective and faithful.

Proof. The p adic completion of Z p eka p polynomial algebras gives rise to power series with elements of the form (15.6)

I∈Z[1/p] n >0 a I ξ I such that ∀n ≥ 0, ∀ almost I, v p (a I ) > n,
where ξ represents {X 0 , . . . , X n }. In words the above equation means except for a finitely many a I , all other a I have high p adic valuation (or converge p adically). Hence, C mod p gives the objects of category B proving essential surjectivity. The faithfullness follows the exact same reasoning as in proposition 15.4.

15.7 Proposition. The compatible homomorphism in Mor(B) given as

(15.7) (X, X 1/p , X 1/p 2 . . .) → (a 0 + b 0 , a 1/p 0 + b 1/p 0 , a 1/p 2 0 + b 1/p 2 0 , . . .) = (a 0 + b 0 , a 1 + b 1 , a 2 + b 2 , . . .)
where (a 0 , a 1 , . . . , a i , . 

(15.8) (X, X 1/p , X 1/p 2 . . .) → (T , T 1/p , T 1/p 2 , . . .),
where T is

(15.9) T = lim n→∞ (a 1/p n 0 + b 1/p n 0 ) p n = lim n→∞ (a n + b n ) p n .
Proof. There are two things to show here. First, that T ∈ Ob C and secondly, it has pth roots. Assuming that T exists in category C its pth roots are given as (15.10) The last inequality follows from the fact that u, v ∈ Ob C hence their p adic valuation is ≤ 1. The above follows from the following observation.

T = lim n→∞ (a 1/p n 0 + b 1/p n 0 ) p n T 1/p = lim n→∞ (a 1/p n+1 0 + b 1/p n+1 0 ) p n = lim n→∞ (a 1/p n 0 + b 1/p n 0 ) p n-1 . . . = . . . T 1/p i = lim n→∞ (a 1/p n+i 0 + b 1/p n+i 0 ) p n = lim
(15.14)

p m i = p m i p m -1 i -1 or v p p m i ≥ v p p m i = m -v p (i).
The inequality above follows from the fact that p m -1 i-1 is an integer and thus its p adic valuation is always positive.

This gives, (15.15) v p p m i • p i-m ≥ mv p (i) + im = iv p (i) ≥ 0.

The last inequality follows from the fact that p i ≥ i.

15.8 Theorem. Let B, C be categories as defined in this section, and F : C → B be a functor mod p, then F gives an equivalence of categories.

Proof. The essential surjectivity and faithfullness comes from Lemma 15.6 and fullness comes from proposition 15.7.

Avoiding Nilpotents

Inverting p in Z p [p 1/p ∞ ] ∧ gives rise to a field, say

Q p (p 1/p ∞ ) = Z p [p 1/p ∞ ] ∧ [1/p], but p is nilpotent in Fp[p 1/p ∞ ],
and thus it cannot be inverted to obtain a field. In this section it is shown that one can replace the ring F p [p 

F p [[s 1/p ∞ ]] ∧ X 1/p ∞ , Y 1/p ∞ , Z 1/p ∞ ∈ Ob D
injectivity/faithful The functor modulo s has the kernel generated by ∪ i>0 {s i } and X → s j , j ∈ Z >0 cannot lie in the Kernel for a compatible evaluation homomorphism, by exactly the same reasoning as in proposition 15.4. This gives faithfullness.

surjective/full The objects of B are given as F p [p 1/p ∞ ] polynomial algebras with atleast one X i having all the pth power roots. The morphisms are compatible evaluation maps given by mapping (X 0 , . . . , X n ) to suitable elements. This mapping can be lifted as such to the category D by replacing p with s. For example (15.20)

F p [p 1/p ∞ ][X 1/p ∞ , Y 1/p ∞ ] → F p [p 1/p ∞ ][Y 1/p ∞ , Z 1/p ∞ ], (X, Y ) → (p 1/p ∞ , Y ) ∈ Mor(B) F p [[s 1/p ∞ ]] ∧ X 1/p ∞ , Y 1/p ∞ → F p [[s 1/p ∞ ]] ∧ Y 1/p ∞ , Z 1/p ∞ , (X, Y ) → (p 1/p ∞ , Y ) ∈ Mor(D)
Putting all the results in this section together gives the following theorem In place of (X -1) we can also use a factor X n -1 where n ∈ Z[1/p] and work with constant term d -n .

  localization M f has a Z[1/p] grading where homogeneous elements of degree d ∈ Z[1/p] are of the form m/f n where m ∈ M, f ∈ A are homogeneous and d = deg mn deg f . The degree zero elements are denoted as

  The denotes the localization on the affine open. Thus, on D + (f ) an affine open subset

1/p i 0 →

 0 2) and are thus infinitely many.8.2 Slogan. The rings R[X1/p i 0 , . . . , X 1/p i n ] can be identified with R[T 0 , . . . , T n ] by a change of variable X T i , thus these rings are essentially the same, that is avatars of each other. Hence, the Čech complex of the ring R[T 0 , . . . , T n ] can be transferred to the rings R[X 1/p i 0 , . . . , X 1/p i n ] by a simple change of variable. In particular, the zero Cohomology groups will still be zero. But, the non zero Cohomology groups will have to reinterpreted by the change of variable as shown in example below.

( 8

 8 .14) : H p (P n , O (a)) × H q (P m , O (b)) → H p+q (P n × P m , O (a, b)) a, b ∈ Z[1/p]

quasicompact:

  The projective space is covered by affine opens, and each affine open is quasicompact, since Spec of a ring is always quasicompact. quasicoherence : The localization definition of quasicoherence is satisfied. At each affine open U i := {X i 0} the sheaf F (U i ) is obtained via localization at X i . Furthermore, coherence can be shown under assumptions on the base ring R, see theorem 13.1. separated : This follows from Proposition 3.6 [Liu02, pp 100] or a direct proof in Proposition 10.1.5 [Vak17, pp 281]. The open sets U i × U j ⊂ P n × P n are of the form (8.15)

[ Bos14 ,

 Bos14 Proposition 5,p 15]. 10.7 Proposition. Let f ∈ R n . Then |f (x)| ≤ |f | for all points x in the unit ball B n ( K), and there is a point in the unit ball such that the maximum is obtained, that is |f (x)| = |f |. Proof. The first claim follows from the definition of | |. For the second assertion assume that |f | = 1 and consider the projection map π given as π : R n

  degree d, then it has to lie in some ring k X element of Tate algebra k T 1 , . . . , T n by a change of variable. The Weierstraß theorems for Tate algebras are known. 1. Follows from [Bos14, p 17, Theorem 8]. 2. Follows from [Bos14, p 18, Corollary 9].

  .2) Proj A = {Set of homogeneous prime ideals of A that do not contain A + } 14.0.2 Zero Cohomology 14.2 Proposition. Let o K be an admissible ring, A= o K [X 1/p ∞ 0 , . . . , X 1/p ∞ n ], B = o K X 1/p ∞ 0 , . . . , X 1/p ∞ n and D(•)denote open sets of B.

  . .) and (b 0 , b 1 , . . . , b i , . . .) are pth root compatible tuples in an object of B, that is a p i = a i-1 and b p i = b i-1 ; lifts to a compatible morphism in C given as

  where last column is a simple change of variables. The rest of the proof is about existence of T ∈ Ob C.The binomial expansion of (a1/p n 0 + b 1/p n 0) p n is an object of category A. It needs to be shown that as n → ∞ in the limit it is an Ob C, that is it converges p adically. Let c n = (a1/p n 0 + b 1/p n 0 ) p n = (a n + b n ) p n ,in order to show that lim n→∞ c n converges p adically, it needs to be shown that |c m+1c m | ≤ |p m |. This can be rewritten as (15.11)|c m+1c m | = (a m+1 + b m+1 ) p m+1 -(a m + b m ) p m = (a m+1 + b m+1 ) p m+1 -m ≤ |p m | .Consider the binomial expansion of (a + b) p m+1 in C with a, b ∈ Ob B, then (a + b) p m+1 = (a p + b p + pu) p m for some u ∈ Ob C and letting v = a p + b p gives (15.12) (a + b) p m+1 -(a p + b p ) p m = (v + pu) p m -

15. 11 Figure 1 : 1 --→ 0 (

 11110 Figure 1: Restriction Maps: Sets restricted to their boundary

  1/p ∞ ] with F p [[s 1/p ∞ ]] ∧ .15.9 Construction Definition. Consider the s adic completion ofF p [s 1/p ∞ ] denoted by R := F p [[s 1/p ∞ ]] ∧ , then The s adic completion of F p [[s 1/p ∞ ]] ∧ [X I such that ∀n ≥ 0, ∀ almost I, v s (a I ) > n,where ξ represents {X 0 , . . . , X n }. In words the above equation means except for a finitely many a I , all other a I have high s adic valuation (or converge s adically). Hence, mod s gives finite number of terms or the power series becomes polynomials. The power series ring is denoted byF p [[s 1/p ∞ ]] ∧ X F p [[s 1/p ∞ ]] ∧ X 0 , . . . , XLet D denote the category with objects as s adic completion of eka p polynomial algebras, with morphisms as compatible homomorphisms. More informally, take any object of B and replaceF p [p 1/p ∞ ] with F p [[s 1/d ∞]] ∧ and the square brackets with angular brackets. For example

	elements of the form		1/p ∞ 0	, . . . , X n 1/p ∞	] polynomial algebras gives rise to power series with
	(15.17)	I∈Z[1/p] n >0	a I ξ 1/p ∞ 0	, . . . , X n 1/p ∞	.
	(15.18)			s	1/p ∞ i	, . . . , X n	F p [s 1/p ∞ ][X 0 , . . . , X i 1/p ∞ s = F p [p 1/p ∞ = ][X 0 , . . . , X 1/p ∞ i	, . . . , X n ] , . . . , X n ].
	(15.19)	Ob B F p [p 1/p ∞	][X 1/p ∞	, Y 1/p ∞	, Z 1/p ∞	] ←→ 1:1
	the following holds							
	(15.16)	F p [[s 1/p ∞ ]] ∧ s	=	F p [s 1/p ∞ ] s	=	F p [p 1/p ∞ ] p	= F p [p 1/p ∞	].

15.10 Proposition. Let F : D → B be a functor given as mod s, then it is an equivalence of categories.

Proof. essential surjectivity From (15.18) it is clear that objects of B can be obtained from objects of D by application of modulo s.

Proof. Let A be the eka p ring, that is A := i≥0 A i where each A i = A 0 [p 1/p i ] with A 0 a discrete valuation ring with uniformizer p. Thus, A is a direct limit as shown in lemma 12.3 with each A i Noetherian.

1. Let (f 1 , . . . , f j ) be a finitely generated ideal in the ring A[X

], thus it will lie in some ring

for large enough i, a Noetherian ring. Thus, there is a finite presentation of the form

Applying the direct limit to (13.3) and noticing that direct limit commutes with direct sum gives the following (13.4)

, it can then be p adically approximated as shown in section 13.1. Complete (13.4) p adically, that is apply inverse limit and notice that (a) inverse limit commutes with direct sum, (b) the inverse limit is exact since it satisfies Mittag Leffler condition as shown in section 13.1, (c) the p adic completion of A is o K by assumption.

Thus, the result is obtained.

(13.5)

3. Let (f 1 , . . . , f j ) be a finitely generated ideal in the ring o

, the applying the functor K ⊗ o Kto (13.5) gives the following

It needs to be shown that every finitely generated ideal in the ring in the ring K X

. This is true for every f i in the ideal as shown by the following lemma 13.2.

Lemma

Proof. Recall that infinitely many terms of f converge to zero p adically, hence, f mod p is a polynomial (as shown in (10.7) ) with coefficients in K. The denominators can now be cleared by mutiplication with a scalar. Note that mod p ensures that there are no denominators hanging in tail, since
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Define perfectoid Tate curve as T := G m,K / q with 0 < |q| < 1, and q is the subgroup of K × generated by q.

This is precisely the same as the definition in [START_REF] Fresnel | Rigid Analytic Geometry and Its Applications[END_REF]pp 121]. It is possible to define the above as T := G m,K / q with fractional powers for q, that is modulo out with subgroup generated by q Z[1/p] , but this will give us a different model. In the standard model [Bos14, pp 220] the gluing is induced via multiplication by q, if we go by the fractional power case we will have to consider gluing induced by multiplication by the vector (q, q 1/p , q 1/p 2 , . . . , q 1/p i , . . .), and define admissible sets according to each q 1/p i . In order to simplify the situation we want to keep the same admissible sets as the standard Tate Curve but put a different sheaf on it.

Let B(r 1 , r 2 ) denote an annulus with inner radius r 1 and outer radius r 2 , that is

] the ring corresponding B(r 1 , r 2 ) is K X/r 2 , r 1 /X . We can replace B(r 1 , r 2 ) with B(r

2 ) with corresponding ring as K (X/r 2 ) 1/p , (r 1 /X) 1/p , and use direct image sheaf to transfer the ring K (X/r 2 ) 1/p , (r 1 /X) 1/p to the disk B(r 1 , r 2 ). Notice the inverse system below which is analogous to one given at [START_REF] Lütkebohmert | Rigid Geometry of Curves and Their Jacobians[END_REF]pp16].

(16.1)

which gives us a direct system (all maps are inclusion)

Thus, we can construct inverse and direct limit of the systems above and call them perfectoid versions denoting them by B ∞ and the corresponding ring as K (X/r 2 ) 1/p ∞ , (r 1 /X) 1/p ∞ .

We will not worry much about limits, instead we directly associate the ring K X/r 2 , r 1 /X ∞ to the disk B(r 1 , r 2 ). We will follow chapter 5 of [START_REF] Fresnel | Rigid Analytic Geometry and Its Applications[END_REF] and define the open sets as U 0 = B(q, q -1 ), U 1 = B(q 2 , q), U 0,1,+ = B(q, q), U 0,1,-= B(q 2 , q 2 ), U 0+ = B(q -1 , q -1 ).

The corresponding rings are given below (with coefficients tending to zero as n → ∞). Notice that we are closely following [FvdP12, pp 122] replacing z with X and π with q, and explicitly writing the constants (and of course

e n X q n with lim e n = 0

Gluing the Sets

The inner boundary of U 0 is U 0,1+ and outer boundary is U 0+ , and the outer boundary of U 1 is U 0,1+ and inner boundary is U 0,1,-. We can identify U 0,1,-= B(q 2 , q 2 ) to U 0+ = B(q -1 , q -1 ) by multiplying with 1/q 3 . In terms of ring map O (U 0+ ) → O (U 0,1,-) the mapping is X → X/q 3 ( or qX → X/q 2 ).

(16.4) B(q 2 , q 2 ) = U 0,1,- 1/q 3 ----→ U 0+ = B(q -1 , q -1 )

The above gluing is necessary for identification of rings in the Čech complex.