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Abstract

The aim of this paper is to construct a robust nonparametric estimator for the produc-

tion frontier. We study this problem under a regression model with one-sided errors

where the regression function defines the achievable maximum output, for a given level

of inputs-usage, and the regression error defines the inefficiency term. The main tool is

a concept of partial regression boundary defined as a special probability-weighted mo-

ment. This concept motivates a robustified unconditional alternative to the pioneering

class of nonparametric conditional expected maximum production functions. We prove

that both the resulting benchmark partial frontier and its estimator share the desirable

monotonicity of the true full frontier. We derive the asymptotic properties of the par-

tial and full frontier estimators, and unravel their behavior from a robustness theory

point of view. We provide numerical illustrations and Monte Carlo evidence that the

presented concept of unconditional expected maximum production functions is more

efficient and reliable in filtering out noise than the original conditional version. The

methodology is very easy and fast to implement. Its usefulness is discussed through

two concrete datasets from the sector of Delivery Services, where outliers are likely to

affect the traditional conditional approach.

Key words : Boundary regression, Expected maximum, Nonparametric estimation, Production function,

Robustness.

1 Introduction

The conventional microeconomic theory of the firm is based on the assumption of optimizing

behavior. It is assumed that producers optimize their production choices by avoiding wasting
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resources. Theoretically, producers shall operate somewhere on the upper boundary, rather

than on the interior, of their production possibility set

Ψ “ tpx, yq P Rp
` ˆ R`| y can be produced by xu .

The upper boundary of Ψ, referred to as production frontier or surface, represents the set of

the most efficient firms. The economic performance of a firm is defined in terms of its ability

to operate close to or on the production frontier. This efficient frontier is often described

by the graph of the function ϕpxq “ supty | px, yq P Ψu, which gives the maximal level of

output (e.g., a quantity of goods produced) attainable by a firm operating with a vector of

inputs x (e.g., labor, energy, capital). The efficiency of a unit working at px, yq may then be

estimated via the distance between its production level y and the optimal level ϕpxq. The

standard Farrell-Debreu efficiency score is given by the ratio y{ϕpxq, so that an efficiency

equal to one corresponds to an output-efficient unit. More generally, the score y{ϕpxq ď 1

gives the increase of output that the firm should reach to be viewed as output-efficient.

The estimation of the frontier function ϕ from a random sample of production units

tpX1, Y1q, . . . , pXn, Ynqu is thus of utmost importance in production econometrics. A large

amount of literature is devoted to this problem, where two different approaches have been

mainly developed: the deterministic frontier approach which supposes that all the obser-

vations pXi, Yiq belong to Ψ with probability 1, and the stochastic frontier approach where

random noise allows some observations to be outside Ψ. The issue of stochastic frontier

estimation goes back to the works of Aigner et al. (1977) and Meeusen and van den Broeck

(1977). Typically, it is assumed that ϕ has a parametric structure like Cobb-Douglas or

translog. The estimation techniques include modified least-squares and maximum likelihood

methods, see for instance Greene (2008) for a survey. Some attempts have been proposed to

relax the parametric restriction such as, for instance, Kumbhakar et al. (2007) and Simar

and Zelenyuk (2011), see also Kneip et al. (2015) and the references therein.

Our contribution in this paper is related to the context of inference for deterministic

production frontiers, where it is assumed that ϕ is nondecreasing. A pioneering contribution

in this area is due to Farrell (1957), who introduced Data Envelopment Analysis (DEA),

based on either the conical hull or the convex hull of the data. This was further extended

by Deprins et al. (1984) to the Free Disposal Hull (FDH) estimator, whose properties have

been extensively discussed in the literature. See for instance Kneip et al. (2008) and Daouia

et al. (2010, 2014) for a recent survey of the available results. The most appealing charac-

teristic of such frontier estimators is that they rely on very few assumptions, but they are by

construction very sensitive to outliers. To remedy this vexing defect, robust extensions using

a concept of partial production frontiers have been suggested. Instead of estimating the true
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full frontier ϕ itself, the idea is to first estimate a partial frontier of the production set Ψ

and then shift the obtained estimator to the right place. Prominent among these develop-

ments are the concepts of conditional expected maximum production frontiers by Cazals et

al. (2002) and conditional quantile-based frontiers by Aragon et al. (2005) and Daouia and

Simar (2007). Comparisons between the two concepts from a robustness and an asymptotic

point of view can be found in Daouia and Ruiz-Gazen (2006) and Daouia and Gijbels (2011).

In particular, once the conditional quantile-based frontiers break down for large chosen tail

probability levels, they become definitely less resistant to outliers than the conditional ex-

pected maximum output frontiers. Moreover, the latter class of partial production functions

has the additional advantage to make more efficient use of the available data since its relies

on the distance to observations, whereas quantiles only use the information on whether an

observation is below or above the predictor.

Yet, the class of conditional expected maximum output frontiers is not without disadvan-

tages. First, it is not constrained to inherit the requisite theoretical axiom of monotonicity

of the true full production function ϕpxq. Economic considerations lead actually to the gen-

eral production axiom of free disposability of inputs and outputs, that is, if px, yq P Ψ then

px1, y1q P Ψ for any x1 ě x and y1 ď y. The monotonicity of ϕpxq, referred to as non-negative

marginal productivity, is justified by the free disposability assumption and is a minimal re-

quirement in production theory [see, e.g., Gijbels et al. (1999) and Park et al. (2000)]. The

conditional expected maximum production function enjoys the property of monotonicity if

and only if the non-standard conditional distribution function of Y given X ď x is nonin-

creasing in x [see Theorem A.3 in Cazals et al. (2002)]; this necessary and sufficient condition

is referred to as tail monotonicity [see, e.g., Gijbels and Sznajder (2013)]. Second and most

importantly, even if the theoretical hypothesis of tail monotonicity is satisfied, the empirical

estimators of the conditional expected maximum production function, needed to be used in

practice, are not constrained to enjoy the property of monotonicity. Third, a desirable prop-

erty of any benchmark partial frontier is to closely parallel the true production frontier, as

argued by Wheelock and Wilson (2008) and Daouia et al. (2017). However, by construction,

both population and empirical conditional, expected maximum output frontiers diverge from

the true full frontier as the input level increases [see, e.g., Daouia and Gijbels (2011)]. In

particular, similarly to the FDH boundary, the estimated partial frontiers tend to envelop

production units with ‘small’ inputs-usage including outliers, and are thus very non-robust

to such observations. However, in contrast to the FDH frontier, they may lie below some

relatively inefficient production units with ‘large’ inputs-usage. This opposite behavior for

‘small’ and ‘large’ inputs makes the selection in practice of an appropriate benchmark par-

tial frontier a hard problem. Also, measuring the distance of production units relative to a
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conditional expected maximum production frontier may result in misleading efficiency scores

accordingly. All of these limitations come from the reliance of expected maximum produc-

tion functions on the conditioning by the event tX ď xu, which involves a division by an

estimate of PpX ď xq.

In this paper we adopt a different strategy based on a robustified unconditional formu-

lation of expected maximum production functions. This new formulation has an analogous

interpretation to the original conditional concept and corrects all of its vexing defects. The

proposed unconditional expected maximum output frontiers and their estimators share the

desirable property of monotonicity without resorting to the hypothesis of tail monotonicity

or any other assumption. Another substantial advantage of these new partial production

boundaries over the traditional conditional approach is that they do not suffer from border

and divergence effects for small or large levels of inputs. Thanks to this benefit and because

monotonicity eliminates sharp changes in the slope and curvature of the built unconditional

partial frontiers, the selection problem of an appropriate benchmark frontier tends to be

easier than conditional unconstrained partial boundaries. We derive the asymptotic distri-

butional behavior of the resulting frontier estimators (both full and partial) by using simpler

arguments relative to the standard conditional method. The superiority of our method is

also established from a robustness theory point of view. To illustrate the discussed ideas,

we use two concrete datasets from the sector of Delivery Services and a third dataset from

the Ecuadorian manufacturing sector, where outliers are likely to affect the traditional con-

ditional method. The first dataset involves 4,000 French post offices observed in 1994. It

has been discussed in Cazals et al. (2002), Aragon et al. (2005), and Daouia et al. (2010,

2012) among others. The second dataset comprises 2,326 European post offices observed in

2013. For each post office i, the input Xi represents the labor cost measured by the quantity

of labor, and the output Yi is the volume of delivered mail in number of objects. The third

dataset from Daouia and Park (2013) consists of 406 firms in the petroleum, chemical and

plastics industries in Ecuador in 2002. The scatterplots are given below in Figures 1, 2 and 7.

The paper is further organized as follows. In Section 2, we present a deeper discussion on

the concept of expected maximum production functions. We provide the main results includ-

ing robustness and asymptotic properties. In Section 3, we explore the estimation method

through our motivating real data examples. Section 4 gives some numerical illustrations and

Monte Carlo evidence. Section 5 concludes.
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2 Robust boundary regression

2.1 Expected maximum production frontiers

In the standard nonparametric frontier model, the data

Yj “ ϕpXjq ´ Uj, j “ 1 . . . , n,

are observed, with ϕp¨q being the unknown nondecreasing production function and Uj ě 0

being the inefficiency term such that the lower support boundary of the conditional distri-

bution of Uj given Xj is zero for almost all values of Xj. The graph of ϕ is thus assumed to

define the upper extremity of the joint support Ψ of pX, Y q [see, e.g., Gijbels et al. (1999)].

This means that the support Ψ, which defines the production possibility set, is of the form

Ψ “ tpx, yq|y ď ϕpxqu Ě tpx, yq|fpx, yq ą 0u,

tpx, yq|y ą ϕpxqu Ď tpx, yq|fpx, yq “ 0u,

where fp¨, ¨q stands for the joint density of pX, Y q [see, for instance, Daouia et al. (2016)].

For a fixed level of inputs-usage x P Rp
`, a closed form expression of the frontier function

ϕpxq has been suggested by Cazals et al. (2002) in terms of the non-standard conditional

distribution of Y given X ď x. If FY |Xpy|xq “ PpY ď y |X ď xq denotes the distribution

function of Y conditioned by X ď x, assuming FXpxq :“ PpX ď xq ą 0, then ϕpxq can be

characterized as the upper conditional endpoint

ϕpxq “ supty ě 0 |FY |Xpy|xq ă 1u. (1)

This frontier function is isotonic nondecreasing in x. By substituting in (1) the empirical

conditional distribution function pFY |Xpy|xq “
řn
i“1 1IpXi ď x, Yi ď yq{

řn
i“1 1IpXi ď xq in

place of FY |Xpy|xq, with 1Ip¨q being the indicator function, Cazals et al. (2002) recover the

usual FDH estimator

pϕpxq “ supty ě 0 | pFY |Xpy|xq ă 1u “ max
i:Xiďx

Yi.

The graph of pϕ being the lowest step and monotone surface which envelopes all the sample

points pXi, Yiq, it is very non-robust to outliers. Instead, a practitioner can protect himself

against outliers by estimating first an anchor partial frontier, well inside the cloud of data

points, and then shifting the obtained estimate to the right place. For a given trimming

number m P t1, 2, . . .u, Cazals et al. (2002) have suggested to use the concept of expected

maximum output function of order m, defined as

ψmpxq “ E
“

maxpY 1
x , . . . , Y

m
x q

‰

“

ż 8

0

`

1´ rFY |Xpy|xqs
m
˘

dy,
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where pY 1
x , . . . , Y

m
x q are i.i.d. random variables generated by the conditional distribution

of Y given X ď x. The partial production function ψmpxq converges to the true efficient

frontier ϕpxq as mÑ 8. Likewise, for a fixed sample size n, the empirical counterpart

pψmpxq “

ż 8

0

`

1´ r pFY |Xpy|xqs
m
˘

dy “ pϕpxq ´

ż

pϕpxq

0

r pFY |Xpy|xqs
m dy

achieves the envelopment FDH surface pϕpxq as mÑ 8. Top panels of Figure 1 and Figure 2

display, respectively, the scatterplots of our motivating real datasets on the activity of n “

2, 326 and n “ 4, 000 delivery post offices, along with the estimated expected maximum

production frontiers of order m “ 600, 700, 800, 900, n and m “ 8 (FDH). We refer readers

to the online text for the coloured graphics.

The strength of the partial frontier estimators pψmpxq in terms of robustness has been

established from a theoretical point of view by Daouia and Ruiz-Gazen (2006) and Daouia

and Gijbels (2011). Yet, the conditioning by the event tX ď xu results in partial m-frontiers

that can still be severely attracted by extreme and/or outlying observations with small Xi’s,

especially as the input level x decreases. This is visualized in the top panels of Figure 1

and Figure 2, where the selected large m-frontiers pψmpxq coincide with the non-robust FDH

estimator pϕpxq over an important range of values of x. Instead, we propose in the sequel to

use a different formulation of expected maximum production functions without recourse to

the conditioning by X ď x.

2.2 Robustified unconditional m-frontiers

For a fixed level of inputs-usage x P Rp
` such that FXpxq ą 0, we propose to first transform

the pp ` 1q-dimensional random vector pX, Y q and the n-tuple tpX1, Y1q, . . . , pXn, Ynqu into

the dimensionless random variables

Y x
“ Y 1IpX ď xq and Y x

i “ Yi1I pXi ď xq , i “ 1, . . . , n. (2)

Their common distribution function FY xp¨q is closely related to the original conditional dis-

tribution function FY |Xp¨|xq since

FY xpyq “
 

1´ FXpxqr1´ FY |Xpy|xqs
(

1Ipy ě 0q.

A nice property of these transformed univariate random variables lies in the fact that

ϕpxq ” supty ě 0 |FY xpyq ă 1u,

pϕpxq ” supty ě 0 | pFY xpyq ă 1u “ maxpY x
1 , . . . , Y

x
n q,
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where pFY xpyq “ p1{nq
řn
i“1 1IpY x

i ď yq. We then introduce the alternative concept of ex-

pected maximum achievable level of production

ϕmpxq “ E
“

maxpY x
1 , . . . , Y

x
mq
‰

“

ż 8

0

`

1´ rFY xpyqs
m
˘

dy, (3)

where pY x
1 , . . . , Y

x
mq can be any m independent copies of Y x such as, for instance, the Y x

i ’s

described in (2). Clearly, for any trimming number m ě 1, the quantity ϕmpxq is nothing

but the expectation of the FDH estimator based on the m-tuple tY x
i “ Yi1I pXi ď xqui“1,...,m.

Of particular interest is the limiting case where the partial frontier function

ϕmpxq “

ż ϕpxq

0

`

1´ rFY xpyqs
m
˘

dy “ ϕpxq ´

ż ϕpxq

0

rFY xpyqs
m dy

converges monotonically to the true full frontier function ϕpxq as the trimming level mÑ 8.

Taking a closer look to ϕmpxq we see that it can be defined equivalently as the following

special probability-weighted moments.

Proposition 1. For all m ě 1 and x P Rp
` such that FXpxq ą 0, we have

ϕmpxq ” E
 

m ¨ rFY xpY
x
qs
m´1

¨ Y x
(

” E
 

Jm
`

FY |XpY |xq
˘

¨ Y |X ď x
(

,

where Jm
`

FY |Xpy|xq
˘

“ mFXpxq
“

1´ FXpxqr1´ FY |Xpy|xqs
‰m´1

“ mPpX ď xq r1´ PpX ď x, Y ą yqsm´1 .

The probability weight Jm
`

FY |Xpy|xq
˘

assigns bigger weights to relevant outputs. Like

ψmpxq, ϕmpxq achieves the optimal production frontier ϕpxq when the trimming number m

tends to infinity. Likewise, its empirical version

pϕmpxq “

ż 8

0

`

1´ r pFY xpyqs
m
˘

dy “ pϕpxq ´

ż

pϕpxq

0

r pFY xpyqs
m dy (4)

converges to the FDH frontier pϕpxq asmÑ 8. However, unlike pψmpxq, the weight-generating

function defining pϕmpxq is by construction appreciably less sensitive to border effects:

pϕmpxq “

n
ÿ

i“1

Y x
piq

"ˆ

i

n

˙m

´

ˆ

i´ 1

n

˙m*

(5)

where Y x
piq denotes the ith order statistic of the observations Y x

1 , . . . , Y
x
n . This marks a

substantial difference with pψmpxq as can be visualized in the bottom panels of Figure 1 and

Figure 2 for both cases of postal services.
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2.3 Monotonicity requirement

From the point of view of the axiomatic foundation for production functions, nothing guar-

antees that the usual conditional expected maximum production function ψmpxq and its

estimator pψmpxq satisfy the monotonicity requirement. By contrast, both our population

and sample unconditional versions ϕmpxq and pϕmpxq enjoy the desirable axiom of mono-

tonicity of the true efficient frontier ϕpxq. Indeed, it is not hard to verify that

FY xpyq ” t1´ PpX ď x, Y ą yqu 1Ipy ě 0q.

Then, for all y ě 0, the function x ÞÑ FY xpyq is nonincreasing. Therefore, the unconditional

partial frontier function ϕmpxq defined in (3) is nondecreasing in x, for all m ě 1. Likewise,

it is easily seen that

pFY xpyq ”

#

1´
1

n

n
ÿ

i“1

1IpXi ď x, Yi ą yq

+

1Ipy ě 0q

is nonincreasing in x. Whence, the empirical estimator pϕmpxq described in (4) is constrained

to be nondecreasing in x, for all m ě 1. This advantage of the new class of unconditional

expected maxima tpϕmu over the original concept of conditional versions t pψmu is better

illustrated by Figure 2 (top versus bottom).

2.4 Asymptotic properties

From the asymptotic point of view, we first establish the following representation.

Proposition 2. For all m ě 1 and all x P Rp
` such that FXpxq ą 0, we have

?
ntpϕmpxq ´ ϕmpxqu “

?
nΦm,npxq ` opp1q (6)

as nÑ 8, where Φm,npxq “ m
şϕpxq

0
rFY xpyqs

m´1
!

FY xpyq ´ pFY xpyq
)

dy.

An immediate consequence of this result is that
?
n
 

pϕmpxq ´ ϕmpxq
(

is asymptotically

normal with zero mean and variance

σ2
px,mq “ E

#

m

ż ϕpxq

0

rFY xpyqs
m´1

 

1IpY x
ď yq ´ FY xpyq

(

dy

+2

“ m2

ż ϕpxq

0

ż ϕpxq

0

“

FY xpyqFY xpzq
‰m´1 

FY xpy ^ zq ´ FY xpyqFY xpzq
(

dydz. (7)

Even more strongly, we have the following functional central limit theorem.
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Figure 1: Scatterplot of the n “ 2, 326 delivery post offices (data in logarithms)—

Estimated expected maximum production frontiers pψm (top) and pϕm (bottom), with m “

600, 700, 800, 900, n and m “ 8 (FDH), respectively, in green, red, yellow, violet, black

and gray curves (see the online text for the coloured graphics).
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Figure 2: Scatterplot of the n “ 4, 000 delivery post offices—Estimated expected maximum

production frontiers pψm (top) and pϕm (bottom), with m “ 600, 700, 800, 900, n and m “ 8

(FDH), respectively, in green, red, yellow, violet, black and gray curves (see the online text

for the coloured graphics).
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Theorem 1. Suppose the support of Y is bounded. Then, for all m ě 1 and any X Ă Rp
`

such that infxPX FXpxq ą 0, (6) holds uniformly in x P X , that is

t
?
nppϕmpxq ´ ϕmpxqq; x P X u “ t

?
nΦm,npxq; x P X u ` opp1q,

and
?
nppϕm´ϕmq converges in distribution in L8pX q, as a process indexed by x P X , to the

centered Gaussian process described in the proof.

Next, we show that
?
n
 

pϕmpxq ´ ϕmpxq
(

also obeys a law of the iterated logarithm,

which improves the order of convergence to Op
?

log log nq and even gives the proportionality

constant.

Theorem 2. For all m ě 1 and x P Rp
` such that FXpxq ą 0, we have almost surely, for

either choice of sign,

lim sup
nÑ8

˘

?
n
 

pϕmpxq ´ ϕmpxq
(

p2 log log nq1{2
“ σpx,mq.

2.5 Robustness properties

From a robustness theory viewpoint, both the conditional expected maximum production

function ψmpxq ” Tm,x
`

FpX,Y q
˘

and its estimator pψmpxq ” Tm,x
`

pFpX,Y q
˘

are representable as

a functional Tm,x of the population and empirical distribution functions

FpX,Y qpx, yq :“ PpX ď x, Y ď yq and pFpX,Y qpx, yq :“
1

n

n
ÿ

i“1

1IpXi ď x, Yi ď yq,

respectively, where the statistical functional Tm,x associates with a distribution function

F p¨, ¨q on Rp
` ˆ R`, such that F px,8q ą 0, the real value

Tm,xpF q “

ż 8

0

ˆ

1´

„

F px, yq

F px,8q

m˙

dy,

with the integrand being identically zero for y ě infty P R`|F px, yq{F px,8q “ 1u. The rich-

est quantitative robustness information is then provided by the influence function px0, y0q ÞÑ

IF
`

px0, y0q;T
m,x, FpX,Y q

˘

of Tm,x at FpX,Y q. It is defined as the first Gâteaux derivative of

the functional Tm,x at FpX,Y q, where the point px0, y0q plays the role of the coordinate in

the infinite-dimensional space of probability distributions [see Hampel et al. (1986)]. The

relevance of the influence function lies in its two main uses. First, it describes the effect

of an infinitesimal contamination at the point px0, y0q on the estimate, standardized by the

mass of the contamination. Second, it allows one to assess the relative influence of individual

observations px0 “ Xi, y0 “ Yiq on the value of the estimate pψmpxq. An important robustness
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requirement is the B-robustness [Rousseeuw (1981)] which corresponds to a finite gross-error

sensitivity. The maximum absolute value

γ˚
`

Tm,x, FpX,Y q
˘

“ sup
px0,y0qPRp`1

`

ˇ

ˇIF
`

px0, y0q;T
m,x, FpX,Y q

˘

|

defines the gross-error sensitivity of Tm,x at FpX,Y q. If this is unbounded, outliers can cause

trouble. But according to Daouia and Ruiz-Gazen (2006), we have

IF
`

px0, y0q;T
m,x, FpX,Y q

˘

“
m

FXpxq
1Ipx0 ď xq

ż ϕpxq

0

Fm´1
Y |X py|xq

“

FY |Xpy|xq ´ 1Ipy0 ď yq
‰

dy,

(8)

and hence γ˚
`

Tm,x, FpX,Y q
˘

ď m
FXpxq

ϕpxq. Even more precisely, we show here the following.

Proposition 3. For all m ě 1 and x P Rp
` such that FXpxq ą 0,

γ˚
`

Tm,x, FpX,Y q
˘

“
m

FXpxq
max

#

ż ϕpxq

0

Fm
Y |Xpy|xqdy,

ż ϕpxq

0

Fm´1
Y |X py|xq

“

1´ FY |Xpy|xq
‰

dy

+

”
m

FXpxq
max tϕpxq ´ ψmpxq, ψmpxq ´ ψm´1pxqu . (9)

The occurence of the vexing border effect of the partial frontier estimators pψmpxq, due to

the conditioning by the event tX ď xu, is reflected by the presence of low values of FXpxq

in the denominator of both (8) and (9).

Turning to the competing concept of unconditional expected maximum production func-

tions, both ϕmpxq ” Tm
`

FY x
˘

and pϕmpxq ” Tm
`

pFY x
˘

are representable as a functional Tm of

the population and empirical transformed distribution functions FY x and pFY x , respectively,

where Tm associates with a univariate distribution function F p¨q on R` the real value

TmpF q “

ż 8

0

`

1´ rF pyqsm
˘

dy “

ż F´1p1q

0

`

1´ rF pyqsm
˘

dy,

with the integrand being identically zero for y ě F´1p1q :“ infty P R|F pyq “ 1u. Following

Hampel et al. (1986, Definition 1, p.84), the corresponding influence function of Tm at FY x

is defined as the ordinary derivative

u P R` ÞÑ IF
`

u;Tm, FY x
˘

“
d

dt |t“0
Tm pp1´ tqFY x ` tδuq .

In robust statistics, a small fraction of the observations would have a strong influence on the

estimator if their values were equal to a u where the influence function is large.

12



Proposition 4. For all m ě 1 and x P Rp
` such that FXpxq ą 0, we have

IF
`

u;Tm, FY x
˘

“ ´m

ż ϕpxq

0

rFY xpyqs
m´1

 

δupyq ´ FY xpyq
(

dy

” ´m

ż ϕpxq

0

“

1´ FXpxq ` FpX,Y qpx, yq
‰m´1  

1Ipu ď yq ´ 1` FXpxq ´ FpX,Y qpx, yq
(

dy.

This closed form expression of the influence function indicates that the unconditional

m-frontiers pϕmpxq ” Tm
`

pFY x
˘

do not suffer from the inherent border effects of the initial

concept of conditional m-frontiers pψmpxq ” Tm,x
`

pFpX,Y q
˘

. Moreover, by making use of the

same technique of the proof of Proposition 3, it is easily seen that the gross-error sensitivity

λ˚
`

Tm, FY x
˘

:“ supuě0

ˇ

ˇIF
`

u;Tm, FY x
˘
ˇ

ˇ satisfies

λ˚
`

Tm, FY x
˘

“ m ¨max

#

ż ϕpxq

0

Fm
Y xpyqdy,

ż ϕpxq

0

Fm´1
Y x pyq r1´ FY xpyqs dy

+

” m ¨max tϕpxq ´ ϕmpxq, ϕmpxq ´ ϕm´1pxqu

which, in contrast to γ˚
`

Tm,x, FpX,Y q
˘

, does not explode when x decreases. Also, as can be

seen from (6) in Proposition 2, IF
`

Y x
i ;Tm, FY x

˘

represents the approximate contribution, or

influence, of the observation pXi, Yiq toward the estimation error
 

pϕmpxq ´ ϕmpxq
(

, since

?
ntpϕmpxq ´ ϕmpxqu “

?
nΦm,npxq ` opp1q ”

1
?
n

n
ÿ

i“1

IF
`

Y x
i ;Tm, FY x

˘

` opp1q, nÑ 8.

Similarly, the influence function of the ‘conditional’ partial frontier estimator, described

in (8), measures the asymptotic bias caused by contamination in the observations pXi, Yiq:

?
n
`

pψmpxq ´ ψmpxq
˘

“
1
?
n

n
ÿ

i“1

IF
`

pXi, Yiq;T
m,x, FpX,Y q

˘

` opp1q, nÑ 8.

However, the consideration of the ‘unconditional’ partial frontier estimator pϕmpxq, instead

of the conditional frontier estimator pψmpxq, may result in a better asymptotic variance (7),

especially when PpX ď xq is small.

2.6 Regularized frontier estimators

It should be clear that the estimation of a “partial” frontier ϕm, for a sufficiently large value

of m, instead of the “full” frontier ϕ is mainly motivated by the search for a “robust” frontier

estimator pϕm which is well inside the cloud of data points tpXi, Yiq, i “ 1, . . . , nu, but lies

near the true upper support boundary. The robustness of pϕm comes from its convergence

monotonely from below to the smallest sample envelope (FDH) pϕ as the trimming number
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m increases. When m “ mn Ñ 8 at a fast rate as nÑ 8, the next theorem shows that the

robust frontier pϕmnpxq estimates ϕpxq itself and converges to the same limit distribution as

the FDH estimator pϕ with the same scaling. Recall first that, following Daouia et al. (2010,

Theorem 2.1), there exists bn ą 0 such that b´1
n ppϕpxq ´ϕpxqq converges to a non-degenerate

distribution if and only if

FXpxqr1´ FY |Xpy|xqs “ Lx
`

tϕpxq ´ yu´1
˘

pϕpxq ´ yqρx as y Ò ϕpxq,

for some constant ρx ą 0, where Lxp¨q is a slowly varying function, that is, limtÒ8 Lxptzq{Lxptq “

1 for all z ą 0. The limit distribution function is identical to

Fρxpyq “ expt´p´yqρxu with support p´8, 0s.

Under the sufficient condition that Lx ptϕpxq ´ yu
´1q „ `x ą 0 as y Ò ϕpxq, that is

Condition Cpρx, `xq: For some constants ρx ą 0 and `x ą 0,

FXpxqr1´ FY |Xpy|xqs “ `x
`

ϕpxq ´ y
˘ρx
` o

`

pϕpxq ´ yqρx
˘

as y Ò ϕpxq,

it is shown in Daouia et al. (2010, Corollary 2.1) that bn „ pn`xq
´1{ρx and

pn`xq
1{ρx

 

ϕpxq ´ pϕpxq
( L
ÝÑ Weibullp1, ρxq as nÑ 8,

where a random variable W is said to follow the distribution Weibullp1, ρxq if W ρx is Expo-

nential with parameter 1. As described thoroughly in Remark 2.3 of Daouia et al. (2010),

the exponent ρx has the following intuitive meaning in terms of the density of pX, Y q and

the dimension pp` 1q: When ρx ą p` 1, the joint density decays to zero at a speed of power

ρx ´ pp` 1q of the distance from the frontier point ϕpxq. When ρx “ p` 1, the density has

a sudden jump at the frontier. Finally, when ρx ă p` 1, the density rises up to infinity at a

speed of power ρx ´ pp` 1q of the distance from the frontier.

Theorem 3. For x P Rp
` such that FXpxq ą 0, if Cpρx, `xq holds and mn ě βn log nt1 `

op1qu for some constant β ą 1
ρx
` 1, then

pn`xq
1{ρx

 

ϕpxq ´ pϕmnpxq
( L
ÝÑ Weibullp1, ρxq as nÑ 8.

By contrast, when m “ mn Ñ 8 at a slow rate as nÑ 8, the robust frontier estimator

pϕmnpxq becomes asymptotically Gaussian, as in the regular case of a fixed m.

Theorem 4. Let x P Rp
` such that FXpxq ą 0.

(i) If mn Ñ 8 and m2
n

σpx,mnq
“ O

´ ?
n

log logn

¯

as nÑ 8, then

?
n

σpx,mnq
tpϕmnpxq ´ ϕmnpxqu

L
ÝÑ N p0, 1q, nÑ 8. (10)
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(ii) Under the extreme-value condition Cpρx, `xq , we have

cxm
1´2{ρx ď σ2

px,mq ď c̃xm
2´2{ρx as mÑ 8,

for some positive constants cx and c̃x.

(iii) Also, under Cpρx, `xq , if mn Ñ 8 with mn “ O
´ ?

n
log logn

¯
1

3
2`

1
ρx , then the asymptotic

normality (10) is still valid.

Note that the explicit condition mn Ñ 8 with mn “ O
´ ?

n
log logn

¯
1

3
2`

1
ρx , in Theorem 4 (iii),

implies that mn{
?
n Ñ 0 as n Ñ 8. We would like also to comment on the speed of

convergence
?
n{σpx,mnq, obtained in Theorem 4 (i) and (iii), when the trimming level

mn Ñ 8 at a slow rate so that mn “ c
´ ?

n
log logn

¯
1

3
2`

1
ρx , for some constant c ą 0. By

Theorem 4 (ii), as nÑ 8, we get

k1

?
n

1
2`

2
ρx

3
2`

1
ρx plog log nq

1´ 1
ρx

3
2`

1
ρx ď

?
n

σpx,mnq
ď k2

?
n

1` 2
ρx

3
2`

1
ρx plog log nq

1
2´

1
ρx

3
2`

1
ρx

for some constants k1, k2 ą 0. In the particular case ρx “ p ` 1, often assumed in the

literature of production econometrics, which corresponds to a joint density of pX, Y q having

a jump at the frontier point ϕpxq, we have

k1

`

n3{2 log log n
˘1{4

ď

?
n

σpx,mnq
ď k2

?
n as p “ 1,

and k1 n
1{6
plog log nq2{3 ď

?
n

σpx,mnq
ď k2 pn log log nq1{3 as p Ò 8.

Interestingly, even when the data dimension explodes, the speed of convergence does not

deteriorate too much, thereby reducing the curse of dimensionality that is typical of many

nonparametric frontier estimators such us, for instance, the FDH estimator.

2.7 Bias-corrected estimator of ϕpxq

Under the extremal condition Cpρx, `xq , when mn Ñ 8 with mn “ O
´ ?

n
log logn

¯
1

3
2`

1
ρx ,

Theorem 4 (iii) actually indicates that pϕmnpxq estimates ϕpxq itself with the inherent bias

Bmnpxq “ ϕpxq ´ ϕmnpxq such that
?
n

σpx,mnq
tpϕmnpxq ´ ϕpxq `Bmnpxqu

L
ÝÑ N p0, 1q, nÑ 8. (11)

Recall that, in view of (3),

ϕmnpxq “ E
“

maxpY x
1 , . . . , Y

x
mnq

‰
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is nothing but the expectation of the FDH estimator, maxpY x
1 , . . . , Y

x
mnq ” maxi:Xiďx Yi,

based on themn-tuple tY x
i “ Yi1I pXi ď xqui“1,...,mn . Under the sufficient condition Cpρx, `xq,

the limit theorem of moments of the FDH estimator in Daouia et al. (2010, Theorem 2.1 (iii))

shows that

lim
mnÑ8

E
“

b´1
mn

 

ϕpxq ´maxpY x
1 , . . . , Y

x
mnq

(‰

“ Γp1` 1{ρxq,

where Γ is the gamma function, which entails that

lim
mnÑ8

b´1
mn tϕpxq ´ ϕmnpxqu “ Γp1` 1{ρxq, (12)

with bmn „ pmn`xq
´1{ρx , or equivalently,

Bmnpxq “ ϕpxq ´ ϕmnpxq “ pmn`xq
´1{ρxΓp1` 1{ρxq ` o

`

m´1{ρx
n

˘

, nÑ 8. (13)

Combining this with Theorem 4 (ii), it follows that the introduced bias (normalized by the

rate of convergence) is bounded below by

?
n

σpx,mnq
Bmnpxq ą čx

´?
n

1
2
` 1
ρx log log n

¯
1

3
2`

1
ρx ,

for some constant čx ą 0. The normalized bias does not then vanish asymptotically, and

hence one would use in practice the asymptotic approximation:

ϕpxq ´ pϕmnpxq « N
ˆ

Bmnpxq,
σ2px,mnq

n

˙

,

where Bmnpxq and σ2px,mnq have to be replaced by consistent estimators. The plugging

version of σ2px,mnq in (7) provides a consistent estimator of this asymptotic variance. As

for the bias term, a consistent estimator can be obtained through the leading part of (13)

once ρx and `x are consistently estimated. One way of estimating these parameters is by

adapting the ideas from Section 4.1 in Daouia et al. (2012). Given an integer a ě 2, we have

by (12) that

lim
nÑ8

ϕamnpxq ´ ϕmnpxq

ϕa2mnpxq ´ ϕamnpxq
“ a1{ρx ,

which motivates the estimator

pρx :“ logpaq

"

log

ˆ

pϕamnpxq ´ pϕmnpxq

pϕa2mnpxq ´ pϕamnpxq

˙*´1

. (14)

On the other hand, it follows from (13) that

`x „
1

mn

„

p1´ a´1{ρxqΓp1` 1{ρxq

ϕamnpxq ´ ϕmnpxq

ρx

, nÑ 8,
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which suggests the estimator

p`x :“
1

mn

„

p1´ a´1{pρxqΓp1` 1{pρxq

pϕamnpxq ´ pϕmnpxq



pρx

. (15)

Both pρx and p`x are consistent estimators.

Theorem 5. Under the conditions of Theorem 4 (iii),

pρx
p
ÝÑ ρx and p`x

p
ÝÑ `x as nÑ 8. (16)

Let us now return to the starting point (4.3) to investigate the asymptotic normality of

the bias-corrected estimator itself. This estimator is defined as

rϕmnpxq :“ pϕmnpxq ` pBmnpxq, (17)

where, assuming for ease of presentation that ρx is given,

pBmnpxq :“ pmn
p`xq

´1{ρxΓp1` 1{ρxq

is the plug-in version of the bias Bmnpxq obtained by replacing `x, in the leading part of (13),

with its consistent estimate

p`x :“ p`xpm̃nq “
1

m̃n

„

p1´ a´1{ρxqΓp1` 1{ρxq

pϕam̃npxq ´ pϕm̃npxq

ρx

. (18)

Here, we shall distinguish between the trimming level mn in the estimator rϕmnpxq of the

frontier function ϕpxq and the level m̃n used in the estimator p`x of the parameter `x. Nothing

guarantees that the two levels are necessarily the same. It should also be noted that, while

the asymptotic normality of the partial frontier estimator pϕmnpxq in Theorem 4 hinges on

the first-order representation (13), that is

ϕpxq ´ ϕmnpxq “ pmn`xq
´1{ρxΓp1` 1{ρxq ` o

`

m´1{ρx
n

˘

, nÑ 8,

which is implied by the extremal condition Cpρx, `xq, the asymptotic normality of the full

frontier estimator rϕmnpxq requires the following second-order representation:

Condition C2pρx, `x, αxq: For some constants ρx ą 0, `x ą 0 and αx ą 0,

ϕpxq ´ ϕmnpxq “ pmn`xq
´1{ρxΓp1` 1{ρxq ` o

`

m´p1`αxq{ρx
n

˘

, nÑ 8,

where the extra parameter αx is needed to control the speed of convergence, in the first-order

condition, of pmn`xq
1{ρx tϕpxq ´ ϕmnpxqu to Γp1` 1{ρxq.
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Theorem 6. Let x P Rp
` such that FXpxq ą 0. Under Cpρx, `xq and C2pρx, `x, αxq

with αx ą ρx`1, if mn “ c
´ ?

n
log logn

¯
1

3
2`

1
ρx

´ε

and m̃n “ c̃
´ ?

n
log logn

¯
1

3
2`

1
ρx

´ε̃

, for some constants

c, c̃ ą 0 and 0 ă ε̃ ă
´

3
2
` 1

ρx

¯´1

ă 2ε̃´ε, such that 1´ 1
2

ˆ

1
3
2
` 1
ρx

´ ε

˙

´ αx
ρx

ˆ

1
3
2
` 1
ρx

´ ε̃

˙

ă 0,

then ?
n

σpx,mnq

`

rϕmnpxq ´ ϕpxq
˘ L
ÝÑ N p0, 1q as nÑ 8.

The condition αx ą ρx ` 1 in Theorem 6 is needed to control the bias approximation

error (driven by the last term in C2pρx, `x, αxq) so as to get
?
n

σpx,mnq
o
´

m
´p1`αxq{ρx
n

¯

“ op1q.

The condition
´

3
2
` 1

ρx

¯´1

ă 2ε̃ ´ ε is required to select rmn “ o
´

m
1{2
n

¯

in the estimator

p`x :“ p`xpm̃nq of `x. It is easily seen that the condition ε̃ ă
´

3
2
` 1

ρx

¯´1

implies

1´
1

2

˜

1
3
2
` 1

ρx

´ ε

¸

´
αx
ρx

˜

1
3
2
` 1

ρx

´ ε̃

¸

ă 1´
1

2
pε̃´ εq.

Hence, the last condition of the theorem, that is 1´ 1
2

ˆ

1
3
2
` 1
ρx

´ ε

˙

´ αx
ρx

ˆ

1
3
2
` 1
ρx

´ ε̃

˙

ă 0 is

satisfied if, for instance, ε̃´ ε ą 2.

It should be noted that we restrict ourselves in Theorem 6 to the case where ρx is known.

This corresponds, for instance, to the standard assumption in productivity and efficiency

analysis that the joint density of data pXi, Yiq has jumps at the frontier, or equivalently

ρx “ p ` 1 (see the discussion above Theorem 3). The question of whether the asymptotic

normality in Theorem 6 still holds when replacing ρx by its estimator pρx is of interest. The

complexity of using pρx in place of ρx in the proof is that it adds two additional terms to the

two terms I and II already in use in (A.8). Theoretical developments along these lines are

left for future research.

3 Trimming selection problem

We return here to our real data examples with a single input (p “ 1) to explore in Section 3.1

the selection of the trimming level mn in the partial frontier pϕmn , before moving to the final

bias-corrected frontier rϕmnpxq in Section 3.2. We extend our discussion to multiple inputs

(p ą 1) in Section 3.3.

3.1 Selecting the partial frontier pϕmn

In productivity and efficiency analysis where outliers are likely to affect traditional envelop-

ment approaches, a common robust practice in operations research and applied work consists
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in using an empirical partial frontier as a benchmark to measure the efficiency of production

units. Unfortunately, the chosen partial frontier is often based on an a priori selected order

m “ mn in the case of conditional expected maxima, or tail probability in the case of con-

ditional quantiles. Here, we propose practical guidelines for a more justified selection from

a robustness theory viewpoint.

As with any trimming techniques, the degree of truncation, here reflected through m

selection, is a major issue in practice. But monotonicity itself is a rather powerful way

of regularizing the estimated expected maximum production function. Because it elimi-

nates sharp changes in the slope and curvature of the unconditional m-frontier function,

the trimming selection problem tends to be easier than unconstrained conditional m-frontier

estimation. Of course, if the model is known or believed to be nearly correct, then the use

of the envelopment FDH estimator pm “ 8q is required. Otherwise, if the dataset contains

suspicious isolated extreme observations, it is more prudent to seek for ‘robustification’ via

the choice of an adequate trimming level m. To verify the presence of such influential obser-

vations among the data (e.g. French and European postal datasets), a simple diagnostic tool

is by using the gross-error sensitivity of the sequence tpϕmum which corresponds to the maxi-

mum influence function. Figure 3 shows the sample gross-error sensitivity x ÞÑ λ˚
`

Tm, pFY x
˘

,

for various values of m “ 100, 200, . . . , 1500. For both postal services, the evolution of λ˚

exhibits some slight and severe breakdowns at different values of x, especially in the case of

French post offices (r-h.s). This indicates the presence of isolated extreme and/or anomalous

data. One way of choosing the trimming number m is then by looking to Figure 4 which

indicates how the percentage of data points pXi, Yiq above the curve of pϕm decreases with m.

The basic idea is to choose values of m for which the frontier estimator pϕm is sensitive to the

magnitude of valuable extreme post offices while remaining resistant to isolated outliers.

The evolution of the percentage in both sectors of Delivery Services has clearly an “L”

structure highlighted by a colour-scheme, ranging from dark red (high %) to dark violet

(low %). We refer readers to the online text for the “colouring of the L evolution”. Such

an L deviation should appear for any other analyzed data set since, by construction, the

probability-weighted moments pϕm steer an advantageous middle course between sensitivity

and robustness to extreme values and/or outliers. In the case of 2, 326 delivery post offices

(top picture in Figure 4), the percentage first falls rapidly along the ‘red’ part of the curve.

This means that most of the observations lying above the corresponding m-frontiers are

not extremes but interior points to the cloud of data points. Then the evolution of the

percentage shows an “elbow effect” along the ‘orange’ and ‘green’ parts of the curve. This

means that the observations outside the corresponding m-frontiers are no more inefficient,

but still contain either relatively efficient post offices that are well inside the sample or top
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Figure 3: Plots of x ÞÑ λ˚
`

Tm, pFY x
˘

for m “ 100, 200, . . . , 1500. From left to right, the 2,326

and 4,000 post offices.

observations that are valuable post offices. In contrast, after the elbow effect, it may be

seen that the percentage decreases very slowly along the ‘blue’ part, say 850 ď m ď 1250,

before becoming extremely stable along the ‘violet’ part of the curve. This means that all

observations left outside the partial frontier of order m “ 850 are really very extreme in the

Y -direction and could be outlying or perturbed by noise. This might suggest to select 850

as a potential lower value for m. On the other hand, the extreme stability of the percentage

curve from m “ 1250 may indicate that the observations above the frontier pϕ1250 are really

outlying or suspicious isolated extremes that deserve to be carefully examined. This might

suggest to choose 1250 as a potential upper value for m. The two potential choices of the

frontier estimator pϕm are graphed in Figure 5 along with the FDH estimator.

As regards the 4, 000 delivery post offices (bottom picture in Figure 4), it may be seen

that the “elbow effect” corresponds to the ‘orange’ part of the percentage curve, and the

desired range of values of m follows as the ‘green’ part, say, 500 ď m ď 1000. The lower and

upper selected prudential frontiers pϕ500 and pϕ1000 are superimposed in Figure 5 along with

the FDH estimator. Unsurprisingly, there are very few observations lying between the two

partial frontiers.
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Figure 4: Evolution of the % of sample points outside the partial m-frontiers pϕm (see the

online text for a colour-scheme).

3.2 The final bias-corrected frontier rϕmn
pxq

Under the usual assumption in production econometrics that ρx “ p`1 ” 2, the final frontier

estimator rϕmnpxq has the closed form expression

rϕmnpxq “ rϕmn,m̃n,apxq “ pϕmnpxq ` pmn
p`xq

´1{ρxΓp1` 1{ρxq

” pϕmnpxq `

ˆ

m̃n

mn

˙1{2
pϕam̃npxq ´ pϕm̃npxq

p1´ a´1{2q
,
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Figure 5: Selected (lower and upper) expected maximum production frontiers pϕm. Top—

dataset of size 2, 326 in logarithms, with m “ 1250 (upper) in solid line, m “ 850 (lower)

in dashed line, and m “ 8 (FDH) in dashdotted line. Bottom—dataset of size 4, 000, with

m “ 1000 (upper) in solid line, m “ 500 (lower) in dashed line, and m “ 8 (FDH) in

dashdotted line.
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where mn P r850, 1250s for the sample size 2,326 and mn P r500, 1000s for the sample size

4,000. For illustration purposes, we restrict to the upper selected prudential levels mn “ 1250

for n “ 2,326 and mn “ 1000 for n “ 4,000. Our experience with these data indicates that

rϕmnpxq is not sensitive to the choice of the tuning parameter a ě 2. For example, the

frontier estimates obtained for all values of a in r2, 10s appear to be very similar. However,

the estimates seem to be more sensitive to the choice of m̃n. This is illustrated in Figure 6

for both datasets, where the final bias-corrected frontiers x ÞÑ rϕmnpxq are plotted for a “ 2

and two different values of m̃n “ m0.005
n (dashed) and m̃n “ m0.2

n (solid), along with the

non-robust FDH frontier (dashdotted). Although the resulting (blue and red) frontiers for

both values of m̃n are very close for the largest dataset of size n “ 4,000 (bottom panel), it

may be seen that they are quite different in the case n “ 2,326 (top panel). We do not enter

here into the question of optimal selection of m̃n, but it is clearly of genuine interest and is

still open for future research.

3.3 Extension to multiple inputs

It should be clear that, thanks to the dimensionless transformation adopted in (2), the

practical guidelines described above evidently apply to higher dimension p ą 1. For our

illustration purposes we consider here a real data example in the case p “ 2, where the

dataset consists of n “ 406 firms in the petroleum, chemical and plastics industries in

Ecuador in 2002. For each firm, we have information on the capital K in thousands of

USD, the average number of employees L and the value-added real output Y in thousands

of USD. The scatterplot of the 406 observations (in logarithm scale) is displayed in Figure 7.

In this particular example, the efficient FDH surface is determined by only 12.56% of the

firms, and some of these extremal FDH firms are outlying as can be seen from Daouia and

Park (2013). The latter authors used the ‘conditional’ partial m´frontiers t pψmum, rather

than the unreliable FDH frontier, as a robust benchmark for the assessment of the production

performance of firms. The objective here is to compare their method with our alternative

proposal of ‘unconditional’ partial m´frontiers tpϕmum, for a suitable choice of the trimming

levels m.

Figure 8 shows the evolution of the percentage of sample points left outside both partial

m-frontiers pψm (pink curve) and pϕm (rainbow curve); we refer readers to the online text

for the coloured graphics. The decrease of the percentage corresponding to the ‘uncondi-

tional’ partial m-frontiers pϕm is clearly slower than the one corresponding to the ‘conditional’

versions pψm. This reflects the resistance of the ‘unconditional’ partial m-frontiers to the mag-

nitude of extremes and/or outliers. It may also be seen that the decrease of the percentage
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Figure 7: The capital K (in log), the average number of employees L (in log) and the value-

added real output Y (in log).

becomes very slow from m “ 183 for the pink curve (indicated by the vertical pink line)

and from m “ 336 for the rainbow curve (indicated by the vertical blue line). Figure 9 (top

panel) shows the resulting values pψ183pxiq for 20 randomly chosen grid inputs xi “ pKi, Liq.

As is to be expected in the case of conditional expected maxima, there are many violations

of monotonicity by the multi-argument function pψ183pxiq (with respect to the partial order

induced by ‘ď’). Figure 9 (bottom panel) displays the values of pϕ336pxiq for the same se-

lected 20 points, showing that the unconditional expected maximum production function is

well isotonic nondecreasing. When taking larger trimming levels m (in the stable regions

starting from the vertical dashed lines), the lessons were the same in terms of robustness

and monotonicity.

4 Numerical illustrations

In this section, we illustrate our procedure through two standard examples with simulated

data. We consider the same data generating processes traditionally used in the literature

of nonparametric frontier estimation such as, for instance, Gijbels et al. (1999), Cazals

et al. (2002), Simar (2003), Florens and Simar (2005), Daouia et al. (2005), Daouia and

Ruiz-Gazen (2006), Daouia and Gijbels (2011), and Noh (2014).

Example 1. We first consider a situation where the upper extremity of the joint support

of pX, Y q is linear. We choose pX, Y q uniformly distributed over the triangle tpx, yq P r0, 1s2 :
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y ď xu. Here, the true full frontier function is ϕpxq “ x, and the conditional distribution

function is FY |Xpy|xq “ 2x´1y ´ x´2y2, for 0 ă x ď 1 and 0 ď y ď ϕpxq. The partial

conditional order-m frontier function is

ψmpxq “ ϕpxq ´
m
ÿ

k“0

ˆ

m

k

˙

2m´kp´1qkx{pm` k ` 1q.

Its unconditional analogue for the same order m is given by

ϕmpxq “ ϕpxq ´
m
ÿ

k“0

ˆ

m

k

˙

p´1qkx2k`1
{p2k ` 1q.

Example 2. We now consider a more realistic example from the point of view of production

econometrics. We choose a non-linear production frontier given by the Cobb-Douglas model

Y “ X1{2 expp´Uq, where X is uniform on r0, 1s and U , independent of X, is exponential

with mean 1{3. Here, the full production function is ϕpxq “ x1{2, and the conditional

distribution function is FY |Xpy|xq “ 3x´1y2 ´ 2x´3{2y3, for 0 ă x ď 1 and 0 ď y ď ϕpxq.

The partial order-m frontier functions have the following closed form expressions:

ψmpxq “ ϕpxq ´
m
ÿ

k“0

ˆ

m

k

˙

3m´kp´2qk
?
x{p2m` k ` 1q,

ϕmpxq “ ϕpxq ´
m
ÿ

k“0

ˆ

m

k

˙

xk`1{2
p´1qk

k
ÿ

j“0

ˆ

k

j

˙ j
ÿ

i“0

ˆ

j

i

˙

p´3qj´i2i{p2j ` i` 1q.
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4.1 Comparison of population m´frontiers

For both examples, the graphs of ψm and ϕm are superimposed in Figures 10 and 11, for

three values of m “ 1, 10, 25, along with the true support boundary ϕ. First, it may be seen

from the plots that the conditional m´frontiers ψmpxq [dotted curves] diverge from the true

frontier ϕpxq [solid curve] as x increases. Whereas the new unconditional m´frontiers ϕmpxq

[dashed curves] tend to be more parallel to the full frontier ϕpxq. Second, the partial condi-

tional m´frontiers approach rapidly the full frontier as m increases, while the convergence

of the unconditional m´frontiers seems to be slower. Already these substantial differences

indicate the usefulness of the new concept of unconditional expected maximum production

m´frontiers.

Moreover, the new unconditional m´frontier ϕm can be viewed as a ‘robustified’ alter-

native to the original conditional m´frontier ψm, for each trimming level m. This is visu-

alised in Figures 12 and 13, where the gross-error sensitivities γ˚
`

Tm,x, FpX,Y q
˘

of ψmpxq and

λ˚
`

Tm, FY x
˘

of ϕmpxq are plotted against m, for various values of x P t1
4
, 1

2
, 3

4
u. According

to Hampel, Ronchetti, Rousseeuw and Stahel (1986, p.43), the most important quantita-

tive robustness requirement is a low gross-error sensitivity. From this basis, it is clear that

the new class of unconditional m´frontiers affords more reliability since the corresponding

gross-error sensitivity λ˚ [dashed line] is overall smaller than γ˚ [solid line]. Of interest is

the limit case m Õ 8, where γ˚ explodes especially for low inputs-usage x, whereas λ˚

remains appreciably small and stable whatever the value of x. This indicates that the se-

quence of empirical unconditional m´frontiers tpϕmpxqun is more resistant to extreme values

and/or outliers than its conditional analogue t pψmpxqun for estimating the true full frontier

ϕpxq “ limmÑ8 ϕmpxq “ limmÑ8 ψmpxq. The lack of robustness of t pψmpxqun, for small

values of x, is due to its construction via the conditioning by X ď x.

4.2 Biased frontier estimators

To evaluate finite-sample performance of pψmp¨q and pϕmp¨q, as robust estimators of ϕp¨q, we

have undertaken some simulation experiments. All the experiments were performed over

1,000 simulations for the sample sizes n “ 100, 500, 1000. Three outliers were added in

each simulated data set: tp0.1, 0.6q, p0.35, 0.8q, p0.6, 1qu for both uniform-triangle and Cobb-

Douglas examples. The measures of efficiency for each simulation used were the mean squared
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Figure 11: Cobb-Douglas example—Same graphs as before.
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Figure 13: Cobb-Douglas example—Gross-error sensitivities plots as before.

error and the bias

MSEt pψmu “
1

L

L
ÿ

`“1

!

pψmpx`q ´ ϕpx`q
)2

, Biast pψmu “
1

L

L
ÿ

`“1

!

pψmpx`q ´ ϕpx`q
)

MSEtpϕmu “
1

L

L
ÿ

`“1

tpϕmpx`q ´ ϕpx`qu
2 , Biastpϕmu “

1

L

L
ÿ

`“1

tpϕmpx`q ´ ϕpx`qu

with the x`’s being L “ 100 points regularly distributed in r^Xi,_Xis. To guarantee a fair

comparison among the two rival estimation methods, we used for each estimator the optimal

parameter m minimizing its MSE over the wide range t1, . . . , nu. The resulting values of
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MSE and bias are averaged on the 1,000 Monte Carlo replications and reported in Tables 1

and 2, along with the average m of the optimal 1,000 trimming levels m. The obtained

estimates provide Monte Carlo evidence that the new class of partial m´frontiers tpϕmum is

more efficient and robust relative to t pψmum for estimating ϕ. A typical realization of the

experiment in each simulated scenario with n “ 100 is shown in Figure 14, where the optimal

parameter m of each frontier estimator was chosen in such a way to minimize its MSE.

MSE

n t pψmu tpϕmu

100 0.0414 0.0031

500 0.0240 0.0014

1000 0.0175 0.0010

Bias

t pψmu tpϕmu

0.0169 -0.0103

-0.0219 -0.0104

-0.0312 -0.0095

m

t pψmu tpϕmu

7.90 31.76

15.71 100.61

21.02 163.09

Table 1: Uniform triangle example—Results averaged on 1,000 simulations.

MSE

n t pψmu tpϕmu

100 0.0050 0.0019

500 0.0023 0.0006

1000 0.0016 0.0004

Bias

t pψmu tpϕmu

-0.0104 -0.0101

-0.0147 -0.0074

-0.0139 -0.0062

m

t pψmu tpϕmu

21.19 51.24

51.42 150.73

76.65 239.33

Table 2: Cobb-Douglas example—Results averaged on 1,000 simulations.

4.3 Bias-corrected frontier estimators

This section provides Monte Carlo evidence on the usefulness of the proposed ‘unconditional’

expected maximum output frontiers relative to their ‘conditional’ competitors in terms of

average lengths and achieved coverages of the corresponding asymptotic confidence intervals.

More specifically, Theorem 4 indicates that pϕmpxq estimates ϕpxq itself with the inherent

bias Bmpxq “ ϕpxq ´ ϕmpxq such that
?
n

σpx,mq
tpϕmpxq ´ ϕpxq `Bmpxqu

L
ÝÑ N p0, 1q, nÑ 8,

for a suitable choice of m “ mn Ñ 8 as nÑ 8. In our experiments, we used the true value

of the bias Bmpxq and the empirical counterpart σ̂2px,mq of σ2px,mq. As for the conditional

competitor pψm, we have by Theorem 3.1 in Daouia et al. (2012) that
?
n

spx,mq

!

pψmpxq ´ ϕpxq ` bmpxq
)

L
ÝÑ N p0, 1q, nÑ 8,

31



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.2

0.4

0.6

0.8

1

y

phi

psi
5

phi
18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

0

0.2

0.4

0.6

0.8

1

y

phi

psi
13

phi
30

Figure 14: Typical realizations for simulated samples of size n “ 100. Top—Uniform triangle

example. Bottom—Cobb-Douglas example. True frontier ϕ in dotted line with its optimal

m´frontier estimators pψm in dashed line and pϕm in solid line.

where bmpxq “ ϕpxq ´ ψmpxq and

s2
px,mq “

2m2

FXpxq

ż ϕpxq

0

ż ϕpxq

0

Fm
py|xqFm´1

pu|xqr1´ F pu|xqs1Ipy ď uqdydu.

To guarantee a fair comparison with pϕmpxq, we used the true value of the bias bmpxq and

the empirical counterpart ŝ2px,mq of s2px,mq. For each pseudo-bias-corrected estimator

rϕmpxq :“ pϕmpxq `Bmpxq, rψmpxq :“ pψmpxq ` bmpxq,

and each simulated sample, we used the optimal parameter m which minimizes the cor-

responding MSE over the range t1, . . . , t
?
nuu. The asymptotic confidence intervals with

confidence level 100α% have the form

CI
rϕmpxq :“

„

rϕmpxq ˘ zp1`αq{2
σ̂px,mq
?
n



, CI
rψmpxq

:“

„

rψmpxq ˘ zp1`αq{2
ŝpx,mq
?
n



,

with zp1`αq{2 being the p1`αq{2´quantile of the standard Gaussian distribution. The average

lengths and the achieved coverages of the 95% asymptotic confidence intervals CI
rϕmpxq and
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CI
rψmpxq

are displayed in Tables 3 and 4, for x P t1
4
, 1

2
, 3

4
u. It may be seen that the ‘uncondi-

tional’ pseudo-bias-corrected estimator rϕmpxq globally performs better than the ‘conditional’

variant rψmpxq in terms of both average lengths and achieved coverages. The few cases where
rψmpxq is the winner are indicated in bold.

x “ 0.25

n avl
rψmpxq

avl
rϕmpxq cov

rψmpxq
cov

rϕmpxq

100 0.2981 0.0248 0.9930 0.9940

500 0.0753 0.0064 0.9820 0.9730

1000 0.0434 0.0039 0.9590 0.9630

x “ 0.50

n avl
rψmpxq

avl
rϕmpxq cov

rψmpxq
cov

rϕmpxq

100 0.1404 0.0508 0.8820 0.9460

500 0.0471 0.0178 0.9380 0.9550

1000 0.0314 0.0122 0.9340 0.9510

x “ 0.75

n avl
rψmpxq

avl
rϕmpxq cov

rψmpxq
cov

rϕmpxq

100 0.1099 0.0828 0.8800 0.9010

500 0.0432 0.0330 0.9380 0.9450

1000 0.0299 0.0230 0.9390 0.9400

Table 3: Uniform triangle example — Average Lengths and Coverages

5 Conclusion

In this paper we suggest a new approach to estimate nonparametrically and in a robust

way the upper extremity of the joint support of a random vector pX, Y q P Rp
` ˆ R`. For

a prespecified level of inputs-usage x interior to the marginal support of X, the basic idea

is to first transform the pp ` 1q-dimensional vector pX, Y q into a dimensionless random

variable Y x “ Y 1IpX ď xq, and then to define a concept of partial m-frontier ϕmpxq “

E
“

maxpY x
1 , . . . , Y

x
mq
‰

as the expected maximum of m independent copies of Y x. In other

words, we characterize ϕmpxq as the expectation of the popular envelopment FDH estimator

of the true full frontier ϕpxq based on the m-tuple of observations Y x
i “ Yi1I pXi ď xq,

i “ 1, . . . ,m. We get robust estimators of the partial m-frontier functions ϕm as well

as the full production function ϕ (corresponding to the limiting case m Ñ 8). We derive

their asymptotic distributions and robustness properties, and show their superiority over the

pioneering class of conditional expected maximum production frontiers initiated by Cazals

33



x “ 0.25

n avl
rψmpxq

avl
rϕmpxq cov

rψmpxq
cov

rϕmpxq

100 0.1029 0.0539 0.9630 0.9630

500 0.0419 0.0245 0.9610 0.9550

1000 0.0293 0.0176 0.9710 0.9510

x “ 0.50

n avl
rψmpxq

avl
rϕmpxq cov

rψmpxq
cov

rϕmpxq

100 0.0950 0.0870 0.9410 0.9570

500 0.0406 0.0382 0.9650 0.9400

1000 0.0287 0.0269 0.9680 0.9670

x “ 0.75

n avl
rψmpxq

avl
rϕmpxq cov

rψmpxq
cov

rϕmpxq

100 0.0935 0.1031 0.9180 0.9430

500 0.0404 0.0449 0.9590 0.9600

1000 0.0285 0.0316 0.9750 0.9780

Table 4: Cobb-Douglas example — Average Lengths and Coverages

et al. (2002) and popularized by Daouia and Simar (2005), Florens and Simar (2005),

Daouia and Ruiz-Gazen (2006), Daouia and Gijbels (2011), Daouia et al. (2012), to name a

few. The merits and usefulness of our new class of unconditional expected maximum output

frontiers are explored through two concrete datasets on delivery offices in the sector of postal

services. The question of estimating both ϕm and ϕ in a stochastic frontier model, where

the regression errors are assumed to be composite, is a topic of interest for future research.
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Appendix: Proofs

Proof of Proposition 1. By definition (3) we have ϕmpxq “ EpWmq, where Wm “

maxpY x
1 , . . . , Y

x
mq. Hence ϕmpxq “ arg minθPR E

 

pWm ´ θq
2
(

. On the other hand, it is easily

seen that

E
 

pWm ´ θq
2
(

“ E
 

mrFY xpY
x
qs
m´1

¨ pY x
´ θq2

(

.

Therefore, ϕmpxq “ arg minθPR E
 

mrFY xpY
xqsm´1 ¨ pY x ´ θq2

(

. The first-order necessary

condition for the optimality leads to the solution

ϕmpxq “ E
 

mrFY xpY
x
qs
m´1

¨ Y x
(

{E
 

mrFY xpY
x
qs
m´1

(

“ E
 

mrFY xpY
x
qs
m´1

¨ Y x
(

.

The last equality follows from the fact that E
 

mrFY xpY
xqsm´1

(

“ 1.

To prove Proposition 2 and Theorem 1, the basic arguments go as those of the proof of

Proposition 4.1 in Daouia and Gijbels (2011). Fix m ě 1 and x P Rp
` such that FXpxq ą 0.

Define the domain Dx to be the set of joint distribution functions Gp¨, ¨q on Rp
` ˆ R` such

that

Gpx,8q ą 0 and G´1
x p1q ď ϕpxq, (A.1)
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where G´1
x p1q :“ infty ě 0| Gxpyq “ 1u stands for the right-endpoint of the support of the

transformed distribution function

Gxpyq “

"

1´Gpx,8q

„

1´
Gpx, yq

Gpx,8q

*

1Ipy ě 0q. (A.2)

For any G P Dx, define

m,x

φ pGq “

ż 8

0

p1´ rGxpyqs
m
q dy ”

ż G´1
x p1q

0

p1´ rGxpyqs
m
q dy.

It follows from (A.1) that
m,x

φ pGq “
şϕpxq

0
p1 ´ rGxpyqs

mqdy, for all G P Dx. Note also that

FpX,Y q P Dx,
m,x

φ pFpX,Y qq “
şϕpxq

0
p1 ´ rFY xpyqs

mqdy ” ϕmpxq and
m,x

φ p pFpX,Y qq “
ş

pϕpxq

0
p1 ´

r pFY xpyqs
mqdy “ pϕmpxq

a.s.
“

şϕpxq

0
p1´ r pFY xpyqs

mqdy, since pϕpxq ď ϕpxq with probability 1.

The following lemma will be useful for the proof of Proposition 2.

Lemma 1. The map
m,x

φ : Dx Ă L8pRp`1
q ÝÑ r0, ϕpxqs is Hadamard-differentiable at FpX,Y q

with derivative p
m,x

φ q1FpX,Y q : h P L8pRp`1
q ÞÝÑ p

m,x

φ q1FpX,Y qphq, where

p
m,x

φ q1FpX,Y qphq “ m

ż ϕpxq

0

rFY xpyqs
m´1

phpx,8q ´ hpx, yqq dy.

Proof. Let F :“ FpX,Y q, h P L
8pRp`1

q and ht Ñ h uniformly in L8pRp`1
q, where F ` tht P

Dx for all small t ą 0. Write ϕmtpxq :“
m,x

φ pF`thtq. Following the definition of the Hadamard

differentiability [see van der Vaart (1998), p.296], we shall show that pϕmtpxq ´ ϕmpxqq{t

converges to p
m,x

φ q1F phq as t Ó 0. We have

ϕmtpxq ´ ϕmpxq “

ż ϕpxq

0

prFY xpyqs
m
´ rpF ` thtqxpyqs

m
q dy,

where pF ` thtqxpyq is described in (A.2) for G “ F ` tht. By Taylor’s formula, for any y P

r0, ϕpxqs, there exists a point ζt,xpyq interior to the interval joining FY xpyq and pF ` thtqxpyq

such that

rFY xpyqs
m
´ rpF ` thtqxpyqs

m
“ mt rζt,xpyqs

m´1
phtpx,8q ´ htpx, yqq .

Whence
ϕmtpxq ´ ϕmpxq

t
“ m

ż ϕpxq

0

rζt,xpyqs
m´1

phtpx,8q ´ htpx, yqq dy. (A.3)

It follows from the definition of ζt,xpyq and the uniform convergence ht Ñ h in L8pRp`1
q

that rζt,xpyqs
m´1

phtpx,8q ´ htpx, yqq converges to rFY xpyqs
m´1

phpx,8q ´ hpx, yqq uniformly
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in y as t Ó 0. Therefore, we obtain that pϕmtpxq ´ ϕmpxqq{tÑ p
m,x

φ q1F phq as t Ó 0. l

Proof of Proposition 2. It is well known that the empirical process
?
np pFpX,Y q ´ FpX,Y qq

converges in distribution in L8pRp`1
q to F, a p ` 1 dimensional FpX,Y q-Brownian bridge

[see van der Vaart and Wellner 1996, p.82]. F is a Gaussian process with zero mean and

covariance function E rFpt1qFpt2qs “ FpX,Y qpt1^ t2q´FpX,Y qpt1qFpX,Y qpt2q, for all t1, t2 P R
p`1

.

Then, by applying the functional delta method [see Theorem 20.8 in van der Vaart (1998),

p.297] in conjunction with Lemma 1, we obtain that

?
nppϕmpxq ´ ϕmpxqq ”

?
n

ˆ

m,x

φ
´

pFpX,Y q

¯

´
m,x

φ
`

FpX,Y q
˘

˙

“ p
m,x

φ q1FpX,Y q

´?
n
´

pFpX,Y q ´ FpX,Y q

¯¯

` opp1q,

where

p
m,x

φ q1FpX,Y q

´?
n
´

pFpX,Y q ´ FpX,Y q

¯¯

“ m
?
n

ż ϕpxq

0

rFY xpyqs
m´1

!´

pFpX,Y qpx,8q ´ FpX,Y qpx,8q
¯

´

´

pFpX,Y qpx, yq ´ FpX,Y qpx, yq
¯)

dy

“ m
?
n

ż ϕpxq

0

rFY xpyqs
m´1

!

FY xpyq ´ pFY xpyq
)

dy.

This ends the proof.

Let us now consider
?
nppϕmpxq´ϕmpxqq as a process indexed by x in an arbitrarily fixed

set X such that infxPX FXpxq ą 0. As before, m ě 1 is fixed. Define the domain DX to be

the set of joint distribution functions G on Rp`1
` such that G P Dx for all x P X . Let τY ă 8

be the right-endpoint of the support of Y and define, for any G P DX , the map

m

φ pGq : x ÞÑ
m,x

φ pGq as a map X ÝÑ r0, τY s.

Here, the functional
m

φ: G ÞÑ
m

φ pGq is defined as a map DX Ă L8pRp`1
q Ñ L8pX q. Note

that
m

φ pFpX,Y qq :“ t
m,x

φ pFpX,Y qq;x P X u “ tϕmpxq;x P X u “ t
şϕpxq

0
p1´ rFY xpyqs

mqdy;x P X u

and
m

φ p pFpX,Y qq :“ t
m,x

φ p pFpX,Y qq;x P X u “ tpϕmpxq;x P X u
a.s.
“ t

şϕpxq

0
p1´ r pFY xpyqs

mqdy;x P X u
since Prpϕpxq ď ϕpxq, @x P X s “ 1. The following lemma will be useful for the proof of

Theorem 1.

Lemma 2.
m

φ is Hadamard-differentiable at FpX,Y q P DX with derivative

p
m

φq1FpX,Y qphq : x P X ÞÑ p
m,x

φ q1FpX,Y qphq,

for any h P L8pRp`1
q.
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Proof. The basic idea is to make the proof of Lemma 1 uniform in x P X by using the

same notation. Here ht Ñ h in L8pRp`1
q as t Ó 0, with F ` tht P DX for all small t. To

establish the Hadamard differentiability [see van der Vaart (1998), p.296], we have to show

that supxPX |pϕmtpxq ´ ϕmpxqq{t´ p
m,x

φ q1F phq| Ñ 0 as t Ó 0.

By the uniform convergence of ht to h and the definition of ζt,xpyq described in Lemma 1,

we have supxPX ,yPR |ζ
m´1
t,x pyq ´ Fm´1

Y x pyq| Ñ 0 as t Ó 0. By using this and applying again the

uniform convergence of ht, it is easily seen that rζt,xpyqs
m´1

phtpx,8q ´ htpx, yqq converges to

rFY xpyqs
m´1

phpx,8q ´ hpx, yqq uniformly in px, yq as t Ó 0. Finally, since supxPX ϕpxq ď τY ,

we get supxPX |pϕmtpxq ´ ϕmpxqq{t´ p
m,x

φ q1F phq| Ñ 0 as t Ó 0. l

Proof of Theorem 1. By applying the functional delta method in conjunction with

Lemma 2, we get the convergence in distribution of
?
nt

m

φ p pFpX,Y qq´
m

φ pFpX,Y qqu in L8pX q
to the linear transformation p

m

φq1FpX,Y qpFq of the Gaussian process F described in the proof

of Proposition 2. Note that the linear operator p
m

φq1FpX,Y qp¨q is defined and continuous on the

space L8pRp`1
q since

||p
m

φq1FpX,Y qphq||L8pX q “ sup
xPX

|p
m,x

φ q1FpX,Y qphq| ď 2mτY ||h||L8pRp`1
q

for any h P L8pRp`1
q. Therefore, according to Theorem 20.8 in van der Vaart (1998, p.297),

we have that
?
nt

m

φ p pFpX,Y qq´
m

φ pFpX,Y qqu “ p
m

φq1FpX,Y qp
?
np pFpX,Y q ´ FpX,Y qqq ` opp1q.

Proof of Theorem 2. By Taylor’s formula, for any y P r0, ϕpxqs, there exists a point

ηx,npyq interior to the interval joining FY xpyq and pFY xpyq such that r pFY xpyqs
m´rFY xpyqs

m “

mrFY xpyqs
m´1t pFY xpyq ´ FY xpyqu ` pm{2qpm ´ 1qrηx,npyqs

m´2t pFY xpyq ´ FY xpyqu
2. By using

the fact that
 

pϕmpxq ´ ϕmpxq
( a.s.
“

şϕpxq

0

`

rFY xpyqs
m ´ r pFY xpyqs

m
˘

dy, we get

 

pϕmpxq ´ ϕmpxq
(

´m

ż ϕpxq

0

rFY xpyqs
m´1

 

FY xpyq ´ pFY xpyq
(

dy (A.4)

a.s.
“ ´pm{2qpm´ 1q

ż ϕpxq

0

rηx,npyqs
m´2

t pFY xpyq ´ FY xpyqu
2dy.

On the other hand, we have by the law of the iterated logarithm (LIL) for empirical processes

sup
y

ˇ

ˇ pFY xpyq ´ FY xpyq
ˇ

ˇ “ O
`

plog log n{nq1{2
˘

, (A.5)

with probability 1. It follows that supyt
?
nr pFY xpyq ´ FY xpyqs

2u
a.s.
ÝÑ 0 as n Ñ 8. Finally,

since 0 ď ηx,npyq ď 1 for all y, we arrive at

Rm,npxq :“
?
n

˜

 

pϕmpxq ´ ϕmpxq
(

´m

ż ϕpxq

0

rFY xpyqs
m´1

 

FY xpyq ´ pFY xpyq
(

dy

¸

a.s.
ÝÑ 0.
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By applying again the classical LIL [see, e.g., Serfling (1980), Theorem A, p.35], we obtain

lim sup
nÑ8

˘

?
nm

p2 log log nq1{2

ż ϕpxq

0

rFY xpyqs
m´1

 

FY xpyq ´ pFY xpyq
(

dy “ σpx,mq

for either choice of sign, with probability 1. By combining this result with the fact that

Rm,npxq{p2 log log nq1{2
a.s.
ÝÑ 0 as nÑ 8, we get the desired LIL.

Proof of Proposition 3. We have

γ˚
`

Tm,x, FpX,Y q
˘

“
m

FXpxq
sup
y0ě0

ˇ

ˇ

ˇ

ˇ

ˇ

ż ϕpxq

0

Fm´1
Y |X py|xq

“

1Ipy0 ď yq ´ FY |Xpy|xq
‰

dy

ˇ

ˇ

ˇ

ˇ

ˇ

“
m

FXpxq
max

#

ż ϕpxq

0

Fm
Y |Xpy|xqdy, sup

0ďy0ďϕpxq

Hpy0q

+

,

where Hpy0q :“
şy0
0
Fm
Y |Xpy|xqdy `

şϕpxq

y0
Fm´1
Y |X py|xq

“

1´ FY |Xpy|xq
‰

dy. The function Hp¨q

being convex and continuous on r0, ϕpxqs, it achieves its supremum at y0 “ 0 or y0 “ ϕpxq.

The conclusion is then immediate.

Proof of Proposition 4. Putting Ft “ p1´ tqFY x ` tδu and F´1
t p1q “ infty|Ftpyq “ 1u, we

have

IF
`

u;Tm, FY x
˘

“
d

dt |t“0
Tm pFtq “

d

dt |t“0

ż F´1
t p1q

0

r1´ Fm
t pyqsdy.

Since Ftpyq Ñ FY xpyq as t Ñ 0 for every y P R, we obtain the weak convergence of the

distribution functions Ft ù FY x , which in turn implies the weak convergence of the under-

lying quantile functions as tÑ 0 in view of a van der Vaart’s lemma (1998, Lemma 21.2, p.

305). In particular, F´1
t p1q Ñ F´1

Y x p1q ” ϕpxq as t Ñ 0. Then for any ν ą ϕpxq, we have

F´1
t p1q ă ν as tÑ 0. Therefore

IF
`

u;Tm, FY x
˘

“
d

dt |t“0

ż ν

0

r1´ Fm
t pyqsdy “ ´m

ż ν

0

rFY xpyqs
m´1

 

δupyq ´ FY xpyq
(

dy,

for any ν ą ϕpxq. Taking the limit as ν Ñ ϕpxq ends the proof.

Proof of Theorem 3. According to Daouia et al. (2010, Corollary 2.1), we have under

Cpρx, `xq that

pn`xq
1{ρx

 

ϕpxq ´ pϕpxq
( L
ÝÑ Weibullp1, ρxq as nÑ 8.

The basic idea of proof is then to consider the following decomposition

pn`xq
1{ρx

 

ϕpxq ´ pϕmpxq
(

“ pn`xq
1{ρx

 

ϕpxq ´ pϕpxq
(

` pn`xq
1{ρx

 

pϕpxq ´ pϕmpxq
(
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and show that the second term on the right-hand side pn`xq
1{ρx

 

pϕpxq ´ pϕmpxq
(

“ opp1q as

nÑ 8. It follows from (5) that

pϕpxq ´ pϕmpxq “ Y x
pnq ´ pϕmpxq “

n´1
ÿ

i“1

pi{nqm
 

Y x
pi`1q ´ Y

x
piq

(

.

The support of Y x being bounded (included in r0, ϕpxqs), we have with probability 1 that

pϕpxq ´ pϕmpxq “ O

˜

n´1
ÿ

i“1

pi{nqm

¸

“ O

ˆ

n

„

1´
1

n

m˙

.

Hence, for the term pn`xq
1{ρx

 

pϕpxq´pϕmpxq
(

to be opp1q, it is sufficient to choose m “ mn such

that n
1
ρx
`1

“

1´ 1
n

‰mn
Ñ 0 as nÑ 8. To achieve this, it suffices to have

“

1´ 1
n

‰mn
“ Opn´βq,

or equivalently,
“

1´ 1
n

‰mn
ď pCnq´β for some constants β ą 1

ρx
`1 and C ą 0. This condition

reduces to mn ě βn log nt1` op1qu by using the fact that logp1´ 1{nq „ ´1{n as nÑ 8.

Proof of Theorem 4. Here we employ similar arguments of proof as in Theorem 3.1 and

Lemma 3.1 of Daouia et al. (2012). We know by (A.4) that

?
n

σpx,mq

 

pϕmpxq ´ ϕmpxq
( a.s.
“

?
n

σpx,mq
m

ż ϕpxq

0

rFY xpyqs
m´1

 

FY xpyq ´ pFY xpyq
(

dy

´

?
n

σpx,mq
pm{2qpm´ 1q

ż ϕpxq

0

rηx,npyqs
m´2

t pFY xpyq ´ FY xpyqu
2dy,

and that supy
ˇ

ˇ pFY xpyq´FY xpyq
ˇ

ˇ

a.s.
“ O

`

plog log n{nq1{2
˘

in view of (A.5). For any y Ps0, ϕpxqr

we have 0 ă ηx,npyq ă 1 and so rηx,npyqs
m´2 a.s.

Ñ 0 when nÑ 8. Hence, using the dominated

convergence theorem, we have
şϕpxq

0
rηx,npyqs

m´2dy
a.s.
Ñ 0. Since

?
nmpm ´ 1q{σpx,mq “

Opn{ log log nq, we get

?
n

σpx,mq

m

2
pm´1q

ż ϕpxq

0

rηx,npyqs
m´2

t pFY xpyq´FY xpyqu
2dy

a.s.
“ Op1q

ż ϕpxq

0

rηx,npyqs
m´2dy

a.s.
ÝÑ 0.

On the other hand,

?
n

σpx,mq
m

ż ϕpxq

0

rFY xpyqs
m´1

 

FY xpyq ´ pFY xpyq
(

dy “
n
ÿ

i“1

Zn,i
?
nσpZn,iq

(A.6)

where Zn,i “ m
şϕpxq

0
rFY xpyqs

m´1
 

FY xpyq ´ 1IpY x
i ď yq

(

dy and its variance is σ2pZn,iq “

σ2px,mq. We have nEr|Zn,1|3s{tnσ2pZn,1qu
3{2 ď mϕpxq{

?
nσpZn,1q Ñ 0 sincem{

?
nσpx,mq Ñ

0. Hence the leading term (A.6) converges in distribution to N p0, 1q by Lyapounov’s Theo-

rem. Therefore
?
nσ´1px,mq

 

pϕmpxq ´ ϕmpxq
( L
Ñ N p0, 1q.
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In what concerns the second assertion, it is easily seen that

σ2
px,mq “ 2m2

ż ϕpxq

0

ż ϕpxq

0

Fm
Y xpyqF

m´1
Y x pzqr1´ FY xpzqs1Ipy ď zqdydz

“ 2m2

ż ϕpxq

0

Fm´1
Y x pzqSY xpzq

ˆ
ż z

0

Fm
Y xpyqdy

˙

dz. (A.7)

Then, for all δ ą 0 sufficiently small, we have

σ2
px,mq ě 2m2

ż ϕpxq

ϕpxq´δ

Fm´1
Y x pzqSY xpzq

ˆ
ż z

z´δ

Fm
Y xpyqdy

˙

dz

ě 2m2δ

ż ϕpxq

ϕpxq´δ

Fm´1
Y x pzqSY xpzqF

m
Y xpz ´ δqdz

ě 2m2δ

ż ϕpxq

ϕpxq´δ

F 2m
Y x pz ´ δqSY xpzqdz

ě 2m2δF 2m
Y x pϕpxq ´ 2δq

ż ϕpxq

ϕpxq´δ

SY xpzqdz.

It follows from the regularity condition Cpρx, `xq that

σ2
px,mq ě m2δF 2m

Y x pϕpxq ´ 2δq`xδ
ρx`1

{pρx ` 1q, δ Ñ 0.

We also have by Cpρx, `xq that

F 2m
Y x pϕpxq ´ 2δq ě t1´ 2`xp2δq

ρxu
2m
“ exp

“

2m log t1´ 2`xp2δq
ρxu

‰

ě e´8m`xp2δqρx , δ Ñ 0.

Thus, for δ “ p1{mq1{ρx , we get

σ2
px,mq ě m2δρx`2e´8m`xp2δqρx `x{pρx ` 1q ě cxm

1´2{ρx , mÑ 8,

for some constant cx ą 0. Whence

mpm´ 1q{σpx,mq ď c´1{2
x mpm´ 1qm´ 1

2
` 1
ρx , mÑ 8.

Hence, if m “ O p
?
n{ log log nq

1
3
2`

1
ρx , it is immediate that mpm´1q

σpx,mq
“ O p

?
n{ log log nq as

nÑ 8, and so the asymptotic normality holds.

It remains to show that σ2px,mq ď c̃xm
2´2{ρx as m Ñ 8, for some positive constant c̃x.

It follows from (A.7), in conjunction with the identity ϕmpxq “
ş8

0

`

1 ´ rFY xpyqs
m
˘

dy “

ϕpxq ´
şϕpxq

0
rFY xpyqs

m dy, that

σ2
px,mq ď 2m2

ż ϕpxq

0

Fm´1
Y x pzqSY xpzqdz

˜

ż ϕpxq

0

Fm
Y xpyqdy

¸

“ 2m2
rpϕpxq ´ ϕm´1pxqq ´ pϕpxq ´ ϕmpxqqs pϕpxq ´ ϕmpxqq

“ 2m2
pϕpxq ´ ϕmpxqq

2

„

ϕpxq ´ ϕm´1pxq

ϕpxq ´ ϕmpxq
´ 1



.
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By the very definition (3), ϕmpxq ” E
“

maxpY x
1 , . . . , Y

x
mq
‰

is nothing but the expectation

of the FDH estimator based on the m-tuple tY x
i , i “ 1, . . . ,mu. Hence, the limit theorem

of moments of the FDH estimator, established in Daouia et al. (2010, Theorem 2.1(iii)),

yields limmÑ8 b
´1
m pϕpxq ´ ϕmpxqq “ Γp1` 1{ρxq, where bm „ pm`xq

´1{ρx under the sufficient

condition Cpρx, `xq, and Γ is the gamma function. It follows that
”

ϕpxq´ϕm´1pxq
ϕpxq´ϕmpxq

´ 1
ı

Ñ 0

and pϕpxq ´ ϕmpxqq ď 2pm`xq
´1{ρxΓp1` 1{ρxq, as mÑ 8. Therefore

σ2
px,mq ď m2

pϕpxq ´ ϕmpxqq
2
ď 4m2

pm`xq
´2{ρxΓ2

p1` 1{ρxq :“ c̃xm
2´2{ρx

as mÑ 8, which ends the proof.

Proof of Theorem 5. By Theorem 4 (ii) and (iii), we have

pϕmnpxq ´ ϕmnpxq “ Op

`

σpx,mnq{
?
n
˘

“ Op

´

m1´1{ρx{
?
n
¯

.

It follows from (13) that

ϕpxq ´ pϕmnpxq “ pϕpxq ´ ϕmnpxqq ` pϕmnpxq ´ pϕmnpxqq

“

ˆ

1

mn`x

˙1{ρx

Γ

ˆ

1`
1

ρx

˙

` o
`

m´1{ρx
n

˘

`Op

´m1´1{ρx

?
n

¯

.

Similarly, we have for all a ě 2,

ϕpxq ´ pϕamnpxq “

ˆ

1

amn`x

˙1{ρx

Γ

ˆ

1`
1

ρx

˙

` o
`

m´1{ρx
n

˘

`Op

´m1´1{ρx

?
n

¯

,

ϕpxq ´ pϕa2mnpxq “

ˆ

1

a2mn`x

˙1{ρx

Γ

ˆ

1`
1

ρx

˙

` o
`

m´1{ρx
n

˘

`Op

´m1´1{ρx

?
n

¯

.

The differences lead to

m1{ρx
n

`

pϕamnpxq ´ pϕmnpxq
˘

“

ˆ

1

`x

˙1{ρx

Γ

ˆ

1`
1

ρx

˙

“

1´ 1{a1{ρx
‰

` o p1q `Op

´mn
?
n

¯

,

pamnq
1{ρx

`

pϕa2mnpxq ´ pϕamnpxq
˘

“

ˆ

1

`x

˙1{ρx

Γ

ˆ

1`
1

ρx

˙

“

1´ 1{a1{ρx
‰

` o p1q `Op

´mn
?
n

¯

,

which gives

pϕamnpxq ´ pϕmnpxq

pϕa2mnpxq ´ pϕamnpxq
“ a1{ρx

´

1
`x

¯1{ρx
Γ
´

1` 1
ρx

¯

“

1´ 1{a1{ρx
‰

` o p1q `Op

´

mn?
n

¯

´

1
`x

¯1{ρx
Γ
´

1` 1
ρx

¯

r1´ 1{a1{ρxs ` o p1q `Op

´

mn?
n

¯

.

Since mn{
?
nÑ 0 as nÑ 8, we get

pϕamnpxq ´ pϕmnpxq

pϕa2mnpxq ´ pϕamnpxq

p
ÝÑ a1{ρx ,
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whence pρx
p
ÝÑ ρx. On the other hand, by applying again

m1{ρx
n

`

pϕamnpxq ´ pϕmnpxq
˘

“

ˆ

1

`x

˙1{ρx

Γ

ˆ

1`
1

ρx

˙

“

1´ 1{a1{ρx
‰

` o p1q `Op

´mn
?
n

¯

,

in conjunction with mn{
?
nÑ 0 and pρx

p
ÝÑ ρx as nÑ 8, we get

p`x ”
1

mn

„

p1´ a´1{pρxqΓp1` 1{pρxq

pϕamnpxq ´ pϕmnpxq



pρx
p
ÝÑ `x,

which ends the proof.

Proof of Theorem 6. By Theorem 4 (iii), we have

?
n

σpx,mnq
tpϕmnpxq ´ ϕpxq `Bmnpxqu

L
ÝÑ N p0, 1q, nÑ 8.

It remains to show that
?
n

σpx,mnq

!

pBmnpxq ´Bmnpxq
)

p
ÝÑ 0, nÑ 8,

or equivalently, as nÑ 8,

?
n

σpx,mnq

#

ˆ

1

mn
p`x

˙1{ρx

Γ

ˆ

1`
1

ρx

˙

´

ˆ

1

mn`x

˙1{ρx

Γ

ˆ

1`
1

ρx

˙

` o
`

m´p1`αxq{ρx
n

˘

+

p
ÝÑ 0.

By Theorem 4 (ii) and the condition mn “ O
´ ?

n
log logn

¯
1

3
2`

1
ρx , we have

?
n

σpx,mnq
o
`

m´p1`αxq{ρx
n

˘

“
?
nm

´ 1
2
´
αx
ρx

n o p1q “
?
nm

´ 1
2
´
αx
ρx

n o p1q

“
?
n

ˆ ?
n

log log n

˙

´ 1
2´

αx
ρx

3
2`

1
ρx o p1q “

?
n
ρx`1´αx
3
2 ρx`1 plog log nq

1
2`

αx
ρx

3
2`

1
ρx o p1q ,

where the last term tends to zero since αx ą ρx ` 1. Hence, it suffices to show that

?
n

σpx,mnq
Γ

ˆ

1`
1

ρx

˙

1

m
1{ρx
n

#

ˆ

1

p`x

˙1{ρx

´

ˆ

1

`x

˙1{ρx
+

p
ÝÑ 0,

or equivalently,
?
n

σpx,mnq
Γ
´

1`
1

ρx

¯ 1

m
1{ρx
n

„

´ 1

p`x

¯1{ρx
´

´ 1

r`x

¯1{ρx


`

?
n

σpx,mnq
Γ
´

1`
1

ρx

¯ 1

m
1{ρx
n

„

´ 1

r`x

¯1{ρx
´

´ 1

`x

¯1{ρx


:“ I` II
p
ÝÑ 0, (A.8)
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where, similarly to p`x “
1
m̃n

”

p1´a´1{ρx qΓp1`1{ρxq
pϕam̃n pxq´pϕm̃n pxq

ıρx
, we set r`x :“ 1

m̃n

”

p1´a´1{ρx qΓp1`1{ρxq
ϕam̃n pxq´ϕm̃n pxq

ıρx
.

The first term I can be expressed as

I “

?
n

σpx,mnq

1

m
1{ρx
n

rm
1{ρx
n

p1´ a´1{ρxq

“`

pϕa rmpxq ´ ϕa rmpxq
˘

´
`

pϕ
rmpxq ´ ϕ rmpxq

˘‰

“

?
n

σpx,mnq

rm
1{ρx
n

m
1{ρx
n

σpx, m̃nq
?
n

Opp1q “ Op

˜

σpx, m̃nq

σpx,mnq

rm
1{ρx
n

m
1{ρx
n

¸

,

where the term Opp1q follows from Theorem 4 (iii). Now, by Theorem 4 (ii), we have

σpx, m̃nq

σpx,mnq

rm
1{ρx
n

m
1{ρx
n

ď

ˆ

c̃x
cx

˙1{2
rmn

m
1{2
n

, nÑ 8.

The ratio rmn{m
1{2
n tends to zero as soon as

´

3
2
` 1

ρx

¯´1

ă 2ε̃ ´ ε. Whence I “ opp1q. The

second term II in (A.8) can be written explicitly as

II “

?
n

σpx,mnq
Γ
´

1`
1

ρx

¯

rm
1{ρx
n

m
1{ρx
n

«

ϕa rmpxq ´ ϕ rmpxq

Γ
`

1` 1{ρx
˘`

1´ a´1{ρx
˘ ´

´ 1

rmn`x

¯1{ρx

ff

“

?
n

σpx,mnq
Γ
´

1`
1

ρx

¯

rm
1{ρx
n

m
1{ρx
n

o
`

rm´p1`αxq{ρx
n

˘

“

?
n

σpx,mnq
o
´

rm
´αx{ρx
n

m
1{ρx
n

¯

,

where the second equality follows from C2pρx, `x, αxq. Applying again Theorem 4 (ii), we

get

|II| ď

?
n

m
1{2´1{ρx
n

rm
´αx{ρx
n

m
1{ρx
n

op1q

ď
?
n

ˆ ?
n

log log n

˙´ 1
2

ˆ

1
3
2`

1
ρx

´ε

˙

´
αx
ρx

ˆ

1
3
2`

1
ρx

´ε̃

˙

op1q.

The condition 1 ´ 1
2

ˆ

1
3
2
` 1
ρx

´ ε

˙

´ αx
ρx

ˆ

1
3
2
` 1
ρx

´ ε̃

˙

ă 0 ensures that the term on the right-

hand side is op1q. This completes the proof of the theorem.
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