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The aim of this paper is to construct a robust nonparametric estimator for the production frontier. We study this problem under a regression model with one-sided errors where the regression function defines the achievable maximum output, for a given level of inputs-usage, and the regression error defines the inefficiency term. The main tool is a concept of partial regression boundary defined as a special probability-weighted moment. This concept motivates a robustified unconditional alternative to the pioneering class of nonparametric conditional expected maximum production functions. We prove that both the resulting benchmark partial frontier and its estimator share the desirable monotonicity of the true full frontier. We derive the asymptotic properties of the partial and full frontier estimators, and unravel their behavior from a robustness theory point of view. We provide numerical illustrations and Monte Carlo evidence that the presented concept of unconditional expected maximum production functions is more efficient and reliable in filtering out noise than the original conditional version. The methodology is very easy and fast to implement. Its usefulness is discussed through two concrete datasets from the sector of Delivery Services, where outliers are likely to affect the traditional conditional approach.

Introduction

The conventional microeconomic theory of the firm is based on the assumption of optimizing behavior. It is assumed that producers optimize their production choices by avoiding wasting resources. Theoretically, producers shall operate somewhere on the upper boundary, rather than on the interior, of their production possibility set Ψ " tpx, yq P R p `ˆR `| y can be produced by xu .

The upper boundary of Ψ, referred to as production frontier or surface, represents the set of the most efficient firms. The economic performance of a firm is defined in terms of its ability to operate close to or on the production frontier. This efficient frontier is often described by the graph of the function ϕpxq " supty | px, yq P Ψu, which gives the maximal level of output (e.g., a quantity of goods produced) attainable by a firm operating with a vector of inputs x (e.g., labor, energy, capital). The efficiency of a unit working at px, yq may then be estimated via the distance between its production level y and the optimal level ϕpxq. The standard Farrell-Debreu efficiency score is given by the ratio y{ϕpxq, so that an efficiency equal to one corresponds to an output-efficient unit. More generally, the score y{ϕpxq ď 1

gives the increase of output that the firm should reach to be viewed as output-efficient. The estimation of the frontier function ϕ from a random sample of production units tpX 1 , Y 1 q, . . . , pX n , Y n qu is thus of utmost importance in production econometrics. A large amount of literature is devoted to this problem, where two different approaches have been mainly developed: the deterministic frontier approach which supposes that all the observations pX i , Y i q belong to Ψ with probability 1, and the stochastic frontier approach where random noise allows some observations to be outside Ψ. The issue of stochastic frontier estimation goes back to the works of [START_REF] Aigner | Formulation and estimation of stochastic frontier models[END_REF] and Meeusen and van den Broeck (1977). Typically, it is assumed that ϕ has a parametric structure like Cobb-Douglas or translog. The estimation techniques include modified least-squares and maximum likelihood methods, see for instance [START_REF] Greene | The Econometric Approach to Efficiency Analysis[END_REF] for a survey. Some attempts have been proposed to relax the parametric restriction such as, for instance, [START_REF] Kumbhakar | Nonparametric stochastic frontiers: a local likelihood approach[END_REF] and [START_REF] Simar | Stochastic FDH/DEA estimators for frontier analysis[END_REF], see also [START_REF] Kneip | Frontier estimation in the presence of measurement error with unknown variance[END_REF] and the references therein. Our contribution in this paper is related to the context of inference for deterministic production frontiers, where it is assumed that ϕ is nondecreasing. A pioneering contribution in this area is due to [START_REF] Farrell | The measurement of productive efficiency[END_REF], who introduced Data Envelopment Analysis (DEA), based on either the conical hull or the convex hull of the data. This was further extended by [START_REF] Deprins | Measuring labor inefficiency in post offices[END_REF] to the Free Disposal Hull (FDH) estimator, whose properties have been extensively discussed in the literature. See for instance [START_REF] Kneip | Asymptotics and consistent bootstraps for DEA estimators in non-parametric frontier models[END_REF] and [START_REF] Daouia | Frontier estimation and Extreme value theory[END_REF][START_REF] Daouia | A Γ-moment approach to monotonic boundary estimation[END_REF] for a recent survey of the available results. The most appealing characteristic of such frontier estimators is that they rely on very few assumptions, but they are by construction very sensitive to outliers. To remedy this vexing defect, robust extensions using a concept of partial production frontiers have been suggested. Instead of estimating the true full frontier ϕ itself, the idea is to first estimate a partial frontier of the production set Ψ and then shift the obtained estimator to the right place. Prominent among these developments are the concepts of conditional expected maximum production frontiers by [START_REF] Cazals | Nonparametric frontier estimation: a robust approach[END_REF] and conditional quantile-based frontiers by [START_REF] Aragon | Nonparametric Frontier Estimation: A Conditional Quantile-based Approach[END_REF] and [START_REF] Daouia | Nonparametric efficiency analysis: a multivariate conditional quantile approach[END_REF]. Comparisons between the two concepts from a robustness and an asymptotic point of view can be found in [START_REF] Daouia | Robust nonparametric frontier estimators: Qualitative robustness and influence function[END_REF] and [START_REF] Daouia | Robustness and inference in nonparametric partial frontier modeling[END_REF].

In particular, once the conditional quantile-based frontiers break down for large chosen tail probability levels, they become definitely less resistant to outliers than the conditional expected maximum output frontiers. Moreover, the latter class of partial production functions has the additional advantage to make more efficient use of the available data since its relies on the distance to observations, whereas quantiles only use the information on whether an observation is below or above the predictor. Yet, the class of conditional expected maximum output frontiers is not without disadvantages. First, it is not constrained to inherit the requisite theoretical axiom of monotonicity of the true full production function ϕpxq. Economic considerations lead actually to the general production axiom of free disposability of inputs and outputs, that is, if px, yq P Ψ then px 1 , y 1 q P Ψ for any x 1 ě x and y 1 ď y. The monotonicity of ϕpxq, referred to as non-negative marginal productivity, is justified by the free disposability assumption and is a minimal re- is referred to as tail monotonicity [see, e.g., [START_REF] Gijbels | Testing tail monotonicity by constrained copula estimation[END_REF]]. Second and most importantly, even if the theoretical hypothesis of tail monotonicity is satisfied, the empirical estimators of the conditional expected maximum production function, needed to be used in practice, are not constrained to enjoy the property of monotonicity. Third, a desirable property of any benchmark partial frontier is to closely parallel the true production frontier, as argued by [START_REF] Wheelock | Non-parametric, Unconditional Quantile Estimation for Efficiency Analysis with an Application to Federal Reserve Check Processing Operations[END_REF] and [START_REF] Daouia | Measuring Firm Performance by using Nonparametric Quantile-type Distances[END_REF]. However, by construction, both population and empirical conditional, expected maximum output frontiers diverge from the true full frontier as the input level increases [see, e.g., [START_REF] Daouia | Robustness and inference in nonparametric partial frontier modeling[END_REF]]. In particular, similarly to the FDH boundary, the estimated partial frontiers tend to envelop production units with 'small' inputs-usage including outliers, and are thus very non-robust to such observations. However, in contrast to the FDH frontier, they may lie below some relatively inefficient production units with 'large' inputs-usage. This opposite behavior for 'small' and 'large' inputs makes the selection in practice of an appropriate benchmark partial frontier a hard problem. Also, measuring the distance of production units relative to a conditional expected maximum production frontier may result in misleading efficiency scores accordingly. All of these limitations come from the reliance of expected maximum production functions on the conditioning by the event tX ď xu, which involves a division by an estimate of PpX ď xq.

In this paper we adopt a different strategy based on a robustified unconditional formulation of expected maximum production functions. This new formulation has an analogous interpretation to the original conditional concept and corrects all of its vexing defects. The proposed unconditional expected maximum output frontiers and their estimators share the desirable property of monotonicity without resorting to the hypothesis of tail monotonicity or any other assumption. Another substantial advantage of these new partial production boundaries over the traditional conditional approach is that they do not suffer from border and divergence effects for small or large levels of inputs. Thanks to this benefit and because monotonicity eliminates sharp changes in the slope and curvature of the built unconditional partial frontiers, the selection problem of an appropriate benchmark frontier tends to be easier than conditional unconstrained partial boundaries. We derive the asymptotic distributional behavior of the resulting frontier estimators (both full and partial) by using simpler arguments relative to the standard conditional method. The superiority of our method is also established from a robustness theory point of view. To illustrate the discussed ideas, The paper is further organized as follows. In Section 2, we present a deeper discussion on the concept of expected maximum production functions. We provide the main results including robustness and asymptotic properties. In Section 3, we explore the estimation method through our motivating real data examples. Section 4 gives some numerical illustrations and Monte Carlo evidence. Section 5 concludes.

Robust boundary regression 2.1 Expected maximum production frontiers

In the standard nonparametric frontier model, the data Y j " ϕpX j q ´Uj , j " 1 . . . , n, are observed, with ϕp¨q being the unknown nondecreasing production function and U j ě 0 being the inefficiency term such that the lower support boundary of the conditional distribution of U j given X j is zero for almost all values of X j . The graph of ϕ is thus assumed to define the upper extremity of the joint support Ψ of pX, Y q [see, e.g., [START_REF] Gijbels | On estimation of monotone and concave frontier functions[END_REF]].

This means that the support Ψ, which defines the production possibility set, is of the form Ψ " tpx, yq|y ď ϕpxqu Ě tpx, yq|f px, yq ą 0u, tpx, yq|y ą ϕpxqu Ď tpx, yq|f px, yq " 0u, where f p¨, ¨q stands for the joint density of pX, Y q [see, for instance, Daouia et al. (

) 1 
This frontier function is isotonic nondecreasing in x. By substituting in (1) the empirical 

conditional distribution function p F Y |X py|xq " ř n i"1 1IpX i ď x, Y i ď yq{ ř n i"1 1IpX i ď xq in place of F Y |X py|xq,
p ϕpxq " supty ě 0 | p F Y |X py|xq ă 1u " max i:X i ďx Y i .
The graph of p ϕ being the lowest step and monotone surface which envelopes all the sample points pX i , Y i q, it is very non-robust to outliers. Instead, a practitioner can protect himself against outliers by estimating first an anchor partial frontier, well inside the cloud of data points, and then shifting the obtained estimate to the right place. 

ψ m pxq " E " maxpY 1 x , . . . , Y m x q ‰ " ż 8 0 `1 ´rF Y |X py|xqs m ˘dy,
where pY 1 x , . . . , Y m x q are i.i.d. random variables generated by the conditional distribution of Y given X ď x. The partial production function ψ m pxq converges to the true efficient frontier ϕpxq as m Ñ 8. Likewise, for a fixed sample size n, the empirical counterpart p ψ m pxq "

ż 8 0 `1 ´r p F Y |X py|xqs m ˘dy " p ϕpxq ´ż p ϕpxq 0 r p F Y |X py|xqs m dy
achieves the envelopment FDH surface p ϕpxq as m Ñ 8. Top panels of Figure 1 and Figure 2 display, respectively, the scatterplots of our motivating real datasets on the activity of n " 2, 326 and n " 4, 000 delivery post offices, along with the estimated expected maximum production frontiers of order m " 600, 700, 800, 900, n and m " 8 (FDH). We refer readers to the online text for the coloured graphics.

The strength of the partial frontier estimators p ψ m pxq in terms of robustness has been established from a theoretical point of view by Daouia and Ruiz-Gazen (2006) and [START_REF] Daouia | Robustness and inference in nonparametric partial frontier modeling[END_REF]. Yet, the conditioning by the event tX ď xu results in partial m-frontiers that can still be severely attracted by extreme and/or outlying observations with small X i 's, especially as the input level x decreases. This is visualized in the top panels of Figure 1 and Figure 2, where the selected large m-frontiers p ψ m pxq coincide with the non-robust FDH estimator p ϕpxq over an important range of values of x. Instead, we propose in the sequel to use a different formulation of expected maximum production functions without recourse to the conditioning by X ď x.

Robustified unconditional m-frontiers

For a fixed level of inputs-usage x P R p `such that F X pxq ą 0, we propose to first transform the pp `1q-dimensional random vector pX, Y q and the n-tuple tpX 1 , Y 1 q, . . . , pX n , Y n qu into the dimensionless random variables

Y x " Y 1IpX ď xq and Y x i " Y i 1I pX i ď xq , i " 1, . . . , n. (2) 
Their common distribution function F Y x p¨q is closely related to the original conditional dis-

tribution function F Y |X p¨|xq since F Y x pyq " 1 ´FX pxqr1 ´FY |X py|xqs ( 1Ipy ě 0q.
A nice property of these transformed univariate random variables lies in the fact that

ϕpxq " supty ě 0 | F Y x pyq ă 1u, p ϕpxq " supty ě 0 | p F Y x pyq ă 1u " maxpY x 1 , . . . , Y x n q,
where p F Y x pyq " p1{nq ř n i"1 1IpY x i ď yq. We then introduce the alternative concept of expected maximum achievable level of production

ϕ m pxq " E " maxpY x 1 , . . . , Y x m q ‰ " ż 8 0 `1 ´rF Y x pyqs m ˘dy, (3) 
where pY x 1 , . . . , Y x m q can be any m independent copies of Y x such as, for instance, the Y x i 's described in [START_REF] Aragon | Nonparametric Frontier Estimation: A Conditional Quantile-based Approach[END_REF]. Clearly, for any trimming number m ě 1, the quantity ϕ m pxq is nothing but the expectation of the FDH estimator based on the m-tuple tY x i " Y i 1I pX i ď xqu i"1,...,m . Of particular interest is the limiting case where the partial frontier function Taking a closer look to ϕ m pxq we see that it can be defined equivalently as the following special probability-weighted moments.

Proposition 1. For all m ě 1 and x P R p `such that F X pxq ą 0, we have 

ϕ m pxq " E m ¨rF Y x pY x qs m´1 ¨Y x ( " E J m `
p ϕ m pxq " n ÿ i"1 Y x piq "ˆi n ˙m ´ˆi ´1 n ˙m* (5) 
where Y x piq denotes the ith order statistic of the observations Y x 1 , . . . , Y x n . This marks a substantial difference with p ψ m pxq as can be visualized in the bottom panels of Figure 1 and Figure 2 for both cases of postal services.

Monotonicity requirement

From the point of view of the axiomatic foundation for production functions, nothing guarantees that the usual conditional expected maximum production function ψ m pxq and its estimator p ψ m pxq satisfy the monotonicity requirement. By contrast, both our population and sample unconditional versions ϕ m pxq and p ϕ m pxq enjoy the desirable axiom of monotonicity of the true efficient frontier ϕpxq. Indeed, it is not hard to verify that

F Y x pyq " t1 ´PpX ď x, Y ą yqu 1Ipy ě 0q.
Then, for all y ě 0, the function x Þ Ñ F Y x pyq is nonincreasing. Therefore, the unconditional partial frontier function ϕ m pxq defined in (3) is nondecreasing in x, for all m ě 1. Likewise, it is easily seen that

p F Y x pyq " # 1 ´1 n n ÿ i"1 1IpX i ď x, Y i ą yq + 1Ipy ě 0q
is nonincreasing in x. Whence, the empirical estimator p ϕ m pxq described in ( 4) is constrained to be nondecreasing in x, for all m ě 1. This advantage of the new class of unconditional expected maxima t p ϕ m u over the original concept of conditional versions t p ψ m u is better illustrated by Figure 2 (top versus bottom).

Asymptotic properties

From the asymptotic point of view, we first establish the following representation.

Proposition 2. For all m ě 1 and all x P R p `such that F X pxq ą 0, we have ? nt p ϕ m pxq ´ϕm pxqu " ? n Φ m,n pxq `op p1q

as n Ñ 8, where Φ m,n pxq " m ş ϕpxq

0 rF Y x pyqs m´1 ! F Y x pyq ´p F Y x pyq ) dy.
An immediate consequence of this result is that ? n p ϕ m pxq ´ϕm pxq ( is asymptotically normal with zero mean and variance

σ 2 px, mq " E # m ż ϕpxq 0 rF Y x pyqs m´1 1IpY x ď yq ´FY x pyq ( dy + 2 " m 2 ż ϕpxq 0 ż ϕpxq 0 " F Y x pyqF Y x pzq ‰ m´1 F Y x py ^zq ´FY x pyqF Y x pzq ( dydz. (7) 
Even more strongly, we have the following functional central limit theorem. (FDH), respectively, in green, red, yellow, violet, black and gray curves (see the online text for the coloured graphics).

Theorem 1. Suppose the support of Y is bounded. Then, for all m ě 1 and any X Ă R p such that inf xPX F X pxq ą 0, (6) holds uniformly in x P X , that is t ? np p ϕ m pxq ´ϕm pxqq; x P X u " t ? nΦ m,n pxq; x P X u `op p1q, and ? np p ϕ m ´ϕm q converges in distribution in L 8 pX q, as a process indexed by x P X , to the centered Gaussian process described in the proof.

Next, we show that ? n p ϕ m pxq ´ϕm pxq ( also obeys a law of the iterated logarithm, which improves the order of convergence to Op ? log log nq and even gives the proportionality constant.

Theorem 2. For all m ě 1 and x P R p `such that F X pxq ą 0, we have almost surely, for either choice of sign, lim sup nÑ8 ˘?n p ϕ m pxq ´ϕm pxq ( p2 log log nq 1{2 " σpx, mq.

Robustness properties

From a robustness theory viewpoint, both the conditional expected maximum production function ψ m pxq " T m,x `FpX,Y q ˘and its estimator p ψ m pxq " T m,x `p F pX,Y q ˘are representable as a functional T m,x of the population and empirical distribution functions F pX,Y q px, yq :" PpX ď x, Y ď yq and p F pX,Y q px, yq :"

1 n n ÿ i"1 1IpX i ď x, Y i ď yq,
respectively, where the statistical functional T m,x associates with a distribution function F p¨, ¨q on R p `ˆR `, such that F px, 8q ą 0, the real value

T m,x pF q " ż 8 0 ˆ1
´" F px, yq F px, 8q

 m ˙dy,
with the integrand being identically zero for y ě infty P R `|F px, yq{F px, 8q " 1u. The richest quantitative robustness information is then provided by the influence function px 0 , y 0 q Þ Ñ IF `px 0 , y 0 q; T m,x , F pX,Y q ˘of T m,x at F pX,Y q . It is defined as the first Gâteaux derivative of the functional T m,x at F pX,Y q , where the point px 0 , y 0 q plays the role of the coordinate in the infinite-dimensional space of probability distributions [see [START_REF] Hampel | Robust Statistics: The Approach Based on Influence Functions[END_REF]]. The relevance of the influence function lies in its two main uses. First, it describes the effect of an infinitesimal contamination at the point px 0 , y 0 q on the estimate, standardized by the mass of the contamination. Second, it allows one to assess the relative influence of individual observations px 0 " X i , y 0 " Y i q on the value of the estimate p ψ m pxq. An important robustness requirement is the B-robustness [START_REF] Rousseeuw | A new infinitesimal approach to robust estimation[END_REF]] which corresponds to a finite gross-error sensitivity. The maximum absolute value

γ ˚`T m,x , F pX,Y q ˘" sup px 0 ,y 0 qPR p`1
`ˇI F `px 0 , y 0 q; T m,x , F pX,Y q ˘| defines the gross-error sensitivity of T m,x at F pX,Y q . If this is unbounded, outliers can cause trouble. But according to Daouia and Ruiz-Gazen (2006), we have

IF `px 0 , y 0 q; T m,x , F pX,Y q ˘" m F X pxq 1Ipx 0 ď xq ż ϕpxq 0 F m´1 Y |X py|xq " F Y |X py|xq ´1Ipy 0 ď yq ‰ dy, (8) 
and hence γ ˚`T m,x , F pX,Y q ˘ď m F X pxq ϕpxq. Even more precisely, we show here the following.

Proposition 3. For all m ě 1 and x P R p `such that F X pxq ą 0,

γ ˚`T m,x , F pX,Y q ˘" m F X pxq max # ż ϕpxq 0 F m Y |X py|xqdy, ż ϕpxq 0 F m´1 Y |X py|xq " 1 ´FY |X py|xq ‰ dy + " m F X pxq max tϕpxq ´ψm pxq, ψ m pxq ´ψm´1 pxqu . (9) 
The occurence of the vexing border effect of the partial frontier estimators p ψ m pxq, due to the conditioning by the event tX ď xu, is reflected by the presence of low values of F X pxq in the denominator of both ( 8) and [START_REF] Daouia | Data envelope fitting with constrained polynomial splines[END_REF].

Turning to the competing concept of unconditional expected maximum production functions, both ϕ m pxq " T m `FY x ˘and p ϕ m pxq " T m `p F Y x ˘are representable as a functional T m of the population and empirical transformed distribution functions F Y x and p F Y x , respectively, where T m associates with a univariate distribution function F p¨q on R `the real value

T m pF q " ż 8 0 `1 ´rF pyqs m ˘dy " ż F ´1p1q 0 `1 ´rF pyqs m ˘dy,
with the integrand being identically zero for y ě F ´1p1q :" infty P R|F pyq " 1u. Following is defined as the ordinary derivative

u P R `Þ Ñ IF `u; T m , F Y x ˘" d dt|t"0 T m pp1 ´tqF Y x `tδ u q .
In robust statistics, a small fraction of the observations would have a strong influence on the estimator if their values were equal to a u where the influence function is large.

Proposition 4. For all m ě 1 and x P R p `such that F X pxq ą 0, we have

IF `u; T m , F Y x ˘" ´m ż ϕpxq 0 rF Y x pyqs m´1 δ u pyq ´FY x pyq ( dy " ´m ż ϕpxq 0 " 1 ´FX pxq `FpX,Y q px, yq ‰ m´1 1Ipu ď yq ´1 `FX pxq ´FpX,Y q px, yq ( dy. 
This closed form expression of the influence function indicates that the unconditional m-frontiers p ϕ m pxq " T m `p F Y x ˘do not suffer from the inherent border effects of the initial concept of conditional m-frontiers p ψ m pxq " T m,x `p F pX,Y q ˘. Moreover, by making use of the same technique of the proof of Proposition 3, it is easily seen that the gross-error sensitivity

λ ˚`T m , F Y x ˘:" sup uě0 ˇˇIF `u; T m , F Y x ˘ˇs atisfies λ ˚`T m , F Y x ˘" m ¨max # ż ϕpxq 0 F m Y x pyqdy, ż ϕpxq 0 F m´1 Y x pyq r1 ´FY x pyqs dy + " m ¨max tϕpxq ´ϕm pxq, ϕ m pxq ´ϕm´1 pxqu
which, in contrast to γ ˚`T m,x , F pX,Y q ˘, does not explode when x decreases. Also, as can be seen from ( 6) in Proposition 2, IF `Y x i ; T m , F Y x ˘represents the approximate contribution, or influence, of the observation pX i , Y i q toward the estimation error p ϕ m pxq ´ϕm pxq ( , since

? nt p ϕ m pxq ´ϕm pxqu " ? n Φ m,n pxq `op p1q " 1 ? n n ÿ i"1 IF `Y x i ; T m , F Y x ˘`o p p1q, n Ñ 8.
Similarly, the influence function of the 'conditional' partial frontier estimator, described in [START_REF] Daouia | A Γ-moment approach to monotonic boundary estimation[END_REF], measures the asymptotic bias caused by contamination in the observations pX i , Y i q:

? n `p ψ m pxq ´ψm pxq

˘" 1 ? n n ÿ i"1 IF `pX i , Y i q; T m,x , F pX,Y q ˘`o p p1q, n Ñ 8.
However, the consideration of the 'unconditional' partial frontier estimator p ϕ m pxq, instead of the conditional frontier estimator p ψ m pxq, may result in a better asymptotic variance [START_REF] Daouia | Robustness and inference in nonparametric partial frontier modeling[END_REF], especially when PpX ď xq is small.

Regularized frontier estimators

It should be clear that the estimation of a "partial" frontier ϕ m , for a sufficiently large value of m, instead of the "full" frontier ϕ is mainly motivated by the search for a "robust" frontier estimator p ϕ m which is well inside the cloud of data points tpX i , Y i q, i " 1, . . for some constant ρ x ą 0, where L x p¨q is a slowly varying function, that is, lim tÒ8 L x ptzq{L x ptq " 1 for all z ą 0. The limit distribution function is identical to F ρx pyq " expt´p´yq ρx u with support p´8, 0s.

Under the sufficient condition that L x ptϕpxq ´yu ´1q " x ą 0 as y Ò ϕpxq, that is Condition Cpρ x , x q: For some constants ρ x ą 0 and x ą 0,

F X pxqr1 ´FY |X py|xqs " x `ϕpxq ´y˘ρ x `o`p ϕpxq ´yq ρx ˘as y Ò ϕpxq, it is shown in Daouia et al. (2010, Corollary 2.1
) that b n " pn x q ´1{ρx and pn x q 1{ρx ϕpxq ´p ϕpxq

( L ÝÑ Weibullp1, ρ x q as n Ñ 8,
where a random variable W is said to follow the distribution Weibullp1, ρ x q if W ρx is Exponential with parameter 1. As described thoroughly in Remark 2.3 of Daouia et al. (2010), the exponent ρ x has the following intuitive meaning in terms of the density of pX, Y q and the dimension pp `1q: When ρ x ą p `1, the joint density decays to zero at a speed of power ρ x ´pp `1q of the distance from the frontier point ϕpxq. When ρ x " p `1, the density has a sudden jump at the frontier. Finally, when ρ x ă p `1, the density rises up to infinity at a speed of power ρ x ´pp `1q of the distance from the frontier. Theorem 3. For x P R p `such that F X pxq ą 0, if Cpρ x , x q holds and m n ě βn log nt1 òp1qu for some constant β ą 1 ρx `1, then pn x q 1{ρx ϕpxq ´p ϕ mn pxq ( L ÝÑ Weibullp1, ρ x q as n Ñ 8.

By contrast, when m " m n Ñ 8 at a slow rate as n Ñ 8, the robust frontier estimator p ϕ mn pxq becomes asymptotically Gaussian, as in the regular case of a fixed m. 

k 1 ? n 1 2 `2 ρx 3 2 `1 ρx plog log nq 1´1 ρx 3 2 `1 ρx ď ? n σpx, m n q ď k 2 ? n 1`2 ρx 3 2 `1 ρx plog log nq 1 2 ´1 ρx 3 2 `1 ρx
for some constants k 1 , k 2 ą 0. In the particular case ρ x " p `1, often assumed in the literature of production econometrics, which corresponds to a joint density of pX, Y q having a jump at the frontier point ϕpxq, we have

k 1 `n3{2 log log n ˘1{4 ď ? n σpx, m n q ď k 2 ? n as p " 1,
and

k 1 n 1{6 plog log nq 2{3 ď ? n σpx, m n q ď k 2 pn log log nq 1{3 as p Ò 8.
Interestingly, even when the data dimension explodes, the speed of convergence does not deteriorate too much, thereby reducing the curse of dimensionality that is typical of many nonparametric frontier estimators such us, for instance, the FDH estimator.

Bias-corrected estimator of ϕpxq

Under the extremal condition Cpρ x , x q , when m n Ñ 8 with m n " O ´?n log log n ¯1 3 2 `1 ρx , Theorem 4 (iii) actually indicates that p ϕ mn pxq estimates ϕpxq itself with the inherent bias B mn pxq " ϕpxq ´ϕmn pxq such that ? n σpx, m n q t p ϕ mn pxq ´ϕpxq `Bmn pxqu

L ÝÑ N p0, 1q, n Ñ 8. (11) 
Recall that, in view of (3),

ϕ mn pxq " E " maxpY x 1 , . . . , Y x mn q
‰ is nothing but the expectation of the FDH estimator, maxpY x 1 , . . . , Y x mn q " max i:X i ďx Y i , based on the m n -tuple tY x i " Y i 1I pX i ď xqu i"1,...,mn . Under the sufficient condition Cpρ x , x q, the limit theorem of moments of the FDH estimator in Daouia et 

(‰ " Γp1 `1{ρ x q,
where Γ is the gamma function, which entails that lim mnÑ8 b ´1 mn tϕpxq ´ϕmn pxqu " Γp1 `1{ρ x q,

with b mn " pm n x q ´1{ρx , or equivalently,

B mn pxq " ϕpxq ´ϕmn pxq " pm n x q ´1{ρx Γp1 `1{ρ x q `o `m´1{ρx n ˘, n Ñ 8. (13) 
Combining this with Theorem 4 (ii), it follows that the introduced bias (normalized by the rate of convergence) is bounded below by

? n σpx, m n q B mn pxq ą čx ´?n 1 2 `1 ρx log log n ¯1 3 2 `1 ρx ,
for some constant čx ą 0. The normalized bias does not then vanish asymptotically, and hence one would use in practice the asymptotic approximation:

ϕpxq ´p ϕ mn pxq « N ˆBmn pxq, σ 2 px, m n q n ˙,
where B mn pxq and σ 2 px, m n q have to be replaced by consistent estimators. The plugging version of σ 2 px, m n q in (7) provides a consistent estimator of this asymptotic variance. As for the bias term, a consistent estimator can be obtained through the leading part of ( 

On the other hand, it follows from (13) that

x " 1 m n " p1 ´a´1{ρx qΓp1 `1{ρ x q ϕ amn pxq ´ϕmn pxq

 ρx , n Ñ 8,
which suggests the estimator

p x :" 1 m n " p1 ´a´1{p ρx qΓp1 `1{p ρ x q p ϕ amn pxq ´p ϕ mn pxq  p ρx . ( 15 
)
Both p ρ x and p x are consistent estimators. 

Let us now return to the starting point (4.3) to investigate the asymptotic normality of the bias-corrected estimator itself. This estimator is defined as r ϕ mn pxq :" p ϕ mn pxq `p B mn pxq,

where, assuming for ease of presentation that ρ x is given, p B mn pxq :" pm n p x q ´1{ρx Γp1 `1{ρ x q is the plug-in version of the bias B mn pxq obtained by replacing x , in the leading part of ( 13), with its consistent estimate p x :" p x p mn q "

1 mn " p1 ´a´1{ρx qΓp1 `1{ρ x q p ϕ a mn pxq ´p ϕ mn pxq

 ρx . (18) 
Here, we shall distinguish between the trimming level m n in the estimator r ϕ mn pxq of the frontier function ϕpxq and the level mn used in the estimator p x of the parameter x . Nothing guarantees that the two levels are necessarily the same. It should also be noted that, while the asymptotic normality of the partial frontier estimator p ϕ mn pxq in Theorem 4 hinges on the first-order representation [START_REF] Daouia | Measuring Firm Performance by using Nonparametric Quantile-type Distances[END_REF], that is

ϕpxq ´ϕmn pxq " pm n x q ´1{ρx Γp1 `1{ρ x q `o `m´1{ρx n ˘, n Ñ 8,
which is implied by the extremal condition Cpρ x , x q, the asymptotic normality of the full frontier estimator r ϕ mn pxq requires the following second-order representation:

Condition C 2 pρ x , x , α x q: For some constants ρ x ą 0, x ą 0 and α x ą 0,

ϕpxq ´ϕmn pxq " pm n x q ´1{ρx Γp1 `1{ρ x q `o `m´p1`αxq{ρx n ˘, n Ñ 8,
where the extra parameter α x is needed to control the speed of convergence, in the first-order condition, of pm n x q 1{ρx tϕpxq ´ϕmn pxqu to Γp1 `1{ρ x q. Theorem 6. Let x P R p `such that F X pxq ą 0. Under Cpρ x , x q and C 2 pρ x , x , α x q with α x ą ρ x `1, if m n " c ´?n log log n `r ϕ mn pxq ´ϕpxq ˘L ÝÑ N p0, 1q as n Ñ 8.

The condition α x ą ρ x `1 in Theorem 6 is needed to control the bias approximation error (driven by the last term in C 2 pρ x , x , α x q) so as to get

? n σpx,mnq o ´m´p1`αxq{ρx n ¯" op1q. The condition ´3 2 `1 ρx ¯´1 ă 2ε ´ε is required to select r m n " o ´m1{2 n ¯in the estimator p x :" p x p mn q of x . It is easily seen that the condition ε ă ´3 2 `1 ρx ¯´1 implies 1 ´1 2 ˜1 3 2 `1 ρx ´ε¸´α x ρ x ˜1 3 2 `1 ρx ´ε ¸ă 1 ´1 2 pε ´εq.
Hence, the last condition of the theorem, that is 1

´1 2 ˆ1 3 2 `1 ρx ´ε˙´α x ρx ˆ1 3 2 `1 ρx ´ε ˙ă 0 is satisfied if, for instance, ε ´ε ą 2.
It should be noted that we restrict ourselves in Theorem 6 to the case where ρ x is known. This corresponds, for instance, to the standard assumption in productivity and efficiency analysis that the joint density of data pX i , Y i q has jumps at the frontier, or equivalently ρ x " p `1 (see the discussion above Theorem 3). The question of whether the asymptotic normality in Theorem 6 still holds when replacing ρ x by its estimator p ρ x is of interest. The complexity of using p ρ x in place of ρ x in the proof is that it adds two additional terms to the two terms I and II already in use in (A.8). Theoretical developments along these lines are left for future research.

Trimming selection problem

We return here to our real data examples with a single input (p " 1) to explore in Section 3.1 the selection of the trimming level m n in the partial frontier p ϕ mn , before moving to the final bias-corrected frontier r ϕ mn pxq in Section 3.2. We extend our discussion to multiple inputs (p ą 1) in Section 3.3.

Selecting the partial frontier p ϕ m n

In productivity and efficiency analysis where outliers are likely to affect traditional envelopment approaches, a common robust practice in operations research and applied work consists in using an empirical partial frontier as a benchmark to measure the efficiency of production units. Unfortunately, the chosen partial frontier is often based on an a priori selected order m " m n in the case of conditional expected maxima, or tail probability in the case of conditional quantiles. Here, we propose practical guidelines for a more justified selection from a robustness theory viewpoint.

As with any trimming techniques, the degree of truncation, here reflected through m selection, is a major issue in practice. But monotonicity itself is a rather powerful way of regularizing the estimated expected maximum production function. Because it eliminates sharp changes in the slope and curvature of the unconditional m-frontier function, the trimming selection problem tends to be easier than unconstrained conditional m-frontier estimation. Of course, if the model is known or believed to be nearly correct, then the use of the envelopment FDH estimator pm " 8q is required. Otherwise, if the dataset contains suspicious isolated extreme observations, it is more prudent to seek for 'robustification' via the choice of an adequate trimming level m. To verify the presence of such influential observations among the data (e.g. French and European postal datasets), a simple diagnostic tool is by using the gross-error sensitivity of the sequence t p ϕ m u m which corresponds to the maximum influence function. Figure 3 shows the sample gross-error sensitivity

x Þ Ñ λ ˚`T m , p F Y x ˘,
for various values of m " 100, 200, . . . , 1500. For both postal services, the evolution of λ exhibits some slight and severe breakdowns at different values of x, especially in the case of French post offices (r-h.s). This indicates the presence of isolated extreme and/or anomalous data. One way of choosing the trimming number m is then by looking to Figure 4 which indicates how the percentage of data points pX i , Y i q above the curve of p ϕ m decreases with m.

The basic idea is to choose values of m for which the frontier estimator p ϕ m is sensitive to the magnitude of valuable extreme post offices while remaining resistant to isolated outliers. The evolution of the percentage in both sectors of Delivery Services has clearly an "L" structure highlighted by a colour-scheme, ranging from dark red (high %) to dark violet (low %). We refer readers to the online text for the "colouring of the L evolution". Such an L deviation should appear for any other analyzed data set since, by construction, the probability-weighted moments p ϕ m steer an advantageous middle course between sensitivity and robustness to extreme values and/or outliers. In the case of 2, 326 delivery post offices (top picture in Figure 4), the percentage first falls rapidly along the 'red' part of the curve.

This means that most of the observations lying above the corresponding m-frontiers are not extremes but interior points to the cloud of data points. Then the evolution of the percentage shows an "elbow effect" along the 'orange' and 'green' parts of the curve. This means that the observations outside the corresponding m-frontiers are no more inefficient, but still contain either relatively efficient post offices that are well inside the sample or top observations that are valuable post offices. In contrast, after the elbow effect, it may be seen that the percentage decreases very slowly along the 'blue' part, say 850 ď m ď 1250, before becoming extremely stable along the 'violet' part of the curve. This means that all observations left outside the partial frontier of order m " 850 are really very extreme in the Y -direction and could be outlying or perturbed by noise. This might suggest to select 850 as a potential lower value for m. On the other hand, the extreme stability of the percentage curve from m " 1250 may indicate that the observations above the frontier p ϕ 1250 are really outlying or suspicious isolated extremes that deserve to be carefully examined. This might suggest to choose 1250 as a potential upper value for m. The two potential choices of the frontier estimator p ϕ m are graphed in Figure 5 along with the FDH estimator. As regards the 4, 000 delivery post offices (bottom picture in Figure 4), it may be seen that the "elbow effect" corresponds to the 'orange' part of the percentage curve, and the desired range of values of m follows as the 'green' part, say, 500 ď m ď 1000. The lower and upper selected prudential frontiers p ϕ 500 and p ϕ 1000 are superimposed in Figure 5 along with the FDH estimator. Unsurprisingly, there are very few observations lying between the two partial frontiers. 

The final bias-corrected frontier r ϕ m n pxq

Under the usual assumption in production econometrics that ρ x " p`1 " 2, the final frontier estimator r ϕ mn pxq has the closed form expression r ϕ mn pxq " r ϕ mn, mn,a pxq " p ϕ mn pxq `pm n p x q ´1{ρx Γp1 `1{ρ x q " p ϕ mn pxq `ˆm n m n ˙1{2 p ϕ a mn pxq ´p ϕ mn pxq p1 ´a´1{2 q , where m n P r850, 1250s for the sample size 2,326 and m n P r500, 1000s for the sample size 4,000. For illustration purposes, we restrict to the upper selected prudential levels m n " 1250 for n " 2,326 and m n " 1000 for n " 4,000. Our experience with these data indicates that r ϕ mn pxq is not sensitive to the choice of the tuning parameter a ě 2. For example, the frontier estimates obtained for all values of a in r2, 10s appear to be very similar. However, the estimates seem to be more sensitive to the choice of mn . This is illustrated in Figure 6 for both datasets, where the final bias-corrected frontiers x Þ Ñ r ϕ mn pxq are plotted for a " 2 and two different values of mn " m 0.005 n (dashed) and mn " m 0.2 n (solid), along with the non-robust FDH frontier (dashdotted). Although the resulting (blue and red) frontiers for both values of mn are very close for the largest dataset of size n " 4,000 (bottom panel), it may be seen that they are quite different in the case n " 2,326 (top panel). We do not enter here into the question of optimal selection of mn , but it is clearly of genuine interest and is still open for future research.

Extension to multiple inputs

It should be clear that, thanks to the dimensionless transformation adopted in (2), the practical guidelines described above evidently apply to higher dimension p ą 1. For our illustration purposes we consider here a real data example in the case p " 2, where the dataset consists of n " 406 firms in the petroleum, chemical and plastics industries in Ecuador in 2002. For each firm, we have information on the capital K in thousands of USD, the average number of employees L and the value-added real output Y in thousands of USD. The scatterplot of the 406 observations (in logarithm scale) is displayed in Figure 7. In this particular example, the efficient FDH surface is determined by only 12.56% of the firms, and some of these extremal FDH firms are outlying as can be seen from Daouia and Park (2013). The latter authors used the 'conditional' partial m´frontiers t p ψ m u m , rather than the unreliable FDH frontier, as a robust benchmark for the assessment of the production performance of firms. The objective here is to compare their method with our alternative proposal of 'unconditional' partial m´frontiers t p ϕ m u m , for a suitable choice of the trimming levels m. versions p ψ m . This reflects the resistance of the 'unconditional' partial m-frontiers to the magnitude of extremes and/or outliers. It may also be seen that the decrease of the percentage and from m " 336 for the rainbow curve (indicated by the vertical blue line). Figure 9 (top panel) shows the resulting values p ψ 183 px i q for 20 randomly chosen grid inputs x i " pK i , L i q. As is to be expected in the case of conditional expected maxima, there are many violations of monotonicity by the multi-argument function p ψ 183 px i q (with respect to the partial order induced by 'ď'). Figure 9 (bottom panel) displays the values of p ϕ 336 px i q for the same selected 20 points, showing that the unconditional expected maximum production function is well isotonic nondecreasing. When taking larger trimming levels m (in the stable regions starting from the vertical dashed lines), the lessons were the same in terms of robustness and monotonicity.

Numerical illustrations

In this section, we illustrate our procedure through two standard examples with simulated data. We consider the same data generating processes traditionally used in the literature of nonparametric frontier estimation such as, for instance, Gijbels et al. Example 1. We first consider a situation where the upper extremity of the joint support of pX, Y q is linear. We choose pX, Y q uniformly distributed over the triangle tpx, yq P r0, 1s 2 : Its unconditional analogue for the same order m is given by

ϕ m pxq " ϕpxq ´m ÿ k"0 ˆm k ˙p´1q k x 2k`1 {p2k `1q.
Example 2. We now consider a more realistic example from the point of view of production econometrics. We choose a non-linear production frontier given by the Cobb-Douglas model Y " X 1{2 expp´U q, where X is uniform on r0, 1s and U , independent of X, is exponential with mean 1{3. Here, the full production function is ϕpxq " x 1{2 , and the conditional distribution function is F Y |X py|xq " 3x ´1y 2 ´2x ´3{2 y 3 , for 0 ă x ď 1 and 0 ď y ď ϕpxq.

The partial order-m frontier functions have the following closed form expressions: The number associated to each point x i indicates the conditional expected maximum p ψ 183 px i q (top) and the unconditional expected maximum p ϕ 336 px i q (bottom).

ψ m pxq " ϕpxq ´m ÿ k"0 ˆm k ˙3m´k p´2q k ? x{p2m `k `1q, ϕ m pxq " ϕpxq ´m ÿ k"0 ˆm k ˙xk`1{2 p´1q k k ÿ j"0 ˆk j ˙j ÿ i"0 ˆj i ˙p´3q j´i 2 i {p2j `i `1q.

Comparison of population m´frontiers

For both examples, the graphs of ψ m and ϕ m are superimposed in Figures 10 and11, for three values of m " 1, 10, 25, along with the true support boundary ϕ. First, it may be seen from the plots that the conditional m´frontiers ψ m pxq [dotted curves] diverge from the true frontier ϕpxq [solid curve] as x increases. Whereas the new unconditional m´frontiers ϕ m pxq [dashed curves] tend to be more parallel to the full frontier ϕpxq. Second, the partial conditional m´frontiers approach rapidly the full frontier as m increases, while the convergence of the unconditional m´frontiers seems to be slower. Already these substantial differences indicate the usefulness of the new concept of unconditional expected maximum production m´frontiers.

Moreover, the new unconditional m´frontier ϕ m can be viewed as a 'robustified' alternative to the original conditional m´frontier ψ m , for each trimming level m. This is visualised in Figures 12 and13, where the gross-error sensitivities γ ˚`T m,x , F pX,Y q ˘of ψ m pxq and λ ˚`T m , F Y x ˘of ϕ m pxq are plotted against m, for various values of x P t 1 4 , 1 2 , 3 4 u. According to Hampel, Ronchetti, Rousseeuw and Stahel (1986, p.43), the most important quantitative robustness requirement is a low gross-error sensitivity. From this basis, it is clear that the new class of unconditional m´frontiers affords more reliability since the corresponding gross-error sensitivity λ ˚[dashed line] is overall smaller than γ ˚[solid line]. Of interest is the limit case m Õ 8, where γ ˚explodes especially for low inputs-usage x, whereas λ remains appreciably small and stable whatever the value of x. This indicates that the sequence of empirical unconditional m´frontiers t p ϕ m pxqu n is more resistant to extreme values and/or outliers than its conditional analogue t p ψ m pxqu n for estimating the true full frontier ϕpxq " lim mÑ8 ϕ m pxq " lim mÑ8 ψ m pxq. The lack of robustness of t p ψ m pxqu n , for small values of x, is due to its construction via the conditioning by X ď x.

Biased frontier estimators

To evaluate finite-sample performance of p ψ m p¨q and p ϕ m p¨q, as robust estimators of ϕp¨q, we have undertaken some simulation experiments. All the experiments were performed over 1,000 simulations for the sample sizes n " 100, 500, 1000. Three outliers were added in each simulated data set: tp0.1, 0.6q, p0.35, 0.8q, p0. error and the bias

MSEt p ψ m u " 1 L L ÿ "1 ! p ψ m px q ´ϕpx q ) 2 , Biast p ψ m u " 1 L L ÿ "1 ! p ψ m px q ´ϕpx q ) MSEt p ϕ m u " 1 L L ÿ "1 t p ϕ m px q ´ϕpx qu 2 , Biast p ϕ m u " 1 L L ÿ "1
t p ϕ m px q ´ϕpx qu with the x 's being L " 100 points regularly distributed in r^X i , _X i s. To guarantee a fair comparison among the two rival estimation methods, we used for each estimator the optimal parameter m minimizing its MSE over the wide range t1, . . . , nu. The resulting values of MSE and bias are averaged on the 1,000 Monte Carlo replications and reported in Tables 1 and2, along with the average m of the optimal 1,000 trimming levels m. The obtained estimates provide Monte Carlo evidence that the new class of partial m´frontiers t p ϕ m u m is more efficient and robust relative to t p ψ m u m for estimating ϕ. A typical realization of the experiment in each simulated scenario with n " 100 is shown in Figure 14, where the optimal parameter m of each frontier estimator was chosen in such a way to minimize its MSE. 

MSE

Bias-corrected frontier estimators

This section provides Monte Carlo evidence on the usefulness of the proposed 'unconditional' expected maximum output frontiers relative to their 'conditional' competitors in terms of average lengths and achieved coverages of the corresponding asymptotic confidence intervals. 3 and4, for x P t 1 4 , 1 2 , 3 4 u. It may be seen that the 'unconditional' pseudo-bias-corrected estimator r ϕ m pxq globally performs better than the 'conditional' variant r ψ m pxq in terms of both average lengths and achieved coverages. The few cases where r ψ m pxq is the winner are indicated in bold.

x " 0.25 

n

Conclusion

In this paper we suggest a new approach to estimate nonparametrically and in a robust way the upper extremity of the joint support of a random vector pX, Y q P R p `ˆR `. For a prespecified level of inputs-usage x interior to the marginal support of X, the basic idea is to first transform the pp `1q-dimensional vector pX, Y q into a dimensionless random variable Y x " Y 1IpX ď xq, and then to define a concept of partial m-frontier ϕ m pxq "

E " maxpY x 1 , . . . , Y x m q
‰ as the expected maximum of m independent copies of Y x . In other words, we characterize ϕ m pxq as the expectation of the popular envelopment FDH estimator of the true full frontier ϕpxq based on the m-tuple of observations Y x i " Y i 1I pX i ď xq, i " 1, . . . , m. We get robust estimators of the partial m-frontier functions ϕ m as well as the full production function ϕ (corresponding to the limiting case m Ñ 8). We derive their asymptotic distributions and robustness properties, and show their superiority over the pioneering class of conditional expected maximum production frontiers initiated by Cazals The following lemma will be useful for the proof of Proposition 2.

Lemma 1. The map

m,x φ : D x Ă L 8 pR p`1 q ÝÑ r0, ϕpxqs is Hadamard-differentiable at F pX,Y q with derivative p m,x φ q 1 F pX,Y q : h P L 8 pR p`1 q Þ ÝÑ p m,x
φ q 1 F pX,Y q phq, where p m,x φ q 1 F pX,Y q phq " m ż ϕpxq 0 rF Y x pyqs m´1 phpx, 8q ´hpx, yqq dy.

Proof. Let F :" F pX,Y q , h P L 8 pR p`1 q and h t Ñ h uniformly in L 8 pR p`1 q, where F `th t P D x for all small t ą 0. Write ϕ mt pxq :" m,x φ pF `th t q. Following the definition of the Hadamard differentiability [see van der Vaart (1998), p.296], we shall show that pϕ mt pxq ´ϕm pxqq{t converges to p m,x φ q 1 F phq as t Ó 0. We have ϕ mt pxq ´ϕm pxq " ż ϕpxq 0 prF Y x pyqs m ´rpF `th t q x pyqs m q dy, where pF `th t q x pyq is described in (A.2) for G " F `th t . By Taylor's formula, for any y P r0, ϕpxqs, there exists a point ζ t,x pyq interior to the interval joining F Y x pyq and pF `th t q x pyq such that rF Y x pyqs m ´rpF `th t q x pyqs m " m t rζ t,x pyqs m´1 ph t px, 8q ´ht px, yqq . q that rζ t,x pyqs m´1 ph t px, 8q ´ht px, yqq converges to rF Y x pyqs m´1 phpx, 8q ´hpx, yqq uniformly in y as t Ó 0. Therefore, we obtain that pϕ mt pxq ´ϕm pxqq{t Ñ p m,x φ q 1 F phq as t Ó 0. l Proof of Proposition 2. It is well known that the empirical process ? np p F pX,Y q ´FpX,Y q q converges in distribution in L 8 pR p`1 q to F, a p `1 dimensional F pX,Y q -Brownian bridge [see van der Vaart and Wellner 1996, p.82]. F is a Gaussian process with zero mean and covariance function E rFpt 1 qFpt 2 qs " F pX,Y q pt 1 ^t2 q ´FpX,Y q pt 1 qF pX,Y q pt 2 q, for all t 1 , t 2 P R p`1 .

Whence

Then, by applying the functional delta method [see Theorem 20.8 in van der Vaart (1998), p.297] in conjunction with Lemma 1, we obtain that

? np p ϕ m pxq ´ϕm pxqq " ? n ˆm,x φ ´p F pX,Y q ¯´m,x φ `FpX,Y q ˘" p m,x φ q 1 F pX,Y q ´?n ´p F pX,Y q ´FpX,Y q ¯¯`o p p1q, where p m,x φ q 1 F pX,Y q ´?n ´p F pX,Y q ´FpX,Y q ¯" m ? n ż ϕpxq 0 rF Y x pyqs m´1 !´p F pX,Y q px, 8q ´FpX,Y q px, 8q ¯´´p F pX,Y q px, yq ´FpX,Y q px, yq ¯) dy " m ? n ż ϕpxq 0 rF Y x pyqs m´1 ! F Y x pyq ´p F Y x pyq ) dy.
This ends the proof.

Let us now consider ? np p ϕ m pxq ´ϕm pxqq as a process indexed by x in an arbitrarily fixed set X such that inf xPX F X pxq ą 0. As before, m ě 1 is fixed. Define the domain D X to be the set of joint distribution functions G on R p`1

`such that G P D x for all x P X . Let τ Y ă 8 be the right-endpoint of the support of Y and define, for any G P D X , the map

m φ pGq : x Þ Ñ m,x φ pGq as a map X ÝÑ r0, τ Y s.
Here, the functional

m φ: G Þ Ñ m φ pGq is defined as a map D X Ă L 8 pR p`1 q Ñ L 8 pX q. Note that m φ pF pX,Y q q :" t m,x
φ pF pX,Y q q; x P X u " tϕ m pxq; x P X u " t ş ϕpxq 0 p1 ´rF Y x pyqs m qdy; x P X u and m φ p p F pX,Y q q :" t m,x φ p p F pX,Y q q; x P X u " t p ϕ m pxq; x P X u a.s.

" t ş ϕpxq 0 p1 ´r p F Y x pyqs m qdy; x P X u since Pr p ϕpxq ď ϕpxq, @x P X s " 1. The following lemma will be useful for the proof of Theorem 1.

Lemma 2.

m φ is Hadamard-differentiable at F pX,Y q P D X with derivative

p m φq 1 F pX,Y q phq : x P X Þ Ñ p m,x φ q 1 F pX,Y q phq,
for any h P L 8 pR p`1 q.

Proof. The basic idea is to make the proof of Lemma 1 uniform in x P X by using the same notation. Here h t Ñ h in L 8 pR p`1 q as t Ó 0, with F `th t P D X for all small t. To establish the Hadamard differentiability [see van for any ν ą ϕpxq. Taking the limit as ν Ñ ϕpxq ends the proof.

q since ||p m φq 1 F pX,Y q phq|| L 8 pX q " sup xPX |p m,x φ q 1 F pX,Y q phq| ď 2 m τ Y ||h|| L 8 pR p`
Proof of Theorem 3. According to Daouia et al. (2010, Corollary 2.1), we have under Cpρ x , x q that pn x q 1{ρx ϕpxq ´p ϕpxq ( L ÝÑ Weibullp1, ρ x q as n Ñ 8.

The basic idea of proof is then to consider the following decomposition pn x q 1{ρx ϕpxq ´p ϕ m pxq ( " pn x q 1{ρx ϕpxq ´p ϕpxq Then, for all δ ą 0 sufficiently small, we have It follows from the regularity condition Cpρ x , x q that σ 2 px, mq ě m 2 δF 2m Y x pϕpxq ´2δq x δ ρx`1 {pρ x `1q, δ Ñ 0.

σ 2 px
We also have by Cpρ x , x q that F 2m Y x pϕpxq ´2δq ě t1 ´2 x p2δq ρx u 2m " exp " 2m log t1 ´2 x p2δq ρx u ‰ ě e ´8m xp2δq ρx , δ Ñ 0.

Thus, for δ " p1{mq By the very definition (3), ϕ m pxq " E " maxpY x 1 , . . . , Y x m q ‰ is nothing but the expectation of the FDH estimator based on the m-tuple tY x i , i " 1, . . . , mu. Hence, the limit theorem of moments of the FDH estimator, established in Daouia et al. (2010, Theorem 2.1(iii)), yields lim mÑ8 b ´1 m pϕpxq ´ϕm pxqq " Γp1 `1{ρ x q, where b m " pm x q ´1{ρx under the sufficient condition Cpρ x , x q, and Γ is the gamma function. It follows that " ϕpxq´ϕ m´1 pxq ϕpxq´ϕmpxq ´1ı Ñ 0 and pϕpxq ´ϕm pxqq ď 2pm x q ´1{ρx Γp1 `1{ρ x q, as m Ñ 8. Therefore σ 2 px, mq ď m 2 pϕpxq ´ϕm pxqq 2 ď 4m 2 pm x q ´2{ρx Γ 2 p1 `1{ρ x q :" cx m 2´2{ρx as m Ñ 8, which ends the proof. 
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  we use two concrete datasets from the sector of Delivery Services and a third dataset from the Ecuadorian manufacturing sector, where outliers are likely to affect the traditional conditional method. The first dataset involves 4,000 French post offices observed in 1994. It has been discussed in Cazals et al. (2002), Aragon et al. (2005), and Daouia et al. (2010, 2012) among others. The second dataset comprises 2,326 European post offices observed in 2013. For each post office i, the input X i represents the labor cost measured by the quantity of labor, and the output Y i is the volume of delivered mail in number of objects. The third dataset from Daouia and Park (2013) consists of 406 firms in the petroleum, chemical and plastics industries in Ecuador in 2002. The scatterplots are given below in Figures 1, 2 and 7.

  (2016)]. For a fixed level of inputs-usage x P R p `, a closed form expression of the frontier function ϕpxq has been suggested by Cazals et al. (2002) in terms of the non-standard conditional distribution of Y given X ď x. If F Y |X py|xq " PpY ď y | X ď xq denotes the distribution function of Y conditioned by X ď x, assuming F X pxq :" PpX ď xq ą 0, then ϕpxq can be characterized as the upper conditional endpoint ϕpxq " supty ě 0 | F Y |X py|xq ă 1u.

  with 1Ip¨q being the indicator function, Cazals et al. (2002) recover the usual FDH estimator

  For a given trimming number m P t1, 2, . . .u, Cazals et al. (2002) have suggested to use the concept of expected maximum output function of order m, defined as

ϕ m pxq " ż ϕpxq 0 ` 1

 01 ´rF Y x pyqs m ˘dy " ϕpxq ´ż ϕpxq 0 rF Y x pyqs m dy converges monotonically to the true full frontier function ϕpxq as the trimming level m Ñ 8.

Figure 2 :

 2 Figure 2: Scatterplot of the n " 4, 000 delivery post offices-Estimated expected maximum production frontiers p ψ m (top) and p ϕ m (bottom), with m " 600, 700, 800, 900, n and m " 8

Hampel

  et al. (1986, Definition 1, p.84), the corresponding influence function of T m at F Y x

Theorem 5 .

 5 Under the conditions of Theorem 4 (iii), p ρ x p ÝÑ ρ x and p x p ÝÑ x as n Ñ 8.

¯1 3 2 ` 1 3 2 ` 1 3 2

 21313 ρx ´ε and mn " c ´?n log log n ¯1 ρx ´ε , for some constants c, c ą 0 and 0 ă ε ă ´3 2 `1 ρx¯´1ă 2ε´ε, such that 1´1 2 ˆ1

Figure 3 :

 3 Figure 3: Plots of x Þ Ñ λ ˚`T m , p F Y x ˘for m " 100, 200, . . . , 1500. From left to right, the 2,326 and 4,000 post offices.

Figure 4 :

 4 Figure 4: Evolution of the % of sample points outside the partial m-frontiers p ϕ m (see the online text for a colour-scheme).

Figure 5 :

 5 Figure 5: Selected (lower and upper) expected maximum production frontiers p ϕ m . Topdataset of size 2, 326 in logarithms, with m " 1250 (upper) in solid line, m " 850 (lower) in dashed line, and m " 8 (FDH) in dashdotted line. Bottom-dataset of size 4, 000, with m " 1000 (upper) in solid line, m " 500 (lower) in dashed line, and m " 8 (FDH) in dashdotted line.

Figure 8

 8 Figure 8 shows the evolution of the percentage of sample points left outside both partial m-frontiers p ψ m (pink curve) and p ϕ m (rainbow curve); we refer readers to the online text for the coloured graphics. The decrease of the percentage corresponding to the 'unconditional' partial m-frontiers p ϕ m is clearly slower than the one corresponding to the 'conditional'

Figure 6 :

 6 Figure 6: Final bias-corrected frontiers x Þ Ñ r ϕ mn, mn,a pxq for a " 2 and two different values of mn " m 0.005 n (dashed) and mn " m 0.2 n (solid), along with the FDH frontier (dashdotted). Top-dataset of size 2,326 in logarithms, with m n " 1250. Bottom-dataset of size 4,000, with m n " 1000.

Figure 7 :

 7 Figure 7: The capital K (in log), the average number of employees L (in log) and the valueadded real output Y (in log).

  (1999), Cazals et al. (2002), Simar (2003), Florens and Simar (2005), Daouia et al. (2005), Daouia and Ruiz-Gazen (2006), Daouia and Gijbels (2011), and Noh (2014).

Figure 8 :

 8 Figure 8: Evolution of the % of sample points outside the partial m-frontiers p ψ m (pink) and p ϕ m (rainbow), see the online text for the coloured graphics. The vertical dashed lines correspond to m " 183 (pink) and m " 336 (blue).

Figure 9 :

 9 Figure 9: In both pictures, the points indicate 20 randomly chosen grid inputs x i " pK i , L i q.

6 ,Figure 10 :Figure 11 :

 61011 Figure 10: Uniform triangle example-Graphs of ϕ in solid line, ψ m in dotted line, and ϕ m in dashed line.

4 Figure 12 : 4 Figure 13 :

 412413 Figure 12: Uniform triangle example-Gross-error sensitivities m Þ Ñ γ ˚`T m,x , F pX,Y q ˘in solid line and m Þ Ñ λ ˚`T m , F Y x ˘in dashed line.

Figure 14 : 2 F X pxq ż ϕpxq 0 ż ϕpxq 0 F

 1420 Figure 14: Typical realizations for simulated samples of size n " 100. Top-Uniform triangle example. Bottom-Cobb-Douglas example. True frontier ϕ in dotted line with its optimal m´frontier estimators p ψ m in dashed line and p ϕ m in solid line.

8 0F

 8 (2002) and popularized by[START_REF] Daouia | Robust Nonparametric Estimators of Monotone Boundaries[END_REF],Florens and Simar (2005), Daouia and Ruiz-Gazen (2006), Daouia and Gijbels (2011), Daouia et al. (2012), to name a few. The merits and usefulness of our new class of unconditional expected maximum output frontiers are explored through two concrete datasets on delivery offices in the sector of postal services. The question of estimating both ϕ m and ϕ in a stochastic frontier model, where the regression errors are assumed to be composite, is a topic of interest for future research. where G ´1 x p1q :" infty ě 0| G x pyq " 1u stands for the right-endpoint of the support of the transformed distribution function G x pyq " p1 ´rG x pyqs m q dy " ż G ´1 x p1q 0 p1 ´rG x pyqs m q dy. It follows from (A.1) that m,x φ pGq " ş ϕpxq 0 p1 ´rG x pyqs m qdy, for all G P D x . Note also that F pX,Y q P D x , m,x φ pF pX,Y q q " ş ϕpxq 0 p1 ´rF Y x pyqs m qdy " ϕ m pxq and Y x pyqs m qdy " p ϕ m pxq a.s. " ş ϕpxq 0 p1 ´r p F Y x pyqs m qdy, since p ϕpxq ď ϕpxq with probability 1.

(

  `pn x q 1{ρx p ϕpxq ´p ϕ m pxq (In what concerns the second assertion, it is easily seen that σ 2 px, mq " 2m 2

3 2 ` 1

 31 equality follows from C 2 pρ x , x , α x q. Applying again Theorem 4 (ii), we get ρx ´ε ˙ă 0 ensures that the term on the righthand side is op1q. This completes the proof of the theorem.

  FY |X pY |xq ˘¨Y |X ď xThe probability weight J m `FY |X py|xq ˘assigns bigger weights to relevant outputs. Like ψ m pxq, ϕ m pxq achieves the optimal production frontier ϕpxq when the trimming number m

						(	,
	where J m `FY |X py|xq ˘" mF X pxq	" 1 ´FX pxqr1 ´FY |X py|xqs ‰ m´1
			" mPpX ď xq r1 ´PpX ď x, Y ą yqs m´1 .
	tends to infinity. Likewise, its empirical version			
	p ϕ m pxq "	ż 8	`1 ´r p F Y x pyqs m ˘dy " p ϕpxq	ϕpxq ´ż p	r p F Y x pyqs m dy	(4)
		0			0	
	converges to the FDH frontier p ϕpxq as m Ñ 8. However, unlike p ψ m pxq, the weight-generating
	function defining p ϕ m pxq is by construction appreciably less sensitive to border effects:

  When m " m n Ñ 8 at a fast rate as n Ñ 8, the next theorem shows that the robust frontier p ϕ mn pxq estimates ϕpxq itself and converges to the same limit distribution as the FDH estimator p ϕ with the same scaling. Recall first that, following Daouia et al. (2010, Theorem 2.1), there exists b n ą 0 such that b ´1 n p p ϕpxq ´ϕpxqq converges to a non-degenerate distribution if and only if F X pxqr1 ´FY |X py|xqs " L x `tϕpxq ´yu

. , nu, but lies near the true upper support boundary. The robustness of p ϕ m comes from its convergence monotonely from below to the smallest sample envelope (FDH) p ϕ as the trimming number m increases. ´1˘p ϕpxq ´yq ρx as y Ò ϕpxq,

  (ii) Under the extreme-value condition Cpρ x , x q , we havec x m 1´2{ρx ď σ 2 px, mq ď cx m 2´2{ρx as m Ñ 8,for some positive constants c x and cx .(iii) Also, under Cpρ x , x q , if m n Ñ 8 with m n " O ´?n Note that the explicit condition m n Ñ 8 with m n " O ´?n

		log log n	¯1 3 2 `1 ρx , then the asymptotic
	normality (10) is still valid.	
	¯1 3 2 `1 ρx , in Theorem 4 (iii), n Ñ 0 as n Ñ 8. We would like also to comment on the speed of log log n ? n{σpx, m n q, obtained in Theorem 4 (i) and (iii), when the trimming level implies that m n { convergence ?
	m n Ñ 8 at a slow rate so that m n " c ´?n log log n	¯1 3 2 `1 ρx , for some constant c ą 0. By
	Theorem 4 (ii), as n Ñ 8, we get	

Theorem 4. Let x P R p `such that F X pxq ą 0. (i) If m n Ñ 8 and m 2 n σpx,mnq " O ´?n log log n ¯as n Ñ 8, then ? n σpx, m n q t p ϕ mn pxq ´ϕmn pxqu L ÝÑ N p0, 1q, n Ñ 8. (10)

  al. (2010, Theorem 2.1 (iii))

	shows that			
	lim mnÑ8	E	"	b ´1 mn ϕpxq ´maxpY x 1 , . . . , Y x mn q

Table 1 :

 1 Uniform triangle example-Results averaged on 1,000 simulations.

				Bias		m
	n	t p ψ m u	t p ϕ m u	t p ψ m u	t p ϕ m u	t p ψ m u t p ϕ m u
	100	0.0414 0.0031	0.0169 -0.0103	7.90	31.76
	500	0.0240 0.0014	-0.0219 -0.0104	15.71 100.61
	1000 0.0175 0.0010	-0.0312 -0.0095	21.02 163.09
		MSE		Bias		m
	n	t p ψ m u	t p ϕ m u	t p ψ m u	t p ϕ m u	t p ψ m u t p ϕ m u
	100	0.0050 0.0019	-0.0104 -0.0101	21.19	51.24
	500	0.0023 0.0006	-0.0147 -0.0074	51.42 150.73
	1000 0.0016 0.0004	-0.0139 -0.0062	76.65 239.33

Table 2 :

 2 Cobb-Douglas example-Results averaged on 1,000 simulations.

  for a suitable choice of m " m n Ñ 8 as n Ñ 8. In our experiments, we used the true value of the bias B m pxq and the empirical counterpart σ2 px, mq of σ 2 px, mq. As for the conditional competitor p ψ
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	More specifically, Theorem 4 indicates that p ϕ m pxq estimates ϕpxq itself with the inherent
	bias B m pxq " ϕpxq ´ϕm pxq such that							
		? n σpx, mq	t p ϕ m pxq ´ϕpxq `Bm pxqu					
		? spx, mq n	p ψ m pxq ´ϕpxq `bm pxq ! )					

L ÝÑ N p0, 1q, n Ñ 8, m , we have by Theorem 3.1 in Daouia et al. (2012) that L ÝÑ N p0, 1q, n Ñ 8,

  avl

		r ψmpxq	avl ϕmpxq r	cov ψmpxq r	cov	r ϕmpxq
	100	0.2981	0.0248	0.9930	0.9940
	500	0.0753	0.0064	0.9820	0.9730
	1000	0.0434	0.0039	0.9590	0.9630
	x " 0.50					
	n	avl ψmpxq r	avl ϕmpxq r	cov ψmpxq r	cov	r ϕmpxq
	100	0.1404	0.0508	0.8820	0.9460
	500	0.0471	0.0178	0.9380	0.9550
	1000	0.0314	0.0122	0.9340	0.9510
	x " 0.75					
	n	avl ψmpxq r	avl ϕmpxq r	cov ψmpxq r	cov	r ϕmpxq
	100	0.1099	0.0828	0.8800	0.9010
	500	0.0432	0.0330	0.9380	0.9450
	1000	0.0299	0.0230	0.9390	0.9400

Table 3 :

 3 Uniform triangle example -Average Lengths and Coverages

Table 4 :

 4 Cobb-Douglas example -Average Lengths and Coverages et al.

	x " 0.25					
	n	avl ψmpxq r	avl ϕmpxq r	cov ψmpxq r	cov	r ϕmpxq
	100	0.1029	0.0539	0.9630	0.9630
	500	0.0419	0.0245	0.9610	0.9550
	1000	0.0293	0.0176	0.9710	0.9510
	x " 0.50					
	n	avl ψmpxq r	avl ϕmpxq r	cov ψmpxq r	cov	r ϕmpxq
	100	0.0950	0.0870	0.9410	0.9570
	500	0.0406	0.0382	0.9650	0.9400
	1000	0.0287	0.0269	0.9680	0.9670
	x " 0.75					
	n	avl ψmpxq r	avl ϕmpxq r	cov ψmpxq r	cov	r ϕmpxq
	100	0.0935	0.1031	0.9180	0.9430
	500	0.0404	0.0449	0.9590	0.9600
	1000	0.0285	0.0316	0.9750	0.9780

  It follows from the definition of ζ t,x pyq and the uniform convergence h t Ñ h in L 8 pR

	ϕ mt pxq ´ϕm pxq t	" m	ż ϕpxq 0	rζ t,x pyqs m´1 ph t px, 8q ´ht px, yqq dy.	(A.3)
					p`1

  der Vaart (1998), p.296], we have to show that sup xPX |pϕ mt pxq ´ϕm pxqq{t ´pm,x φ q 1 F phq| Ñ 0 as t Ó 0. By the uniform convergence of h t to h and the definition of ζ t,x pyq described in Lemma 1, we have sup xPX ,yPR |ζ m´1 t,x pyq ´F m´1 Y x pyq| Ñ 0 as t Ó 0. By using this and applying again the uniform convergence of h t , it is easily seen that rζ t,x pyqs m´1 ph t px, 8q ´ht px, yqq converges to rF Y x pyqs m´1 phpx, 8q ´hpx, yqq uniformly in px, yq as t Ó 0. Finally, since sup xPX ϕpxq ď τ Y , we get sup xPX |pϕ mt pxq ´ϕm pxqq{t ´pm,x φ q 1 F phq| Ñ 0 as t Ó 0. l F pX,Y q pFq of the Gaussian process F described in the proof of Proposition 2. Note that the linear operator p

	Proof of Theorem 1. By applying the functional delta method in conjunction with
	Lemma 2, we get the convergence in distribution of	? nt
	m	
	φq 1 F pX,Y q p¨q is defined and continuous on the
	space L 8 pR p`1	

m φ p p F pX,Y q q´m φ pF pX,Y q qu in L 8 pX q

to the linear transformation p m φq 1

  Proof of Theorem 2. By Taylor's formula, for any y P r0, ϕpxqs, there exists a point η x,n pyq interior to the interval joining F Y x pyq and pF Y x pyq such that r p F Y x pyqs m ´rF Y x pyqs m " mrF Y x pyqs m´1 t p F Y x pyq ´FY x pyqu `pm{2qpm ´1qrη x,n pyqs m´2 t p F Y x pyq ´FY x pyqu 2 . rF Y x pyqs m´1 F Y x pyq ´p F Y x pyq pyqs m´2 t p F Y x pyq ´FY x pyqu 2 dy. rF Y x pyqs m´1 F Y x pyq ´p F Y x pyq ( dy " σpx, mqfor either choice of sign, with probability 1. By combining this result with the fact that R m,n pxq{p2 log log nq 1{2 a.s. ÝÑ 0 as n Ñ 8, we get the desired LIL. The function Hp¨q being convex and continuous on r0, ϕpxqs, it achieves its supremum at y 0 " 0 or y 0 " ϕpxq.Proof of Proposition 4. Putting F t " p1 ´tqF Y x `tδ u and F ´1 t p1q " infty|F t pyq " 1u, we have rF Y x pyqs m´1 δ u pyq ´FY x pyq

	By applying again the classical LIL [see, e.g., Serfling (1980), Theorem A, p.35], we obtain
							ż ϕpxq
	lim sup nÑ8	˘?nm p2 log log nq 1{2	0	
	Proof of Proposition 3. We have
	γ ˚`T m,x , F pX,Y q	˘"	F X pxq m	sup y 0 ě0	0 ˇˇˇˇż ϕpxq	F m´1 Y |X py|xq	" 1Ipy 0 ď yq ´FY |X py|xq ‰	dy	ˇˇˇ"
							m F X pxq	max	# ż ϕpxq 0	F m Y |X py|xqdy, sup 0ďy 0 ďϕpxq	Hpy 0 q	+	,
	where Hpy 0 q :" dy. The conclusion is then immediate. ş y 0 0 F m Y |X py|xqdy `şϕpxq y 0 F m´1 Y |X py|xq " 1 ´FY |X py|xq ‰
	we have that	p`1 nt ? IF `u; T m , F Y x q. Therefore, according to Theorem 20.8 in van der Vaart (1998, p.297), m φq 1 F pX,Y q p ? np p F pX,Y q ´FpX,Y q qq `op p1q. ˘" d dt|t"0 T m pF t q " d 0 dt |t"0 ż F ´1 t p1q r1 ´F m t pyqsdy.
										By using
	the fact that p ϕ m pxq ´ϕm pxq ( a.s. " F ´1 t p1q ă ν as t Ñ 0. Therefore	ş ϕpxq 0	`rF Y x pyqs m ´r p F Y x pyqs m ˘dy, we get
	p ϕ m pxq ´ϕm pxq ( " ´pm{2qpm ´1q ´m ż ϕpxq 0 rη x,n On the other hand, we have by the law of the iterated logarithm (LIL) for empirical processes ( dy (A.4) 0 a.s. ż ϕpxq IF `u; T m , F Y x ˘" d 0 0 dt|t"0 ż ν r1 ´F m t pyqsdy " ´m ż ν ( dy,
						sup	ˇˇp F Y x pyq ´FY x pyq ˇˇ" O `plog log n{nq 1{2 ˘,	(A.5)
						y			
	with probability 1. It follows that sup y t ? nr p F Y x pyq ´FY x pyqs 2 u	a.s. ÝÑ 0 as n Ñ 8. Finally,
	since 0 ď η x,n pyq ď 1 for all y, we arrive at
	R m,n pxq :"	? n	˜	p ϕ m pxq ´ϕm pxq (	´m ż ϕpxq	(	dy	¸a.s. ÝÑ 0.

1 

q for any h P L 8 pR m φ p p F pX,Y q q´m φ pF pX,Y q qu " p

0 rF Y x pyqs m´1 F Y x pyq ´p F Y x pyq

Since F t pyq Ñ F Y x pyq as t Ñ 0 for every y P R, we obtain the weak convergence of the distribution functions F t ù F Y x , which in turn implies the weak convergence of the underlying quantile functions as t Ñ 0 in view of a van der Vaart's lemma (1998, Lemma 21.2, p. 305). In particular, F ´1 t p1q Ñ F ´1 Y x p1q " ϕpxq as t Ñ 0. Then for any ν ą ϕpxq, we have

  , mq ě 2m 2

	ż ϕpxq	F m´1 Y x pzqS Y x pzq	ˆż z	F m Y x pyqdy ˙dz
	ϕpxq´δ		z´δ	
	ż ϕpxq			
	ě 2m 2 δ	F m´1 Y x pzqS Y x pzqF m Y x pz ´δqdz
	ϕpxq´δ		
	ż ϕpxq			
	ě 2m 2 δ	F 2m Y x pz ´δqS Y x pzqdz	
	ϕpxq´δ		
		ż ϕpxq		
	ě 2m 2 δF 2m Y x pϕpxq ´2δq		

ϕpxq´δ

S Y x pzqdz.

  1{ρx , we get σ 2 px, mq ě m 2 δ ρx`2 e ´8m xp2δq ρxx {pρ x `1q ě c x m 1´2{ρx , m Ñ 8, for some constant c x ą 0. Whencempm ´1q{σpx, mq ď c ´1{2 x mpm ´1qm ´1 2 `1 ρx , m Ñ 8. `1 ρx , it is immediate that mpm´1q σpx,mq " O p ? n{ log log nq as n Ñ 8, and so the asymptotic normality holds. It remains to show that σ 2 px, mq ď cx m 2´2{ρx as m Ñ 8, for some positive constant cx . It follows from (A.7), in conjunction with the identity ϕ m pxq " ş 8 0 `1 ´rF Y x pyqs m ˘dy " ϕpxq ´şϕpxq 0 rF Y x pyqs m dy, that σ 2 px, mq ď 2m 2

	Hence, if m " O p	? n{ log log nq 2 ż ϕpxq 3	1		˜ż ϕpxq	"
			F m´1 Y x pzqS Y x pzqdz	F m Y x pyqdy
		0			0
		2m 2 rpϕpxq ´ϕm´1 pxqq ´pϕpxq ´ϕm pxqqs pϕpxq ´ϕm pxqq
		" 2m 2 pϕpxq ´ϕm pxqq 2	"	ϕpxq ´ϕm´1 pxq ϕpxq ´ϕm pxq	´1	.

  Proof of Theorem 5. By Theorem 4 (ii) and (iii), we have p ϕ mn pxq ´ϕmn pxq " O p `σpx, m n q{ ?It follows from (13) that ϕpxq ´p ϕ mn pxq " pϕpxq ´ϕmn pxqq `pϕ mn pxq ´p ϕ mn pxqq pam n q 1{ρx `p ϕ a 2 mn pxq ´p ϕ amn pxq ÝÑ ρ x . On the other hand, by applying again `1 ρx o p1q ,where the last term tends to zero since α x ą ρ x `1. Hence, it suffices to show that ¯´1 ă 2ε ´ε. Whence I " o p p1q. The second term II in (A.8) can be written explicitly as

	whence p ρ x	p						
	m 1{ρx n	`p ϕ amn pxq ´p ϕ mn pxq ˘" ˆ1 x	˙1{ρx	Γ ˆ1	`1 ρ x	˙"1 ´1{a 1{ρx ‰	`o p1q `Op	n ´mn ?	¯,
	in conjunction with m n {	? n Ñ 0 and p ρ x	p ÝÑ ρ x as n Ñ 8, we get
			p x "	1 m n	"	p1 ´a´1{p ρx qΓp1 `1{p ρ x q p ϕ amn pxq ´p ϕ mn pxq	 ρx p	p ÝÑ x ,
	which ends the proof.						
	Proof of Theorem 6. By Theorem 4 (iii), we have
			? n σpx, m n q	n ˘" O p ϕ mn pxq ´ϕpxq `Bmn pxqu t p	´m1´1{ρx { ? n	¯.
	It remains to show that						
	" Similarly, we have for all a ě 2, ˆ1 m n x n σpx, m n q ˆ1 m n p x ˙1{ρx Γ ˆ1 `1 ρ x ˙´ˆ1 ˙1{ρx Γ ˆ1 m n x `1 ρ x ˙1{ρx ? # or equivalently, as n Ñ 8, ˙`o `m´1{ρx n `1 ρ x Γ ˆ1 ˙`o `m´p1`αxq{ρx ˘`O p ´m1´1{ρx n ? ? n σpx, m n q ! p B mn pxq ´Bmn pxq ) p ÝÑ 0, n Ñ 8, II " ? n σpx, m n q Γ ´1 ¯r m « 1{ρx n ϕ a r m pxq ´ϕ r m pxq `1 ρ x m 1{ρx n Γ `1 `1{ρ x ˘`1 ´a´1{ρx ˘´´1 r m n x	¯.
		ϕpxq ´p ϕ amn pxq "	ˆ1 am n x	˙1{ρx	Γ ˆ1	`1 ρ x log log n ˙`o `m´1{ρx n ¯1 3 2 `1 ρx , we have ˘`O p	´m1´1{ρx ? n	¯,
	ϕpxq ´p ϕ a 2 mn pxq " ? n o `m´p1`αxq{ρx ˆ1 a 2 m n x n ˘" ? ˙1{ρx n m ´1 2 ´αx Γ ˆ1 `1 ρ x ρx n o p1q " ˙`o `m´1{ρx n ? n m ´1 2 ´αx ˘`O p ρx n o p1q ´m1´1{ρx ? n σpx, m n q The differences lead to m 1{ρx n `p ϕ amn pxq ´p ϕ mn pxq ˘" ˆ1 x ˙1{ρx Γ ˆ1 `1 ρ x ˙"1 ´1{a 1{ρx ‰ `o p1q `Op ´mn ? n ¯, ¯. ˘" ˆ1 x ˙1{ρx Γ ˆ1 `1 ρ x ˙"1 ´1{a 1{ρx ‰ `o p1q `Op ´mn ? n which gives " ? n ˆ?n log log n ˙´1 2 ´αx ρx 3 2 `1 ρx o p1q " ? n 1 2 `αx ρx ρx`1´αx 3 2 ρx`1 plog log nq 3 # + 2 ? n σpx, m n q Γ ˆ1 `1 ρ x ˙1 m 1{ρx n ˙1{ρx x ˙1{ρx ˆ1 p x ´ˆ1 p ÝÑ 0,	¯,
	p ϕ amn pxq ´p ϕ mn pxq p ϕ a 2 mn pxq ´p ϕ amn pxq or equivalently, ? σpx, m n q n	´1 x x `1 ρ x ¯1 m ¯1{ρx " a 1{ρx ¯1{ρx Γ ´1 1{ρx Γ ´1 `1 ρx ¯"1 ´1{a 1{ρx ‰ Γ ´1 `1 ρx ¯r1 ´1{a 1{ρx s `o p1q `Op ´mn ? `o p1q `Op ´mn ? n n r x ´1 p x ¯1{ρx ´´1 ¯1{ρx " 	1
										"
						`?n σpx, m n q	Γ ´1	`1 ρ x ¯1 m 1{ρx n	´1 r x	¯1{ρx	´´1

n ¯. Since m n { ? n Ñ 0 as n Ñ 8, we get p ϕ amn pxq ´p ϕ mn pxq p ϕ a 2 mn pxq ´p ϕ amn pxq p ÝÑ a 1{ρx , L ÝÑ N p0, 1q, n Ñ 8. n ˘+ p ÝÑ 0. By Theorem 4 (ii) and the condition m n " O ´?n x ¯1{ρx  :" I `II p ÝÑ 0, (A.8)
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Appendix: Proofs

Proof of Proposition 1. By definition [START_REF] Cazals | Nonparametric frontier estimation: a robust approach[END_REF] we have ϕ m pxq " EpW m q, where W m " maxpY x 1 , . . . , Y x m q. Hence ϕ m pxq " arg min θPR E pW m ´θq 2 ( . On the other hand, it is easily seen that E pW m ´θq 2 ( " E mrF Y x pY x qs m´1 ¨pY x ´θq 2 ( . Therefore, ϕ m pxq " arg min θPR E mrF Y x pY x qs m´1 ¨pY x ´θq 2 ( . The first-order necessary condition for the optimality leads to the solution

The last equality follows from the fact that E mrF Y x pY x qs m´1 ( " 1.

To prove Proposition 2 and Theorem 1, the basic arguments go as those of the proof of Proposition 4.1 in [START_REF] Daouia | Robustness and inference in nonparametric partial frontier modeling[END_REF]. Fix m ě 1 and x P R p `such that F X pxq ą 0. Define the domain D x to be the set of joint distribution functions Gp¨, ¨q on R p `ˆR `such that Gpx, 8q ą 0 and G ´1 x p1q ď ϕpxq, (A. [START_REF] Aigner | Formulation and estimation of stochastic frontier models[END_REF] and show that the second term on the right-hand side pn x q 1{ρx p ϕpxq ´p ϕ m pxq ( " o p p1q as n Ñ 8. It follows from ( 5) that

The support of Y x being bounded (included in r0, ϕpxqs), we have with probability 1 that

Hence, for the term pn x q 1{ρx p ϕpxq´p ϕ m pxq ( to be o p p1q, it is sufficient to choose m " m n such that n

To achieve this, it suffices to have " 1 ´1 n ‰ mn " Opn ´β q, or equivalently, " 1 ´1 n ‰ mn ď pCnq ´β for some constants β ą 1 ρx `1 and C ą 0. This condition reduces to m n ě βn log nt1 `op1qu by using the fact that logp1 ´1{nq " ´1{n as n Ñ 8. 

Proof of