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Non-hermitian Hamiltonian description for quantum plasmonics: from dissipative dressed atom picture to Fano states

We derive effective Hamiltonians for a single dipolar emitter coupled to a metal nanoparticle (MNP) with particular attention devoted to the role of losses. For small particles sizes, absorption dominates and a non hermitian effective Hamiltonian describes the dynamics of the hybrid emitter-MNP nanosource. We discuss the coupled system dynamics in the weak and strong coupling regimes offering a simple understanding of the energy exchange, including radiative and non radiative processes. We define the plasmon Purcell factors for each mode. For large particle sizes, radiative leakages can significantly perturbate the coupling process. We propose an effective Fano Hamiltonian including plasmon leakages and discuss the link with the quasinormal mode description. We also propose Lindblad equations for each situation and introduce a collective dissipator for describing the Fano behaviour.

Introduction

Cavity quantum electrodynamics (cQED) takes benefit from the long duration of the light-matter interaction in optical microcavities. This has opened the door to important applications including low threshold laser [START_REF] Nomura | Ultra-low threshold photonic crystal nanocavity laser[END_REF], supercontinuum laser [START_REF] Grelu | Nonlinear Optical Cavity Dynamics[END_REF] or indistinguishable single photon sources [START_REF] Laurent | Indistinguishable single photons from a single quantum-dot in a twodimensional photonic crystal cavity[END_REF]. In the strong coupling regime, the Jaynes-Cummings ladder anharmonicity can lead to photon blockade [START_REF] Faraon | Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade[END_REF] and the coherence of the hybrid polariton states permits the realization of low power laser [START_REF] Savvidis | A practical polariton laser[END_REF]. Optical microcavities present extremely high quality factors but at the price of diffraction limited sizes, limiting integration capabilities. It is therefore of strong interest to transpose cQED to nanophotonics and plasmonics [START_REF] Yannopapas | Plasmon-induced enhancement of quantum interference near metallic nanostructures[END_REF][START_REF] Cuche | deterministic" quantum plasmonics[END_REF][START_REF] Agio | Optical antennas as nanoscale resonators[END_REF][START_REF] Tame | Quantum plasmonics[END_REF][START_REF] Lodahl | Interfacing single photons with single quantum dots with photonic nanostructures[END_REF][START_REF] Colas Des Francs | Plasmonic purcell factor and coupling efficiency to surface plasmons. implications for addressing and controlling optical nanosources[END_REF][START_REF] Marquier | Revisiting quantum optics with surface plasmons and plasmonics resonators[END_REF][START_REF] Vasa | Strong light-matter interaction in quantum emitter/metal hybrid nanostructures[END_REF]. Particular attention has been devoted to the strong coupling regime [START_REF] Trügler | Strong coupling between a metallic nanoparticle and a single molecule[END_REF][START_REF] Aberra-Guebrou | Coherent emission from a disordered organic semiconductor induced by strong coupling with surface plasmons[END_REF][START_REF] Delga | Quantum emitters near a metal nanoparticle: Strong coupling and quenching[END_REF][START_REF] Zengin | Realizing strong lightmatter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions[END_REF][START_REF] Kewes | Heuristic modeling of strong coupling in plasmonic resonators[END_REF] since it offers the possibility of the control of the dynamics of the light emission, as e.g. photon blockade [START_REF] Smolyaninov | Single-photon tunneling via localized surface plasmons[END_REF][START_REF] Alpeggiani | Visible quantum plasmonics from metallic nanodimers[END_REF] or coherent control [START_REF] Dzsotjan | Quantum emitters coupled to surface plasmons of a nanowire: A green's function approach[END_REF][START_REF] Rousseaux | Adiabatic passage mediated by plasmons: A route towards a decoherence-free quantum plasmonic platform[END_REF][START_REF] Saez-Blazquez | Enhancing photon correlations through plasmonic strong coupling[END_REF]. Moreover, quadrupolar forbidden atomic transitions can occur in plasmonic cavities thanks to the strong plasmon field gradient [START_REF] Kern | Strong enhancement of forbidden atomic transitions using plasmonic nanostructures[END_REF][START_REF] Cuartero-Gonzalez | Light-forbidden transitions in plasmonemitter interactions beyond the weak coupling regime[END_REF]. In addition, in the weak coupling regime, the acceleration of single photon source cadency by coupling to plasmons opens the doors to high operation speed quantum functionnalities beyond the limited bandwidth (high Q) of optical microcavities systems [START_REF] Tame | Quantum plasmonics[END_REF][START_REF] Schietinger | Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature[END_REF][START_REF] Marty | Photon antibunching in the optical near-field[END_REF][START_REF] Singh | Nanoscale mapping and control of antenna-coupling strength for bright single photon sources[END_REF].

Quantum plasmonic systems behave like open quantum systems because of strong losses originating from absorption into the metal or from radiation leakages to the farfield. The dynamics of open quantum systems can be described considering either a master equation or a non-hermitian effective Hamiltonian. Generally, the master equation is derived from an hermitian Hamiltonian by tracing out the baths into which the energy is lost. An non-hermitian effective Hamiltonian can also be derived describing the full dynamics of the same open system except the ground state of the system. More precisely, the non hermitian Hamiltonian lacks the feeding term (e.g. laser pump) appearing in the master equation but is fully equivalent when no pumping occurs [START_REF] Visser | Solution of quantum master equations in terms of a non-hermitian hamiltonian[END_REF]. Compared to the master equation approach, the use of a non hermitian Hamiltonians strongly reduces the required numerical ressources when the number of atomic and plasmonic states increase. In addition, it is worthwhile to note that it is difficult to separate the plasmon contribution from the absorption and radiation baths so that deriving a master equation can be delicate. However, a master equation can be inferred from the non hermitian effective Hamiltonian on the basis of its similarity with other open quantum systems. Therefore, we investigate in detail the properties of the non-hermitian effective Hamiltonian we recently derived for localized surface plasmons (LSPs) [START_REF] Rousseaux | Adiabatic passage mediated by plasmons: A route towards a decoherence-free quantum plasmonic platform[END_REF][START_REF] Dzsotjan | Modeselective quantization and multimodal effective models for spherically layered systems[END_REF]. We specifically discuss the role of losses in the effective Hamiltonian construction, leading to non-hermitian behaviours. LSPs constitute a benchmarch for investigating non-hermitian behaviours by an analytical description and by experimental direct characterization of their response. For instance, self-hybridization of LSPs of different orders due to non-hermiticity has been recently demonstrated [START_REF] Lourenco-Martins | Self-hybridization within non-hermitian localized plasmonic systems[END_REF]. In the following, we investigate the dynamics of hybrid nanosources on the basis of the eigenmodes of the non-hermitian Hamiltonian and discuss the link with quasi-normal modes (QNM) approaches [START_REF] Sauvan | Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators[END_REF][START_REF] Zambrana-Puyalto | Purcell factor of spherical mie resonators[END_REF][START_REF] Lalanne | Light interaction with photonic and plasmonic resonances[END_REF].

In section 2, we recall the main steps leading to the definition of an effective Hamiltonian. We identify the coupling strength and illustrate the procedure considering a quantum emitter coupled to a silver nanoparticle. We demonstrate that the hybrid nanosource optical response can be described in full analogy with a cQED representation where dissipative localized surface plasmons (LSP) play a role analogous to leaky cavity modes. The strong and weak coupling regimes are discussed in section 3 and 4, respectively. We finally investigate in section 5 the impact of LSP leakage on the effective Hamiltonian structure, notably by introducing Fano states that originates from coupling the LSP discrete states to the free-space continuum. For this purpose, we start from a bath model inferred from the effective Hamiltonian derived in §2 and discuss the role of the leakages in this model.

LSP field quantization and effective model

We represent in Fig. 1 the hybrid system that consists of a dipolar emitter close to a metal nanoparticle (MNP). The dielectric constant of the background medium is ε b . The dipolar quantum emitter is a two-level system (TLS) with ground and excited states |g and |e of energy ω g and ω e , respectively. The dipole moment of the optical transition is denoted by d eg . The decay rate of the excited state is denoted by γ 0 = γ rad 0 + γ N R 0 , including the radiative and intrinsic non radiative contributions. γ rad 0 is the radiative contribution in the homogeneous medium of optical index

n b = √ ε b γ rad 0 = n b d 2 eg ω 3 0 3πǫ 0 c 3 (1)
and we define the intrinsic quantum yield η = γ rad 0 /γ 0 . The MNP is characterized by the dielectric constant ε m (ω) = ε R (ω) + iε I (ω) that can be extracted from tabulated data or modelled with a Drude model. Without loss of generality, we assume a Drude-like behavior

ε m (ω) = ε ∞ -ω 2 p /(ω 2 + iΓ p ω) with ε ∞ = 6
, ω p = 7.90 eV and Γ p = 51 meV for silver. The Hamiltonian of the coupled system reads

Ĥ = ω 0 σee -i γ 0 2 σee + dr +∞ 0 dω ω f † ω (r) • fω (r) -σeg +∞ 0 dω d eg • Ê+ ω (r d ) + H.c. . (2) 
ω 0 = ω e -ω g is the transition angular frequency and we introduce the excited state population and raising operators of the emitter σee = |e e| and σeg = |e g|, respectively. In equation [START_REF] Grelu | Nonlinear Optical Cavity Dynamics[END_REF], the first term refers to the TLS energy and we have phenomelogically introduced the decay rate γ 0 of the excited state. The third term describes the total energy of the electromagnetic field where f † (r) [ f (r)] is the polaritonic vector field operator at the position r associated to the creation (annihilation) of a quantum in the presence of the MNP. The last term describes the emitter-field interaction under the rotating-wave approximation.

The electromagnetic field must be quantized by taking into account the dispersing and absorbing nature of the metal [START_REF] Knöll | Coherence and Statistics of Photons and Atoms[END_REF][START_REF] Drezet | Dual-lagrangian description adapted to quantum optics in dispersive and dissipative dielectric media[END_REF][START_REF] Drezet | Quantizing polaritons in inhomogeneous dissipative systems[END_REF]. Within the Langevin type model of ref. [START_REF] Knöll | Coherence and Statistics of Photons and Atoms[END_REF], the electric field operator can be written as

Ê+ ω (r) = i πǫ 0 k 2 0 dr ′ ε ′′ ω (r ′ )G ω (r, r ′ ) fω (r ′ ), (3) 
where k 0 = ω/c is the wavenumber and G(r, r ′ ) is the Green tensor associated to the electric field response at position r from an excitation localized at r ′ in the medium. This expressions fails in describing the electric field operator in free-space (for which ε ′′ = 0). Recent works discuss a general definition of the electric field operator including the free-space contribution [START_REF] Dorier | Canonical quantization for quantum plasmonics with finite nanostructures[END_REF].

In the following, we investigate the optical response of the emitter-MNP coupled system. The wave function of the hybrid system can be written at time t as

|ψ(t) = C e (t)e -iω 0 t |e, ∅ + dr ∞ 0 dω e -iωt C ω (r, t) • |g, 1 ω (r) , (4) 
where |e, ∅ refers to the emitter in its excited state and no LSP mode excited whereas |g, 1 ω (r) refers to the emitter in its ground state and a single excited polariton of energy ω. The elementary excitation at position r is defined through the action of the bosonic vector field operator on the vacuum state f † ω (r)|∅ = |1 ω (r) . Up to know, we consider a continuous description for polaritons. However, the dynamics of the coupled system deserve attention regarding the excitation of LSP modes of the MNP. The Green tensor G governs this dynamics and contains all the modal informations of the MNP in terms of the Mie expansion

Ê+ ω (r) = ∞ n=1 Ê+ ω,n (r) , (5) 
Ê+ ω,n (r) = i πǫ 0 k 2 0 dr ′ ε ′′ ω (r ′ )G ω,n (r, r ′ ) fω (r ′ ) G ω (r, r ′ ) = ∞ n=1 G ω,n (r, r ′ ) ,
where G n refers to the contribution of the n th plasmon LSP n (dipolar plasmon for n = 1, quadrupolar plasmon for n = 2, etc.) so that Êω,n is the electric field operator associated to the LSP n mode. This leads us to define the bosonic creation operator for a given position of the emitter, satisfying the commutation relation

[â ω ′ ,n ′ (r d ), â † ω,n (r d )] = δ(ω -ω ′ )δ n,n ′ [22, 30] âω,n (r d ) = 1 i κ ω,n (r d ) d eg • Ê+ ω,n (r d ) , (6) 
|κ ω,n (r d )| 2 = k 2 0 πǫ 0 Im d eg • G ω,n (r d , r d ) • d ⋆ eg ( 7 
)
Figure 2. Coupling constant spectra for the six first LSP n modes calculated using Eq. ( 7). The emitter is located 2nm from the silver MNP. The lorentzian fits follow eq. ( 9).

The excitation at the frequency ω of a single plasmon of order n is |1 ω,n (r d ) = â † ω,n (r d )|∅ . Moreover κ ω,n is the emitter-LSP n coupling which is the key parameter to build the effective model. Truncating the modal decomposition to the number N of modes involved in the coupling process, the full Hamiltonian (Eq. 2) becomes (see ref. [START_REF] Dzsotjan | Modeselective quantization and multimodal effective models for spherically layered systems[END_REF][START_REF] Castellini | Quantum plasmonics with multi-emitters: Application to adiabatic control[END_REF] for details)

Ĥ = ω 0 σee -i γ 0 2 σee + N n=1 +∞ 0 dω ωâ † ω,n (r d )â ω,n (r d ) (8) 
+i

N n=1 +∞ 0 dωκ * ω,n (r d )â † ω,n (r d )σ ge -H.c.
To finalize the effective model, we take benefit from the Lorentzian profile for each resonance. In Fig. 2, we plot the coupling constant |κ ω,n | 2 for several modes. We observe an excellent agreement with a Lorentzian profile so that κ ω,n can be written as

κ ω,n (r d ) = Γ n 2π ig n (r d ) ω -ω n + i Γn 2 . ( 9 
)
ω n and Γ n are the mode resonance frequency and width, respectively. These parameters are deduced from a Lorentzian fit, but analytical expresssions are also available in the near-field regime, revealing the radiative and non radiative contributions to the mode's rate of losses Γ n (see Appendix B). Finally, the effective Hamiltonian is obtained by integrating over the angular frequency ω in order to establish a set of N discrete modes. To this purpose, we define the n th plasmonic operator

ân (r d ) = 1 ig n (r d ) +∞ 0 dωκ ω,n (r d )â ω,n (r d ) (10) 
and the wavefunction of the hybrid system takes the form

|ψ ef f (t) = C e (t)|e, ∅ + N n=1 C n (t) • |g, 1 n (r d ) , (11) 
such that |1 n (r d ) = â † n (r d )|∅ defines the excitation of a single plasmon LSP n . This effective wavefunction lets explicitely appear the contribution of the TLS excited state and all plasmon modes. We explicitely indicate the dependence on the emitter position r d to indicate that the parameters of the effective model are defined for a given position of the atomic system. Since we are considering a single emitter coupled to the MNP, we can safely omit the explicit dependence on r d in the following. Finally, we define the effective Hamiltonian H ef f so that i ∂ t |Ψ ef f (t) = Ĥeff |Ψ ef f (t) . Identifying the dynamics of the wavefunctions in the discrete and continuum descriptions, we obtain the matrix representation of the effective Hamiltonian in the basis {|e, ∅ , |g,

1 1 , • • • , |g, 1 N } [30, 39] H ef f =         -i γ 0 2 g 1 g 2 • • • g N g 1 ∆ 1 -i Γ 1 2 0 • • • 0 g 2 0 ∆ 2 -i Γ 2 2 . . . . . . . . . . . . . . . . . . 0 g N 0 • • • 0 ∆ N -i Γ N 2         , (12) 
where ∆ n = ω n -ω 0 is the detuning of the LSP n resonance from the TLS emission. The effective Hamiltonian describe the evolution of a sub-system (atomic states + plasmons) of a larger configuration (atom+phonon bath+radiation bath) so that it is non-hermitian and presents losses on its diagonal. This effective Hamiltonian provides a very practical representation of the hybrid configuration, presenting a direct analogy with a cQED system. g n defines the coupling strength of the emitter to the MNP n th mode. ω n and Γ n are the LSP n frequency and rate of losses, respectively. ω n , Γ n and g n depend on the MNP material and its size but the coupling strength g n depends also on the distance to the MNP. These parameters are deduced from a Lorentzian fit of the coupling constant κ ω,n , as presented in Fig. 2. We plot on Fig. 3 the coupling strength to the LSP n (n=1 to 4) modes as a function of the distance. We superimpose the mode losses rate Γ n . We observe that mode losses are governed by Joule losses in the metal ( Γ n ≈ Γ p = 51 meV). For larger particles, the dipolar mode losses are larger due to higher radiative losses. This will lead us to propose a modified Fano effective Hamiltonian in section 5.

Finally, the coupling strength ( g n ) can overcome the plasmon losses ( Γ n ≈ 51 meV) and TLS losses ( γ 0 = 15 meV) at very short distances so that a strong coupling regime occurs [START_REF] Varguet | Dressed states of a quantum emitter strongly coupled to a metal nanoparticle[END_REF]. Note that higher coupling strength can be expected for smaller separation distances. However, we have to keep in mind that for distances below 1 nm, non local effects can occur and the dielectric function presents a k dependence ǫ m (k, ω), not taken into account here, that can screen the coupling strength [START_REF] Leung | Decay of molecules at spherical surfaces: Nonlocal effects[END_REF][START_REF] Castanie | Fluorescence quenching by a metal nanoparticle in the extreme near-field regime[END_REF][START_REF] Girard | Molecular decay rate near nonlocal plasmonic particles[END_REF].

It is worth noticing that this effective Hamiltonian presents a one to one mapping with a non hermitian Hamiltonian of cQED. By analogy to the cQED treatment, we can describe LSPs dissipation by the coupling to a continuum bath (see figure 4). We separate the system S composed of emitter and LSPs from the environment E associated to the bath. Hence, we introduce a new Hamiltonian leading to the same dynamics as the original one

ĤSE = H S + H E + H I , (13) 
H S = N n=1 ∆ n â † n ân + N n=1 g n σeg ân + g n â † n σge , H E = dω ω N n=1 b † ω,n bω,n , H I = i dω N n=1 β n (ω) b † ω,n ân -â † n bω,n .
The system Hamiltonian H S describes the interaction between the emitters and the LSPs and is hermitian. The environment Hamiltonian H E involves all the bath oscillators of energies ω. For each cavity pseudo-mode of order n we define a reservoir. The interaction between the system and the environment is described by the Hamiltonian H I where ζ n (ω) characterizes the coupling between the pseudo-modes and their associated reservoirs. For flat coupling β n (ω) ≈ β n (ω n ) = Γ n /2π, this new Hamiltonian leads to the following Lindblad equation [START_REF] Hümmer | Weak and strong coupling regimes in plasmonic QED[END_REF][START_REF] Rousseaux | Quantum description and emergence of nonlinearities in strongly coupled single-emitter nanoantenna systems[END_REF][START_REF] Hughes | Quantized pseudomodes for plasmonic cavity qed[END_REF][START_REF] Varguet | Cooperative emission by quantum plasmonic superradiance[END_REF] 

dρ(t) dt = 1 i ĤS , ρ(t) + D 0 [ρ(t)] + D LSP [ρ(t)] ( 14 
)
where ρ is the density matrix of the emitter-LSPs system. The LSP dissipator naturally appears and is of the form

D LSP [ρ(t)] = - N n=1 Γ n 2 â † n ân ρ(t) + ρ(t) â † n ân -2â n ρ(t) â † n . (15) 
but we phenomenologically introduce the emitter dissipator

D 0 [ρ(t)] = - γ 0 2 [σ eg σge ρ(t) + ρ(t) σeg σge -2σ ge ρ(t)σ eg ] . (16) 
The direct derivation of D 0 will be discussed in §5.

The master equation ( 14) is a model for the same dynamics as the non hermitian effective Hamiltonian [START_REF] Marquier | Revisiting quantum optics with surface plasmons and plasmonics resonators[END_REF] but also include the dynamics of the fundamental state |g, ∅ . However, it is worth noticing that for the N LSPs + 1 emitter states, the Lindblad master equation operates in a space of dimension (N +1) 2 whereas the effective Hamiltonian work in a space of dimension (N + 1), so that the effective Hamiltonian should be priviledged when possible.

Dissipative dressed atom picture

Considering all the N LSP modes plus the TLS excited state in the effective Hamiltonian (Eq. 12), we define N + 1 hybrid modes that are the eigenvectors of H ef f .We denote their complex angular frequency by

λ m = ω m -i γ m 2 , (m = 1, . . . , 26) (17) 
where λ m is the eigenvalue of the effective Hamiltonian.

For such dissipative systems, we have to define right and left eigenvectors |Π R m and |Π L m , respectively, satisfying

H ef f |Π R m = λ m |Π R m and H † ef f |Π L m = λ ⋆ m |Π L m , Π L m |Π R m = δ mn .
For a Hamiltonian of the form [START_REF] Marquier | Revisiting quantum optics with surface plasmons and plasmonics resonators[END_REF], one can simply connect them as follows (see Appendix D) [START_REF] Dridi | Adiabatic approximation for quantum dissipative systems: Formulation, topology, and superadiabatic tracking[END_REF]

] |Π R m = m 0 |e, ∅ + N n=1 m n |g, 1 n , ( 18 
)
|Π L m = -m ⋆ 0 |e, ∅ + N n=1 m ⋆ n |g, 1 n , (19) 
where m 0 and m n gives the weight of each mode |e, ∅ or |g, 1 n . Finally, the wavefunction (expression 11) can be represented at time t by:

|ψ ef f (t) = C e (t)|e, ∅ + N n=1 C n (t) • |g, 1 n = N +1 m=1 η m |Π R m e -iλmt , (20) 
with η m = Π L m |ψ(0) = -m 0 if we assume an emitter initially in its excited state and no LSP mode populated. Therefore the hybrid system wavefunction is expanded on the non hermitian Hamiltonian eigenmodes defining the atomic states dressed by LSP modes, as depicted in Fig. 5a) [START_REF] Varguet | Dressed states of a quantum emitter strongly coupled to a metal nanoparticle[END_REF] . It defines a Jaynes-Cummings ladder, that has a same form as a cQED model, and that can be probed considering the near-field emission spectrum. Indeed, for an emitter initially in its excited state, the polarization spectrum takes the form

P (ω) = ∞ 0 dte i(ω-ω 0 )t C e (t) 2 , = N +1 m=1 m 2 0 ω -(ω 0 + ω m ) + i γm 2 2 . ( 21 
)
If the dressed states are well separated in energy, the near-field spectrum is approximated by a sum of Lorentzians peaked at their resonance energy and with a FWHM γ m . In the present case, some of the dressed states are not sufficiently separated so that the exact expression (eq. 21) has to be used but still the effective model gives a clear understanding of the Rabi splitting (see Fig. 5b).

2.8 2.9 3 3.1 However, the polarization spectrum lacks information on radiative and non radiative emission processes. Moreover, experimental characterization generally relies on far-field emission spectrum. Qualitative understanding of the far-field behaviour can be achieved considering the dipolar LSP 1 mode population (|C 1 (ω)| 2 ). Indeed, the far-field radiated signal (in the whole space) can be written as

P rad = 1 2π γ rad P (ω) ∼ |C 1 (ω)| 2 (22) 
where γ rad is the radiative decay rate (at the angular frequency ω) in presence of the MNP (see Appendix C for the details). We compare in Fig. 6 the far-field emission at the detector position and the bright dipolar mode population spectrum. We obtain very good agreement, justifying that far-field emission is governed by the dipolar LSP 1 mode scattering. We observe again a Rabi splitting of 144 meV that is a reminiscence of the strong coupling regime observed in the polarization spectrum. However, the main contribution comes from the bright LSP 1 scattering near ω = 2.79 eV.

Weak coupling regime: Purcell factor and Fermi's golden rule

We are particularly interested in the role of losses on the hybrid system dynamics.

In the previous section, we have discussed the strong coupling regime and the effect of both absorption and radiative losses on the near-field and far-field spectra. Before investigating in detail the effective Hamiltonian modification in presence of important radiative losses, it is worthwhile to discuss the dynamics of the coupled system in the weak coupling regime. This permits to introduce notably the Purcell factor before discussing how it is modified and why introducing Fano states in presence of radiative leakages.

From the effective Hamiltonian (eq. 12), the emitter and LSP population dynamics obeys

Ċe (t) = - γ 0 2 C e (t) -i N n=1 g n C n (t) , (23) 
Ċn (t) = -ig n C e (t) -i∆ n + Γ n 2 C n (t) . (24) 
In the weak coupling regime, the population of the plasmon states remain small so that they can be adiabatically eliminated, that is Ċn (t) ≈ 0. We obtain

Ċe (t) = - γ 0 2 C e (t) + N n=1 g 2 n i∆ n + Γ n /2 C e (t) , C e (t) = C e (0)e -iδωt e -γ tot 2 t , (25) 
where we recognize the Lamb shift and the total decay rate

δω = N n=1 g 2 n (ω 0 -ω n ) (ω 0 -ω n ) 2 + (Γ n /2) 2 , ( 26 
)
γ tot = γ 0 + N n=1 g 2 n Γ n (ω 0 -ω n ) 2 + (Γ n /2) 2 . ( 27 
)
We can define the Purcell factor F n p for each mode such that

γ tot γ 0 = 1 + N n=1 F n p 1 1 + 4Q 2 n ω 0 -ωn ωn 2 (28) 
F n p = 4g 2 n γ 0 Γ n ( 29 
)
where Q n = ω n /Γ n is the LSP n quality factor. Note that inserting the definition of the coupling strength (Eqs. 7 and 9) into the total decay rate (Eq. 27), we recover the Fermi golden rule result [START_REF] Colas Des Francs | Plasmonic purcell factor and coupling efficiency to surface plasmons. implications for addressing and controlling optical nanosources[END_REF] 

γ tot γ 0 = 1 + 2k 2 0 ǫ 0 γ 0 N n=1 Im d eg • G ω 0 ,n (r d , r d ) • d ⋆ eg = 1 + η 6π k b ImG uu ω 0 ,n (r d , r d ) ( 30 
)
where η is the intrinsic quantum yield η = γ rad 0 /γ 0 and

k b = n b k 0 . G uu ω 0 ,n = u • G ω 0 ,n
• u with u an unitary vector along the TLS dipole moment (d eg = d eg u). Similarly, if we assume that the Green tensor follows a first order resonance (see e.g. Eq. B.25 in Appendix B), the Lamb shift (Eq. 31) can be rewritten as

δω γ 0 = -η 3π k b ReG uu ω 0 ,n (r d , r d ) (31) 
This Lamb shift is generally negligible and will not be considered in the following. The normalized Fermi golden rule (Eq. 30) and Lamb shift (Eq. 31) are in full agreement with the result obtained from classical approach considering an oscillating dipole [START_REF] Metiu | Surface enhanced spectroscopy[END_REF].

We consider in Fig. 7 a typical TLS emitting at λ = 670 nm with τ 0 = 1/γ 0 = 50 ns and presenting an intrinsic quantum yield η = 90%. This corresponds to a dipole transition moment d eg = 3.4 D. The dynamics of the excited state close to the MNP is described in Fig. 7a). In this weak coupling regime, we observe an exponential decay with a fluorescence lifetime τ = 1.7 ns in agreement with Fermi's golden rule (γ tot /γ 0 = τ 0 /τ = 30 at d=5 nm, see Fig. 7b). Actually, the TLS emission is not limited to a single value ω 0 but rather follows a Lorentzian profile. The contribution to the decay rate originating from the coupling to the LSP n is therefore

γ n = ∞ -∞ dωL(ω) g 2 n Γ n (ω -ω n ) 2 + (Γ n /2) 2 , (32) 
L(ω) = γ 0 /2π (ω -ω 0 ) 2 + (γ 0 /2) 2
where L(ω) is the free-space normalized emission spectrum of the TLS. This is the analogue to the cQED description. Following the work of van Exter and coworkers [START_REF] Van Exter | Two simple expressions for the spontaneous emission factor b[END_REF], we can solve the integration over ω as

γ n = 2πg 2 n C LLn (0) where C LLn (u) = ∞ -∞ L(ω)L n (u -ω)
dω is the convolution product with a normalized Lorentzian profile peaked at -ω n with a FWHM Γ n . The convolution of two normalized Lorentzians is also a normalized Lorentzian and it yields

γ n = g 2 n (γ 0 + Γ n ) (ω 0 -ω n ) 2 + [(γ 0 + Γ n )/2] 2 . ( 33 
)
Even at ambient temperature, γ 0 ≪ Γ n so that expressions [START_REF] Marty | Photon antibunching in the optical near-field[END_REF][START_REF] Dzsotjan | Modeselective quantization and multimodal effective models for spherically layered systems[END_REF] remain valid without working at cryogenic temperatures as for cQED. As expected, because of the strong subwavelength mode confinement, quantum plasmonics permits to transpose cQED behaviour to ambient temperature [START_REF] Chikkaraddy | Single-molecule strong coupling at room temperature in plasmonic nanocavities[END_REF]. 7). The silver particle radius is 50 nm and the emitter is located at 5nm from its surface. The right frame is an enlargement for n = 1 showing the asymmetry.

Leaky modes and LSP Fano states

For large MNP, the LSP modes can become strongly leaky, deforming the coupling strength spectrum, as shown in Fig. 8. Indeed, the dipolar plasmon LSP 1 becomes strongly radiative so that |κ 1 | 2 does not follow a Lorentzian profile anymore [START_REF] Colas Des Francs | Plasmonic purcell factor and coupling efficiency to surface plasmons. implications for addressing and controlling optical nanosources[END_REF]. In the following, we discuss how to modify the effective Hamiltonian to include this behaviour. At this point, it is necessary to recall that the contribution of the free-space contribution was phenomenologically introduced in the first section (see the discussion on Eq. ( 3)). In order to improve the effective non hermitian Hamiltonian, we consider the bath model inferred from the effective Hamiltonian (Fig. 4) as a starting point. In order to clarify the role of the free space contribution, we first focus on lossless TLS and MNP in section 5.1 before proposing a general effective Hamiltonian in section 5.2.

Fano states for lossless TLS and MNP

5.1.1. Heuristic presentation of Fano states. Let us consider the ideal situation without absorption (TLS intrinsic quantum yield η = 100% and lossless metal Γ p = 0). Radiation into the far-field is the only available channel for energy dissipation. Moreover, all LSPs modes are dark, except LSP 1 dipolar mode, for not too large particles. Therefore, we consider the open quantum system schemed in Fig. 9 where the emitter and LSP 1 are coupled to the same radiation bath and we restrict the discussion to a single mode (LSP 1 ) MNP for the sake of clarity. In analogy to the work of Knight et al [START_REF] Knight | Laser-induced continuum structure[END_REF][START_REF] Ph | Theory of fano profiles[END_REF] we define a Fano state |F diagonalizing the LSP 1 -bath states and construct a modified effective Hamiltonian (see also §C I in ref. [START_REF] Cohen-Tannoudji | Processus d'interaction entre photons et atomes[END_REF]) in the basis {|e, ∅ , |g, F }

H ef f = ω 0 -i γ rad 0 2 g 1 -i 2 γ rad 0 Γ rad 1 g 1 -i 2 γ rad 0 Γ rad 1 ω 1 -i Γ rad 1 2 . ( 34 
)
γ rad 0 and Γ rad 1 define the radiative contribution to the decay rates since no absorption is considered here. The inset shows the mode near-field intensity as well as the electric field lines revealing the far-field leakages. The particle radius is 50 nm and the windows size is 700 nm (the resonance wavelength is λ 1 = 2πc/ω 1 = 477 nm.

Microscopic derivation of LPs Fano states. Generalization of the effective

Hamiltonian [START_REF] Lalanne | Light interaction with photonic and plasmonic resonances[END_REF] to all LSPs is not straightforward since the emitter and all LSPs could couple to the free-space continuum for large particle. Therefore, we go back the bath model inferred in Fig. 4 where each LSP mode is associated to a specific reservoir. We add the direct emitter-radiative bath coupling (ζ n ) so that we consider the following Hamiltonian (compare with Eq. 13)

Ĥ′ SE = H S + H E + H ′ I , (35) 
H ′ I = i dω ∞ n=1 β r n (ω) br † ω,n ân -â † n br ω,n + i dω ∞ n=1 ζ n (ω) br † ω,n σge -σ † eg br ω,n .
For flat couplings β r n (ω) ≈ Γ rad n /2π, and ζ n (ω) ≈ γ rad 0n (ω 0 )/2π it leads to the following Lindblad equation

dρ(t) dt = 1 i ĤS , ρ(t) + D F [ρ(t)] (36) 
where the new dissipator is

D F [ρ(t)] = - 1 2 ∞ n=1 ĉ † n ĉn ρ(t) + ρ(t) ĉ † n ĉn -2ĉ n ρ(t) ĉ † n , (37) 
ĉn = γ rad 0n (ω 0 )σ ge + Γ rad n ân .

γ rad 0n refers to the emitter relaxation into the radiation bath bn . The total radiative decay rate of the emitter in free-space obeys

γ rad 0 = 2k 2 0 ǫ 0 Im d eg • G 0 (r d , r d , ω 0 ) • d ⋆ eg = n b d 2 eg ω 3 0 3πǫ 0 c 3 (38) 
so that γ rad 0n corresponds to the decomposition of this decay rate on the spherical harmonics and γ rad 0 = ∞ n=1 γ rad 0n (ω 0 ) (see Appendix A). Finally, the dissipator (Eq. 37) can be written as the sum of three contributions:

D F [ρ(t)] = D 0 [ρ(t)] + N n=1 D LSPn [ρ(t)] + N n=1 D 0,LSPn [ρ(t)] ( 39 
)
D 0 = - γ rad 0 2 [σ eg σge ρ(t) + ρ(t) σeg σge -2σ ge ρ(t)σ eg ] D LSPn [ρ(t)] = - Γ rad n 2 â † n ân ρ(t) + ρ(t) â † n ân -2â n ρ(t) â † n D 0,LSPn [ρ(t)] = - γ rad 0n (ω 0 )Γ rad n 2 [σ eg ân ρ(t) + ρ(t) σeg ân -2â n ρ(t)σ eg +â † n σge ρ(t) + ρ(t) â † n σge -2σ ge ρ(t)â † n
D 0 and D LSPn describe the emitter and LSP n relaxations, respectively and D 0 naturally appears without the need of phenomenological introduction (see also Eq. 14). D 0,LSPn refers to a collective relaxation process that originates from their coupling to the same bath. Let us note that a similar collective dissipator has been recently phenomenologically introduced to interprate enhanced optical trapping of an assembly of emitters [START_REF] Venkatesh | Cooperative effects in closely packed quantum emitters with collective dephasing[END_REF].

Following the work of Visser and Nienhuis [START_REF] Visser | Solution of quantum master equations in terms of a non-hermitian hamiltonian[END_REF], it is straightforward to build an effective Hamiltonian from the Lindblad master equation [START_REF] Girard | Molecular decay rate near nonlocal plasmonic particles[END_REF]. It obeys

H ef f = ĤS -i N n=1 1 2 ĉ † n ĉn (40) 
so that we obtain

H ef f =       -i γ rad 0 2 g 1 -i 2 γ rad 01 Γ rad 1 • • • g N -i 2 γ rad 0N Γ rad N g 1 -i 2 γ rad 01 Γ rad 1 ∆ 1 -i Γ rad 1 2 0 • • • . . . . . . . . . . . . g N -i 2 γ rad 0N Γ rad N • • • 0 ∆ N -i Γ rad N 2       (41)

General non hermitian effective Hamiltonian

We now take into account the absorption into the metal (Γ p = 0) but still consider TLS intrinsic quantum yield η = 100%. The LSP n couple to an additionnal non radiative bath as schemed in Fig. 10. The Hamiltonian is written as 

Ĥ′ SE = H S + H ′ E + H ′ I , (42) 
H ′ E = dω ω ∞ n=1 br † ω,n br ω,n + dω ω ∞ n=1 bnr † ω,n bnr ω,n ,
H ′ I = i dω ∞ n=1 β r n (ω) br † ω,n ân -â † n br ω,n + i dω ∞ n=1 ζ n (ω) br † ω,n σge -σ † eg br ω,n + i dω ∞ n=1 β nr n (ω) bnr † ω,n ân -â † n bnr ω,n .
This leads to the following Lindblad equation

dρ(t) dt = 1 i ĤS , ρ(t) + D F [ρ(t)] + D nr [ρ(t)] (43) 
whith the additional non-radiative dissipator

D nr [ρ(t)] = - 1 2 N n=1 Γ nr n â † n ân ρ(t) + ρ(t) â † n ân -2â n ρ(t) â † n .
leading to the effective Hamiltonian

H ef f =       -i γ rad 0 2 g 1 -i 2 γ rad 01 Γ rad 1 • • • g N -i 2 γ rad 0N Γ rad N g 1 -i 2 γ rad 01 Γ rad 1 ∆ 1 -i Γ 1 2 0 • • • . . . . . . . . . . . . g N -i 2 γ rad 0N Γ rad N • • • 0 ∆ N -i Γ N 2       ( 44 
)
with Γ n = Γ rad n + Γ nr n the total decay rate of the LSP n . We observe that the non radiative processes increases the LSPs losses but does not play a role on the emitter-LSP coupling (off-diagonal elements). Actually, the Lindblad equation (Eq. 14) proposed for small (non leaky but absorbing) MNP corresponds to LSPs couple to the non-radiative bath only but the emitter coupled to the radiative bath, explaining why the emitter spontaneous emission (D 0 ) was phenomenologically introduced whereas it naturally appears within the bath model of Fig. 10.

Finally, the effective Hamiltonian formally takes the form in the LSPs Fano state basis {|e, ∅ , |g,

F 1 , • • • , |g, F N } H ef f =         -i γ 0 2 g 1 [1 -i 2 α 1 (ω 0 )] g 2 [1 -i 2 α 2 (ω 0 )] • • • g N [1 -i 2 α N (ω 0 )] g 1 [1 -i 2 α 1 (ω 0 )] ∆ 1 -i Γ 1 2 0 • • • 0 g 2 [1 -i 2 α 2 (ω 0 )] 0 ∆ 2 -i Γ 2 2 . . . . . . . . . . . . . . . . . . 0 g N [1 -i 2 α N (ω 0 )] 0 • • • 0 ∆ N -i Γ N 2         ( 45 
)
where α n is the ratio between the coupling to the radiative quasi-continuum (α n (ω 0 )g n = γ rad 0n (ω 0 )Γ rad n ) and the coupling to the discrete LSP n state (given by g n ). It depends on the emission angular frequency ω 0 . q F,n = 2/α n is the Fano parameter for the n th mode. It is equivalent to the exact discrete form (Eq. 12) in the limit α n → 0 corresponding to a negligible coupling to the quasi-continuum.

Weak coupling regime

We now discuss how the excited emitter dynamics is modified considering the new effective Hamiltonian. Here again, we consider adiabatic elimination in weak coupling regime. The population dynamics follows then C e (t) = C e (0)e -iδωt e -γ tot 2 t [START_REF] Hughes | Quantized pseudomodes for plasmonic cavity qed[END_REF] where

δω = - N n=1 g 2 n ∆ 2 n + (Γ n /2) 2 (1 - α 2 n 4 )∆ n + α n Γ n 2 , (47) 
γ tot = γ 0 + N n=1 g 2 n ∆ 2 n + (Γ n /2) 2 (1 - α 2 n 4 )Γ n -2α n ∆ n .
We can again express the total decay rate such that

γ tot γ 0 = 1 + N n=1 γ n γ 0 , (48) 
γ n γ 0 = F n p (ω 0 ) 1 1 + 4Q 2 n ω 0 -ωn ωn 2 1 - α 2 n (ω 0 ) 4 + 2α n (ω 0 )Q n ω 0 -ω n ω n (49) 
γ n refers to the decay rate into LSP n . The dependency of the parameters on the emission frequency ω 0 is explicitely indicated. Since α n only slightly depends on the emission frequency ω 0 around ω n , the Fano shape of the decay rate (Eq. 49) is similar (at the first order in α n ) to the one obtained by Sauvan and coworkers [START_REF] Sauvan | Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators[END_REF] considering a fully classical treatment of the atom-leaky mode coupling. They generalized the effective volume of the mode by defining a complex mode volume V n such that the Fano parameter obeys 2/q F,n ≈ α n (ω n ) = Im( V n )/Re( V n ), that characterizes the TLS coupling branch ratio to the leaky (quasi-continuum) and the discrete contribution to LSP n modes. Specifically, they use quasi-normal mode analysis that accurately describes the mode leakage. Since QNM corresponds to the pole of the Green tensor, the two approaches are fully equivalent, making a bridge between cQED and classical approaches in the weak coupling regime.

Assuming that the decay rate still obeys to the classical Fermi golden rule (Eq. 30), we plot in Fig. 11a) the decay rate to LSP 1 for a large (leaky) non absorbing silver nanoparticle. We observe a Fano behaviour in agreement with expression [START_REF] Metiu | Surface enhanced spectroscopy[END_REF]. There are only three fitting parameters, namely ω 1 , Γ rad 1 and g 1 . The Fano parameter obeys q F = 2/α 1 (ω 0 ) = 2g 1 / γ rad 01 (ω 0 )Γ rad 1 = -4.2 at ω 0 = ω 1 for h = 30 nm and the Purcell factor is obtained from

F 1 rad = 4g 2 1 /γ rad 0 Γ rad 1 = 14.2 (F 1 rad = 40.
7 for h = 15 nm). In Fig. 11b), we include metal absorption. We use the same ω 1 , Γ rad 1 and g 1 as for lossless configuration and fit the decay rate spectral behaviour with one additionnal parameter; the LSP non-radiative rate Γ nr 1 . Finally, one can write the Purcell factor in presence of the lossy MNP as

F n p = 4g 2 n γ rad 0 Γ n = Γ rad n Γ rad n + Γ nr n F n rad . (50) 
The total Purcell factor is the LSP quantum yield times the lossless Purcell factor. LSP losses therefore decrease the Purcell factor independently of the distance (but the lossless Purcell factor depends on the distance to the MNP). We achieve F 1 p = 12.2 for h = 30 nm and F 1 p = 35.1 for h = 15 nm.

Conclusion

We have built effective Hamiltonians describing the emitter-MNP interaction extending the cQED approach to quantum plasmonics. We extensively discuss the role of Joule and radiative losses in the coupling process and their effect on the Hamiltonian structure.

Because the effective Hamitonian of the hybrid nanosource is time independent, we can introduce true energy levels (so called dressed states) and discuss the effect of atomplasmon interaction on the wavefunction of the coupled system. We also discussed the link between near-field and far field spectra with the population of the emitter and radiative dipolar plasmon, respectively. Moreover, with quantized plasmon field, we can clearly identify the elementary process of spontaneous emission and we define a Purcell factor for each LSP. For large particles, we observe a Fano profile, fully explained considering a modified effective Hamiltonian, inspired from cQED considerations. We also derive Lindblad equations for each situation and introduce a collective dissipator for describing the Fano behaviour. This clarify the role of radiative leakages (spontaneous emission) and overcome the difficulty of their phenomenological introduction that misses this collective dissipator. Finally, we stress that our formalism directly transposes cQED concepts to the nanoscale and constitutes therefore a powerful tool to propose and design ultrafast nanophotonics devices, taking benefit of the mode subwavelength confinement.
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where we have used the limiting values [START_REF] Abramowitz | Hanbbook of mathematical functions[END_REF] j n (z) ∼ z→0 z n (2n + 1)!! (B.4)

ψ ′ n (z) ∼ z→0 (n + 1)z n (2n + 1)!! (B.5) h (1) n (z) ∼ z→0 -i (2n -1)!! z n+1 (B.6) ζ ′ n (z) ∼ z→0 in(2n -1)!! z n+1 (B.7)
Finally, the Mie coefficient depends on the quasi-static polarisability for small particle size. Indeed, in the quasi-static regime, the optical response of the particle can be described using a multipolar expansion. If the particle excited with an incident field E 0 , the n th multipole tensor moment is given by

p (n) = 4πǫ 0 ǫ B (2n -1)!! α n ∇ n-1 E 0 , (B.8) α n = n(ǫ S -ǫ B ) nǫ S + (n + 1)ǫ B R 2n+1 (B.9)
So that the approximate form of the Mie coefficient (Eq. B.6) can be rewritten as

B n ≈ i (n + 1)k 2n+1 b n(2n -1)!!(2n + 1)!! α n (B.10)
Appendix B.1.1. Resonance profile. For the sake of clarity, we assume that the surrounding medium is air, ǫ b = 1 (see ref. [START_REF] Colas Des Francs | Mie plasmons: Modes volumes, quality factors and coupling strengths (purcell factor) to a dipolar emitter[END_REF] for ǫ b = 1). Considering a Drude metal

ǫ m = 1 - ω 2 p ω 2 + iΓ p ω . (B.11)
the n th resonance occurs for ǫ m (ω n ) = -n n+1 ǫ b that is for

ω n = ω p n 2n + 1) (B.12)
so that the n th polarisability becomes

α n = n(ǫ S -1) nǫ S + (n + 1) R 2n+1 , (B.13) = -nω 2 p (2n + 1)(ω 2 + iΓ p ω) -nω 2 p R 2n+1 (B.14)
we now use nω 2 p = (2n + 1)ω 2 n to write

α n = -ω 2 n ω 2 -ω 2 n + iΓ p ω R 2n+1 , (B.15) = -ω 2 n (ω -ω n )(ω + ω n ) + iΓ p ω R 2n+1 (B.16)
Finally, near a resonance, ω ≈ ω n ; we obtain

α n ≈ -ω 2 n 2ω n (ω -ω n ) + iΓ p ω n R 2n+1 , (B.17) ≈ -ω n 2(ω -ω n ) + iΓ p R 2n+1 (B.18)
Thus |α n | 2 follows a Lorentzian profile peaked on the n th resonance ω n and with a full-width at half maximum (FWHM) Γ p associated to Joule losses in the metal.

Appendix B.1.2. Radiative losses. In the previous section, only Joule losses appear although radiative losses are expected, at least for the dipolar (n=1) mode. This difficulty comes from the approximation that the electric field (or its n th order gradient for the next modes) is assumed constant over the particle size. Taking into account the variation of the electric field over the particle (or, more easily, applying the optical theorem to ensure the energy conservation), it is possible to show that the above expressions are improved using the effective polarisabilities [START_REF] Colas | Molecule non-radiative coupling to a metallic nanosphere: an optical theorem treatment[END_REF][START_REF] Colas Des Francs | Mie plasmons: Modes volumes, quality factors and coupling strengths (purcell factor) to a dipolar emitter[END_REF]]

α ef f n = 1 -i (n + 1)k 2n+1 b n(2n -1)!!(2n + 1)!! α n -1 α n , (B.19) 
that behave near a resonance as

α ef f n ∼ ωn ω n 2(ω n -ω) -iΓ n R 2n+1 , (B.20) Γ n = Γ p + Γ rad n , Γ rad n = ω n (n + 1)(k 0 R) 2n+1 n(2n -1)!!(2n + 1)!! ,
where Γ n is the total decay rate of the n th mode, that includes both ohmic losses and radiative scattering. As expected, for a given mode n, the radiative scattering rate Γ rad n ∝ R 2n+1 increases with the particle size since it couples more efficiently to the far-field.

Appendix B.1.3. Near-field coupling rate. Finally, we assume a dipolar emitter close to the MNP surface. We use the approximate expressions of the Hankel function (Eq. B.6), the Mie coefficient (Eq. B.10) and the quasi-static polarisabilities (Eq. B.20) to express the radial component of the the Green tensor (Eq. B.1)

G rr S (r d , r d ) ≈ 1 4πk 2 b ∞ n=1 (n + 1) 2 R 2n+1 r 2n+4 d ω n 2(ω n -ω) -iΓ n (B.21)
so that the near-field coupling rate to LSP n (Eq. 7) is approximated by

|κ ω,n (r d )| 2 = k 2 0 πǫ 0 d 2 eg Im [G rr n (r d , r d )] (B.22) ≈ d 2 eg 4 πǫ 0 ǫ b (n + 1) 2 R 2n+1 r 2n+4 d ω n /2 (ω n -ω) 2 + (Γ n /2) 2 Γ n 2 (B.23)
Identification with Eq. ( 9) leads to the following expression for the coupling strength

g n ≈ d eg ω n /2 ǫ 0 2n b (n + 1)R n+1/2 r n+2 d (B.24)
Finally, from Eq. (B.21), we obtain that the Green tensor follows a first order resonance

G rr S (r d , r d ) ≈ ǫ 0 k 2 0 d 2 eg ∞ n=1 g 2 n (r d ) (ω -ω n ) 2 + (Γ n /2) 2 -(ω -ω n ) + i Γ n 2 . (B.25)
Appendix C. Far-field spectrum

The light spectrum at position r d is related to the polarization spectrum by [START_REF] Hakami | Spectral properties of a strongly coupled quantum-dotmetal-nanoparticle system[END_REF] S(r, ω) = 1 2π

k 2 0 ǫ 0 G(r, r d , ω) • d eg 2 P (ω) . (C.1)
k 2 0 G(r, r d , ω) • d eg /ǫ 0 describes the electric field scattered at the point r by a dipolar source located at r d so that the far-field spectrum clearly appears as the signal propagating from the hybrid source to the detector position (including both scattering by the MNP and direct free-space propagation). The far-field signal is presented in Fig. C1a) when scanning the TLS emission frequency ω 0 [START_REF] Delga | Quantum emitters near a metal nanoparticle: Strong coupling and quenching[END_REF]. We observe again a Rabi splitting of 144 meV for ω 0 = 2.94 eV that is a reminiscence of the strong coupling regime observed in the polarization spectrum. However, the main contribution comes from the bright LSP 1 scattering near ω = 2.79 eV (see also Fig. 6). Qualitative understanding of the far-field behaviour can be achieved considering the dipolar LSP 1 mode population. Indeed, we can infer the the total radiated power

P rad (ω) = S(r, ω)dΩ (C.2)
and using far-field asymptotic expansion for the Green's tensor, one obtains

P rad (ω) = 1 2π γ rad (ω)P (ω) (C.3)
where γ rad is the radiative decay rate (at the angular frequency ω) in presence of the MNP, that depends on the dipole moment orientation [START_REF] Colas Des Francs | Fluorescence relaxation in the near-field of a mesoscopic metallic particle: distance dependence and role of plasmon modes[END_REF]. For small particle size, the far-field Green's function is peaked at the dipolar LSP 1 frequency and the radiative rate is approximated by

γ rad (ω) ≈ n b d 2 eg ω 3 3πǫ 0 c 3 1 + 4 d 6 |α 1 (ω)| 2 (C.4)
for a radial emitter close to the MNP. Since the far-field emission should be governed by the LSP mode radiation, it is of strong interest to express the far-field spectra as a function of the LSP n population. The dynamics of the coupled system is governed by the effective Hamiltonian [START_REF] Marquier | Revisiting quantum optics with surface plasmons and plasmonics resonators[END_REF] so that

, i ∂ t |Ψ ef f (t) = Ĥeff |Ψ ef f (t) . In particular, Ċe (t) = - γ 0 2 C e (t) - N n=1 g n C n (t) , (C.5)
C e (ω) = C e (0) -N n=1 g n C n (ω) i(ω 0 -ω) + γ 0 /2 , (C.6) C n (ω) = ∞ 0 dte i(ω-ω 0 )t C n (t)dt
and for an emitter initially in its excited state, the far-field radiated signal can be written as

P rad = 1 2π γ rad P (ω) (C.7) ≈ n b d 2 eg ω 3 3πǫ 0 c 3 1 + 4 d 6 |α 1 (ω)| 2 1 -N n=1 g n C n (ω) i(ω 0 -ω) + γ 0 /2 2 ≈ n b d 2 eg ω 3 3πǫ 0 c 3 1 + 4 d 6 |α 1 (ω)| 2 |1 -g 1 C 1 (ω)| 2 (ω -ω 0 ) 2 + (γ 0 /2) 2
since the radiative decay rate selects the dipolar emission near ω ≈ ω 1 for small particles. Finally, one can infer that the radiated power is proportional to the LSP 1 population in a rough approximation, P rad ∼ |C 1 (ω)| 2 . We compare in Fig. C1 (se also Fig. 6 in the main text) the far-field emission and the bright dipolar mode population. We obtain very good agreement, justifying that far-field emission is governed by the dipolar LSP 1 mode scattering. We attribute the discrepancy to the fact that P rad describes the scattering in the whole space rather than in a specific direction as S(r, ω).

Appendix D. Biorthogonal basis of eigenvectors

The aim is to construct the dual basis or left eigenvectors of a non- The dual basis can be defined from the matrix T R as

T † L = T -1 R (D.6)
where the left eigenvectors are on the row of the matrix We consider now the particular case where the Hamiltonian takes the form with κ an arbitrary phase and S † S = 1. The new Hamiltonian reads The effective Hamiltonian studied in the article is defined with θ i = π 2 ∀i. The matrix form of SS † can be then written as where we have chosen the phase κ = π 2 . This completes the proof of Eq. ( 19).

T † L T † L =      Π L 1 | Π L 2 | . . .
H =         0 |g 1 |e iθ 1 |g 2 |e iθ 2 • • • |g N |e iθ N |g 1 |e -iθ 1 ∆ 1 -i γ 1 2 0 • • • 0 |g 2 |e -iθ 2 0 ∆ 2 -i γ 2
H S =         0 |g 1 | |g 2 | • • • |g N | |g 1 | ∆ 1 -i γ 1 2 0 • • • 0 |g 2 | 0 ∆ 2 -i γ 2
SS † =        

Figure 1 .

 1 Figure 1. Scheme of the hybrid system embedded in a background material with permittivity ε b . A spherical MNP of radius R and permittivity ε m (ω) is coupled to a TLS dipolar emitter. r d and r refer to the emitter and detector positions respectively. The inset describes the TLS system.

Figure 3 .

 3 Figure 3. Coupling strength 2 g n to the first LSP n modes (n=1,. . . , 4) as a function of the distance to the particle surface. The horizontal line represents the LSP n losses Γ n .

Figure 4 .

 4 Figure 4. Open quantum system presenting a dynamics equivalent to one of the effective non hermitian Hamiltonian Eq. (12).

Figure 5 .

 5 Figure 5. (a) Energy diagram of the dressed states. A thicker line indicates a stronger weight of the atom (|e, ∅ , left part) or LSP n mode (|g, 1 n , right part of the diagram). (b) Polarization spectrum. Black lines indicate the dressed states frequencies. In (b) the green line corresponds to the emission frequency of the emitter ( ω 0 = 2.94 eV) leading to the strong coupling. The blue (magenta) line refers to the frequency Ω 2 (Ω 5 ) of the dressed state Π 2 (Π 5 ). The cyan line near ω ≈ 2.9 eV indicates the frequency of the Π 3 state. Adapted from [40].

Figure 6 .

 6 Figure 6. Spectrum calculated at the detector position (Eq. (C.1), 'exact') or from LSP 1 population |C 1 (ω)| 2 . The vertical line refers to the TLS emission frequency.

Figure 7 .

 7 Figure 7. a) Excited state dynamics obtained from the effective Hamiltonian (Eq. 20) for a TLS 5 nm away from a silver nanoparticle (radius R = 8 nm). b) Normalized decay rate as a function of the distance to the silver nanoparticle calculated within the adiabatic elimination approximation (Eq. 28 -dots) or Fermi's golden rule (Eq. 30solid line).

Figure 8 .

 8 Figure 8. Coupling constant spectra to LSP n modes calculated using Eq. (7). The silver particle radius is 50 nm and the emitter is located at 5nm from its surface. The right frame is an enlargement for n = 1 showing the asymmetry.

Figure 9 .

 9 Figure 9. Open emitter-LSP 1 quantum system in absence of absorption. Left) The excited state of the emitter and the LSP 1 state are coupled to the same reservoir associated to radiation leakages. The inset shows the mode profile. Middle) Equivalent open quantum system after Fano diagonalization. Right) Corresponding effective Hamiltonian resulting from the coupling to the leaky Fano dipolar plasmon |F 1 .The inset shows the mode near-field intensity as well as the electric field lines revealing the far-field leakages. The particle radius is 50 nm and the windows size is 700 nm (the resonance wavelength is λ 1 = 2πc/ω 1 = 477 nm.

Figure 10 .

 10 Figure 10. Open emitter-LSPs quantum system considering metal absorption. The emitter and the LSPs couple to a radiative bath. LSPs are also couple to a nonradiative bath. Right) Equivalent open quantum system after Fano diagonalization.

Figure 11 .

 11 Figure 11. Normalized decay rate into the LSP 1 dipolar mode as a function of the emission wavelength. a) Non absorbing systems (η = 100% for the TLS and Γ p = 0 for the MNP). Dots refer to Fano fit following Eq. (49) with ω 1 = 2.60 meV, Γ rad 1 = 254 meV and g 1 = -6.91 × 10 -2 meV (h = 15 nm) or g 1 = -4.03 × 10 -2 meV (h = 30 nm). b) Absorbing MNP ( Γ p = 51 meV). Dots refer to Fano fit following Eq. (49) with the additionnal parameter Γ nr 1 = 40 meV. d eg = 1D.

Figure C1 .

 C1 Figure C1. Far-field emission. a) Spectrum calculated at the detector position (Eq. C.1) varying the TLS emission angular frequency ω 0 . b) LSP 1 population |C 1 (ω)| 2 . All figures are normalized with respect to their maximum.

2 ) 1 |Π R 2 .

 212 We show below that these two sets of vectors satisfy the bi-orthogonality relationΠ L m |Π R m ′ = δ m,m ′ . (D.3) (D.2) defines the non-unitary transformation T R that diagonalizes H T -1 R HT R = D (D.4)for which the right eigenvectors are on the columnT R = |Π R

7 )

 7 According to the relation D.6, the bi-orthogonality relation D.3 is automatically satisfied sinceT † L T R = T -1 R T R = 1. (D.8) with T † L HT R = D.(D.9)

  a symmetric Hamiltonian from the unitary transformationH S = S † HS, (D.11)where S is a diagonal matrix of the form

  property of this Hamiltonian implies that H t S = H S where t denotes the transpose matrix. The left eigenvectors |ψ L m of H S can be expressed in terms of the right eigenvectors |ψ L m = |ψ R m * . (D.14) Indeed we can writeH † S |ψ L m = λ * m |ψ L m (D.15) H t S |ψ L m * = λ m |ψ L m * (D.16)H S |ψ L m * = λ m |ψ L m * , (D.17)and make the link with the definition of the right eigenvectorsH S |ψ R m = λ m |ψ R m . (D.18) Using the relation (D.14) and the transformation S allowing on to express the right and left eigenvectors of H in terms of the right and left eigenvectors of H S |ψ R m = S † |Π R m (D.19) |ψ L m = S † |Π L m , (D.20) we obtain the expression of the dual basis in terms of the right eigenvectors of H |Π L m = SS t |Π R m * . (D.21)According to the matrix form of S (see equation D.12), we can write

Appendix A. Spherical particle -Mie expansion of the Green dyad

The Green dyad associated to the spherical particle is expressed using the Mie expansion [START_REF] Chew | Transitions rates of atoms near spherical surfaces[END_REF][START_REF] Hakami | Spectral properties of a strongly coupled quantum-dotmetal-nanoparticle system[END_REF] 

A n M (1) mn (r) ⊗ M (1) mn (r d ) + B n N (1) mn (r) ⊗ N (1) mn (r d ) The formula of the spherical vector wave functions M, N can be found in ref. [START_REF] Hakami | Spectral properties of a strongly coupled quantum-dotmetal-nanoparticle system[END_REF]. The Mie coefficients are

where j n and h

(1) n are the spherical Bessel and Hankel function.

n the Ricatti-Bessel functions. It can be also useful to expand the free-space Green tensor on the spherical harmonics.

nmp (r d ) r r d This expansion was used to calculate γ 0n in §5.

Appendix B. Near-field coupling rate in the quasi-static approximation

In the following, we consider a dipolar emitter with radial orientation since it corresponds to the most efficient coupling. Then, we get

We assume that the sphere radius is very small compared to the wavelength, i-e k b R << 1, |k m R| << 1. Then, the Mie coefficient B n can be approximated to (with