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We give a new interpretation of the shifted Littlewood-Richardson coefficients f ν λµ (λ, µ, ν are strict partitions). The coefficients g λµ (λ is a strict partition) can be considered as a special case of f ν λµ . We give another description for g λµ as a cardinal of a subset of a set that counts Littlewood-Richardson coefficients c λ µ t µ . This new point of view allows us to establish connections between g λµ and c λ µ t µ . More precisely, we prove that g λµ = g λµ t , and g λµ ≤ c λ µ t µ . We conjecture that g 2 λµ ≤ c λ µ t µ and formulate some conjectures on our combinatorial models which would imply this inequality if it is valid.

Introduction

Let λ, µ, ν be partitions. Let l(λ) be the length of λ, and s λ be the Schur function associated to the partition λ. The Littlewood-Richardson coefficients c ν λµ appear in the expansion (see [START_REF] Fulton | Young tableaux[END_REF])

s λ s µ = ν c ν λµ s ν . ( 1 
)
If now λ, µ, ν are strict partitions, let Q λ be the shifted Schur Q-function associated to the strict partition λ. The shifted Littlewood-Richardson coefficients appear in the expansion (see [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF])

Q λ Q µ = ν 2 l(λ)+l(µ)-l(ν) f ν λµ Q ν . ( 2 
)
For any strict partition λ, and a partition µ of the same integer, the coefficients g λµ appear in the decomposition (see [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF])

Q λ = 2 l(λ) µ g λµ s µ . ( 3 
)
The coefficients g λµ can be considered as shifted Littlewood-Richardson coefficients by the identity (see [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF])

g λµ = f µ+δ λδ , (4) 
where δ = (l, l -1, . . . , 1) with l = l(µ).

There were several developments beyond the Littlewood-Richardson rule. For example, -Zelevinsky [START_REF] Zelevinsky | A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence[END_REF] expressed the coefficients c ν λµ as the number of pictures between µ and ν/λ.

-Remmel and Whitney [START_REF] Remmel | Multiplying Schur functions[END_REF] described c ν λµ as the number of standard tableaux of shape λ constructed by some rules from the reverse filling of the skew shape ν/µ. There are also a similar version by Chen, Garsia, Remmel [START_REF] Chen | Algorithms for plethysm[END_REF] but they replaced λ with ν and ν/µ with λ * µ.

-White [START_REF] White | Some connections between the Littlewood-Richardson rule and the construction of Schensted[END_REF] showed that the set of tableaux in the construction of Remmel and Whitney [START_REF] Remmel | Multiplying Schur functions[END_REF] can be understood from a different point of view. It arises from Robinson-Schensted insertion of reading words of column-strict tableaux of a fixed skew shape.

There are new approaches that come from geometry: the algorithm by Liu [START_REF] Ini | An algorithmic Littlewood-Richardson rule[END_REF] and the rule of Ravi Vakil [START_REF] Vakil | A geometric Littlewood-Richardson rule[END_REF] etc.

The theory and methods for shifted Littlewood-Richardson coefficients are also developed parallely with the theory of Littlewood-Richardson coefficients. Based on the work of Worley [START_REF] Raymond | A theory of shifted Young tableaux[END_REF], Sagan [START_REF] Sagan | Shifted tableaux, Schur Q-functions, and a conjecture of R. Stanley[END_REF], Stembridge [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF], there are several versions of the shifted Littlewood-Richardson rule for f ν λµ , for example, the works of Serrano [START_REF] Serrano | The shifted plactic monoid[END_REF] and Shimozono [START_REF] Shimozono | Multiplying Schur Q-functions[END_REF] and so on.

Our first result, Theorem 4.2 is a new combinatorial model for the shifted Littlewood-Richardson coefficients. This is analogous to Remmel and Whitney's work [START_REF] Remmel | Multiplying Schur functions[END_REF]. The combinatorial model proposed by Shimozono in [START_REF] Shimozono | Multiplying Schur Q-functions[END_REF] is analogous to White's model [START_REF] White | Some connections between the Littlewood-Richardson rule and the construction of Schensted[END_REF], arising from Sagan's shifted insertion [START_REF] Sagan | Shifted tableaux, Schur Q-functions, and a conjecture of R. Stanley[END_REF]. Despite the case of Littlewood-Richardson coefficients where Remmel and Whitney's construction is identified with White's construction, our construction and Shimozono's construction do not produce the same model. Since g λµ can be considered as a shifted Littlewood-Richardson coefficient, we obtain a new model for g λµ in Theorem 4.3.

Our second result, Theorem 5.3 is also a new combinatorial interpretation of the coefficients g λµ . More precisely, let λ be the partition such that its Young diagram is the union of shifted diagram corresponding to λ and its reflection through the main diagonal. Let µ t be the conjugate partition of µ. We prove that g λµ is the cardinal of a subset of a set that counts the coefficients c λ µ t µ . This implies Theorem 5.5 that

g λµ ≤ c λ µ t µ . ( 5 
)
We conjecture a stronger inequality (see Conjecture 5.6)

g 2 λµ ≤ c λ µ t µ . ( 6 
)
Using a computer program, we checked this conjecture on a lot of examples. Based on our combinatorial model for the coefficients g λµ , we formulate Conjecture 5.7 whose validity implies Conjecture 5.6. An evidence for Conjecture 5.7 is that it implies easily the equality

g λµ = g λµ t . ( 7 
)
The equality (7) might be well known among experts, nevertheless we include a geometric proof in Proposition 3.5. 

The Littlewood-Richardson coefficients

In this section, we present Young tableaux, and related models for Littlewood-Richardson coefficients.

Young tableaux

For a partition λ, we write λ = (λ 1 , λ 2 , . . .

) with λ 1 ≥ λ 2 ≥ . . . . If λ = (λ 1 , λ 2 , . . . , λ l )
with λ l > 0 and

l i=1 λ i = n, we write l(λ) = l, |λ| = n.
Each partition λ is presented by a Young diagram Y (λ).

Example 2.1.

Y ((3, 2)) =
The reflection σ(Y ) through the main diagonal of a Young diagram Y is also a Young diagram. The conjugate partition λ t of λ is defined by σ(Y (λ)) = Y (λ t ).

A semistandard Young tableau of shape λ is a filling of the Young diagram Y (λ) by the ordered alphabet {1 < 2 < . . . } such that:

(Y1) The entries in each column are strictly increasing.

(Y2) The entries in each row are weakly increasing.

Let ν = (ν 1 , ν 2 , . . . ) and µ = (µ 1 , µ 2 , . . . ) be two partitions. We say that ν is bigger than µ if and only if ν i ≥ µ i for all i, and we write ν ≥ µ. In this case, we define the skew Young diagram Y (ν/µ) as the result of removing boxes in the Young diagram Y (µ) from the Young diagram Y (ν). We write |ν/µ| = |ν| -|µ|. A skew Young tableau T of skew shape ν/µ is a result of filling the skew Young diagram Y (ν/µ) by the ordered alphabet {1 < 2 < . . . } satisfying the rules (Y1) and (Y2).

The word w(T ) of a Young tableau T is defined to be the sequence obtained by reading the rows of T from left to right, starting from bottom to top. A Young tableau of skew shape ν/µ is said to be a standard skew Young tableau if its word is a permutation of the word 12 . . . |ν/µ|. The transpose of a standard skew Young tableau T is also a standard skew Young tableau and it is denoted by T t .

Row-insertion and product tableau

For a Young tableau T and a positive integer x, we recall row-insertion x to T from [START_REF] Fulton | Young tableaux[END_REF]. The result of row-insertion x to T is a Young tableau, is denoted by T ← x.

Example 2.2.

1 2 2 3 4

← 1 = 1 1 2 2 4 3
Let T and U be Young tableaux, the product tableau T.U is defined by

T.U := (. . . ((T ← x 1 ) ← x 2 ) ← • • • ← x n-1 ) ← x n , ( 8 
)
where w(U ) = x 1 x 2 . . . x n . Let T be a skew Young tableau of skew shape ν/µ. Let b be an inner corner of ν/µ. We recall sliding b out of T from [START_REF] Fulton | Young tableaux[END_REF] So repeat the process as many times as possible, we finally get a Young tableau and the process will terminate. There is a fact that the Young tableau we get does not depend on the choice of random inner corners in each step. The final tableau we have obtained is called the rectification of T and it is denoted by Rect(T ). The whole process we apply on T to get Rect(T ) is called the jeu de taquin. The process of applying the jeu de taquin on T can be visualized as follows:

Example 2.3. Let

1 1 2 2 3 4 -→ 1 1 2 2 3 4 -→ 1 2 1 2 3 4 -→ 1 1 2 2 4 3
where the boxes in red are chosen to be slided. Hence,

Rect(T ) = 1 1 2 2 4 3 One can easily check that Rect(U ) = Rect(T ).
Let T and U be Young tableaux. We denote T * U the new skew Young tableau which is defined as follows:

T U
We have another point of view about the product tableau T.U . Lemma 2.6. Let T and U be Young tableaux. We have T.U = Rect(T * U ).

The Robinson-Schensted-Knuth correspondence

A two-rowed array is defined by

w = u 1 . . . u n v 1 . . . v n , (9) 
with u i 's and v i 's are in two independent alphabets. We say that w is in lexicographic order if

1. u 1 ≤ u 2 ≤ • • • ≤ u n . 2. If u k-1 = u k for some k, then v k-1 ≤ v k .
The Robinson-Schensted-Knuth correspondence is mentioned in [START_REF] Fulton | Young tableaux[END_REF], which set up an one-to-one correspondence between a two-rowed array in lexicographic order

u 1 . . . u n v 1 . . . v n
and a pair of tableaux of the same shape Q P . We write

u 1 . . . u n v 1 . . . v n ←→ RSK Q P . ( 10 
)
Example 2.7. Let w be the two-rowed array

1 2 3 4 5 6 7 2 3 6 7 4 5 1 . ( 11 
)
The tableaux P and Q are P = 1 3 4 5 2 7

6 and Q = 1 2 3 4 5 6 7

Littlewood-Richardson rule

A Young tableau T is said to have content γ = (γ 1 , γ 2 , . . . ) if γ i is the number of entries i in the tableau T . We write

x T = x γ = x γ 1 1 x γ 2 2 . . . . ( 12 
)
For each partition λ, the Schur function s λ in variables x 1 , x 2 , . . . is defined as the sum of x T , where T runs over the semistandard Young tableaux of shape λ. Let Λ = n≥0

Λ n be the graded ring of symmetric functions in the variables x 1 , x 2 , . . . with coefficients in Z. The following set is a Z-basis of Λ n {s λ | λ is a partition of n} .

The integers c ν λµ for each partitions λ, µ, ν defined by

s λ s µ = ν c ν λµ s ν , ( 13 
)
are called Littlewood-Richardson coefficients.

For any Young tableaux V 0 of shape ν, let T (λ, µ, V 0 ) be the set {(Λ, U ) | Λ, U are Young tableaux of shapes λ, µ, respectively and Λ.U = V 0 } . (14)

For any tableau U 0 of shape µ, let S(ν/λ, U 0 ) be the set

{Skew tableaux S of skew shape ν/λ such that Rect(S) = U 0 } . ( 15 
)
We can describe a canonical one-to-one correspondence between T (λ, µ, V 0 ) and S(ν/λ, U 0 ) as follows:

1. Let (Λ, U ) be an element of the set T (λ, µ, V 0 ). Suppose that

U U 0 ←→ RSK u 1 . . . u m v 1 . . . v m , ( 16 
)
where m = |µ|. Let S be the new skew tableau obtained by placing u 1 , . . . , u m into the new boxes while doing row-insertion v 1 , . . . , v m into Λ. Then S is an element of S(ν/λ, U 0 ).

2. Let S be an element of S(ν/λ, U 0 ). Let Λ be an arbitrary Young tableau of shape λ. Put an order on the letters in Λ and S in such a way that all letters in Λ are smaller than those in S. Now, suppose that

V 0 Λ ∪ S ←→ RSK t 1 . . . t n u 1 . . . u m x 1 . . . x n v 1 . . . v m , ( 17 
)
where n = |λ|. Then we can construct a tableau Λ such that (Λ, U ) ∈ T (λ, µ, V 0 ) by

t 1 . . . t m x 1 . . . x m ←→ RSK Λ Λ . ( 18 
)
3. Denote by F λ,µ,V 0 ν/λ,U 0 the map that sends (Λ, U ) in T (λ, µ, V 0 ) to S in S(ν/λ, U 0 ). This map is a bijection between two sets.

A method to compute the set S(ν/λ, U 0 ) is explained in subsection 2.7. In particular case when U 0 is the Young tableau U µ of shape µ whose all entries in the k th row are equal to k, one can compute explicitly the set S(ν/λ, U µ ) by the model of Remmel and Whitney [START_REF] Remmel | Multiplying Schur functions[END_REF] as follows:

1. With the skew shape ν/λ, we number the boxes from top to bottom and right to left in each row by 1, 2, . . . , |ν/λ|, respectively. The result is called the reverse filling of the skew shape ν/λ. We denote it by T ν/λ .

2. Define O(ν/λ) to be the set of Young tableaux T of size |ν/λ|, constructed from T ν/λ satisfying the following conditions:

(R1) If k and k + 1 appear in the same row of T ν/λ , then k + 1 appears weakly above and strictly right of k in T .

(R2) If h appears in the box directly below k in T ν/λ , then h appears strictly below and weakly left of k in T .

k+1 k -→ k+1 k -→ h k k h 3. Let O µ (ν/λ) be the set of all tableaux T in O(ν/λ) of shape µ. For each T in O µ (ν/λ), we construct a word x |µ| . . . x 1
, where x k is the row where k belongs to in the tableau T . There exists an unique skew Young tableau T * of skew shape ν/λ such that w(T * ) is the word we have created.

4. It is proved that the set S(ν/λ, U µ ) is the set of all skew tableaux T * where T runs over the set of all tableaux in O µ (ν/λ).

Theorem 2.8. Let λ, µ, ν be partitions. Let T 0 be a Young tableau of shape ν and U 0 be a Young tableau of shape µ. We have c ν λµ = #O µ (ν/λ) = #S(ν/λ, U 0 ) = #T (λ, µ, V 0 ). The example below shows how to compute the Littlewood-Richardson coefficients and the three models presented in Theorem 2.8. Example 2.9. Set λ = (3, 2, 1, 1), µ = (4, 2, 1) and ν = (6, 4, 2, 1, 1). Then Hence, c ν λµ = 4. We have

U µ = 1 1 1 1 2 2 3 All tableaux of the set S(ν/λ, U µ ) are 1 1 1 2 2 3 1 1 1 1 2 2 1 3 1 1 1 1 2 2 3 1 1 1 1 2 3 2 Set V 0 = 1 1 2 3 4 5 2 6 6 7 3 7 4 5 and Λ = 1 1 1 2 2 3 4 with order that 1 < 2 < 3 < 4 < 1 < 2 < 3. Set S = 1 1 1 2 2 3 1 ∈ S(ν/λ, U µ )
The two-rowed array corresponding to the pair

V 0 Λ ∪ S is 1 1 1 2 2 3 4 1 1 1 1 2 2 3 1 5 6 2 4 3 2 1 3 7 7 4 6 5 . ( 19 
)
The tableaux Λ and U such that

(Λ, U ) ∈ T (λ, µ, V 0 ) corresponding to S are Λ = 1 2 2 3 6 4 5
and U = 1 3 4 5 6 7 7

Tableau switching

In this subsection, we recall the definition and basic properties of the switching procedure. The main reference is the article [START_REF] Benkart | Tableau switching: algorithms and applications[END_REF] by G. Benkart, F. Sottile, J. Stroomer.

For each skew shape γ, we define a perforated tableau T of shape γ to be a result of filling some boxes in Y (γ) with integers such that: (PT1) The entries in each column are strictly increasing.

(PT2) The entries in each row are weakly increasing.

Let S, T be perforated tableaux of shape γ. We say that S, T completely fill γ if all boxes in Y (γ) are filled by entries of S or T , and no box is filled twice. We then call S ∪ T a perforated pair of shape γ.

Let S ∪ T be a perforated pair of shape γ. Let s in S and t in T be adjacent integers, t is below or in the right of s. We define switching s ↔ t by interchanging s and t such that after the action, both perforated tableau of shape γ filled by entries t, and perforated tableau of shape γ filled by entries s satisfy the conditions (PT1) and (PT2).

Choose a random pair (s, t) in S ∪ T such that we can do the switching s ↔ t. Repeat this process until there are no more pair (s, t) in S ∪ T that can be switched s ↔ t. The result is a new perforated pair T ∪ S of shape γ, where S is the perforated tableau filled by entries s and T is the perforated tableau filled by entries t. The point is that the resulting pair T ∪ S does not depend on the choices, it is denoted by S T ∪ S T (see [START_REF] Benkart | Tableau switching: algorithms and applications[END_REF]). The process we have done to produce S T ∪ S T from S ∪ T is called the switching procedure. The map that sends S ∪ T to S T ∪ S T is called the switching map.

The example below visualizes switching procedure.

Example 2.10. Let γ = (4, 3, 3, 2)/(2, 1). The tableau S with red entries and the tableau T with blue entries below are perforated tableaux of shape γ.

S = 1 1 2 3 T = -1 -2 -2 1 2 S ∪ T = 1 -1 -2 -2 1 1 2 2 3
Look at the entries inside the circles below

1 -1 -2 -2 1 1 2 2 3
We see that we can just switch 1 ↔ 1, but we cannot switch 1 ↔ 2. Indeed, after switching

1 ↔ 1, we get 1 -1 -2 -2 1 1 2 2 3
The new tableau formed by the red entries and the new tableau formed by blue entries satisfy the conditions (PT1), (PT2). But after switching 1 ↔ 2, the new tableau formed by the blue entries does not satisfy the condition (PT2).

Here is the visualization of switching procedure with starting point S ∪ T (we choose pairs in circles to switch).

1 -1 -2 -2 1 1 2 2 3 -→ 1 -1 -2 -2 1 1 2 2 3 -→ -2 -1 -2 1 1 1 2 2 3
Hence,

S T = -2 -1 -2 1 2 and S T = 1 1 2 3
Let S, T be skew tableaux. We say that T extends S if T has skew shape ν/λ and S has shape λ/µ for some partitions ν ≥ λ ≥ µ. The following theorem is a collection of some important properties in Theorem 2.2 and Theorem 3.1 in the article [START_REF] Benkart | Tableau switching: algorithms and applications[END_REF].

Theorem 2.11. Let S, T be skew Young tableaux such that T extends S. Then 1. S T and S T are skew Young tableaux, S T extends S T .

2. S T ∪ S T has the same shape as S ∪ T .

Rect(S) = Rect(S T ).

Rect(T ) = Rect( S T ).

The switching map S ∪ T → S T ∪ S T is an involution.

Example 2.12.

Let S = 1 1 1 2 2 3 4 and T = 1 1 1 2 2 3 1
Then T extends S and

S T = 1 1 1 1 2 2 3 and S T = 1 1 1 2 2 3 4

The symmetry of Littlewood-Richardson coefficients

The tableau switching provides a bijective proof of the symmetry of Littlewood-Richardson coefficients

c ν λµ = c ν µλ . ( 20 
)
Indeed, let Λ 0 be a Young tableau of shape λ and U 0 be a Young tableau of shape µ. We can describe a one-to-one correspondence between S(ν/µ, Λ 0 ) and S(ν/λ, U 0 ) by tableau switching as follows:

1. Let S be an element of S(ν/λ, U 0 ). The switching map sends Λ 0 ∪ S to Λ 0 S ∪ (Λ 0 ) S . By Theorem 2.11, we have Λ 0 S = U 0 and Rect((Λ 0 ) S ) = Λ 0 . Hence, (Λ 0 ) S ∈ S(ν/µ, Λ 0 ).

2. By Theorem 2.11, the switching map is an involution. Hence, the map that sends S to (Λ 0 ) S is a bijection between S(ν/λ, U 0 ) and S(ν/µ, Λ 0 ). We denote this map by

B ν/λ,U 0 ν/µ,Λ 0 .
Let V 0 and W 0 be Young tableaux of shape ν. The composition of the bijections below

T (λ, µ, V 0 ) F λ,µ,V 0 ν/λ,U 0 -----→ S(ν/λ, U 0 ) B ν/λ,U 0 ν/µ,Λ 0 -----→ S(ν/µ, Λ 0 ) F µ,λ,W 0 ν/µ,Λ 0 -1 ---------→ T (µ, λ, W 0 ) (21)
gives us a bijection between the set T (λ, µ, V 0 ) and the set T (µ, λ, W 0 ). We denote this map by S λ,µ,ν V 0 ,U 0 ,Λ 0 ,W 0 .

Remark 2.13. Subsection 2.5 provides an algorithm to determine the set S(ν/λ, U µ ).

Applying then B ν/λ,Uµ ν/µ,Λ 0 , we get an algorithm to compute S(ν/µ, Λ 0 ) for any Λ 0 .

The shifted Littlewood-Richardson coefficients

In this section, we present the definition and Stembridge's models, geometric points of view for shifted Littlewood-Richardson coefficients.

Shifted tableaux

A partition λ = (λ 1 , λ 2 , . . . ) is said to be strict if λ 1 > λ 2 > . . . . Each strict partition λ is presented by a shifted diagram sY (λ) that is a collection of boxes such that:

(SD1) The leftmost boxes of each row are in the main diagonal.

(SD2) The number of boxes from top row to bottom row are λ 1 , λ 2 , . . . , respectively.

A shifted tableau T of shifted shape λ is a result of filling the shifted diagram sY (λ) by the ordered alphabet {1 < 1 < 2 < 2 < . . . } such that (T1) The entries in each column and in each row are weakly increasing.

(T2) The entries k in each row are strictly increasing.

(T3) The entries k in each column are strictly increasing.

The shifted tableau T is said to have content γ = (γ 1 , γ 2 , . . . ) if γ i is the number of i or i in T . We write

x T = x γ = x γ 1 1 x γ 2 2 . . . . ( 22 
)
Let ν = (ν 1 , ν 2 , . . . ) and µ = (µ 1 , µ 2 , . . . ) be two strict partitions with ν ≥ µ. We define the skew shifted diagram sY (ν/µ) as the result of removing boxes in shifted diagram sY (µ) from shifted diagram sY (ν). A skew shifted tableau T of skew shifted shape ν/µ is a result of filling the shifted diagram sY (ν/µ) by the ordered alphabet {1 < 1 < 2 < 2 < . . . } satisfying the rules (T1), (T2) and (T3). The content of a skew shifted tableau T is defined by the same way as for a shifted tableau.

Shifted jeu de taquin

For the skew shifted diagram sY (ν/µ), we also define inner corners and outside corners by the same way as for the case of skew Young diagrams. Let T be a skew shifted tableau of skew shifted shape ν/µ without entries k . Let b be an inner corner of skew shifted diagram sY (ν/µ), we define shifted sliding b out of T , and shifted jeu de taquin on T , shifted rectification of T which we denote by sRect(T ), by the same way as for the case of skew Young tableaux.

Here is an example of shifted jeu de taquin.

Example 3.1. Set T = 1 2 3 4 5
The process of applying the shifted jeu de taquin on T can be visualized as follows:

1 2 3 4 5 -→ 1 2 3 5 4 -→ 1 5 2 3 4 -→ 1 3 5 2 4 -→ 1 2 3 5 4
where the boxes in red are chosen to be slided. Hence, sRect(T ) = 1 2 3 5 4

Shifted Littlewood-Richardson rule

The Schur Q-function Q λ = Q λ (x) in variables x 1 , x 2 , . . . is defined as the sum of x T where T runs over the shifted tableaux of shape λ. Since every coefficient in Q λ is divisible by 2 l(λ) , we can define a formal power series with integer coefficients

P λ (x) = 2 -l(λ) Q λ (x). ( 23 
)
We define the power-sum symmetric function p r with r ≥ 1 by

p r = x r 1 + x r 2 + . . . . ( 24 
)
For each partition λ = (λ 1 , λ 2 , . . . ), we define

p λ = p λ 1 p λ 2 . . . . ( 25 
)
The following set is a Z-basis of Λ n {p λ | λ is a partition of n} .

Let Ω Q = n≥0 Ω n Q be the graded subalgebra of Λ Q = Q ⊗ Z Λ generated by 1, p 1 , p 3 , p 5 , . . . . Let Ω = Ω Q ∩ Λ be the Z-hyper subring of Ω Q . We write Ω = n≥0 (Ω n Q ∩ Λ) as a graded ring. Since {P λ | λ is a strict partition of n} is a Z-basis of Ω n Q ∩ Λ,
we can define integers f ν λµ for each strict partitions λ, µ, ν by

P λ P µ = ν f ν λµ P ν . ( 26 
)
The integers f ν λµ are called the shifted Littlewood-Richardson coefficients.

For any (skew) shifted tableau T , we define the word w(T ) to be the sequence obtained by reading the rows of T from left to right, starting from bottom to top.

Given a word w = w 1 w 2 . . . w n over the alphabet {1 < 1 < 2 < 2 < . . . }, we define a sequence of statistics m i (j) (0 ≤ j ≤ 2n, i ≥ 1) as follows:

m i (j) = multiplicity of i among w n . . . w n-j+1 (0 ≤ j ≤ n), m i (j) = multiplicity of i among w 1 . . . w j-n + multiplicity of i among w n . . . w 1 (n < j ≤ 2n).
We say that the word w is a shifted lattice word if, whenever m i (j) = m i-1 (j), the next letter to be read after j th step (it is w n-j if 0 ≤ j < n and w j+1-n if n ≤ j < 2n) is not be i, i if 0 ≤ j < n and not be i -1, i if n ≤ j < 2n.

Stembridge in [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF] obtained a shifted analogue of the Littlewood-Richardson rule as follows.

Theorem 3.2. Let λ, µ, ν be strict partitions. Then the coefficient f ν λµ is the number of skew shifted tableaux T of skew shifted shape ν/µ and content λ satisfying (F1) The leftmost letter of {i, i in w(T )} is unmarked (1 ≤ i ≤ l(λ)).

(F2) The word w(T ) is a shifted lattice word.

For each strict partition λ and partition µ of the same integer n, let g λµ be the integer defined by

P λ = |µ|=n g λµ s µ . ( 27 
)
In the proof of Theorem 9.3 in [START_REF] Stembridge | Shifted tableaux and the projective representations of symmetric groups[END_REF], Stembridge used the fact that

g λµ = f µ+δ λδ , ( 28 
)
where µ = (µ 1 , µ 2 , . . . , µ l ) with l = l(µ), ( 29 
) δ = (l, l -1, . . . , 1), ( 30 
) µ + δ = (µ 1 + l, µ 2 + l -1, . . . , µ l + 1). ( 31 
)
With the identity (28), he obtained an explicit interpretation of g λµ as in the following theorem.

Theorem 3.3. Let λ be a strict partition and µ be a partition. Then the coefficient g λµ is the number of skew shifted tableaux T of shape µ and content λ satisfying

(G1) The leftmost letter of {i, i in w(T )} is unmarked (1 ≤ i ≤ l(λ)).
(G2) The word w(T ) is a shifted lattice word.

A skew shifted tableau of skew shifted shape ν/µ is said to be standard if its word is a permutation of the word 12 . . . |ν/µ|. The following result can be translated equivalently from Lemma 8.4 in the article [Ste89] of J. Stembridge.

Theorem 3.4. Let λ, µ, ν be strict partitions. Choose a standard shifted tableau T λ of shifted shape λ. Then the coefficient f ν λµ is the number of standard skew shifted tableaux S of skew shifted shape ν/µ such that sRect(S) = T λ .

Geometric interpretation of the coefficients f ν λµ and g λµ

Let V be a complex vector space of dimension m+n. The set Gr(m, V ) of linear subspaces of dimension m in V is called a complex Grassmannian. Fix a complete flag of V

F : 0 = V 0 ⊂ • • • ⊂ V i ⊂ • • • ⊂ V m+n = V, ( 32 
)
where each V i is a vector subspace of V of dimension i. To each partition λ = (λ 1 , . . . , λ m ) with λ m ≥ 0, contained in the m × n rectangle, we associate the Schubert variety

X λ (F) = {W ∈ Gr(m, V ) | dim(W ∩ V n+i-λ i ) ≥ i (1 ≤ i ≤ m)} . ( 33 
)
The Poincare dual class of X λ (F) is denoted by σ λ and called a Schubert class. Then σ λ is an element of H 2|λ| (Gr(m, V )). We have (see [START_REF] Fulton | Young tableaux[END_REF])

H * (Gr(m, V )) = λ is a partition contained in the m × n rectangle Zσ λ . ( 34 
)
Now, let V be a complex vector space V of dimension 2n, endowed with a nondegenerate skew-symmetric bilinear form ω. A subspace W of V is isotropic if the form ω vanishes on it, i.e., ω(v, w) = 0 for all v, w ∈ W . A maximal isotropic subspace of V is called Lagrangian. The set LG(n, V ) of Lagrangian subspaces in V is called the Lagrangian Grassmannian. Fix a complete isotropic flag of V

L : 0 = V 0 ⊂ • • • ⊂ V i ⊂ • • • ⊂ V n ⊂ V, ( 35 
)
where each V i is a vector subspace of V , of dimension i and V n is Lagrangian. To each strict partition λ = (λ 1 , . . . , λ l ) with λ l > 0, contained in (n, n -1, . . . , 1), we associate the Schubert variety

Y λ (L) = {W ∈ LG(n, V ) | dim(W ∩ V n+1-λ i ) ≥ i (1 ≤ i ≤ l)} . ( 36 
)
The Poincare dual class of Y λ (L) is denoted by θ λ and called a Schubert class. Then θ λ is an element of H 2|λ| (LG(n, V )). We have (see [START_REF] Pragacz | Algebro-geometric applications of Schur S-and Q-polynomials[END_REF])

H * (LG(n, V )) = λ is a strict partition contained in (n, n -1, . . . , 1) Zθ λ , ( 37 
)
and

θ λ θ µ = ν 2 l(λ)+l(µ)-l(ν) f ν λµ θ ν . ( 38 
)
There is a canonical embedding ι : LG(n, V ) → Gr(n, V ). The map ι induces the ring homomorphism ι * : H * (Gr(n, V )) → H * (LG(n, V )). For each partition µ contained in the n × n rectangle, we have (see [START_REF] Pragacz | A generalization of the Macdonald-You formula[END_REF])

ι * (σ µ ) =
λ is a strict partition contained in (n,n-1,...,1)

g λµ θ λ . ( 39 
)
3.5 Application to the identity g λµ = g λµ t Proposition 3.5. Let λ be a strict partition and µ be a partition. Then g λµ = g λµ t .

Proof. Let V be a complex vector space of dimension 2n, endowed with a nondegenerate skew-symmetric bilinear form ω. For each subspace W of V , set

W ⊥ω = {v ∈ V such that ω(v , v) = 0 for all v ∈ W }, (40) 
W ⊥ = {f ∈ V * such that f (v) = 0 for all v ∈ W }. ( 41 
)
Fix a complete isotropic flag of V

L : 0 = V 0 ⊂ • • • ⊂ V i ⊂ • • • ⊂ V n ⊂ V. ( 42 
)
Then we can extend L to a complete flag F of V as follow

F : 0 = V 0 ⊂ • • • ⊂ V i ⊂ • • • ⊂ V 2n = V, ( 43 
)
where

V n+i = (V n-i ) ⊥ω for each i = 1, . . . , n. Moreover, the flag F ⊥ defined below is a complete flag of V * F ⊥ : 0 = (V 2n ) ⊥ ⊂ • • • ⊂ (V 2n-i ) ⊥ ⊂ • • • ⊂ (V 0 ) ⊥ = V * . ( 44 
)
Then flag L ⊥ defined below is a complete isotropic flag of V *

L ⊥ : 0 = (V 2n ) ⊥ ⊂ • • • ⊂ (V 2n-i ) ⊥ ⊂ • • • ⊂ (V n ) ⊥ ⊂ V * . ( 45 
)
We define an isomorphism η :

Gr(n, V ) → Gr(n, V * ) by W → W ⊥ . By [GH78], we know that η(X µ (F)) = X µ t (F ⊥ ). ( 46 
)
Hence, the map η induces the ring isomomorphism η * :

H * (Gr(n, V * )) → H * (Gr(n, V )) with η * (σ µ ) = σ µ t . ( 47 
)
The restriction of η on LG(n, V ) is also an isomorphism and we still denote it by η. We have

η(Y λ (L)) = Y λ (L ⊥ ). (48) Indeed, 1. For each W ∈ Y λ (L), we have W ⊥ω = W , and dim(W ∩ V n+1-λ i ) ⊥ω = 2n -1 + λ i -dim(W ∩ V n-1+λ i ). ( 49 
)
Then we can rewrite (36) as

Y λ (L) = {W ∈ LG(n, V ) | dim(W ∩ V n-1+λ i ) ≥ i + λ i -1 (1 ≤ i ≤ l)} . ( 50 
)
2. Now, for any W ∈ Y λ (L) given by (50), we have

dim(W ∩ V n-1+λ i ) ⊥ = 2n + 1 -λ i -dim(W ⊥ ∩ V ⊥ n-1+λ i ). (51) 
Then W ⊥ ∈ Y λ (L ⊥ ) given by (36).

Hence, the map η induces the ring isomorphism η * :

H * (LG(n, V * )) → H * (LG(n, V )) with η * (θ λ ) = θ λ . ( 52 
)
We have

η * ι * = ι * η * . ( 53 
)
Apply η * on both sides of the equality (39), with the help of (47), ( 52), (53), we get

η * (ι * (σ µ )) =
λ is a strict partition contained in (n, n -1, . . . , 1)

g λµ θ λ (54) = λ is a strict partition contained in (n, n -1, . . . , 1)
g λµ t θ λ . ( 55 
)
It implies g λµ = g λµ t .

A new combinatorial models for the coefficients f ν λµ

Given a skew shifted shape ν/µ, we number the boxes from top to bottom and right to left in each row by 1, 2, . . . , |ν/µ|, respectively. The result is called the shifted reverse filling of the skew shifted shape ν/µ. We denote it by T ν/µ .

For each k = 1, 2, . . . , |ν/µ|, let k * to be meant k or k .

We now let O(ν/µ) be the set of all tableaux T of size |ν/µ| of unshifted shape constructed from T ν/µ , satisfying the following conditions: (C1) If k and k + 1 appear in the same row of T ν/µ , then (k + 1) * appears weakly above k or (k + 1) * appears strictly above k in T .

(C2) If h appears in the box directly below k in T ν/µ , then h * appears weakly below k or h * appears strictly below k in T . (C4) For each j = 1, 2, . . . , n -1, let T j↓ be the result of T by removing the boxes with entries k or k > j if exists. Suppose that the shape of T j↓ is (τ 1 , τ 2 , . . . ). Then τ 1 ≥ τ 2 ≥ . . . and if τ i-1 = τ i for some i, the entry (j + 1) * does not belong to the i th row of T .

-→ -→ k+1 k k h k (k+1) * k (k+1) * k h * k h * or or (C3) T is filled by the alphabet {1 < 1 < 2 < 2 < • • • < |ν/µ| < |ν/µ|}
(C5) For each j = n, n -1, . . . , 2, let T j↑ be the result of T by changing k to k with k ≥ j, removing the boxes with entries k < j if exists. Suppose that the shape of T j↑ is (τ 1 , τ 2 , . . . ). Then τ 1 ≥ τ 2 ≥ . . . and if τ i-1 = τ i for some i, the entry j -1 does not belong to the (i -1) th row of T and the entry (j -1) does not belong to the i th row of T .

Example 4.1. We illustrate how the tableaux T j↓ and T j↑ come from a tableau T and the conditions (C4) and (C5) work. Let T be the following tableau T = 1 2 3 4 5 8 10 6 7 9 11 12

We can easily compute the tableaux T j↓ for j = 1, 2, . . . , 11 and check that all of them satisfy the condition (C4). For example, here is the tableau T 10↓ with shape τ = (5, 2) (the boxes in pink mean to be removed) For j = 12, 11, . . . , 2, we can also compute T j↑ but there is some tableaux T j↑ that does not satisfy the condition (C5), one of which is the tableau T 10↑ given below (the boxes in pink mean to be removed and there is no letter k such that k ≥ 10) 1 2 3 4 5 8 10 6 7 9 11 12 = 1 2 3 4 10 6 9 11 12

1
The shape of T 10↑ is τ = (5, 2, 2). We see that τ 2 = τ 3 = 2 and the letter 9 belongs to the second row of T .

Theorem 4.2. Let λ, µ, ν be strict partitions. Then the coefficient f ν λµ is the number of the tableaux T in O(ν/µ) of shape λ.

Proof. Let S λ (ν/µ) be the set of tableaux in Theorem 3.2. Let O λ (ν/µ) be the set of tableaux in the set O(ν/µ) of shape λ.

Let T ∈ S λ (ν/µ) with w(T ) = w 1 w 2 . . . w |ν/µ| . We associate T with an unique tableau T of unshifted shape by the rules: For each i = |ν/µ|, . . . , 2, 1, we have -If w i = k, then |ν/µ| + 1 -i appears in the k th row of T .

-If w i = k , then (|ν/µ| + 1 -i) appears in the k th row of T .

We can easily check that T ∈ O λ (ν/µ). Indeed, -T has content λ if and only if T has shape λ.

-The conditions (T1), (T2) and (T3) of T are equivalent to the conditions (C1) and (C2) of T .

-The condition (F1) of T is equivalent to the condition (C3) of T .

-The condition (F2) of T is equivalent to the conditions (C4) and (C5) of T .

Hence, we can define an injection φ : S λ (ν/µ) → O λ (ν/µ), T → T .

Moreover, for each T ∈ O λ (ν/µ), we associate T with an unique tableau T of skew shifted shape ν/µ and word w(T ) = w 1 w 2 . . . w |ν/µ| by the rule: for each j = |ν/µ|, . . . , 2, 1, we have -If j appears in the k th row of T , then w |ν/µ|+1-j = k.

-If j appears in the k th row of T , then w |ν/µ|+1-j = k .

The equivalence of the conditions we have already shown implies that T ∈ S λ (ν/µ). So we can define an injection ψ : O λ (ν/µ) → S λ (ν/µ), T → T . Moreover, φψ = Id. Hence, φ is a bijection between two sets and f ν λµ = # S λ (ν/µ) = # O λ (ν/µ).

Theorem 4.3. Let λ be a strict partition and µ be a partition. Then the coefficient g λµ is the number of the tableaux T in O(µ + δ/δ) of shape λ.

Proof. This follows from Theorem 4.2 and identity (28).

We illustrate the method to compute the coefficients f ν λµ through an example.

Example 4.4. Set λ = (3, 2), µ = (3, 2), ν = (5, 3, 2).

(1) The shifted reverse filling of the skew shifted shape ν/µ is

T ν/µ = 2 1 3 5 4
(2) To construct the tableaux T in O λ (ν/µ), we first use three conditions (C1), (C2) and (C3). Then check the results if they satisfy the conditions (C4) and (C5) or not.

1. We start with 1 * , there are two possibilities, they are 1 and 1. But if 1 appears in the tableau T then the next position of 2 * will be in the row above the first row by the condition (C1). It is impossible. Hence, just only one case that 1 appears in T .

Then the next two possibilities by the condition (C1) are

1 2 1 2
2. For the second case, by the condition (C2), there are four possibilities below

1 2 3 1 2 3 1 2 3 1 2 3
-The last one cannot happen since the tableau T has shape λ = (3, 2). Then we consider 3 as the rightmost letter in the first row of T and it should be 3 to satisfy the condition (C3). -The second one also cannot happen because the next position of 4 * will be in the row below the row of 3 by the condition (C2). It cannot produce a tableau of shape λ = (3, 2) later. -For the third one, the next position of 4 * is based on the condition (C2). To produce the shape λ = (3, 2) later, it will be as follows:

1 2 3 4 1 2 3 4
-For the first one, the next position of 4 * is based on the conditions (C2) and (C3). To produce the shape λ = (3, 2) later, will be as follows:

1 2 3 4
Continue until the end on the remaining cases by similar arguments, we finally can find the tableaux of shape λ = (3, 2) satisfying all conditions (C1), ( C2) and (C3) as follows:

1 2 5 3 4 1 2 5 3 4 1 2 3 4 5
We can check that only first two tableaux above satisfy the conditions (C4) and (C5). Hence, f ν λµ = 2. We automatically find out the set of skew shifted tableaux described in Theorem 3.2 by using the bijection we mentioned in the proof of Theorem 4.2. Here they are

1 1 2 1 2 1 1 2 1 2
Remark 4.5. The model of Remmel and Whitney for Littlewood-Richardson coefficients [START_REF] Remmel | Multiplying Schur functions[END_REF], i.e., the set O µ (ν/λ) in Theorem 2.8, has another interpretation by White [START_REF] White | Some connections between the Littlewood-Richardson rule and the construction of Schensted[END_REF]. Namely, each tableau in the set O µ (ν/λ) can be considered as the recording tableau of the word rewritten in inverse order of a tableau in the set S(ν/λ, U µ ). Our model, i.e., the set O λ (ν/µ), is analogous to Remmel and Whitney's model but for shifted Littlewood-Richardson coefficients. In [START_REF] Shimozono | Multiplying Schur Q-functions[END_REF], M. Shimozono gave an analogous model to the White's model in [START_REF] White | Some connections between the Littlewood-Richardson rule and the construction of Schensted[END_REF] In conclusion, the Shimozono's model is not the same as our model.

On the coefficients g λµ

In this section, we present our second result. Namely, we present a new interpretation of the coefficients g λµ as a subset of a set that counts Littlewood-Richarson coefficients. As corollaries, we can compute the coefficients g λµ by models for Littlewood-Richardson coefficients. We will prove and conjecture inequalities between the coefficients and also state some conjectures that explain the hidden structure behind them.

A new interpretation of the coefficients g λµ

For any (skew) shifted tableau T without entries k , let s(T ) be the new (skew) tableau which is defined as follow:

1. Creat an image of T by the symmetry through its main diagonal.

2. Combine the image we have created with T by gluing them along the main diagonal as the image below.

T

Let ν/µ be the skew shifted shape of T , then we denote the shape of s(T ) by ν/µ. For any strict partition λ of n, let T λ be the shifted tableau of shifted shape λ, obtained by putting numbers 1, 2, . . . , n in the boxes of shifted diagram sY (λ) from left to right, starting from top to bottom. Let T (µ t , µ, s(T λ )) be the subset of T (µ t , µ, s(T λ )) of all pairs (T, U ) such that T = U t . Theorem 5.3. Let λ be a strict partition and µ be a partition. Then g λµ = #T (µ t , µ, s(T λ )).

Proof. We have g λµ = f µ+δ λδ . By Theorem 3.4, it is the number of standard skew shifted tableaux S of skew shifted shape (µ + δ)/δ such that sRect(S) = T λ . The condition sRect(S) = T λ , by Proposition 5.2 is equivalent to the condition s(T λ ) = Rect(s(S)).

(56)

The tableau s(S) has form

U U t
where U is a standard Young tableau of shape µ. Since s(S) and U t * U have the same word, then by Lemma 2.4 and Lemma 2.6, we have

s(T λ ) = Rect(U t * U ) = U t .U. ( 57 
)
It is clear that U is uniquely determined by S. Hence, g λµ is the number of pairs (T, U ) in the set T (µ t , µ, s(T λ )) such that T = U t .

Theorem 5.3 gives a way to compute the coefficients g λµ .

Example 5.4. Let λ = (5, 2) and µ = (4, 2, 1). Since µ t = (3, 2, 1, 1), we can re-use the computation in Example 2.9. The elements in the set S( λ/µ t , U µ ) with the corresponding elements in the set T (µ t , µ, s(T λ )) are (the elements in the subsets T (µ t , µ, s(T λ )) are that w ∈ W P corresponds to strict partition λ, then χ w corresponds to the partition λ. Let λ ∨ be the strict partition corresponding to the completion of sY (λ) in sY ((n, n-1, . . . , 1)).

Let λ 1 , λ 2 , λ 3 be the strict partitions corresponding to w 1 , w 2 , w 3 ∈ W P , respectively in Theorem 1.4 in [START_REF] Prakash Belkale | A generalization of Fulton's conjecture for arbitrary groups[END_REF]. Since the structure constants for the singular cohomology and the deformed cohomology 0 in this case are the same, the theorem says that for any positive integer k, we have

f λ ∨ 3 λ 1 λ 2 = 1 implies c kλ ∨ 3 kλ 1 kλ 2 = 1. ( 60 
)
In particular, when λ 1 = λ, λ 2 = δ, λ ∨ 3 = µ + δ, the left-hand side of (60) becomes 1 = f µ+δ λδ = g λµ .

With k = 1, the right-hand side of (60) becomes 1 = c µ+δ λδ = #S( µ + δ/ δ, s(T λ )) = #S(µ t * µ, s(T λ ))

= #T (µ t , µ, s(T λ ))

= c λ µ t µ .

Hence, we get the conclusion (58). Similarly, the conclusion (59) follows Proposition 1.6 in [START_REF] Prakash Belkale | A generalization of Fulton's conjecture for arbitrary groups[END_REF].

Theorem 5.5. Let λ be a strict partition and µ be a partition. Then g λµ ≤ c λ µ t µ .

Proof. By Theorem 5.3 and Theorem 2.8, we have g λµ = #T (µ t , µ, s(T λ )) ≤ #T (µ t , µ, s(T λ )) = c λ µ t µ .

(61)

Inequality g

2 λµ ≤ c λ µ t µ
In this subsection, we propose a stronger conjectural inequality than Theorem 5.5. We provide some examples to support this conjecture. Indeed, we formulate a conjecture on combinatorial models whose validity implies the first conjecture.

Conjecture 5.6. g 2 λµ ≤ c λ µ t µ .

To compute the decomposition of P λ into Schur functions s µ by computer, we use the code below. For example, with λ = (4, 2), we have P (4,2) = s (2,2,1,1) + s (2,2,2) + s (3,1,1,) + 2s (3,2,1) + s (3,3) + s (4,1,1) + s (4,2) .

(62)

The code in SageMath (online version: https://cocalc.com/) is Sym = SymmetricFunctions(FractionField(QQ['t'])) SP = Sym.hall_littlewood(t=-1).P(); s = Sym.schur(); s(SP ([4,2]))

The result appears in computer is Proof. We suppose that (U t α , U α ) and (U t β , U β ) are elements in T (µ t , µ, s(T λ )). We construct an element (U t α , U β ) is still in the set as follows:

1. If (U t α , U β ) belongs to T (µ t , µ, s(T λ )), then we set (U t α , U β ) = (U t α , U β ).

2. If (U t α , U β ) does not belong to T (µ t , µ, s(T λ )), then by Conjecture 5.7, (V α , V t β ) belongs to T (µ, µ t , s(T λ )). Set (U t α , U β ) is the image of (V α , V t β ) through the bijection S µ t ,µ, λ s(T λ ),Uµ,U µ t ,s(T λ ) -1

.

The set of all pairs (U t α , U β ) we have constructed is a subset of T (µ t , µ, s(T λ )). Since its cardinal is g 2 λµ , we have g 2 λµ ≤ c λ µ t µ .

We can see the conjecture through following example.

Example 5.10. Let λ = (5, 2) and µ = (4, 2, 1). The correspondence between elements in T (µ t , µ, s(T λ )) and elements in T (µ, µ t , s(T λ is showed below (the elements in the subsets T (µ t , µ, s(T λ )) and T (µ, µ t , s(T λ )) are marked by coloring all boxes in green).

T (µ t , µ, s(T λ )) 

S µ t ,µ,

  Sliding and jeu de taquinFor the skew Young diagram Y (ν/µ), an inner corner of Y (ν/µ) is a box in the Young diagram Y (µ) such that the boxes below and to the right are not in Y (µ). An outside corner is a box in the Young diagram Y (ν) such that the boxes below and to the right are not in Y (ν).

  . The result of applying sliding b out of T gives us a new skew Young tableau T of skew shape ν /µ such that |ν | = |ν| -1, |µ | = |µ| -1. Choose a random inner corner b of T and do sliding b out of T as before, we get a new skew Young tableau T of skew shape ν /µ such that |ν | = |ν| -2, |µ | = |µ| -2.

Lemma 2. 4 .

 4 Let T and U be skew Young tableaux. If w(T ) = w(U ) then Rect(T ) = Rect(U ).

  such that only one of k or k appears in T for each k = 1, 2, . . . , |ν/µ|. The rightmost letter in each row of T is unmarked.

  but for shifted Littlewood-Richardson coefficients. Our model and Shimozono's model are totally different. For example, with λ = (3, 2), µ = (3, 2) and ν = (5, 3, 2), our model O λ (ν/µ) consists of the elements below However, Shimozono's model consists of the elements below

  is a restatement of Proposition 5.4 in the article [Hai89] of M. D. Haiman. Proposition 5.2. Let T be a skew shifted tableau without entries k . Then we have s(sRect(T )) = Rect(s(T )).

s[ 2

 2 , 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[3, 3] + s[4, 1, 1] + s[4, 2].

  λ s(T λ ),Uµ,U µ t ,s(T λ ) ------------→ T (µ, µ t , s(T λ ))
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marked by coloring all boxes in green). S( λ/µ t , U µ ) F µ t ,µ,s(T λ ) λ/µ t ,Uµ -1 - -----------→ T (µ t , µ, s(T λ )) 

Inequality g λµ ≤ c λ µµ t

In this subsection, we prove a conjecture of N. Ressayre [Res19]: g λµ ≤ c λ µ t µ . The conjecture was based on the facts below

The conclusions (58), (59) are versions of Theorem 1.4 and Proposition 1.6 in the article [START_REF] Prakash Belkale | A generalization of Fulton's conjecture for arbitrary groups[END_REF] for the case G = Sp(2n, C). Indeed, with the notations in the article [START_REF] Prakash Belkale | A generalization of Fulton's conjecture for arbitrary groups[END_REF], by [START_REF] Ressayre | A cohomology-free description of eigencones in types A, B, and C[END_REF], in the case G = Sp(2n, C), G/P is the Lagrangian Grassmannian LG(n, C 2n ), the corresponding Levi group is GL(n), and W P is parametrized by strict paritions. Suppose

To compute the Littlewood-Richardson coefficients by computer, we use the code below. For example, for λ = (4, 2), µ = µ t = (3, 2, 1), we have

The code is import sage.libs.lrcalc.lrcalc as lrcalc

The result appears in computer is 4.

We check the conjecture for all strict partitions λ such that |λ| ≤ 11. By Theorem 5.5, we just need to check the cases g λµ > 1. Here is the data of computations on computer.

|λ| strict partitions λ such that there exists 

2. The elements of the set T (µ t , µ, s(T λ )) have the form (U t α , U α ), with index α. Let (V α , V t α ) be the image of (U t α , U α ) through the bijection S µ t ,µ, λ s(T λ ),Uµ,U µ t ,s(T λ ) . Let (U t α , U α ) and (U t β , U β ) be elements of the set T (µ t , µ, s(T λ )). If (U t α , U β ) is not in the set T (µ t , µ, s(T λ )), then (V α , V t β ) is in the set T (µ, µ t , s(T λ )).

Remark 5.8. Thanks to Theorem 5.3, the validity of Conjecture 5.7 1. implies the equality g λµ = g λµ t , which was proved in Proposition 3.5.

Proposition 5.9. Suppose that Conjecture 5.7 holds. Then we have g 2 λµ ≤ c λ µ t µ .