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Abstract

Lévy walk is a popular movement model where an agent repeatedly samples a direction
uniformly at random, and then travels in that direction for a distance which follows a power
law distribution with exponent α ∈ (1,+∞). Lévy walks and some of its famous variants, such
as Brownian motion, have been subject to extensive empirical investigations in the continuous
framework (i.e. continuous time and support space) since, essentially, they play an important
role in theoretical biology: for instance, their search efficiency has been investigated in terms
of the discovery rate of food, where the latter corresponds to points distributed according to a
given density over R2. In that framework, it has been shown that the best efficiency is achieved
by setting the parameter α to 2.

Motivated by their importance, we provide the first rigorous and comprehensive analysis
of the efficiency of Lévy walks in the discrete setting, by estimating the search efficiency of k
independent, parallel Lévy walks starting from the origin. In more detail, the search efficiency
of this parallel process is here described in terms of the hitting time with respect to (only)
one target node of the 2-dimensional infinite grid, and the consequent total work, i.e., the total
number of steps performed by all the agents.

The study of distributed algorithms for k searching agents on an infinite grid that aim to
minimize the hitting time of a target node has been considered in Distributed Computing under
the name of ANTS Problem (Feinerman et al. PODC 2012). Our probabilistic analysis of Lévy
walks implies the following main novel contributions:
I. We show that Lévy walks provide a biologically well-motivated, time-invariant search protocol
for the ANTS Problem which does not require any communication among the k agents, and
which improves the state of the art in terms of efficiency, for a wide range of the parameter k.
II. In contrast with the apparent general optimality of the setting α = 2, suggested by the
discovery rate mentioned above, we show that the best exponent with respect to a natural
measure, such as the total work of the process, directly depends on the number of searching
agents k.
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1 Introduction

Consider the following simple scenario: k agents, initially placed at the origin of an infinite grid
(say, Z2), can move at each discrete time-step on a neighbouring node; their goal is, for any of them,
to hit as soon as possible a unique node (from now on, treasure), whose location is unknown. Such
fundamental parallel search problem has been investigated in the area of Distributed Computing
under the name of Ants Nearby Treasure Search (ANTS) Problem, a name which is inspired by
biological motivations. If we call work the natural measure defined as the total number of time-
steps performed by all the agents (see Definition 4), it has been shown that for the ANTS Problem
it is necessary and sufficient to perform a work which is Θ(`2) with respect to the initial distance
` of the treasure from the origin (see Subsection 2.1). Interestingly enough, such performance can
be achieved by natural algorithms which are as simple as alternating two different kinds of random
walk processes.

On the other hand, the central question of modelling animal movement has led to a rich litera-
ture on random walk models, the most prominent of which is the Lévy walk. Consider the following
general framework: an agent continuously moves towards a certain direction on the plane (say, R2),
choosing a new direction uniformly at random at times {Ti}i∈N, where ∆i = Ti − Ti−1 are i.i.d.
random variables.

When the underlying space is discrete and ∆i is constant (Pr(∆i = 1) = 1), we retrieve the
classical setting of a simple random walk on Z2. When the underlying space is discrete but ∆i has
a power-law distribution with exponent α, we obtain instead a discrete variant of the Lévy walk
process, which we call Pareto walk (Definition 3).

Considering again the continuous space R2, familiarity with random walks and power law dis-
tribution may soon suggest the intuition that, choices of α for which ∆i has finite variance, led to a
Lévy walk process which behaves similarly to a Brownian motion (or Wiener process, which is the
term we use in the following1 [Dur10]). Ranges of α for which the second moment of ∆i becomes
infinite represents, mathematically, a more interesting regime. In fact, Lévy walks have been shown
to achieve the best performance within such regime, for problems such as maximizing the expected
discovery rate of random targets on R2 (distributed according to a spatial Poisson point process), or
for minimizing expected hitting times on the real line. However, while the aforementioned results
belongs to a rich literature in theoretical biology based on statistical mechanics techniques, the

1Formally, the Brownian motion refers to a physical process, while the term Wiener process refers to the stochastic
process whose study has been largely motivated by Brownian motion; while for historical reasons the term Brownian
motion is often used in place of Wiener process, we prefer to avoid such abuse of terminology.
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treatment in the discrete setting2 has been limited to finite graphs. We discuss in detail all the
above points in Section 4.

The purpose of this work is to provide, at the intersection of the two aforementioned contexts
(the algorithmic study of the ANTS Problem on one side and the mathematical study of Lévy walks
on the other), the first rigorous, systematic treatment of the hitting time and work complexity of
parallel Lévy walks in the discrete setting. A major consequence of our analysis is an optimal solu-
tion to the biologically-motivated ANTS Problem, which is based on a classical model for animal
movement in theoretical biology, and which is arguably simpler than previous solutions (Subsec-
tion 2.1). More generally, our contribution entails the analysis of novel random walk processes and
aspects of sums of power law random variables which are of independent interest.

1.1 Overview of Our Results

In the current section we discuss in detail our contributions while providing, at the same time, an
overview of the organization of the paper3.

It is well-known that the possible values of α which control the tail distribution of Lévy walks
(in the discrete setting, Pareto walks, Definition 3) can be divided in three main regimes [VLRS11]:

• the diffusive regime (α ≥ 3),

• the super-diffusive regime (α ∈ (2, 3)) and

• the ballistic one (α ∈ (1, 2]).

In the continuous time-space setting, the ballistic and diffusive regimes have been observed to be
qualitatively equivalent to different processes such as the Wiener process and the ballistic walk in
which an agent moves towards a fixed direction (Definition 6). In the discrete setting, the Wiener
process corresponds4 to a simple random walk (Definition 5), while the ballistic walk has a natural
discrete version (Definition 6). In Section 8 and Section 9, we prove such equivalence in a precise
sense, by showing that for the ANTS Problem (Subsection 2.1), Pareto walks achieve the same
performances as the corresponding discrete processes in terms of the hitting time and total work.
In detail, we show that:

• For α ≥ 3, the Pareto walk behaves as a simple random walk (theorems 4 and 6);

• For α ∈ (1, 2], the Pareto walk behaves as a ballistic walk (theorems 5 and 7);

• Finally, for5 α ∈ (2, 3), the Pareto walk exhibits a peculiar behavior which clearly distinguishes
it from the previous processes6.

The aforementioned equivalence results motivate the investigation of a Pareto walk over the full
range of α. Given our focus on the total work of k agents on the infinite grid (that is, the ANTS
Problem), with Lemma 2 we first observe that no algorithm can achieve an expected work which
is less than `2, where ` is the distance of the treasure node from the origin where all agents start
the parallel search. We emphasize that such lower bound applies independently from the number

2Even in the original, continuous setting, we have not been able to identify a systematic, mathematically rigorous
treatment.

3For the sake of readability, we often defer the reader to corresponding formal definitions and statements in the
following sections, in our discrete setting.

4A classical convergence result is provided by Donsker’s Theorem [Dud99].
5We remark here that, even though the threshold case α = 3 turns out to be equivalent of the simple simple random

walks, its mathematical analysis requires arguments similar to those we use for the case (2, 3) (see Theorem 3).
6This is the regime of α which is sometimes implicitly assumed in the literature when using the term Lévy walk

(Subsection 2.3)
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of agents k, and even assuming that agents share all the information available to them at all time
steps.

The central part of this paper is then the study of the work efficiency of Pareto walks with
respect to the values of k and α. Remarkably, in theorems 2, 6 and 7 (and in the aforementioned,
corresponding theorems 4 and 5), we show that, for any value of α, there is a unique value of
k, polynomial in `, such that the work efficiency is optimal (up to polylogarithms): we summarize
such statements in Table 1. Conversely, such results imply that, for such a natural aspect as the
parallel hitting time, the α for which optimal work efficiency is achieved varies, as a function of the
number of agents k, between 1 and 3. This should be contrasted with evidence provided by classical
results on Lévy walks which suggested a key role for the value α = 2 in biological applications (see
Subsection 2.3).

We now discuss in more detail Theorem 2, which is probably the most intriguing technical
scenario we address, namely the analysis of Pareto walks for the range α ∈ (2, 3). There, we
prove that for the range k = Θ̃

(
`1+(α−2)

)
the agents find the treasure within time Θ̃

(
`1−α−2

)
,

making a total work of Θ̃
(
`2
)
, w.h.p. Furthermore, the result is almost-tight in a two-fold sense: if

k = Θ̃
(
`1−(α−2)−ε) for any arbitrary constant ε ∈ (0, 1−(α−2)], then the treasure is never hit by the

agents, w.h.p., resulting in an infinite work. On the other hand, if k = Θ̃
(
`1−(α−2)+min(ε+α−2

2
, 3
2
ε)
)

for any arbitrary constant ε > 0, then the treasure is found in time at least Ω̃
(
`1+(α−2)−ε), resulting

in a work of order Ω̃
(
`2+min(α−2

2
, ε
2

)
)

, w.h.p.

We conclude the section by remarking the independent interest of some technical contributions
which are a byproduct of our analysis, such as Lemma 32 in which the following general monotonic-
ity property is provided. Consider any random walk process which moves from one node u to any
other node v, according to a probability distribution which is non-increasing with respect to the
distance between u and v. Then, we prove that the corresponding agent’s spatial distribution after
t steps satisfies a monotonicity property which is essentially equivalent to that of the considered
random walk process (see Appendix C).

α-Pareto walk Equivalence Optimal number of agents First-hitting time Total work

α ≥ 3
(theorems 3 and 6)

Simple random walk
(Theorem 4)

logΘ(1)(`) Θ̃
(
`2
)

Θ̃
(
`2
)

α ∈ (2, 3)
(Theorem 2)

Lévy walk
(Theorem 2)

Θ̃
(
`1−(α−2)

)
Θ̃
(
`1+(α−2)

)
Θ̃
(
`2
)

α ∈ (1, 2]
(Theorem 7)

Ballistic walk
(Theorem 5)

Θ̃ (`) Θ̃ (`) Θ̃
(
`2
)

Table 1: Optimal settings. The values of the hitting time and of the work hold w.h.p.

2 Comparison with Related Work

Random searching strategies performed by simple agents is a topic that attracted strong attention
of the researchers from several scientific fields. A huge amount of models, questions, analytical and
experimental results are now available. We thus restrict our comparison to previous results that
are more related to our setting.
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2.1 The Ants Nearby Treasure Search (ANTS) Problem

In [FK17], Feinerman and Korman introduced7 and studied the Ants Nearby Treasure Search
(ANTS) Problem, defined as follows. There are k probabilistic agents initially located at the origin
(the nest) of the infinite grid Z2 and one treasure located in one arbitrary node of the grid. The
goal is to find the treasure as fast as possible as function of k and the (unknown) distance ` of the
treasure from the origin. The analysis in [FK17] provides the first known bounds on the trade-off
between the agent memory size and the time complexity of the searching algorithm. They consider
the case where agents are allowed, upon initialization (i.e. before leaving the origin), to make use
of their local memory in order to coordinate their action. Such initial information is provided by
a centralized oracle and, for instance, may consist of an approximation of the parameter k. They
provide tight bounds on the memory/time trade-off. More in detail, it can be easily shown that
Ω(` + `2/k) time steps are necessary for any algorithm (see e.g. Lemma 2). In order to achieve
such lower bound, log log k+ Θ(1) for bits of local memory is proved to be necessary and sufficient,
while larger time bounds are obtained for smaller memory size. As for their optimal algorithms,
the authors remark that they are too complex to be considered realistic strategies for the biological
agent systems the paper is inspired from.

2.1.1 Significance of our contribution

The Pareto walks studied in this paper are a natural discrete version of Lévy walks, a well-
established model of animal movement [Rey18]. Indeed, they are significantly simpler than the
algorithmic strategies considered in [FK17]. More precisely, in our parallel Pareto walks

• agents are not allowed to coordinate their search, not even upon initialization, and

• the rule they apply is time-homogeneous, in that it merely consists of moving directly towards
a target which is always sampled according to the same distribution w.r.t. the position of the
agent.

Despite their simplicity, we show that Pareto walks achieve optimal time-efficiency (see Table 1).

2.1.2 Harmonic search algorithm

[FK17] also consider a simpler strategy, the Harmonic algorithm and prove that it finds the treasure
within a time which is not too large compared to the optimal one. In the Harmonic algorithm,
agents are independent, perform the same strategy and do not use any initial information given
by the oracle: it is thus somewhat comparable to the strategies studied in this paper. In detail,
let α > 1 be an arbitrarily small constant8, denote with d(u) the `1-distance of a node u from
the origin, and let cα be a normalization constant such that p(u) = cα/d(u)1+α turns out to be
a probability distribution over Z2. Then, the Harmonic algorithms works in phases, each of them
consisting of 3 consecutive actions. Each agent

i) independently chooses a node u with probability p(u) and reaches that node,

ii) performs a local spiral search9 around u and

iii) goes back to the nest.

In [FK17] the authors prove that the following holds.

7More precisely, the problem was first introduced in the conference version of the paper [FKLS12].
8We have adapted the notation [FK17] in so that the use of α is consistent with how we use it in our results.
9for details on this trajectory please see [FK17].
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Theorem 1 (Theorem 5.8 in [FK17]). Let δ and ε be arbitrarily-small positive constants and let
α = 1 + δ. A positive real β exists such that, for any k > β`α−1, the Harmonic Search Algorithm
finds the treasure within O(`+ `1+α/k) time, with probability at least 1− ε.

A crucial difference between the Harmonic algorithm and our parallel Pareto walks lies in the
fact that, in the former, agents deterministically go back to the origin at the end of every phase,
so there is no chance for an agent to walk arbitrarily far from the nest for an infinite time. While
such property ensure that, even for a single agent (k = 1), the treasure is eventually found with
probability 1, such strategy requires that the agents precisely know, at all times, their relative
position to the nest10. In the Pareto walks instead, as soon as an agent reaches its next way-point,
it samples a a new one and start moving towards it: hence, the algorithmic process does not require
different phases in which different rules are applied. Such feature comes with a price: for α ∈ (1, 3),
with positive probability an agent can walk arbitrarily far from the starting point (the nest) and
does never return to it (this easily follows, for example, by taking k = 1 in our theorems 2 and 7).

Interestingly, the Harmonic Search Algorithm may be regarded as a combination of the two
qualitatively opposite regimes of the Pareto walks algorithms: the first phase of the algorithm,
which moves to a node at distance d in d steps, corresponds to the ballistic regime of the Pareto
walks (cfr. theorems 5 and 7), while the second phase, where a spiral search takes place for
essentially d2 rounds, corresponds to the diffusive regime of the Pareto walks (cfr. theorems 4
and 6). Our analysis, summarized in Table 1, shows that Pareto walks achieve essentially the same
trade-off11 between the agent number and the hitting time as the above Theorem 5.8 in [FK17],
showing that the same effect of combining the ballistic and diffusive regime can be obtained by
considering a natural Pareto walk whose exponent lies between the twos.

2.2 Related work on finite graphs

The rigorous study of the hitting time of nodes on finite graphs has been introduced in [ER09],
following the investigation of the cover time in [AAK+11]. In the finite-graph setting, standard
techniques for bounding the hitting time involve the closely-related notion of mixing time of a single
random walk [KMTS19, STM06]. In the infinite setting the mixing time is not defined, as a single
random walk does not have a stationary distribution.

Recent studies have investigated the hitting time of Lévy walks (and Lévy flights, see Defini-
tion 7) on R2 (that is, in the continuous setting) [PBL+19]. We discuss the related work on the
infinite setting in Subsection 2.3.

In [BGK+18], Boczkowski et al. analyse a single-agent searching strategy, called m-intermittent
search, over the ring topology of n nodes. They provide some bounds on the cover time (and, thus,
on the hitting time) as a function of the number m of different step lengths {Li}i∈[m] an agent
randomly selects for its jumps on every step, where Li is chosen with probability pi. They show
that an expected hitting time which is linear in the size n of the ring can be achieved by choosing
a distribution {pi}i∈[m] on the step lengths according to a Weierstrassian random walk [HSM81]:
The latter can be regarded as an efficient approximation of the ballistic regime of our Pareto walk
(α = 1). More in detail, a Weierstrassian random walk is obtained by fixing some integer B > 1
and choosing m = log n, Li = Bi and pi ∝ B−i. This setting results in an heavy tail w.r.t.
n, formally Pr(step length > t) ≥ 1

2t for t < n
2 . In [GK19], Guinard and Korman refined the

results of [BGK+18] on the ring topology by providing bounds on the hitting time that can be

achieved by considering small values of m. In particular, they show that by setting B = n
1
m in the

Weierstrassian random walk described above, the expected hitting time on the ring is Θ̃
(
n1+ 1

m

)
.

10Notice that, since the strategy is probabilistic, any bound m on the local memory available to the agents would
imply a certain probability of failure in the event that an agents chooses a destination u such that blog uc � m

11In particular, we don’t require the number of agents to be at least some polynomial `δ.
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2.2.1 Mobility models

Agent’s movement models are fundamental tools in the study of mobile communication networks
[LV06, Roy11] (in the corresponding research community, such models are called mobility models).
Roughly speaking, analytical results in this area are available for the two most popular classes of
mobility models, the random walk and the random way-point models, and some generalizations of
them. In more detail, for the continuous space-time setting, stationary agents’ spatial distributions
over finite support spaces have been derived in [LV06] for the general model known as random trip
model. As for the discrete setting, similar results have been derived in [CMS11, CST14] for the
general Markovian trace model under the assumption that the set of nodes of the (possibly infinite)
support graph that admit feasible agent’s mobility paths has finite size.

2.2.2 Other related works in computer science

Our setting is reminiscent of the Parallel Search without Coordination Problem investigated in
[FKR16], in which an infinite list of boxes is given, with a treasure hidden in one of them, where
the boxes’ order reflects the importance of finding the treasure in a given box. At each time step, a
search protocol executed by a searcher can probe one box, and see whether it contains the treasure.
The author study the best running time achievable by non-coordinating algorithms, motivated by
robustness requirements. Crucially, in their setting the searching agent are provided an approximate
knowledge of the importance ordering according to which the treasure is present in a given box.

Finally, some readers may find some connection between our work and some research on the
Small World phenomenon, which we discuss in Subsection 2.3.2.

2.3 Overview of literature on Lévy walks

It is reasonable to state that Lévy walks constitute nowadays the main mobility model in biology
[Rey18], at least among models with comparable mathematical simplicity and elegance [VLRS11].
In the following, we concisely summarize the history of the study of Lévy walks in order to provide
the main context for the present work. For a rich monograph on the topic, we defer the reader to
[VLRS11].

Lévy flights (i.e. the turning points in which a Lévy walk changes trajectory) were originally
investigated by Paul Lévy in his 1937 treatise12 [Lé54], and named after him by his student Benôıt
Mandelbrot which investigated their fractal properties [Man82]. [SK86], which investigated the
relation between Lévy flights and Lévy walks, was among the first studies to discuss the relevance
of Lévy walks and Lévy flights as a biological mobility model. Many works, among which a
1996 Nature paper by Viswanathan et al., supported such hypothesis on the basis of analyses
of empirical data [VAB+96]. Statistical flaws were later pointed out in several of these works
[EPW+07], including [VAB+96]; however, subsequent works which avoided previous methodological
issues continued to corroborate what has been known as Lévy flight foraging hypothesis:

Since Lévy flights and walks can optimize search efficiencies, therefore natural selection
should have led to adaptations for Lévy flight foraging. - [VRdL08]

The surge of interest on Lévy walks motivated theoretical investigations. We have to point
out here that, despite our efforts, we failed to identify rigorous proofs for a large part of the main
results in the Lévy walks literature13.

The main mathematical models on which Lévy walks have been investigated in the literature
involves a single agent continuously moving on the infinite real plane R2, in continuous time. Targets

12The referenced citation refers to the second edition of the work.
13In fact, none of the works we mention in the following is organized in standard mathematical form involving

clearly marked statements and proofs.
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are randomly located in the plane according to a fixed density ρ. The agent chooses a way-point
u.a.r. among those at distance d, where d is chosen according to a power-law distribution with tail
Pr(d > t) = Ω( 1

dα−1 ), and then moves towards it at a certain speed. If, at any time, any target
happens to be within some distance radius r from the agent, the target is found14.

We remark that the above setting is quite different from the ANTS problem we consider. In
particular, the optimality concept in the above framework is based on the expected discovery rate,
that is the expected number of targets found per distance travelled, while our efficiency measure
(Definition 4) involves the number of agents k and the hitting time of the target.

In the seminal paper [VBH+99], it is showed15 that a Pareto walk (in the language and notation
of the present work) with exponent α ≈ 2 − ( 1

log 1
2r2ρ

)2 optimizes the expected number of targets

found per distance travelled; they thus suggest that α = 2 can be considered an optimal choice
when the quantity r2ρ is small but not exactly known. Successively, [PCM14] showed that the
choice16 α = 2 does not have universal value in the sense of being rather sensible to the choice
of the underlying model. In particular they show that, when in the one-dimensional case R of
the above framework an additional bias factor is considered (i.e. an external drift term in the
jump distribution), the optimal choice for α varies in (2, 3). We remark that our rigorous results
corroborate such findings by showing how, for the ANTS Problem, the optimal value of α spans
the entire interval (1, 3], depending on the number of searching agents; in particular, we provide
the first general setting for which the optimal α varies below 2.

2.3.1 Biological relevance of our analysis

The present work rigorously addresses the mathematical problem of investigating the efficiency of
parallel, independent Pareto walks as a natural solution for the ANTS Problem. As for the general
question of the biological relevance of Lévy walks as a realistic mobility model, we defer the reader
to the discussion in [VLRS11, Chapter 8]. Assuming that Lévy walks are a relevant mobility model,
the main issue with respect to the biological relevance of our results is the absence of coordination
among the agents. We argue here that, in some biological scenarios, it appears that the stochastic
dependencies among the searching agents do not play a relevant role for the efficiency of the process.
Experiments by Fourcassié et al. in [VBVT03] on a population of ants of the species Messor sancta
consider groups of ants of different sizes and observe several aspects of their dispersion movements
over a large arena. Their statistical results show that, while the geometry of an ant’s path appears
to be mechanically affected by random collisions with other ants, the size of the area explored by
each ant moving in a group and the average number of interactions among them is not significantly
different from the explored area and number of encounters that would be observed if ants were
moving on the area independently of each other. This fact leads the authors to conclude that there
is no coordination (i.e. explicit information exchange) among the ants moving on the arena.

2.3.2 Power laws and stable distributions

In Lévy walks, the jump lengths are chosen according to a Pareto distribution, which naturally
relates their analysis to the vast literature on stable distribution [Nol07]. [Nol19] provides an

14We emphasize that our high level description is omitting several details; e.g., in [VBH+99], when a target happens
to be within radius r from the agent, the agent start moving towards such target until reaching its exact location.

15This is one of the cases in which, as mentioned above, we failed to reconstruct a rigours proof of the claimed
result.

16We remark that in several works the exponent α correspond to the exponent of the survival function Pr(X > t)
where X is the random distance chosen by the agent, rather than being the exponent of the density Pr(X = t); in
this work, we adopt the latter convention.
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extensive updated bibliography on such research area. In Subsection 2.3.3, we briefly argue that it
does not appear to be possible to obtain our results using standard tools from such literature.

Another famous research endeavour evoked by the power-law jump distribution of Pareto walks
is the research on the small-world phenomenon in social networks, in particular Kleinberg’s analysis
of his generalized Watts-Strogatz model [Kle00b, Kle00a, EK10]. In its simplest form, Kleinberg’s
model is a two-dimensional grid where, to each node u, a long-range edge is added by connecting
it to another node v chosen according to a Pareto distribution w.r.t. the `1 distance dist(u, v)
between u and v. Kleinberg considers the simple routing algorithm according to which an agent
greedily moves, at each step, across the edge which minimizes its distance from the target, and
shows that, given a target node v, it achieves optimal performance (O(log2(dist(u, v))) when long-
range connections of length ` are chosen with probability proportional to 1

` . Notice that, besides
the similarities given by the common presence of a Pareto distribution, our problem is of a different
nature as our parallel Pareto walks do not know the location of the target.

2.3.3 Relation with the continuous setting and stable distributions

In this section we discuss how our analysis in the discrete setting relates to known results in the
continuous setting. Essentially, we argue that, to the best of our knowledge, our results cannot be
derived from known results for the classical, continuous version of Lévy walk.

The sum of i.i.d. random variables with Pareto distribution converges to a stable distribution17

for which there is no-known closed-form expression in terms of elementary function, except for few
special cases (Gaussian, Cauchy and Lévy distributions) [Sam94, Nol07]. Hence, although it is a
classical result that the normalized sum of random variables whose tail distribution decays as xα

converges to a distribution with the same tail [GK54, BB08], it does not seem possible to avoid ad
hoc arguments in order to estimate the distribution of several steps of Pareto walks. More precisely,
if we attempt to estimate the probability for the random walk process to be located on the target
node by working directly with the distribution of the sum of the jumps, then we need to evaluate
the latter distribution on constant values rather than estimating its tail.

3 Preliminaries

In this work we analyze and compare the search efficiency of some mobility models in the following
setting. We have an infinite grid Z2 and a special node of the grid called the treasure, which is
at distance ` > 0 from the origin o = (0, 0). Two nodes of the grid, (x1, y1) and (x2, y2), are
connected by an edge if their Manhattan distance is one, i.e. if |x1 − x2| + |y1 − y2| = 1. For any
node u = (ux, uy) ∈ Z2, we write |u|1 = |ux|+ |uy| for its Manhattan distance from the origin. At

the same time, we write |u|2 =
√
u2
x + u2

y to denote its Euclidean distance from the origin. With

an abuse of notation, for a given set S, we denote as |S| its cardinality.
Time is discrete and is marked by a global clock. Let k ∈ N be any positive integer. At time

t = 0, k agents are positioned in the origin o and start moving, independently one from each other,
over the edges of the grid, to search the treasure. We say an agent finds the treasure at time t ≥ 0
if, at that time, the agent is located on the treasure (so we assume here that the agent’s detection
radius is 0). We call step a move that takes one unit time. To introduce the considered mobility
model over the infinite grid, we need a suitable notion of approximation of “walking direction”,
where a direction is defined as the unique ray identified by a unit vector ~v applied to some node u.

As usual, the length of a path is defined as the number of edges it consists of, and the distance
between two nodes is the length of any of the shortest paths between them. Consider an agent in

17We remark how this fact is sometimes subject to misunderstandings in the literature [Lem08].
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Figure 1: Examples of Rd(u) and R̃d(u).
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Figure 2: One direction-approximating path example.

some node u of the grid that wants to walk along a ray r. The agent chooses a path “approximating”
r between the followings.

Definition 1 (r-approximating path). Let r be the unique ray identified by some unit vector ~v
applied to some node u. Consider, for d ≥ 0, the sequence of rhombus centered at u

Rd(u) = {v ∈ Z2 : |u− v|1 = d}.

For each d ≥ 0, consider the “natural immersion” of the rhombus in the continuous plane, namely

R̃d(u) = {(x, y) ∈ R2 : (y + x+ 1)(y + x− 1)(y − x+ 1)(y − x− 1) = 0, |x| ≤ d, |y| ≤ d},

as in Figure 1. Let vd the intersection between r and R̃d(u). An r-approximating path is a
simple path starting at u, whose d-th node is the node wd ∈ Rd(u) that minimize the distance
minw∈Rd(u) |w − vd|2. Ties are broken uniformly at random.

A geometric description of such a path is given in Figure 2, while the well-posedness of Def-
inition 1 is discussed in Appendix B. We now give a definition on what we mean when an agent
chooses a direction and moves along it.
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Definition 2 (Direction choice procedure). An agent at some node u chooses a direction r in the
following way: it samples uniformly at random one node v of R̃1(u) and takes r as the unique ray
starting in u and crossing v.

Observe that, in general, an approximating path is unique unless, for some d ≥ 0, vd is equidis-
tant between two nodes of Rd(u). Anyway, by choosing uniformly at random some direction
according to the above procedure, the probability that this happens is equal to zero, since there
are just a numerable quantity of rays that realize this kind of ambiguity. In Appendix B there is a
formal argument proving this. Furthermore, we have the following lemma, whose proof is deferred
to Appendix B.

Lemma 1. Let u be any node of Z2, d ≥ 1, and v ∈ Rd(u). Suppose an agent is on u and chooses
a direction according to the procedure in Definition 2. Then, there is probability 1/(4d) that the
corresponding direction-approximating path crosses v.

We start defining the discrete version of Lévy walk, that we name Pareto walk.

Definition 3 (α-Pareto walk). Let α > 1 be a real constant. At time t = 0, each agent chooses a
distance d ∈ N with probability distribution cα

(1+d)α , where cα is a normalization constant. Then, it
chooses a direction according to the procedure in Definition 2, and walks along the corresponding
direction-approximating path for d steps, reaching some node v. Once reached v, the agent repeats
the procedure from the beginning, sampling a new distance and a new direction independently from
the previous ones. If the chosen distance d is equal to zero, the agent keeps still for one time unit
and then it repeats the procedure.

As discussed in the introduction, by varying α in the range (1,+∞), the Pareto walk “simulates”
the behaviours of some popular movement models: the simple random walk (for α ≥ 3) and the
ballistic walk (for α ∈ (1, 2]), which we will define later. We are going to compare the search
efficiency of each of these models as, essentially, a function of the number k of agents, the first
hitting time, and the important notion of work we define below.

Definition 4 (Work). Let k be any positive integer. Suppose k agents move independently on
the grid performing t1, t2, . . . , tk steps, respectively. Then the (overall) work made by the agents is∑k

i=1 ti.

Notice that if k agents move on the grid for t steps, then the work is equal to k · t. Informally,
one crucial optimization aspect we consider here is to derive upper and lower bound on the best
trade-off between the number k of agents and the hitting time of the corresponding parallel Pareto
walk process. In this setting, we will show that the search efficiency of each of the above popular
models is the same as that of the Pareto walk for a specific choice of α > 1 (see Section 7 for more
details). We first present a simple extension of the lower bound of [FK17] to the expected total
work made by the agents performing any search algorithm.

Lemma 2 (Lower bound on the work). Let ` be any real such that ` ≥ 1, and locate the treasure
u.a.r. in one node of the infinite grid among those having distance at most ` from the origin.
Then, for any k ≥ 1, and for any search algorithm A adopted by the k agents, the total average
work required to find the treasure is Ω

(
`2
)
.

Proof of Lemma 2. Suppose we have k agents looking for the treasure, and let H be the random
variable denoting the first hitting time of the treasure. Let t = `2/(4k). Within time 2t, the agents
can cover at most 2kt = `2/2 nodes. Since the treasure is located u.a.r. on one out of `2 nodes,
there is probability at least 1/2 that it is not found within 2t time steps. Then,

E [kH] = k
∑
i≥1

iP (H = i) ≥ k
∑
i>2t

iP (H = i) > 2ktP (H > 2t) ≥ `2/4.
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Our analysis shows that this lower bound can be achieved up to polylogarithmic factor, w.h.p.,
by the Pareto walk in some optimal setting, and in the different mobility models we are now
defining.

The simple random walk is a well known process, but we are going to present a definition as
well.

Definition 5 (simple random walk). At each round, the agent, located on node u, chooses one
(grid) neighbor v of u u.a.r., and takes a step toward it.

The simple random walk is a “reliable” process to search for any specific node (i.e. the treasure)
of the grid since it guarantees that with probability one the treasure will be found. On the other
hand, this property is achieved at a very-high cost in terms of hitting time since it has high
redundancy: the expected number of times the agent visits the same nodes is very large. As we
will see in the next sections, the Pareto walk obviates this problem in the regime α ∈ (1, 3), having
a smaller redundancy. Last, we also consider the ballistic walk which is the basic mobility model
having redundancy zero.

Definition 6 (Ballistic walk). At the first round, the agent chooses a direction according to the
procedure in Definition 2, and walks along the corresponding direction-approximating path forever,
moving over one edge at each step.

We remark that the Ballistic walk process is just intended to challenge the search efficiency of
the other processes, because an agent moving according to it finds the treasure in time exactly `
with probability Θ(1/`). If it does not find the treasure within that time, then it will never find it.
As discussed in the introduction, the above three processes can be seen as particular cases of the
Pareto walk process, for some specific choices of α > 1.

Informally, if we set α ≥ 3, the Pareto walk behaves like a simple random walk; if instead
α ∈ (1, 2], the ballistic walk is a good approximation of the Pareto walk. To provide concrete
argument for the above claims we need some preliminaries. We name Sj the random variable
denoting the j-th jump-length of a Pareto walk. Then, for the expected value of a jump-length,
the following bound holds:

E [Sj ] =
∞∑
d=0

cαd

(1 + d)α
= Θ

( ∞∑
d=0

1

(1 + d)α−1

)
. (1)

Notice that the latter bound is finite if α > 2, and is infinite if 1 < α ≤ 2. We can also calculate
the variance of a jump length (which is well-defined only if the mean is finite) as follows:

Var (Sj) =

∞∑
d=0

cαd
2

(1 + d)α
−

[ ∞∑
d=0

cαd

(1 + d)α

]2

= Θ

( ∞∑
d=0

1

(1 + d)α−2

)
, (2)

which takes finite values if α > 3, and is infinite if 2 < α ≤ 3. Looking at this threshold behaviour
of the expectation and the variance is the key to show the equivalence between the various Pareto
walks and the mobility models we focus on. In detail, if 1 < α ≤ 2, within Θ(t) steps, the Pareto
walk has moved to a distance Θ(t) from the origin, in average, since the expected step-length is
infinite, like the ballistic walk. If α > 3, the variance of the jump-length is finite, so the random
jump-length is concentrated around its expectation: this fact makes this case of Pareto walks similar
to a simple random walk with a longer step-size. Another intuition on the “equivalence” in this
case is that, since the variance of a jump-length is finite, the distribution of the Pareto walk at the
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i-th jump is a two-dimensional Gaussian distribution, due to the Central Limit Theorem, similarly
to the case of simple random walk. The case α = 3 is a threshold case in which we observe the
transition from a super-diffusive regime to the diffusive one, yielding roughly the same results as
the simple random walk. Such equivalences will be formally discussed in Section 4 (case α ∈ (2, 3])
and Section 7 (cases α ∈ (1, 2] and α ≥ 3), showing that the work done by the Pareto walk and
that of the corresponding mobility model (according to the choice of α) are essentially the same.

A useful fact we use several times throughout our analysis is the following. A single agent,
performing a Pareto walk, chooses a jump of length at least d ≥ 0 with probability

P (S1 ≥ d) =
∞∑
h=d

cα
(1 + h)α

= Θ

(
1

(1 + d)α−1

)
, (3)

where the last equation follows by applying the standard integral test (Fact 1 in the Appendix A).
We remark that most of the asymptotic bounds we will obtain in this paper hold with high

probability (in short, w.h.p.) with respect to the parameter `: as usual, considering increasing
values of `, we say that an event E holds w.h.p. if P (E) ≥ 1 − 1/`Θ(1). Furthermore, each event
whose probability is dominated by a factor 1/`Θ(1) is said to hold with negligible probability, while
any other event is said to hold with non-negligible probability.

Finally, one remark on the meaning of the statements of the theorems we are going to present.

Remark 1. We emphasize that with the statement “if k = Θ̃ (f(`)), then k agents find the treasure
in time Θ̃ (g(`)), w.h.p.”, we mean that there exists at least one k in the family Θ̃ (f(`)) such that
the agents find the treasure in time Õ (g(`)), w.h.p., and for all k in the above family, the treasure
is found in time Ω̃ (g(`)) with probability at least 1 − o(1). For theorems 4 to 7, the lower bound
actually holds w.h.p. Furthermore, from the respective analyses, it will be clear that

(i) if we increase the optimal k by multiplying by polylogarithmic factors, the upper bound on
the hitting time still holds w.h.p.;

(ii) if we decrease the optimal k by dividing by polylogarithmic factors, the upper bound on the
hitting time holds with non-negligible probability.

4 Pareto Walk Model: Case α ∈ (2, 3]

The aim of this section is to analyze the Pareto walk model for the parameter range α ∈ (2, 3] on
the infinite grid and prove the following results.

Theorem 2 (Performances of Pareto walks - Case α ∈ (2, 3)). Let α ∈ (2, 3) be a real constant
and assume that the treasure is located in some node of the infinite grid at distance ` > 0. Let k
agents perform mutually independent Pareto walks with parameter α. If k = Θ̃

(
`1−(α−2)

)
, then the

agents find the treasure in time Θ̃
(
`1+(α−2)

)
, making total work Θ̃

(
`2
)
, w.h.p.18 Furthermore, the

result is almost-tight in a two-fold sense.

(i) Let k = Θ̃
(
`1−(α−2)−ε) for an arbitrary constant ε ∈ (0, 1 − (α − 2)]. Then the treasure is

never hit by the agents, w.h.p., letting the work to be infinite, w.h.p.

(ii) Let k = Θ̃
(
`1−(α−2)+min(ε+α−2

2
, 3
2
ε)
)

for an arbitrary constant ε > 0. Then the treasure is

found in time at least Ω̃
(
`1+(α−2)−ε), letting the work to be Ω̃

(
`2+min(α−2

2
, ε
2

)
)

, w.h.p.

18For a formal comprehension of this statement, we refer to Remark 1 in the Preliminaries (Section 3).
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The Pareto walk model for α = 3 represents a “threshold” case since, as we will see in the next
theorem, it shows the transition from the super-diffusive regime (for α ∈ (2, 3) the hitting time is
sub-quadratic) to the diffusive one. Indeed, its hitting time has roughly the same distribution of
that of the simple random walks. However, its analysis cannot rely on the same arguments we will
use for the simple random walks since the variance of the jump length is infinite. Instead, we will
exploit the same tools used for the case of α ∈ (2, 3) leading to slightly different results from that
of the simple random walks. This technical closeness leads us to present the analysis of the two
cases above in the same section.

Theorem 3 (Performances of Pareto walks - Case α = 3). Assume that the treasure is located in
some node of the infinite grid at distance ` > 0. Let k agents perform mutually independent Pareto
walks with parameter α = 3. If k = logO(1) `, then k agents find the treasure in time t = Θ̃

(
`2
)
,

making a total work of Θ̃
(
`2
)
, w.h.p.19 Furthermore, the result is almost-tight in the following

sense: if k = Θ̃
(
`min(ε+α−2

2
, 3
2
ε)
)

for any arbitrary constant ε > 0, then k agents find the treasure

in time at least Ω̃
(
`2−ε

)
, letting the work to be Ω̃

(
`2+min( 1

2
, ε
2

)
)

, w.h.p.

4.1 Proofs of Theorem 2 and Theorem 3: main tools and general scheme

The random process {Pt}t∈N, where Pt represents coordinates of a Pareto walk at round t, is not a
Markov chain over the state space Z2: Pt in fact depends not only on Pt−1, but, also, on the state
of the agent, and its previous jump decision . Furthermore, it is hard to understand which nodes
are actually visited during one iteration of the procedure in Definition 3.

To address the issues above we consider two simpler movement models, the Pareto flight (the
discrete version of the well-known Lévy flight, which also has a per-se interest) and the Pareto run,
and provide bounds on the performances of such models. Then, using coupling arguments, we show
how such bounds can be exploited to get similar bounds for the original Pareto walk model.

Definition 7 (α-Pareto flight). Let α > 1 be a real constant. At each round, the agent chooses
a distance d with distribution cα

(1+d)α , where cα is a normalization constant, and chooses u.a.r.
one node u among the 4d nodes of the grid at distance d from its current position. Then, in one
step/unit time, the agent reaches u. Once reached u, the agent repeats the procedure above, and
so on. If the chosen distance d is equal to zero, the agent keeps still for one time unit and then it
repeats the procedure.

By defining the two-dimensional random variable Pf
t as the coordinates of the node the Pareto

flight visits at time t, we can easily observe that the process {Pf
t }t∈N is a Markov chain over the

state space Z2. This important property will be exploited in Subsection 4.2 to prove the following
result.

Proposition 1 (Hitting time of Pareto flight - Case α ∈ (2, 3]). Consider a single agent that
performs t steps of the Pareto flight with parameter α ∈ (2, 3]. For some t = Θ

(
`α−1

)
, conditional

on the event that the lengths of all performed jumps are less than (t log t)
1

α−1 , the agent finds the
treasure within the t-th step, with probability

(i) Ω
(

(`1−(α−2)(log `)
2

α−1 )−1
)

if α 6= 3;

(ii) Ω
(
(log4 `)−1

)
if α = 3.

The next proposition shows a useful coupling between the Pareto flight process the Pareto walk
one: its proof will be given in Subsection 4.4.

19For a formal comprehension of this statement, we refer to Remark 1 in the Preliminaries (Section 3).
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Proposition 2 (Coupling between Pareto flight and Pareto walk - Case α ∈ (2, 3]). Suppose
an agent performing the Pareto flight with any α ∈ (2, 3] finds the treasure within t steps with
probability p = p(t) > 0, conditional on the event that all the performed jump lengths are less than

(t log t)
1

α−1 . Then, another agent that performs the Pareto walk, with the same parameter α, finds
the treasure within Θ(t) steps with probability at least [1−O (1/ log t)] · [p(t)− exp(−tΘ(1))], without
any conditioning event.

Informally, thanks to the above coupling, we can transform the upper bound in Proposition 1
on the Pareto flight hitting time into an (unconditional) upper bounds on the Pareto walk hitting
time. We now need an equivalent framework to derive a lower bound for the Pareto walk. To this
aim, we define another similar process, the Pareto run, which we show to be at least as efficient as
the Pareto walk.

Definition 8 (α-Pareto run). Let α > 1 be a real constant. At each round, the agent chooses a
distance d with distribution cα

(1+d)α , where cα is a normalization constant, and chooses a direction
according to the procedure in Definition 2. Then, it walks along the corresponding direction-
approximating path (visiting all the path nodes) in one step/unit time until it reaches the end-point
v of the path at distance d. Once v is reached, the agent repeats all the procedure, and so on. If
the chosen distance d is equal to zero, the agent keeps still for one time unit and then it repeats
the procedure.

Similarly to Pareto flight, let Pr
t be the two-dimensional random variable denoting the coordi-

nates of the node a Pareto run visits at time t. It is easy to see that it is a Markov chain on the
space Z2. Furthermore, we know that at each iteration of the procedure in Definition 8, the agent
takes just one time unit to visit all the nodes of the chosen path: this allows us to avoid dealing
with the time needed to cover the path. For an agent performing a Pareto run, the following holds.

Proposition 3 (Hitting time of Pareto run - Case α ∈ (2, 3]). Let a single agent perform a Pareto
run with α ∈ (2, 3].

(i) If α 6= 3, the agent never finds the treasure with probability 1−O
(
log `/`1−(α−2)

)
;

(ii) let c ≥ 0 be any arbitrary constant, and let t be any function in Θ
(
`1+(α−2)/(logc `)

)
. Then,

the probability the agent finds the treasure within time t is O
(
1/(`1−(α−2) logc `)

)
;

(iii) for an arbitrary constant ε > 0 , the agent finds the treasure within time Θ
(
`α−1−ε) with

probability:

(a) O
(
1/`1−(α−2)+min(ε+(α−2),2ε)

)
if α 6= 3;

(b) O
(
log `/`min(ε+1,2ε)

)
if α = 3.

Subsection 4.3 is devoted to the proof of the above proposition, while in Subsection 4.4 we give
the proof of the next proposition that links the Pareto run to the Pareto walk.

Proposition 4 (Coupling: Pareto run into Pareto walk). Suppose an agent a1 that moves according
to the Pareto run with parameter α > 1 finds the treasure within t steps with probability p > 0.
Then, another agent a2 that moves according to the Pareto walk with the same parameter α finds
the treasure within Ω(t) steps with probability p. Furthermore, if a1 never finds the treasure with
probability q, then a2 never finds the treasure with probability at least q.

Thanks to the above results, we can now prove the main result on the Pareto walks for α ∈ (2, 3).
The proof for the case α = 3 follows in the successive subsection.
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4.1.1 Wrap-up I: proof of Theorem 2

As for the claimed upper bound on the hitting time, the proof proceeds as follows. From Propo-
sition 1 and Proposition 2, we get that a single agent, that moves according to the Pareto walk
and perform t = Θ

(
`1+(α−2)

)
steps, finds the treasure within the t-th step with probability at least

Ω

((
`1−(α−2) (log `)

2
α−1

)−1
)

. Then, if we take k mutually-independent Pareto walk agents, with

k = Θ
(
`1−(α−2) (log `)

2
α−1 log `

)
= Θ

(
`1−(α−2) (log `)

α+1
α−1

)
,

the treasure will be found by at least one of such agents within time t = Θ
(
`1+(α−2)

)
, w.h.p.,

making a total work of Õ
(
`2
)
. Furthermore, if we increase the number of agents by multiplying

by any polylogarithmic factor, the same upper bound on the hitting time holds, w.h.p., while if we
decrease it by dividing by any polylogarithmic factor, the upper bound on the hitting time holds
with non-negligible probability.

As for the lower bound, if we set the number of agents to be Θ
(
`1−(α−2) logc `

)
, then, for

Proposition 3, we have that the agent will not find the treasure within time t = Θ
(
`1+(α−2)/ log2c `

)
with probability[

1−O
(

1

`1−(α−2) log2c `

)]Θ(`1−(α−2) logc `)
= exp

(
−O

(
1

logc `

))
= 1−O

(
1

logc `

)
,

where the last equality comes from the Taylor’s expansion. Then, the agents need time at least
Ω̃
(
`1+(α−2)

)
to find the treasure with probability 1− o(1), making a total work of Ω̃

(
`2
)
. On the

other hand, if we decrease the number of agents to be k = Θ
(
`1−(α−2)/ logc `

)
for some c > 0, then,

trivially, the hitting time cannot improve, with at least the same probability.
As for Claim (i), propositions 3 and 4 tell us that an agent performing a Pareto walk has

probability O
(
log `/`1−(α−2)

)
to eventually find the treasure. Let ε ∈ (0, 1− (α−2)] be a constant,

and k = Θ̃
(
`1−(α−2)−ε). Then, k agents ever find the treasure with probability Õ (1/`ε) (thus the

work is infinite, w.h.p.).

As for Claim (ii), let ε > 0 be any positive constant, and k = Θ̃
(
`1−(α−2)+min(ε+α−2

2
, 3
2
ε)
)

. An

agent performing the Pareto walk has probability O(1/`1−(α−2)+min(ε+(α−2),2ε)) to find the treasure

within time t = Θ(`1+(α−2)−ε), for propositions 3 and 4. Thus, k = Θ̃
(
`1−(α−2)+min(ε+α−2

2
, 3
2
ε)
)

agents performing mutually independent Pareto walks find the treasure in time Ω̃
(
`1+(α−2)−ε),

w.h.p. for the union bound, letting the work to be Ω
(
`2+min(α−2

2
, ε
2

)
)

.

4.1.2 Wrap-up II: proof of Theorem 3

From Proposition 1 and Proposition 2, we get that a single agent, that moves according to the
Pareto walk and perform t = Θ

(
`2
)

steps, finds the treasure within the t-th step with probability

at least Ω
((

log4 `
)−1
)

. Then, if we take k mutually-independent Pareto walk agents, with

k = Θ
(
log5 `

)
,

the treasure will be found by at least one of such agents within time t = Θ
(
`2
)
, w.h.p., making

a total work of Õ
(
`2
)
. Furthermore, if we increase the number of agents by multiplying by any

polylogarithmic factor, the same upper bound on the hitting time holds, w.h.p., while if we decrease
it by dividing by any polylogarithmic factor, the upper bound on the hitting time holds with non-
negligible probability.

17



As for the lower bound, if we set the number of agents to be Θ
(
`1−(α−2) logc `

)
, then, for

Proposition 3, we have that the agent will not find the treasure within time t = Θ
(
`1+(α−2)/ log2c `

)
with probability[

1−O
(

1

`1−(α−2) log2c `

)]Θ(`1−(α−2) logc `)
= exp

(
−O

(
1

logc `

))
= 1−O

(
1

logc `

)
,

where the last equality comes from the Taylor’s expansion. Then, the agents need time at least
Ω̃
(
`1+(α−2)

)
to find the treasure with probability 1− o(1), making a total work of Ω̃

(
`2
)
. On the

other hand, if we decrease the number of agents to be k = Θ
(
`1−(α−2)/ logc `

)
for some c > 0, then,

trivially, the hitting time cannot improve with at least the same probability.

As for the almost-tightness result, let ε > 0 be any positive constant, and k = Θ̃
(
`min(ε+ 1

2
, 3
2
ε)
)

.

An agent performing the Pareto walk has probability O(log `/`min(ε+1,2ε)) to find the treasure within

time t = Θ(`2−ε) for propositions 3 and 4. Thus, k = Θ̃
(
`min(ε+ 1

2
, 3
2
ε)
)

agents performing mutually

independent Pareto walks find the treasure in time Ω̃
(
`2−ε

)
, w.h.p. for the union bound, letting

the work to be Ω
(
`2+min( 1

2
, ε
2

)
)

.

4.2 Pareto flight model - case α ∈ (2, 3]: proof of Proposition 1

In this subsection, we analyze the Pareto flight for any fixed α ∈ (2, 3] and prove Proposition 1 that,
as discussed in the previous subsection, represents the key-ingredient to derive the upper bounds
on the performances of the Pareto walk model. We proceed as follows.

We consider the following sequence of random variables

Si = length of the i-th jump of the agent , i = 1, . . . , t .

For each i = 1, . . . , t , we define the events

Ei = {Si < (t log t)
1

α−1 } and E(t) =

t⋂
i=1

Ei .

For brevity’s sake, we write E(t) = E when the dependency from t is clear from context. Then, for
any node u = (ux, uy) of the grid, we also define the random variable

Zu(t) = number of agent’s visits at node u within t steps.

In order to bound the probability that the node u has been visited at least once at time t, namely
P (Zu(t) > 0 | E), we define the following agent’s spatial distribution

pu,i = P (the agent is in node u at step i | E) ,

and we note that

E [Zu(t) | E] =
t∑
i=0

pu,i . (4)

4.2.1 Road-map of the analysis

The key idea of our approach is to estimate the expected number of visits on the treasure the
agent does within the first t steps of the Pareto flight process, where we recall that the treasure is
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an arbitrary node of the infinite grid located at distance ` > 0 from the origin. We first prove a
“monotonicity” property of the agent’s spatial distribution of Pareto flight: this property essentially
implies that, on average, the agent visits nodes “closer” to the origin more frequently than those
who are “farther”. Second, we make a partition of the grid in three concentric regions: the first
region, named A1, consists of all the nodes having distance from the origin smaller than `; the
second one, named A2, consists of all nodes whose distance from the origin is roughly ` and at
most a logarithmic factor farther; finally, the third region, named A3, consists of all other (farther)
nodes. Then, we exploit the monotonicity property of the agent’s spatial distribution to get some
upper bounds on the average number of agent’s visits in each of the three regions, until time t. In
particular, thanks to the monotonicity property, we show that the above upper bound for the region
A2 can be written as the average number of visits to the treasure times the number of nodes in A2.
Being the total number of agent’s visits (within the first t steps) clearly equal to t, the obtained
upper bounds for the three regions allow us to derive a lower bound on the average number of visits
to the treasure itself. This expectation is then used to provide a lower bound on the probability
that the treasure has been visited at least once within the first t rounds. Indeed, we prove that the
latter probability is related to the average number of visits to the treasure and the average number
of visits to the origin within time t.

Recall that the treasure is located in some node T at distance ` from the origin. We name the
three regions in the following way. The first one is

A1 = Q(`) = {(x, y) : max(|x| , |y|) ≤ `};

the second region is defined for any t = Θ
(
`α−1

)
and is (remember that α is fixed)

A2 = {v ∈ Z2 : |v|1 ≤ 2(t log t)
1

α−1 if α ∈ (2, 3), |v|1 ≤ 2
√
t log t if α = 3}\A1;

and the third one, defined for any t = Θ
(
`α−1

)
as well, is

A3 = {v ∈ Z2 : |v|1 > 2(t log t)
1

α−1 if α ∈ (2, 3), |v|1 > 2
√
t log t if α = 3}.

What follows is a road-map of the analysis to keep track of main idea behind the lemmas and
the proofs that follow. The analysis proceeds along the following technical steps.

1. The spatial distribution pu,t has a useful monotonicity property that can be stated as follows.
For any u = (ux, uy), define du = |ux| + |uy|. Then, we show that pu,t ≥ pv,t for all nodes v
lying outside the square Q(du) = {(x′, y′) : max(|x′| , |y′|) ≤ du} (see Lemma 3 and Figure 3
for details).

2. Thanks to eq. (4) and Step 1 above, we get that, for a node u, E [Zu(t) | E] ≥ E [Zv(t) | E] for
all nodes v outside Q(du) (see Corollary 1). Thus, the average number of visits inA2 is at most

the cardinality of A2 times E [ZT (t) | E], thus upper bounded by E [ZT (t) | E] · 4(t log t)
2

α−1

if α ∈ (2, 3), and by E [ZT (t) | E] · 4t log2 t if α = 3.

3. For some t = Θ(`α−1) we get the following upper bound on the average number of visits to

region A1: E
[∑

v∈Q(`) Zv(t) | E
]
≤ ct for some constant c ∈ (0, 1) (see Lemma 4).

4. Using Chebyshev, we get the following upper bound to the average number of visits to region
A3: we show that (see Lemma 5)∑

v=(x,y) :

|x|+|y|≥2(t log t)
1

α−1

E [Zv(t) | E] = O
(

t

log t

)
if α ∈ (2, 3);
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∑
v=(x,y) :

|x|+|y|≥2
√
t log t

E [Zv(t) | E] = O
(

t

log t

)
if α = 3;.

5. From steps 2 to 4, for some t = Θ(`α−1) we have (see Lemma 6)

ct+ E [ZT (t) | E] · 4(t log t)
2

α−1 +O
(

t

log t

)
≥ t if α ∈ (2, 3);

ct+ E [ZT (t) | E] · 4t log2 t+O
(

t

log t

)
≥ t if α = 3.

These expression imply the followings:

E [ZT (t) | E] = Ω

(
1

t
3−α
α−1 [log(t)]

2
α−1

)
if α ∈ (2, 3);

E [ZT (t) | E] = Ω

(
1

log2 t

)
if α = 3.

6. Using Step 2, we prove that the expected number of visits in the origin E [Zo(t) | E] is a
positive constant w.r.t. t, i.e., E [Zo(t) | E] = at(α) = Θ(1), for any choice of α ∈ (2, 3),
while this expectation grows at most as a poly-logarithmic function for the case α = 3, i.e.
at(3) = O

(
log2 t

)
(see Lemma 7 for more details).

Furthermore, by simple calculations (Lemma 8) we link the probability to visit a node u
within time t with the average number of visits to that node within time t and at(α), showing
that

E [Zu(t) | E] ≥ P (Zu(t) > 0 | E) ≥ E [Zu(t) | E] /at(α).

7. From steps 5 and 6, for some t = Θ(`α−1), we get that

P (ZT (t) > 0 | E) = Ω

(
1

t
3−α
α−1 [log(t)]

2
α−1

)
if α ∈ (2, 3), and

P (ZT (t) > 0 | E) = Ω

(
1

log4 t

)
if α = 3,

which yield the claim of Proposition 1 substituting t = Θ(`α−1) (see Corollary 2).

4.2.2 Full analysis

The spatial distribution yielded by the Pareto flight process has a useful geometric shape (described
in Step 1) that can be “roughly” characterized as follows. For any node u = (ux, uy), we let
du = |ux|+ |uy| and consider the square

Q(du) = {(x′, y′) ∈ Z2 : max(
∣∣x′∣∣ , ∣∣y′∣∣) ≤ du}

(See Figure 3 in the proof of Lemma 3). Then, the following geometric property holds.

Lemma 3 (Monotonicity). Let u ∈ Z2 be an arbitrary node. Then, for each node v /∈ Q(du) and
each step t, it holds that pu,t ≥ pv,t.
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u

D(u)

Q(du)

Figure 3: The set D(u), consisting in all inner nodes of the “star”, and the square Q(du).

Proof of Lemma 3. The proof follows from Lemma 32 in Appendix C, observing that the Pareto
flight model satisfies the hypothesis of that lemma, and that the conditioning event E does not
interfere with the proof.

Notice that, from E [Zv(t) | E] =
∑t

i=0 pv,i, we have the following corollary (described in Step 2
in the scheme), whose proof is trivial.

Corollary 1. E [Zu(t) | E] ≥ E [Zv(t) | E] for all v /∈ Q(du).

Namely, the more the node is “distant” (according to the sequence of squares {Q(d)}d∈N) from
the origin, the less it is visited in average. Thus, each node is visited at most as many times as the
origin, in average.

We now divide the grid in three subset, namely

A1 = Q(`) = {(x, y) : max(|x| , |y|) ≤ `},

A2 = {v ∈ Z2 : |v|1 ≤ 2(t log t)
1

α−1 if α ∈ (2, 3), |v|1 ≤ 2
√
t log t if α = 3}\A1,

A3 = {v ∈ Z2 : |v|1 > 2(t log t)
1

α−1 if α ∈ (2, 3), |v|1 > 2
√
t log t if α = 3},

where A2 and A3 are defined for any t = Θ
(
`α−1

)
(remember that α is fixed). Then, we estimate

some upper bound on the expected number of visits the agent makes in the first and the third of
these sets until time t, considering that the sum of these upper bounds must be at least t. As for
the nodes inside Q(`), the following holds (Step 3 in the scheme).

Lemma 4 (Bound on visits in A1). For some t = Θ(`α−1), it holds that∑
v∈Q(`)

E [Zv(t) | E] ≤ ct

for some constant c ∈ (0, 1).
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Proof of Lemma 4. Let u, t, and Q(`) be as in the hypotheses. We estimate the probability the
walk has moved to distance 5

2` at least once within time t = Θ
(
`α−1

)
bounding it by the probability

that at least one of the jumps made is no less than 5` (event H). Indeed, if there is a jump of
length at least 5λ, the walk moves necessarily to distance no less than 5

2`.

P
(
Sj ≥ 5` | Sj < (t log t)

1
α−1

)
=

(t log t)
1

α−1−1∑
k=5`

cα
(1 + k)α

(a)

≥ cα
α− 1

(
1

(5`+ 1)α−1
− 1

t log t

)
(b)

≥ cα
2(α− 1)(5`)α−1

,

where (a) holds for the integral test (Fact 1 in Appendix A), and (b) holds for for ` large enough,
since t = Θ(`α−1). Due to independence, there exists some constant c′ > o such that there is
probability

1−
[
1− cα

2(α− 1)(5`)α−1

]c′ 2(α−1)(5`)α−1

cα

≥ 3

4

that the desired jump takes place within time c′ · 2(α − 1)(5`)α−1/cα. If we take t to be t ≥
4c′ · 2(α − 1)(5`)α−1/cα, the desired jump takes place probability 3

4 within time t
4 . Once reached

such a distance (conditioning on such an event), there are at least other 3 disjoint zones at least as
equally likely as Q(`) to be visited at any future time, as Figure 4 shows. Thus, the probability to

Q(`)

5
2`

Figure 4: The disjoint zones at least as equally likely as Q(`) to be visited.

visit Q(`) at any future time is at most 1
4 . To get the thesis, observe that

E

 ∑
v∈Q(`)

Zv(t) | E

 =E

 ∑
v∈Q(`)

Zv(t) | H,E

P (H | E) + E

 ∑
v∈Q(`)

Zv(t) | HC , E

P
(
HC | E

)
22



≤
(

1

4
t+

1

4
· 3

4
t

)
3

4
+ t · 1

4

=
t

4

(
1 +

3

4
+

9

16

)
=

37

64
t,

which, setting c = 37
64 , is the thesis.

Next lemma focuses on the third set, A3 (Step 4 in the scheme).

Lemma 5 (Bound on visits in A3). For α ∈ (2, 3], it holds that∑
v=(x,y) :

|x|+|y|≥2(t log t)
1

α−1

E [Zv(t) | E] = O
(

t

log t

)
if α ∈ (2, 3); (5)

∑
v=(x,y) :

|x|+|y|≥2
√
t log t

E [Zv(t) | E] = O
(

t

log t

)
if α = 3;. (6)

Proof of Lemma 5. Let Pf
t′ be the two dimensional random variable representing the coordinates of

the agent performing the Pareto flight at time t′. Consider the projection of the Lévy flight on the
x-axis, namely the random variable Xt′ such that Pf

t′ = (Xt′ , Yt′). The random variable Xt′ can be
expressed as the sum of t′ random variables Sxj , j = 1, . . . , t′, representing the jumps (with sign) the
projection of the walk takes at each of the t′ rounds. The partial distribution of the jumps along

the x-axis, conditioning on the event E, is given by the following. For any 0 ≤ d ≤ (t log t)
1

α−1 − 1

P
(
Sxj = ±d | Sj < (t log t)

1
α−1

)
=

cα
4d(1 + d)α

1d6=0 +
cα
2α
1d=0 +

(t log t)
1

α−1−1∑
k=1+d

cα
2k(1 + k)α

, (7)

where 1d∈A yields 1 if d ∈ A and 0 otherwise, the term cα
4d(1+d)α1d6=0 + cα

2α1d=0 is the probability

that the original jump lies along the horizontal axis and has “length” exactly d (or −d), and the
terms cα

2k(1+k)α are the probability that the original jump has “length” exactly k and its projection

on the horizontal axis has “length” d (or −d). Quantity (7) is at least

cα
4

 1

d(1 + d)α
+

(t log t)
1

α−1−1∑
k=1+d

2

k(1 + k)α

 ,

and at most

cα

 1

d(1 + d)α
+

(t log t)
1

α−1−1∑
k=1+d

2

k(1 + k)α

 .

By the integral test (Fact 1 in A) we know that this probability is

P
(
Sxj = ±d | Ej

)
= Θ

(
1

(1 + d)α

)
.
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Due to symmetry, it is trivial to see that E [Xt′ | E] = 0 for each time t′, while

Var (Xt′ | E) =
t′∑
i=1

Var
(
Sxj | Ej

)
= t′Var (Sx1 | E1)

because Sx1 , . . . , S
x
t′ are i.i.d. Suppose now α ∈ (2, 3). The variance of Sx1 conditioned to the event

E1 =
{
S1 < (t log t)

1
α−1

}
is

Var (Sx1 | E1) ≤
(t log t)

1
α−1−1∑

k=1

O
(

k2

(1 + k)α

)
(a)
= O

(
1

3− α

[
(t log t)

3−α
α−1 − 23−α

])
+O

(
1

2α−2

)
= O (t log t)

3−α
α−1 ,

where, in (a), we used the integral test (Fact 1 in Appendix A). Observe that the event E =
⋂t
i=1Ei

has probability

P (E) = 1−O
(

1

log t

)
.

Then, for each t′ ≤ t, from the Chebyshev’s inequality and the fact that E[Xt′ | E] = 0,

P
(
|Xt′ | ≥ (t log t)

1
α−1 | E

)
≤ t′Var (Sx1 | E1)

(t log t)
2

α−1

≤ tVar (Sx1 | E1)

(t log t)
2

α−1

= O
(

1

log t

)
,

which implies that

P
(
|Xt′ | ≥ (t log t)

1
α−1

)
≤ P

(
|Xt′ | ≥ (t log t)

1
α−1 | E

)
+ P

(
EC
)

= O
(

1

log t

)
.

Then, the probability that both Xt′ and Yt′ are less than (t log t)
1

α−1 (call the events Ax,t′ and Ay,t′ ,
respectively) is

P
(
Ax,t′ ∩Ay,t′

)
= P

(
Ax,t′

)
+ P

(
Ay,t′

)
− P

(
Ax,t′ ∪Ay,t′

)
≥ 1−O

(
1

log t

)
,

for t′ ≤ t. Then, let Z ′(t) indicate the number of times the Pareto flight visits the set of nodes

whose coordinates are both no less than (t log t)
1

α−1 until time t. Then,

E
[
Z ′(t) | E

]
≤

∑
v=(x,y)

|x|+|y|≥2(t log t)
1

α−1

E [Zv(t) | E] ,

and

E
[
Z ′(t) | E

]
=

t∑
i=0

E
[
Z ′(i) | Ax,i ∩Ay,i, E

]
P (Ax,i ∩Ay,i | E)

+

t∑
i=0

E
[
Z ′(i) | (Ax,i ∩Ay,i)C , E

]
P
(
(Ax,i ∩Ay,i)C | E

)
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=
t∑
i=0

E
[
Z ′(i) | (Ax,i ∩Ay,i)C , E

]
P
(
(Ax,i ∩Ay,i)C | E

)
≤ t · O

(
1

log t

)
= O

(
t

log t

)
,

which leads to eq. (5).
If α = 3, the variance of Sx1 conditioned to E1 becomes O (log(t log t)). Then we look at the

probability that |Xt′ | is at least
√
t · log t conditional to E, which is, again, O (1/ log t). Then the

proof proceeds in exactly the same way, obtaining eq. (6).

Let T be the node in which the treasure is located. For each node v in A2 we already know
that E [ZT (t) | E] ≥ E [Zv(t) | E] thanks to Corollary 1. Then, we have the following (Step 5 in the
scheme).

Lemma 6. Let α ∈ (2, 3), and let u be any node such that du = `. For some t = Θ(`α−1), the
following holds:

ct+ E [ZT (t) | E] · 4(t log t)
2

α−1 +O
(

t

log t

)
≥ t if α ∈ (2, 3); (8)

ct+ E [ZT (t) | E] · 4t log2 t+O
(

t

log t

)
≥ t if α = 3. (9)

Proof of Lemma 6. Suppose the agent has made t = Θ(`α−1) jumps (the same t of Lemma 4), thus
visiting t nodes. Then,

E

∑
v∈Z2

Zv(t) | E

 = t.

First, we focus on eq. (8). From Lemma 4, the number of visits inside A1 = Q(`) until time t is
at most ct, fore some constant c ∈ (0, 1). From Lemma 5, the number of visits in A3 is at most

O (t/ log t). Each of the remaining nodes, i.e. the nodes in A2, which are at most 4(t log t)
2

α−1 in
total, is visited by the agent at most E [ZT (t) | E] times, for Corollary 1. Then, we have that

ct+ E [ZT (t) | E] · 4(t log t)
2

α−1 +O
(

t

log t

)
≥ t.

Now we prove eq. (9). We proceed in the exactly same way, noticing that, from Lemma 5, the
number of visits in A2 is at most E [ZT (t) | E] · (4t log2 t). This gives eq. (9).

The following two results aim at relating the probability to hit a node u within time t to the
average number of visits to the origin and to the average number of visits to u itself (Step 6 in the
scheme). The first lemma we show estimate the average number of visits to the origin.

Lemma 7 (Visits in the origin). For any t ≥ 0 and α ∈ (2, 3], let E [Zo(t) | E] = at(α). We have
that

1. if α ∈ (2, 3), then at(α) = Θ(1);

2. if α = 3, then at(3) = O
(
log2 t

)
.
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Proof of Lemma 7. We first go for Step 1. We want to prove that E [Zo(t) | E] is constant. This
involves an intricate argument. Since E [Zo(t) | E] =

∑t
k=1 po,k, it suffices to accurately bound the

probability po,k for each k = 1, . . . , t. Let partition the natural numbers in the following way

N =
∞⋃
t′=0

[
N ∩

[
2t′ log t′, 2(t′ + 1) log(t′ + 1)

) ]
.

For each k ∈ N, there exists t′ such that k ∈ [2t′ log t′, 2(t′ + 1) log(t′ + 1)). Then, within 2t′ log t′

steps the walk has moved to distance λ = (t′)
1

α−1−1
2 at least once, with probability Ω

(
1

(t′)2

)
. Indeed,

if there is one jump of length at least 2λ, we are sure the walk as moved to distance at least λ from
the origin. We compute the probability that one jump is at least 2λ. For the integral test, we have

P
(
Sj ≥ 2λ | Sj < (t log t)

1
α−1

)
≥ 1

P
(
Sj < (t log t)

1
α−1

)
∫ (t log t)

1
α−1−1

2λ

cα
(s+ 1)α

ds


≥ cα
α− 1

(
1

t′
− 1

t log t

)
≥ cα
α− 1

(
1− t′

t log t

t′

)

≥ cα
α− 1

(
1− 1

2 log(t′) log t

t′

)

= Ω

(
1

t′

)
where the last inequality holds because 2t′ log t′ ≤ t. Thus, the probability that the first 2t′ log t′

jumps are less than 2λ is

P
(
∩2t′ log t′

j=1 {Sj < 2λ} | E
)

(a)
=
[
1− P

(
S1 < 2λ | S1 < (t log t)

1
α−1 − 1

)]2t′ log t′

≥
[
1− Ω

(
1

t′

)]2t′ log t′

= O
(

1

(t′)2

)
,

where (a) holds for independence. Once reached such a distance, there are at least λ2 = Ω
(

(t′)
2

α−1

)
different nodes that are at least as equally likely as o to be visited at any given future time (from

Lemma 3). Thus, the probability to reach the origin at any future time is at most O
(

1

(t′)
2

α−1

)
=

O
(

1
(t′)1+ε

)
for some small constant ε > 0, in particular the bounds holds for po,k. Observe that in

an interval [2t′ log t′, 2(t′ + 1) log(t′ + 1)) there are

2(t′ + 1) log(t′ + 1)− 2t′ log t′ = 2t′
[
log

(
1 +

1

t′

)]
+ 2 log(t′ + 1) = O

(
log t′

)
integers. Let Pf

t be the two-dimensional random variable denoting the node a Pareto flight which

has started in the origin visits at time t, and let Ht′ be the event ∪2t′ log t′

j=1 {Sj ≥ 2λ}. Observe that

po,k = P
(
Pf
t = o | Ht′ , E

)
P (Ht′ | E) + P

(
Pf
t = o | HC

t′ , E
)
P
(
HC
t′ | E

)
,
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by the law of total probability. Thus, if It′ = [2t′ log t′, 2(t′ + 1) log(t′ + 1)), we have

t∑
k=1

po,k ≤
∞∑
t′=0

∑
k∈It′

po,k

≤
∞∑
t′=0

[
P
(
Pf
t = o | Ht′ , E

)
P (Ht′ | E) + P

(
Pf
t = o | HC

t′ , E
)
P
(
HC
t′ | E

)]
O(log t′)

≤
∞∑
t′=0

[
O
(

1

(t′)1+ε

)
+O

(
1

(t′)2

)]
O(log t′) = O(1).

Finally, the fact that this quantity is at least a constant comes from observing that po,1 is constant.
As for Step 2, notice that in the previous proof we have to put λ =

√
t′ and the proof follows

almost analogously, giving that the average number of visits until time t is of the order of O
(
log2 t

)
.

The following results relate the probability to hit some node u within some time t with the
expected number of visits to that node and to the average number of visits to the origin (Step 6 in
the scheme).

Lemma 8. Let u ∈ Z2 be any node. Then, we have the followings.

(i) E [Zu(t) | E] ≤ at(α),

(ii) 1 ≤ E [Zu(t) | Zu(t) > 0, E] ≤ at(α),

(iii) E [Zu(t) | E] /at(α) ≤ P (Zu(t) > 0 | E) ≤ E [Zu(t) | E].

Proof of Lemma 8. Item (i) comes directly from Item (ii), since E [Zu(t) | Zu(t) > 0, E] ≥ E [Zu(t) | E].
Consider Item (ii), and let τ be the first time the agent visits u. Then, conditioning on Zu(t) > 0,
τ is at most t. We have

E [Zu(t) | Zu(t) > 0, E] = E [Zo(t− τ) | τ ≤ t, E] ≤ E [Zo(t) | E] = at(α).

The fact that this expectation is at least 1 comes from the conditional event. As for Item (iii), let
us explicitly express the term E [Zu(t) | Zu(t) > 0, E] · P (Zu(t) > 0 | E). This is equal to

t∑
i=1

iP (Zu(t) = i | Zu(t) > 0, E) · P (Zu(t) > 0 | E)

=
t∑
i=1

i
P (Zu(t) = i, Zu(t) > 0, E)

P (Zu(t) > 0, E)
· P (Zu(t) > 0, E)

P (E)

=
t∑
i=1

i
P (Zu(t) = i, Zu(t) > 0, E)

P (E)

=

t∑
i=1

iP (Zu(t) = i | E)

= E [Zu(t) | E] .

Then,

E [Zu(t) | E] ≥ P (Zu(t) > 0 | E) =
E [Zu(t) | E]

E [Zu(t) | Zu(t) > 0, E]
≥ E [Zu(t) | E]

at(α)
,

since E [Zu(t) | Zu(t) > 0, E] ≤ at(α) for the Item (ii).
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4.2.3 Wrap-up: proof of Proposition 1

From Lemma 6, we can easily compute the expectation E [Zu(t) | E] and, thus, the sought proba-
bility (Step 7 in the scheme).

Corollary 2. Let T be the node in which the treasure is located. For some t = Θ(`α−1), the
probability the agent visits the treasure at least once within time t, conditioning to the event E, is

P (ZT (t) > 0 | E) = Ω

(
1

t
3−α
α−1 [log(t)]

2
α−1

)
if α ∈ (2, 3);

P (ZT (t) > 0 | E) = Ω

(
1

log4 t

)
if α = 3.

Proof of Corollary 2. The proof easily follows by combining lemmas 6 to 8.

We are finally ready to prove Proposition 1. Indeed, it is sufficient to apply Corollary 2 substi-
tuting t = Θ

(
`α−1

)
= Θ

(
`1+(α−2)

)
.

4.3 Pareto run model - case α ∈ (2, 3]: proof of Proposition 3

The Pareto run is at least as efficient as the Pareto walk in finding the treasure, indeed it can be
seen as a Pareto walk which takes just a time unit to perform a jump, visiting all the nodes in the
path chosen to reach the jump-destination. In this section we find lower bounds on the hitting time
of the treasure for the Pareto run, and we exploit its characteristics to gain the same lower bound
for the Pareto walk. The result we are going to prove is the following.

Proposition 3 (Hitting time of Pareto run - Case α ∈ (2, 3]). Let a single agent perform a Pareto
run with α ∈ (2, 3].

(i) If α 6= 3, the agent never finds the treasure with probability 1−O
(
log `/`1−(α−2)

)
;

(ii) let c ≥ 0 be any arbitrary constant, and let t be any function in Θ
(
`1+(α−2)/(logc `)

)
. Then,

the probability the agent finds the treasure within time t is O
(
1/(`1−(α−2) logc `)

)
;

(iii) for an arbitrary constant ε > 0 , the agent finds the treasure within time Θ
(
`α−1−ε) with

probability:

(a) O
(
1/`1−(α−2)+min(ε+(α−2),2ε)

)
if α 6= 3;

(b) O
(
log `/`min(ε+1,2ε)

)
if α = 3.

Now, a little analysis to prove the above result. First, we state again Lemma 1 which we will
use.

Lemma 1. Let u be any node of Z2, d ≥ 1, and v ∈ Rd(u). Suppose an agent is on u and chooses
a direction according to the procedure in Definition 2. Then, there is probability 1/(4d) that the
corresponding direction-approximating path crosses v.

Then, we estimate the probability that, during a given jump which starts at some distance from
some node u, the Pareto run actually visits u.

Lemma 9. Consider an agent performing a Pareto run which is located at distance d ≥ 0 from
any node u. Then, the probability that it visits u during the next jump is Θ(1/dα).
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Proof of Lemma 9. For Lemma 1, the probability to choose a direction leading to u is Θ(1/d).
Independently, the probability to choose to walk for a distance at least d across the chosen direction
is Θ(1/dα−1) by Equation (3). Thus, the probability to eventually visit u is Θ(1/dα).

Through the above lemma, we find the probability that during any given jump the agent actually
visits the treasure.

Lemma 10. Let i = 1, . . . t , denote the t jumps an agent performing a Pareto run with parameter
α ∈ (2, 3] which starts at the origin takes. The probability that during the i-th jump the agent finds
the treasure is O(1/`2).

Proof of Lemma 10. Consider the starting point v of the i-th jump. We want to give probabilities
to the distance at which v is from the origin. Call T the node in which the treasure is located, and
consider the rhombus centered in T of nodes that are distant at most `

4 from T , namely

R∗`/4(T ) = {w ∈ Z2 : d(w, T ) ≤ `/4}.

For any v ∈ R∗`/4(T ), the probability that the i-th jump starts in v is at most O(1/`2) due to

Lemma 3. At the same time, for any distance 1 ≤ d ≤ `/4, there are at most 4d nodes in R∗`/4(T )
at distance d from T . Then, for the expression of conditional probability and Lemma 9, the
probability that the i-th jump starts from R∗`/4(T ) and the agent visits the treasure during the
jump is

O
(

1

`2

) `/4∑
d=1

4d · O
(

1

dα

)
+O

(
1

`2

)
= O

(
1

`2

)
,

where, in the first expression, the last term O(1/`2) is the contribution of T itself. If v is outside
R∗`/4(T ), then the probability that a jump that starts from v leads the agent to visit the treasure

is at most O (1/`α).
Let Ji be the event that the i-th jump (which starts in v) leads the agent to visit the treasure,

and Vi be the event that the starting point of the i-th jump is in R∗`/4(T ). Then, recalling that
2 < α ≤ 3,

P (Ji) ≤ P (Ji | Vi)P (Vi) + P
(
Ji | V C

i

)
≤ O

(
1

`2

)
+O

(
1

`α

)
= O

(
1

`2

)
,

which is the thesis.

We are ready to give a lower bound on the probability that an agent performing a Pareto run
never finds the treasure.

Lemma 11. Let α ∈ (2, 3), and consider a single agent performing a Pareto run (Definition 8).
The probability that the agent never finds the treasure is 1−O

(
log `/`1−(α−2)

)
.

Proof of Lemma 11. Consider the first time ti the agent is at distance at least λi = 2i` from the
origin, for each i ≥ 1. Define, for i ≥ 1, τi = 2λα−1

i log λi. Then,

P (ti ≤ τi) ≥ 1−
[
1−O

(
1

λα−1
i

)]2λα−1
i log λi

= 1−O
(

1

λ2
i

)
= 1−O

(
1

22i`2

)
.

Then, the expected number of visits to the treasure from time ti until time ti+1 is then O(τi+1/λ
2
i ) =

O(τi/λ
2
i ) by Lemma 10, since the agent starts at distance Θ (λi) from the target. At the same time,
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the average number of visits to the treasure until time t1 is O
(
t1/`

2
)

= O
(
τ1/`

2
)
. Combining the

above, we have that the expected total number of visits to the treasure is

O
(
τ1/`

2
)

+
∑
i≥1

O
(
τi/λ

2
i

)
= O

(
log `/`3−α

)
+
∑
i≥1

O
(
log(2i`)/(2i`)3−α) = O

(
log `/`3−α

)
.

Thus, for the Markov property, the probability that the agent visits the treasure at least once is
O
(
log `/`3−α

)
, which is equal to O

(
log `/`1−(α−2)

)
.

We also give a bound on the probability that an agent finds the treasure in timeO
(
`1+(α−2)/(logc `)

)
,

for any constant c ≥ 0.

Lemma 12. Consider a single agent performing a Pareto run with parameter α ∈ (2, 3] (Defini-
tion 8). Let c ≥ 0 be any arbitrary constant, and let t be any function in Θ

(
`1+(α−2)/(logc `)

)
.

Then, the probability to find the treasure within time t is O
(
1/(`1−(α−2) logc `)

)
.

Proof of Lemma 12. By Lemma 10 and the union bound, the expected number of visits to the
treasure until time t is thenO(t/`2) = O

(
1/(`1−(α−2) logc `)

)
, since the agent starts at distance Θ (`)

from the treasure. Then, for the Markov property, the sought probability is O
(
1/(`1−(α−2) logc `)

)
.

At the same time, in the next lemma we show that the agent finds the treasure within time
polynomially smaller than Θ(`1+(α−2)) with really low probability.

Lemma 13. Let α ∈ (2, 3), and consider a single agent performing a Pareto run (Definition 8).
Let ε > 0 be any arbitrary small constant, and let t be any function in Θ(`1+(α−2)−ε). Then, the
probability to find the treasure within time t is

O
(

1

`1−(α−2)+min(ε+(α−2),2ε)

)
if α 6= 3; (10)

O
(

log `

`min(ε+1,2ε)

)
if α = 3. (11)

Proof of Lemma 13. Let Xi be the x-coordinate of the agent at the end of the i-th jump. For
any i ≤ t, we bound the probability that Xi > `/4. The probability that there is a jump whose
length is at least ` among the first i jumps is O(i/`α−1). First we consider the case in which
α ∈ (2, 3). Conditioning on the event that the first i jump-length are all smaller than ` (event Ci),
the expectation of Xi is zero and its variance is

i ·
`/4∑
d=0

Θ
(
d2/(1 + d)α

)
= Θ

(
i`3−α

)
,

for the integral test (Fact 1 in Appendix A). Chebyshev’s inequality implies that

P (|Xi| ≥ `/4 | Ci) ≤
Θ
(
i`3−α

)
Θ(`2)

= Θ
(
i/`α−1

)
.

Since the conditioning event has probability 1 − O(i/`α−1), then the “unconditional” probability
that of the event |Xi| ≤ `/4 is [

1−O(i/`α−1)
]2

= 1−O (1/`ε) ,
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since i ≤ t = Θ(`α−1−ε). The same result holds analogously for Yi (the y-coordinate of the agent
after the i-th jump), obtaining that |Xi| + |Yi| ≤ `/2 with probability 1 − O(1/`ε) by the union
bound.

Consider the first jump. The probability it leads the agent to visit the treasure is O(1/`α) for
Lemma 9. Now, let 2 ≤ i ≤ t and consider the i-th jump. We want to estimate the probability
the jump leads the agent to visit the treasure. As in the proof of Lemma 10, we call T the node in
which the treasure is located, and we consider the rhombus centered in T that contains the nodes
at distance at most `

4 from T , namely

R∗`/4(T ) = {w ∈ Z2 : d(w, T ) ≤ `/4}.

We call Ji the event that the i-th jump leads the agent to visit the treasure, Ki−1 the event that
the (i− 1)-th jump ends in R∗`/4(T ), and Fi−1 the event that the (i− 1)-th jump ends at distance

farther than `/2 from the origin. First, let Pr
i be the two-dimensional random variable denoting

the coordinates of the node the agent is located on after the i-th jump. Then

P (Ji | Ki−1)P (Ki−1 | Fi−1) =
∑

v∈R∗
`/4

(T )

P (Ji | Pr
i = v)P (Pr

i = v | Fi−1)

≤ O
(

1

`2

) ∑
v∈R∗

`/4
(T )

P (Ji | Pr
i = v) ,

since Lemma 3 holds in a consequent way conditioning on Fi−1, and since, for each v ∈ R∗`/4(T ),

there are at least Θ
(
`2
)

nodes at distance at least `/2 from the origin which are more probable to
be the destination of the i-th jump than v. Then, we proceed like in the proof of Lemma 10 and
we obtain

P (Ji | Ki−1)P (Ki−1 | Fi−1) = O
(

1

`2

)
. (12)

By the law of total probabilities, we have

P (Ji) = P (Ji | Fi−1)P (Fi−1) + P
(
Ji | FCi−1

)
P
(
FCi−1

)
=
[
P (Ji | Fi−1,Ki−1)P (Ki−1 | Fi−1) + P

(
Ji | Fi−1,K

C
i−1

)
P
(
KC
i−1 | Fi−1

)]
P (Fi−1)

+ P
(
Ji | FCi−1

)
P
(
FCi−1

)
(a)

≤
[
P (Ji | Ki−1)P (Ki−1 | Fi−1) + P

(
Ji | Fi−1,K

C
i−1

)]
P (Fi−1) + P

(
Ji | FCi−1

)
P
(
FCi−1

)
(b)

≤
[
O
(

1

`2

)
+O

(
1

`α

)]
O
(

1

`ε

)
+O

(
1

`α

)[
1−O

(
1

`ε

)]
= O

(
1

`2+ε
+

1

`α

)
(13)

where in (a) we used that Ki−1 ⊂ Fi−1 and that P
(
KC
i−1 | Fi−1

)
≤ 1, while in (b) we used eq. (12),

and that P
(
Ji | Fi−1,K

C
i−1

)
= O (1/`α), which is true because the jump starts in a node whose

distance form the treasure is Ω(`), and that P
(
Ji | FCi−1

)
= O (1/`α), which is true for the same

reason.
Thus, by the union bound and by inequality (13), the probability that at least one between the

t jumps leads the agent to find the treasure is

1

`α
+ (t− 1)O

(
1

`α
+

1

`2+ε

)
= O(`α−1−ε)O

(
1

`α
+

1

`2+ε

)
= O

(
1

`1+ε
+

1

`3−α+2ε

)
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= O
(

1

`1−(α−2)+min(ε+(α−2),2ε)

)
,

which is eq. (10).
Consider now the case in which α = 3. The proof proceeds exactly as before, but the variance

of Xi is Θ (i log `). This means that the probability that |Xi| is at least `/4 conditional to Ci is
O
(
log `/`2

)
, and the “unconditional” probability that |Xi| is less than `/4 is 1 − O (log `/`ε). It

follows that

P (Ji) = O
(

log `

`2+ε
+

log `

`α

)
.

Thus, the sought probability results in

O
(

log `

`min(ε+1,2ε)

)
,

which is eq. (11).

Finally, we have that lemmas 11 and 13 imply Proposition 3, which is necessary for the main
result on the Pareto walk.

4.3.1 Wrap-up: proof of Proposition 3

Lemma 11 immediately gives Step i of the proposition. Lemma 12 is Step ii, while Lemma 13 gives
Step iiia and Step iiib.

4.4 Coupling results

In this subsection, we show the proof of the coupling propositions, namely propositions 2 and 4.
We start with Proposition 2, which we recall.

Proposition 2 (Coupling between Pareto flight and Pareto walk - Case α ∈ (2, 3]). Suppose
an agent performing the Pareto flight with any α ∈ (2, 3] finds the treasure within t steps with
probability p = p(t) > 0, conditional on the event that all the performed jump lengths are less than

(t log t)
1

α−1 . Then, another agent that performs the Pareto walk, with the same parameter α, finds
the treasure within Θ(t) steps with probability at least [1−O (1/ log t)] · [p(t)− exp(−tΘ(1))], without
any conditioning event.

Proof of Proposition 2. Let Sj be the random variable denoting the j-th jump-length. First, we
bound a jump-length in the following way:

P (Sj ≥ d) = cα
∑
k≥d

1

(1 + k)α
≤ cα

[
1

(α− 1)(1 + d)α−1
+

1

(1 + d)α

]

= cα

[
1 + d+ α− 1

(α− 1)(1 + d)α

]
≤ cα

[
(α− 1)(1 + d)

(α− 1)(1 + d)α

]
= cα

1

(1 + d)α−1
,

where the first inequality holds for the integral test (Fact 1 in Appendix A). Thus, we have

P
(
Sj ≥ (t log t)

1
α−1

)
≤ cα

1

(1 + (t log t)
1

α−1 )(α−1)
≤ cα

1

t log t
.
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Denote by Ej the event
{
Sj < (t log t)

1
α−1

}
, and by E the intersection of Ej for j = 1, . . . , t. Note

that the probability of E is 1−O(1/ log t) by the union bound. We want to apply the multiplicative
form of Chernoff bound to the sum of Sj , conditioning on the event E. This is possible since the

variable Sj/
(

(t log t)
1

α−1 − 1
)

takes values in [0, 1].

Let us now compute the expectation of the sum of the random variables Sj , for j = 1, . . . , t
conditioned to E.

E

 t∑
j=1

Sj | E

 =
t∑

j=1

E[Sj | E] = t
cα

P(E)

(t log t)
1

α−1−1∑
d=0

d

(1 + d)α

≤ 2cαt

(t log t)
1

α−1−1∑
d=1

1

(1 + d)α−1

(a)

≤ 2cαt

[
1

α− 2

(
1

2α−2
− 1

(t log t)
α−2
α−1

)
+

1

2α−1

]
≤ 2cα

αt

(α− 2)2α−1
= Θ(t),

where (a) holds for the integral test (Fact 1 in Appendix A). Similarly, it holds that

E

 t∑
j=1

Sj | E

 =

t∑
j=1

E[Sj | E] = t
cα

P(Ej)

(t log t)
1

α−1−1∑
d=0

d

(1 + d)α

≥ cαt

(t log t)
1

α−1−1∑
d=1

1

2(1 + d)α−1
= Θ(t),

because the harmonic (α− 1)-series converges. Call µ = E
[∑t

j=1 Sj | E
]

= Θ(t). Here we use the

Chernoff bound (Lemma 30 in Appendix A) on the normalized sum of all jumps, to show that it
(the sum) is linear in t with probability 1− exp(−tΘ(1)), conditional on E.

P

 t∑
j=1

Sj ≥ 2µ | E

 = P

( ∑t
j=1 Sj

(t log t)
1

α−1 − 1
≥ 2

µ

(t log t)
1

α−1 − 1
| E

)
≤ exp

− Θ(t)

3
(

(t log t)
1

α−1 − 1
)


≤ exp

(
−Θ

(
t
α−2
α−1

(log t)
1

α−1

))
≤ exp

(
−Θ

(
t

α−2
2(α−1)

))
.

Then, define

F =


t∑

j=1

Sj = O(t)


F1 = {the Pareto walk finds the treasure within Θ(t) steps} and

F2 = {the Pareto flight finds the treasure within t steps/jumps},

where in F1 the term Θ(t) counts also the jumps of length zero. Observe that the event F ∩ F2

implies the event
F1 ∩ {the process finds the treasure within t jumps},
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because if F ∩ F2 takes place, then the treasure is found at least in one between all the t jump
destinations, at the overall amount of time spent to “travel” is Θ(t). Thus

P(F1) ≥ P(F1, the process finds the treasure within t jumps)

≥ P(F, F2)

≥ P(F, F2, E)

(a)
= P(E) [P(F | E) + P(F2 | E)− P(F ∪ F2 | E)]

(b)

≥
(

1−O
(

1

log t

))[
1− exp(−tΘ(1)) + p− 1

]
=

(
1−O

(
1

log t

))(
p− exp

(
−tΘ(1)

))
,

where in (a) we used the definition of conditional probability and the inclusion-exclusion principle,
and in (b) we used that P (E) = (1−O(1/ log t)), P (F | E) ≥ 1−exp(−tΘ(1)), and P (F ∪ F2 | E) ≤
1.

We then have the couple proposition that links the Pareto run to the Pareto walk. We recall it.

Proposition 4 (Coupling: Pareto run into Pareto walk). Suppose an agent a1 that moves according
to the Pareto run with parameter α > 1 finds the treasure within t steps with probability p > 0.
Then, another agent a2 that moves according to the Pareto walk with the same parameter α finds
the treasure within Ω(t) steps with probability p. Furthermore, if a1 never finds the treasure with
probability q, then a2 never finds the treasure with probability at least q.

Proof of Proposition 4. The proof is trivial, since the Pareto walk behaves exactly like a Pareto
run taking more time to perform a jump.

5 Simple Random Walk Model

In this section we aim at proving the following theorem on the search efficiency of simple random
walks. In sections 4 and 7, we will see that the performance of the Pareto walks for α ∈ [3,+∞)
is the same as that of the simple random walks. The reader may compare the following theorem
with Theorem 3 in Section 4 and Theorem 6 in Section 7.

Theorem 4 (Hitting time - simple simple random walks). Assume that the treasure is located in
some node of the infinite grid at distance ` > 0. Let k agents move performing mutually independent
simple simple random walks. If k = logO(1)(`), then the agents find the treasure within time Θ̃

(
`2
)
,

making a total work of Θ̃
(
`2
)
, w.h.p.20 Furthermore, the result is tight in the following sense: for

all k = Θ̃ (`ε) for any fixed constant ε > 0, then the agents need time at least Ω̃
(
`2
)

to find the

treasure, thus making a total work of Ω̃
(
`2+ε

)
, w.h.p.

5.1 Proof of Theorem 4: main tools and general scheme

In order to do this, in the next two subsections we present the analysis of two technical results,
which we state here. The first one is an “upper bound” on the hitting time of the treasure. Let T
be the node in which the treasure is located, with dT = `.

Proposition 5. For some t = Θ
(
`2 log `

)
, the probability one agent performing a simple simple

random walk visits the treasure within time t is Ω
(
1/(log3 `)

)
.

20For a formal comprehension of this statement, we refer to Remark 1 in the Preliminaries (Section 3).
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Subsection 5.2 is devoted to the proof of such proposition. On the other hand, Subsection 5.2.4
aims at proving the following, which is a “lower bound” on the hitting time of the treasure.

Proposition 6. Let k = Θ(`ε) for any fixed constant ε ≥ 0. Then, k agents need at least time
Ω
(
`2/(log2 `)

)
to find the treasure, w.h.p.

With these two propositions, we are ready to prove the main result of this section.

5.1.1 Wrap-up: proof of Theorem 4

Proof of Theorem 4. Proposition 5 implies that k = Θ(log4 `) agents find the treasure in time
O(`2 log `) with probability

1−
[
1−O

(
1

log3 `

)]Θ(log4 `)

= 1−O
(

1

`

)
.

Furthermore, if we increase the number of agents by multiplying by any polylogarithmic factor,
the same upper bound on the hitting time holds, w.h.p., while if we decrease it by dividing by any
polylogarithmic factor, the upper bound on the hitting time holds with non-negligible probability.

As for the almost-tightness result, let k be any function in Θ̃
(
`ε logO(1) `

)
for any fixed ε ≥ 0.

Then, for Proposition 6, k agents need at least time Ω̃
(
`2
)

to find the treasure, w.h.p. Indeed,

since the result holds for Θ
(
`ε+1

)
agents, it holds for k too by observing k = Θ̃

(
`ε logO(1) `

)
≤

Θ
(
`ε+1

)
.

5.2 Analysis of the simple random walk model: proof of Proposition 5

Let T be the node in which the treasure is located, with dT = `. This subsection aims at proving
the following result.

Proposition 5. For some t = Θ
(
`2 log `

)
, the probability one agent performing a simple simple

random walk visits the treasure within time t is Ω
(
1/(log3 `)

)
.

We look at a single agent moving on the grid Z2 performing a simple (symmetric) random walk
which starts at the origin o = (0, 0). We are going to introduce some definitions and notations we
use throughout the analysis. For any node u = (ux, uy) of the grid, define the random variable

Zu(t) = number of agent’s visits at node u within t steps.

In order to bound the probability that the node u has been visited at least once at time t, namely
P (Zu(t) > 0), we define

pu,i = P (the agent is in node u at step i) .

By the definitions above, we easily get that

E [Zu(t)] =

t∑
i=0

pu,i .

Notice that at a generic round t, the simple random walk can visit only nodes whose distance from
the origin has the same parity of t. Thus, given u ∈ Z2, we only compare the probability to be on
u in a given round t with the probability to be in any v in the set

Pu = {v ∈ Z2 : |dv − du| is even}.

As for the main result of the theorem, we present a road-map of the analysis to keep track of main
idea behind the lemmas and the proofs that follow, while the almost-tightness results will be later
discussed and shown.
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5.2.1 Road-map of the analysis

The scheme of the proof follows the same structure and main ideas of that in Subsection 4.2. We
omit such an informal description and go directly with the main steps of the proof. Let T be the
node in which the treasure is located and PT the set of nodes that have even distance from T . We
divide PT in three different regions, namely, for any δ ≥ 0 and any t = Ω

(
`2
)
,

A1 = Q(`) ∩ PT = {(x, y) ∈ PT : max(|x| , |y|) ≤ `}

A2 = {v ∈ PT : |v|1 ≤ 4
√

2(1 + δ)t log t}\A1;

A3 = {v ∈ PT : |v|1 > 4
√

2(1 + δ)t log t}.

Intuitively, A1 contains all nodes of PT which are “close” to the origin than the treasure; A3

contains all nodes of PT which are distant from the origin at least a polylogarithmic factor more
than the treasure; A2 contains all nodes of PT in the between.

The key steps of the analysis are the following.

1. We show that the two dimensional simple random walk can be decomposed into two inde-
pendent one dimensional simple random walks.

2. Using Step 1, for any u = (x, y), if |t− du| is even, we argue that pu,t ≥ pv,t for all v ∈ Z2

outside the square Q(du) = {(x, y) ∈ Z2 : max(|x| , |y|) ≤ du} (see Lemma 14 and Figure 6
for details).

3. From Step 2, E [Zu(t)] ≥ E [Zv(t)] for all v ∈ Pu but at most mu = |Q(du)| (see Corollary 3
for details). Thus, we get that the average number of visits in A2 is at most its cardinality
times E [ZT (t)], thus bounded by E [ZT (t)] · 32(1 + δ)t log t.

4. Using Step 1, we show that E [Zo(t)] = bt = Θ(log t) (see Lemma 15 for details). By con-
ditioning on the first arrival time at any point u, we get that E [Zu(t)] ≤ bt for all u (see
Lemma 16 for details). Then, from Step 3, the upper bound on the average number of visits
in A1 is mubt.

5. Using Chernoff-Hoeffding bounds and Step 1, for any fixed δ ≥ 0 and any t ≥ 4, we can show
(see Lemma 17 for details) the following upper bound on the average number of visits in A3:∑

v∈Z2: dv ≥ 4
√

2(1+δ)t log t

E [Zv(t)] < 1.

6. Combining steps 3 to 5, it holds that, for any t = Ω
(
`2
)
,

mT · bt + E [ZT (t)] · (32(1 + δ)t log t) + 1 ≥ t,

(see Lemma 18 for details). Then, for any t = Ω
(
`2
)
, we get

E [ZT (t)] ≥ t−mT bt − 1

(32(1 + δ)t log t)−mu
.

7. From Step 4 and simple calculations, we show (see Lemma 16 for details) that

E [Zu(t)] ≥ P (Zu(t) > 0) =
E [Zu(t)]

E [Zu(t) | Zu(t) > 0]
≥ E [Zu(t)]

bt
.
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8. Combining steps 6 and 7, we have (see Corollary 4 for details) that, for any t = Ω
(
`2
)
,

P (ZT (t) > 0) ≥
⌊
t
2

⌋
− 4`2 · bt − 1

(32(1 + δ)t log t) · bt
.

By letting t to be some function in Θ
(
`2 log `

)
, we have Proposition 5.

5.2.2 Full analysis

As a preliminary, we show (Step 1 of the scheme) a natural decomposition of the two-dimensional
simple random walk into two mutually independent one-dimensional simple random walks, which
can be found in [Nor97]). Let Rw(t) be the random variable denoting the coordinates of the node
the two-dimensional simple random walk visits at time t. The two new “axes” are the two bisectors
of the quadrants of the grid Z2, namely r and s, as in Figure 5. As a convention, we fix the part

x

y

r

s

Rw(t)

Br(t)

Bs(t)

Figure 5: Decomposition of a two-dimensional simple random walk into two i.i.d. one-dimensional
simple random walks over the bisectors of the quadrants.

of r in the first quadrant and that of s in the fourth quadrant to be the positive side of r and s.
Over these two strict lines, consider a sequence of nodes in all directions such that two subsequent
nodes have Euclidean distance

√
2/2 between them, starting from the origin, in the positive and

in the negative directions. Let Br(t) and Bs(t) be two independent simple random walks on r and
s, respectively, whose steps are over the nodes we just inserted. More precisely, let {Srj }j∈N be a

sequence of i.i.d. random variables with values in {−
√

2/2,+
√

2/2} denoting the step increment of
Br(t) at round j, and {Ssj}j∈N the same for Bs(t), with Srj and Ssi mutually independent for each

i, j ≥ 1. Then Br(t) =
∑t

j=1 S
r
j and Bs(t) =

∑t
j=1 S

s
j . We have that

Rw(t) =
(

cos
π

4
(Br(t) +Bs(t)) , sin

π

4
(Br(t)−Bs(t))

)
=

√2

2

t∑
j=1

(Srj + Ssj ),

√
2

2

t∑
j=1

(Srj − Ssj )

 .

Note that in a generic round t− 1, we have that the probability the increment is (1, 0) is

P (Rw(t)−Rw(t− 1) = (1, 0)) = P
(
Srt + Sst =

√
2, Srt − Sst = 0

)
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= P
(
Srt =

√
2− Sst , Srt = Sst

)
= P

(
Srt =

√
2

2
, Sst =

√
2

2

)
=

1

4

for independence between Srt and Sst . The same holds for (−1, 0), (0, 1), and (0,−1). Thus, the two-
dimensional simple random walk can be seen as a combination of two independent and identically
distributed one-dimensional simple random walks.

We are going to present a result (Step 2 in the scheme) which is very similar to Lemma 32 in
Appendix C, and describes a “monotonicity” of the point-wise distribution at a generic time t ≥ 0.
Indeed, according to the previous notation, for any node u = (ux, uy), we let du = |ux|+ |uy| and
consider the square

Q(du) = {(x, y) ∈ Z2 : max(|x| , |y|) ≤ du}

(see Figure 6 in the proof of Lemma 14). Then, the following geometric property holds.

Lemma 14. Let u ∈ Z2 be an arbitrary node. Then, for each node v /∈ Q(du) and each step t such
that t− du is even, it holds that pu,t ≥ pv,t.

The difference here is that the simple random walk has probability equal to zero to stay still at
one round, i.e. it always moves one step towards one of its neighbors, while the request we make for
Lemma 32 in Appendix C is that the mobility model has a non-increasing step-length distribution;
thus, we have to look for a different proof.

u

D(u)

Q(du)

Figure 6: The set Q(du) and the set D(u).

Proof of Lemma 14. For any given distance d ≥ 0, consider the rhombus R∗d(o) = {(x, y) ∈ Z2 :
|x| + |y| ≤ d}. For any point (x, y) in Z2, it is defined a square T (x, y) = {(x′, y′) ∈ Z2 : 0 ≤
max(|x′| , |y′|) ≤ max(|x|)}. Then, for u ∈ Z2, define

D(u) = R∗du(o) ∪ T (u)
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v2u

v1

D(u)

u

Figure 7: The “area” in which we take u, and the choices v1, v2.

u w1

w2

w3

w4 v

Figure 8: One “path” example.

(see Figure 6 for details). We will show that pu,t ≥ pv,t for each v /∈ D(u) trough an induction
argument on du, which will implies the thesis of the Lemma.

Let v be any other node on the grid, and let dv = |v|1. Then, if |dv − du| is odd, the thesis
is trivial. For |dv − du| even, we show a more complicate argument: without loss of generality,
suppose u is in the first quadrant and not below the main bisector, namely in the set {(x, y) ∈ Z2 :
y ≥ 0, x ≥ y} (Figure 7).

According to the decomposition we have showed in Figure 5, we have that

pu,t = P

(√
2

2
(Br(t) +Bs(t)) = ux,

√
2

2
(Br(t)−Bs(t)) = uy

)

= P
(
Br(t) =

ux + uy√
2

)
· P
(
Bs(t) =

ux − uy√
2

)
.

We first show the thesis taking v in the set {v1 = (ux−1, uy+1), v2 = (ux+2, uy)} (as long as they
still lie in the highlighted zone in Figure 7). If t = du, the thesis is trivial for v1 and v2. Indeed,
v2 cannot be reached in t steps since dv2 > t, while there are more possible paths to get to u in
du steps than to v1 in du steps. So, we assume t ≥ du + 2. Keeping in mind that uy ≥ ux for the
choice of u, we have that

pv1,t = P
(
Br(t) =

ux + uy√
2

)
· P
(
Bs(t) =

ux − uy − 2√
2

)
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u

D(u)
w

v

u′

Figure 9: Symmetrical argument.

(a)
=

(
t

t+ux+uy
2

)
1

2t
·
(

t
t+uy−ux

2 + 1

)
1

2t

=

(
t

t+ux+uy
2

)(
t

t+uy−ux
2 + 1

)
1

22t

(b)

≤
(

t
t+ux+uy

2

)(
t

t+uy−ux
2

)
1

22t

= P
(
Br(t) =

ux + uy√
2

)
· P
(
Bs(t) =

ux − uy√
2

)
= pu,t,

where (a) is true because |ux − uy − 2| = uy − ux + 2, and (b) is true for Fact 2 in Appendix A.
Then, if v = v1 we have that pu,t ≥ pv,t. As for v2, we have two cases. If uy ≥ ux + 2, it holds that

pv2,t = P
(
Br(t) =

ux + uy + 2√
2

)
· P
(
Bs(t) =

ux − uy + 2√
2

)
(a)
=

(
t

t+ux+uy
2 + 1

)
1

2t
·
(

t
t+uy−ux

2 − 1

)
1

2t

=

(
t

t+ux+uy
2 + 1

)(
t

t+uy−ux
2 − 1

)
1

22t

(b)

≤
(

t
t+ux+uy

2

)(
t

t+uy−ux
2

)
1

22t

= P
(
Br(t) =

ux + uy√
2

)
· P
(
Bs(t) =

ux − uy√
2

)
= pu,t,

where (a) is true because |ux − uy + 2| = uy − ux − 2, and (b) is true for Fact 2 in Appendix A.
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Else, if uy < ux + 2 (which basically means uy ≤ ux since we have to keep the parity), we have

pv2,t = P
(
Br(t) =

ux + uy + 2√
2

)
· P
(
Bs(t) =

ux − uy + 2√
2

)
(a)
=

(
t

t+ux+uy
2 + 1

)
1

2t
·
(

t
t+ux−uy

2 + 1

)
1

2t

=

(
t

t+ux+uy
2 + 1

)(
t

t+ux−uy
2 + 1

)
1

22t

(b)

≤
(

t
t+ux+uy

2

)(
t

t+uy−ux
2

)
1

22t

= P
(
Br(t) =

ux + uy√
2

)
· P
(
Bs(t) =

ux − uy√
2

)
= pu,t,

where (a) is true because |ux − uy + 2| = ux − uy + 2, and (b) is true for Fact 2 in Appendix A.
We thus have that pu,t ≥ pv2,t. For each other v in the highlighted area in Figure 7, there exists a
sequence of nodes u = w0, w1, . . . , wk = v, all lying in the same area above, such that wi belongs
to the set {((wi−1)x − 1, (wi−1)y + 1) , ((wi−1)x, (wi−1)y + 2)} (see Figure 8).

Then,
pu,t = pw0,t ≥ pw1,t ≥ · · · ≥ pwk,t = pv,t.

For any other v /∈ D(u), we have a symmetrical argument shown in Figure 9 that implies the
thesis.

Recalling that Pu = {v ∈ Z2 : |dv − du| is even}, the following corollary holds (which is Step 3
in the scheme).

Corollary 3. For all v ∈ Pu but at most 4d2
u, i.e. those who lie in Q(du), it holds that

E [Zu(t)] ≥ E [Zv(t)]

for any t ≥ 0.

Proof of Corollary 3. The proof is a simple application of Lemma 14.

Next lemma gives the average number of agent’s returns to the origin (Step 4 in the scheme).

Lemma 15. The average number of visits to the origin until time t > 0 is

E [Zo(t)] = bt = Θ(log t).

Proof of Lemma 15. Consider the decomposition we showed with Figure 5. Then, the simple ran-
dom walk is at the origin at time i if and only if both Br(i) = 0 and Bs(i) = 0. In other words,

po,i = P (Br(i) = 0) · P (Bs(i) = 0)

for independence. First, notice that if i is odd, then Br(i) 6= 0. We then consider only even timings,
i.e. i = 2k. By Stirling’s formula

P (Br(2k) = 0) =

(
2k

k

)
1

22k
=

(2k)!

(k!)2

1

22k
∼
√

4πk(2k/e)2k

2πk(k/e)2k

1

22k
=

1√
πk
.
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Thus, there exists a large enough k̄ > 0, such that

1

2
≤ P (Br(2k) = 0) ·

√
πk ≤ 2

for any k > k̄, and the same holds for Bs(2k) for symmetry. Then we have that

b t2c∑
k=0

po,2k =

b t2c∑
k=0

[P (Br(2k) = 0)]2 ≤ k̄ +

b t2c∑
k=k̄+1

4

πk
= O(log t),

and, at the same time

b t2c∑
k=0

po,2k =

b t2c∑
k=0

[P (Br(2k) = 0)]2 ≥
b t2c∑
k=k̄+1

1

4πk
= Ω(log t),

where the latter inequalities holds for the integral test, and because k̄ is a constant. We thus have
that E [Zo(t)] = Θ(log t).

We use this result to give a bound on the average number of visits the simple random walk makes
to nodes that are in A1. Indeed, we will exploit the first item of next result. Call bt = E [Zo(t)].
Then, we have the following (steps 4 and 7 in the scheme).

Lemma 16. Let u ∈ Z2 be any node. It holds that

(i) E [Zu(t)] ≤ bt

(ii) 1 ≤ E [Zu(t) | Zu(t) > 0] ≤ bt;

(iii) E [Zu(t)] /bt ≤ P (Zu(t) > 0) ≤ E [Zu(t)].

Proof of Lemma 16. Item (i) directly comes from Item (ii), since E [Zu(t)] ≤ E [Zu(t) | Zu(t) > 0].
Consider Item (ii), and let τ be the random variable denoting the first time the simple random
walk visits u. Observe that, conditional on Zu(t) > 0, τ ≤ t with probability 1. Then we have

E [Zu(t) | Zu(t) > 0] = E [Zo(t− τ) | τ ≤ t] ≤ E [Zo(t) | τ ≤ t] = E [Zo(t) | τ ≤ t] ,

where last inequality holds for independence. At the same time, E [Zu(t) | Zu(t) > 0] ≥ 1 due to
the conditional event. As for the Item (iii), let us explicitly express the term E [Zu(t) | Zu(t) > 0] ·
P (Zu(t) > 0). This is equal to

t∑
i=1

iP (Zu(t) = i | Zu(t) > 0) · P (Zu(t) > 0)

=

t∑
i=1

i
P (Zu(t) = i, Zu(t) > 0)

P (Zu(t) > 0)
P (Zu(t) > 0)

=

t∑
i=1

iP (Zu(t) = i, Zu(t) > 0)

=
t∑
i=1

iP (Zu(t) = i)

= E [Zu(t)] .
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Then,

E [Zu(t)] ≥ P (Zu(t) > 0) =
E [Zu(t)]

E [Zu(t) | Zu(t) > 0]
≥ E [Zu(t) | E]

bt
,

since E [Zu(t) | Zu(t) > 0] ≤ bt for the first item.

Now we are going to give a bound on the average number of visits to nodes in A3 the simple
random walk does (Step 5 in the scheme).

Lemma 17. If t ≥ 4, for any constant δ ≥ 0 it holds that∑
v∈Z2: dv ≥ 4

√
2(1+δ)t log t

E [Zv(t)] < 1.

Proof of Lemma 17. Once again, we exploit the decomposition shown in Figure 5. The one-
dimensional simple random walk Br(i) is such that E [Br(i)] = 0 and Var (Br(i)) = i/

√
2. Further-

more, each step Srj , for j ≤ i, has mean equal to zero and is less than 1/
√

2. Let i ≤ t and δ ≥ 0
an arbitrary constant (it will be useful for a later lemma): we use a particular form of Chernoff
bound (Lemma 31 in Appendix A) to get that

P
(
Br(i) ≥ 2

√
(1 + δ)t log t

)
≤ exp

4(1 + δ)t log t

i+ 2
√
t log t

3
√

2

 ≤ 1

t3+δ
.

For symmetry, we get also that P
(
Br(i) ≤ −2

√
(1 + δ)t log t

)
≤ 1

t3+δ
, thus

P
(
Br(i) ≥ 2

√
(1 + δ)t log t

)
≤ 2

t3+δ
.

The same result holds analogously for Bs(i), for each i ≤ t. Since |Rw(i)|1 from the origin is at
most

√
2 · (Br(i) +Bs(i)) we have that with probability at least 1− 4/t3+δ this distance is bounded

by 4
√

2(1 + δ)t log t. Then, the probability that in any of the first t rounds, the walk has ever
gone further than distance 4

√
2(1 + δ)t log t from the origin is 4/t2+δ. Denote by Ft the event

∩ti=0{|Rw(i)|1 ≤ 4
√

2(1 + δ)t log t}. It follows that

∑
v∈Z2: dv ≥ 4

√
2(1+δ)t log t

E [Zv(t)] = E

 ∑
v∈Z2: dv ≥ 4

√
2(1+δ)t log t

Zv(t)


= E

 ∑
v∈Z2: dv ≥ 4

√
2(1+δ)t log t

Zv(t)
∣∣ Ft
P (Ft) + E

 ∑
v∈Z2: dv ≥ 4

√
2(1+δ)t log t

Zv(t)
∣∣ FCt

P
(
FCt
)

≤ 0 + t ·
(

4

t2+δ

)
=

(
4

t1+δ

)
,

and we have the thesis for t ≥ 4.

We are finally ready to give a lower bound on the expected number of visits to the treasure
(Step 6 in the scheme).

Lemma 18. Let T be the node in which the treasure is located. Then, for any t = Ω
(
`2
)

and any
δ ≥ 0, it holds that

4`2 · bt + E [ZT (t)] · (32(1 + δ)t log t) + 1 ≥
⌊
t

2

⌋
.
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Proof of Lemma 18. At a generic round t, the simple random walk can only visit nodes whose
distances from the origin have the same parity of t. Then, we have∑

v∈Pu

E [Zv(t)] ≥
⌊
t

2

⌋
.

Lemma 15 and Lemma 16 give us that∑
v∈A1

E [Zv(t)] ≤ 4d2
u · bt.

Lemma 14 and Corollary 3 imply that∑
v∈A2

E [Zv(t)] ≤ E [ZT (t)] · (32(1 + δ)t log t) ,

since |A2| ≤ 32(1 + δ)t log t, while Lemma 17 tells us that∑
v∈A3

E [Zv(t)] < 1

for t ≥ 4. Then, we get the thesis for t large enough (Ω
(
`2
)

is sufficient).

5.2.3 Wrap-up: proof of Proposition 5

We are ready to compute a lower bound on the probability to hit the treasure (Step 8 in the
scheme).

Corollary 4. Let T be the node in which the treasure is located. Then, for t = Θ(`2 log `) , it holds
that

P (ZT (t) > 0) ≥
⌊
t
2

⌋
− 4`2 · bt − 1

(32(1 + δ)t log t) · bt
.

Proof of Corollary 4. Lemma 15 tells us that

P (ZT (t) > 0) ≥ E [ZT (t)]

bt
.

Then, Lemma 18 gives us that

P (ZT (t) > 0) ≥
⌊
t
2

⌋
− 4`2 · bt − 1

(32(1 + δ)t log t) · bt
.

Then, the proof of Proposition 5 comes from Corollary 4, keeping in mind that bt = Θ(log t)
due to Lemma 15, setting t to be some function in Θ(`2 log `), and δ = 1, we get the thesis.

5.2.4 Analysis of the simple random walk model: proof of Proposition 6

Here we prove the following result.

Proposition 6. Let k = Θ(`ε) for any fixed constant ε ≥ 0. Then, k agents need at least time
Ω
(
`2/(log2 `)

)
to find the treasure, w.h.p.

Proof of Proposition 6. let δ = ε. Lemma 17 in Subsection 5.2, tells us that a single agent perform-
ing a simple random walk within time t = Θ

(
`2/ log2 `

)
never gets at distance 4

√
2(1 + ε)t log t =

O
(
`2/ log `

)
with probability

1−O
(
1/t1+ε

)
= 1−O(1/`1+ε).

Then, Θ(`ε) agents have probability at most O(1/`) to go further than distance O
(
`2/ log `

)
within

time t.
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6 Ballistic Walk Model

In this section we show the search-efficiency of the ballistic walks. In Section 7, we will see that
the performance of the Pareto walks for α ∈ (1, 2] is the same as that of the ballistic walks. The
reader may compare the following theorem with Theorem 7 in Section 7.

Theorem 5 (Hitting time - ballistic walks). Assume that the treasure is located in some node of
the infinite grid at distance ` > 0. Let k agents move performing mutually independent ballistic
walks. If k = Θ̃ (`), then k agents find the treasure in time Θ(`), making a total work of Θ̃

(
`2
)
,

w.h.p.21 Furthermore, the result is almost-tight in a two-fold sense:

(i) if k = Θ̃
(
`1−ε

)
for any arbitrary constant ε ∈ (0, 1], then the agents never find the treasure,

thus making an infinite work, w.h.p.;

(ii) if k = Θ̃
(
`1+ε

)
for any arbitrary constant ε > 0, then the agents need time Θ(`) to find the

treasure, making a total work of k = Θ̃
(
`2+ε

)
, w.h.p.

This theorem is maybe the most intuitive and easiest to prove. We start with one technical
lemma.

Lemma 19. Suppose we have one agent performing the ballistic walk which starts at the origin.
The probability it hits the treasure is Θ(1/`).

Proof of Lemma 19. At time t = 0 the agent chooses any direction according to the procedure in
Definition 2. For Lemma 1 in the Preliminaries (Section 3), the probability the agent hits any node
at distance ` is Θ(1/`).

The proof of the theorem follows.

Proof of Theorem 5. One agent who starts at the origin reaches the treasure in time Θ(`) with
probability Θ(1/`), due to Lemma 19. Thus, we need Θ (` log `) agents to reach the treasure in
time Θ(`), letting the work to be Θ

(
`2 log `

)
, w.h.p. Furthermore, if we increase the number of

agents by multiplying by any polylogarithmic factor, the same upper bound on the hitting time
holds, w.h.p., while if we decrease it by dividing by any polylogarithmic factor, the upper bound
on the hitting time holds with non-negligible probability.

At the same time, each agent needs time Θ(`) to reach distance Θ(`), almost surely. Thus,
Θ̃ (`) agents find the treasure in time Ω (`), making a total work of Ω̃

(
`2
)
, w.h.p.

As for the almost-tightness results, if k is any function in Θ̃
(
`1−ε

)
for any ε ∈ (0, 1], then k

agents eventually find the treasure with probability Õ (1/`ε), letting the work to be infinite w.h.p.
In, instead, if k is any function in Θ̃

(
`1+ε

)
for any ε ∈ (0, 1], the agents will find the treasure

in time Θ(`), letting the work to be Θ̃
(
`2+ε

)
, w.h.p.

7 Pareto Walk Model: Equivalences

In this section we show how the search-efficiency and the performance of the Pareto walk model
(Definition 3 in Section 3), for cases in which α ∈ (3,+∞) and α ∈ (1, 2], is essentially equivalent
to those of, respectively, the simple random walk model and the ballistic walk model.

The first result we present is on the “diffusive regime”, namely the case in which α ∈ (3,+∞))
(the case α = 3 has already been discussed in Section 4). The reader may compare the following
theorem with that for the simple random walk model (Theorem 4 in Section 5).

21For a formal comprehension of this statement, we refer to Remark 1 in the Preliminaries (Section 3).
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Theorem 6 (Diffusive regime). Assume that the treasure is located in some node of the infinite
grid at distance ` > 0. Let k agents move performing mutually independent Pareto walks with
α > 3. If k = logO(1)(`), then k agents find the treasure in time Θ̃

(
`2
)
, making a total work of

Θ̃
(
`2
)
, w.h.p.22 Furthermore, the result is almost-tight in the following sense:

(i) if k = Θ̃ (`ε) for any fixed constant ε ∈ [0, 3−α), then the agents need time Ω̃
(
`2
)

to find the

treasure and total work Ω̃
(
`2+ε

)
, w.h.p.;

(ii) if k = Θ̃
(
`α−3+min( 3

2
ε, 1

2
+ε)
)

for any ε ≥ 0, then k agents need time at least Ω
(
`2−ε

)
to find

the treasure, w.h.p., making a total work of Ω̃
(
`2+(α−3)+min( 1

2
ε, 1

2
)
)

.

This first result is proved in Section 8. As for the “ballistic regime”, the reader may compare
the following theorem with that for the ballistic walk model (Theorem 5 in Section 6).

Theorem 7 (Ballistic regime). Assume that the treasure is located in some node of the infinite grid
at distance ` > 0. Let k agents move performing mutually independent Pareto walks with α ∈ (1, 2].
If k = Θ̃ (`), then k agents find the treasure in time Θ(`), making a total work of Θ̃

(
`2
)
, w.h.p. 23

Furthermore, the result is almost-tight in a two-fold sense:

(i) for all k = Θ̃
(
`1−ε

)
for any arbitrary constant ε ∈ (0, 1], then the agents never find the

treasure w.h.p., thus making an infinite work, w.h.p.;

(ii) for all k = Θ̃
(
`1+ε

)
for any arbitrary constant ε > 0, then the agents need time Θ(`) to find

the treasure and total work k = Θ̃
(
`2+ε

)
, w.h.p.

7.1 Main tools

Let Pt be the two-dimensional random variable representing the coordinates of the nodes a Pareto
walk visits at time t. For the sake of the analysis, we will consider the Pareto flight and Pareto run
processes we defined in Section 4 (definitions 7 and 8, respectively), whose definitions we recall.

Definition 7 (α-Pareto flight). Let α > 1 be a real constant. At each round, the agent chooses
a distance d with distribution cα

(1+d)α , where cα is a normalization constant, and chooses u.a.r.
one node u among the 4d nodes of the grid at distance d from its current position. Then, in one
step/unit time, the agent reaches u. Once reached u, the agent repeats the procedure above, and
so on. If the chosen distance d is equal to zero, the agent keeps still for one time unit and then it
repeats the procedure.

Definition 8 (α-Pareto run). Let α > 1 be a real constant. At each round, the agent chooses a
distance d with distribution cα

(1+d)α , where cα is a normalization constant, and chooses a direction
according to the procedure in Definition 2. Then, it walks along the corresponding direction-
approximating path (visiting all the path nodes) in one step/unit time until it reaches the end-point
v of the path at distance d. Once v is reached, the agent repeats all the procedure, and so on. If
the chosen distance d is equal to zero, the agent keeps still for one time unit and then it repeats
the procedure.

Let Pf
t be the two-dimensional random variable representing the coordinates of the nodes this

process visits after the t-th jump. Let also Pr
t be the two-dimensional random variable representing

the coordinates of this process after the t-th jump.

22For a formal comprehension of this statement, we refer to Remark 1 in the Preliminaries (Section 3).
23For a formal comprehension of this statement, we refer to Remark 1 in the Preliminaries (Section 3).
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u

Q(du)
|uy|

|ux|

|uy|+ |ux|

Figure 10: The set Q(du).

In this subsection, we show some preliminaries necessaries to the analysis of the Pareto walk
model in the cases α ∈ (1, 2] and α ∈ (3,+∞). We will make use of Lemma 1 in the Preliminaries
(Section 3), which we state again.

Lemma 1. Let u be any node of Z2, d ≥ 1, and v ∈ Rd(u). Suppose an agent is on u and chooses
a direction according to the procedure in Definition 2. Then, there is probability 1/(4d) that the
corresponding direction-approximating path crosses v.

Starting from this, we can prove the following.

Lemma 20. Consider an agent performing a Pareto walk for any parameter α > 1 which is located
at distance d ≥ 0 from the some node v. Then, the probability that it visits v during the next jump
is Θ(1/dα).

Proof of Lemma 20. Then, for Lemma 1, the probability to choose a direction leading to T is
Θ(1/d). Independently, the probability to choose to walk for a distance at least d across the chosen
direction is Θ(1/dα−1) by Equation (3). Thus, the probability to eventually reach v is Θ(1/dα).

Furthermore, the following “monotonicity” property holds.

Lemma 21. Consider an agent performing a Pareto flight for any parameter α > 1 starting at the
origin. For any w ∈ Z2, let pw,t be the probability that, at the end of the t-th jump, the agent is in
w. Let u ∈ Z2 be an arbitrary node. Then, for each node v /∈ Q(du) and each step t, it holds that
pu,t ≥ pv,t, where

Q(du) = {(x, y) ∈ Z2 : max(|x| , |y|) ≤ du}.

Proof of Lemma 21. The Pareto flight mobility model fulfill the hypothesis of Lemma 32 in Ap-
pendix C. The latter gives the desired result.

Figure 10 gives an idea of the geometrical shape of this “monotonicity” property.
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8 Pareto Walk Model: Case α ∈ (3,+∞)

This section is devoted to the proof of Theorem 6, which we state again.

Theorem 6 (Diffusive regime). Assume that the treasure is located in some node of the infinite
grid at distance ` > 0. Let k agents move performing mutually independent Pareto walks with
α > 3. If k = logO(1)(`), then k agents find the treasure in time Θ̃

(
`2
)
, making a total work of

Θ̃
(
`2
)
, w.h.p.24 Furthermore, the result is almost-tight in the following sense:

(i) if k = Θ̃ (`ε) for any fixed constant ε ∈ [0, 3−α), then the agents need time Ω̃
(
`2
)

to find the

treasure and total work Ω̃
(
`2+ε

)
, w.h.p.;

(ii) if k = Θ̃
(
`α−3+min( 3

2
ε, 1

2
+ε)
)

for any ε ≥ 0, then k agents need time at least Ω
(
`2−ε

)
to find

the treasure, w.h.p., making a total work of Ω̃
(
`2+(α−3)+min( 1

2
ε, 1

2
)
)

.

We invite the reader to compare the above theorem with Theorem 4, in order to see that the
performances of the Pareto walks with α ∈ (3,+∞) are the same as that of the simple random
walks. Furthermore, from the central limit theorem (Theorem 8 in Appendix A), it is clear that
the point-wise distribution after long time is roughly the same between the two models.

8.1 Main tools and general scheme

In order to prove the above theorem, we need three results which we are going to prove in the
following subsections. Let T be the node in which the treasure is located, with dT = `. The first
result is an upper bound on the hitting time of the treasure.

Proposition 7. For some t = Θ
(
`2 log2 `

)
, the probability an agent performing the Pareto walk

with α > 3 visits the treasure within time t is Ω
(
1/(log4 `)

)
.

Subsection 8.2 is devoted to the proof of this result. Furthermore we need the two following
lower bounds, which will be proved in Subsection 8.3.

Proposition 8. Let k be any integer such that k = O (`ε) for some constant ε ∈ [0, α − 3).
Then, k agents performing the Pareto walk with parameter α > 3 find the treasure in time at least
Ω(`2/(log `)), w.h.p.

Proposition 9. Consider a single agent performing a Pareto walk for α > 3. Let ε ≥ 0 be any
arbitrary small constant, and let t = Θ(`2−ε). Then, the probability to find the treasure within time
t is O(1/`α−3+min(2ε,1+ε)).

8.1.1 Wrap-up: proof of Theorem 6

We are now ready to prove our main result.

Proof of Theorem 6. First, notice that if t is some Θ
(
`2 log2 `

)
, then, by Proposition 7, the proba-

bility an agent performing a Pareto walk with α > 3 visits the treasure at least once within time t
is Ω

(
1/(log4 `)

)
. Then, it is clear that Θ

(
log5 `

)
agents performing Pareto walks find the treasure

within time t, w.h.p., making a total work O
(
`2 log6 `

)
. Furthermore, if we increase the number

of agents by multiplying by any polylogarithmic factor, the same upper bound on the hitting time
holds, w.h.p., while if we decrease it by dividing by any polylogarithmic factor, the upper bound
on the hitting time holds with non-negligible probability.

24For a formal comprehension of this statement, we refer to Remark 1 in the Preliminaries (Section 3).
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At the same time, let k = Θ̃ (`ε) for any ε ∈ [0, α − 3). Proposition 8 tells as that the time k
agents need to find the treasure is at least Ω

(
`2/ log `

)
, w.h.p., thus making a total work equal to

Ω̃
(
`2+ε

)
(this includes also each k = logO(1)(`)), giving us both the lower bound of the main claim

and Step i.

On the other hand, let k = Θ̃
(
`α−3+min( 3

2
ε, 1

2
+ε)
)

for any ε ≥ 0. For Proposition 9, we have

that the probability k agents find the treasure within time t = Θ
(
`2−ε

)
is, by the union bound,

Õ
(

1/`min( 1
2
ε, 1

2
)
)

. Thus, w.h.p., the agents find the treasure in time at least Ω
(
`2−ε

)
, and the total

work is Ω̃
(
`2+(α−3)+min( 1

2
ε, 1

2
)
)

, giving us Step ii.

8.2 Analysis of the case α ∈ (3,+∞): proof of Proposition 7

This sections aims at proving the following result.

Proposition 7. For some t = Θ
(
`2 log2 `

)
, the probability an agent performing the Pareto walk

with α > 3 visits the treasure within time t is Ω
(
1/(log4 `)

)
.

The analysis we-re going through is very similar to that made in Subsection 4.2. In order to
show the result, we have to analyze the Pareto flight for α > 3, and then link the results for the
Pareto flight to the Pareto walk through a coupling result.

We look at a single agent moving on the grid Z2 performing a Pareto flight with α > 3 which
starts at the origin o = (0, 0). We are going to introduce some definitions and notations we use
throughout the analysis. For any node u = (ux, uy) of the grid, define the random variable

Zu(t) = number of agent’s visits at node u within t steps.

In order to bound the probability that the node u has been visited at least once at time t, namely
P (Zu(t) > 0), we define

pu,i = P (the agent is in node u at step i) .

By the definitions above, we easily get that

E [Zu(t)] =
t∑
i=0

pu,i .

8.2.1 Road-map of the analysis

The scheme of the proof follows the same structure and main ideas of that in Subsection 4.2. We
omit such an informal description and go directly with the main steps of the proof. Let T be the
node in which the treasure is located. We divide Z2 in three different regions, namely, for any δ ≥ 0
and any t = Ω

(
`2
)
,

A1 = Q(`) = {(x, y) : max(|x| , |y|) ≤ `};

A2 = {v ∈ Z2 : |v|1 ≤ 4
√

2(1 + δ)t · log t}\A1;

A3 = {v ∈ Z2 : |v|1 > 4
√

2(1 + δ)t · log t}.

Intuitively, A1 contains all the nodes which are “close” to the origin than the treasure; A3 contains
all the nodes which are distant from the origin at least a polylogarithmic factor more than the
treasure; A2 contains all the nodes in the between.

The key steps of the analysis are the following.
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1. We first show that E [Zo(t)] = ct = O(log2 t) (see Lemma 22 for details). Then we show
E [Zu(t)] ≤ ct for all u (see Lemma 23 for details), which implies that the average number of
visits in A1 until time t is at most ct · |Q(`)| .

2. From Lemma 21, E [Zu(t)] ≥ E [Zv(t)] for all but mu = |Q(du)| many v (see Corollary 5),
where Q(du) = {(x, y) : max(|x| , |y|) ≤ du}. This means that the average number of visits in
A2 is at most E [Zu(t)] ·

(
32(1 + δ)t log2 t

)
.

3. Using Chernoff-Hoeffding bounds, for any fixed δ > 0, we can show∑
v∈Z2 : 4

√
2(1+δ)t log t

E [Zv(t)] = O
(
t1−

α−3
2

)
.

for any t > 0 (see Lemma 24 for details), thus bounding the average number of visits to A3.

4. If T is the node where the treasure is located, from steps 1 to 3 we get that

mT · ct + E [ZT (t)] ·
(
32(1 + δ)t log2 t

)
+O

(
t1−

α−3
2

)
≥ t,

for any t = Ω
(
`2
)

(see Lemma 25 for details), which implies

E [ZT (t)] ≥
t−mT ct −O

(
t1−

α−3
2

)
(
32(1 + δ)t log2 t

)
−mT

,

for any t = Ω
(
`2
)
.

5. Using the result in Step 1, we show that (see Step 5 for details)

E [Zu(t)] ≥ P (Zu(t) > 0) =
E [Zu(t)]

E [Zu(t) | Zu(t) > 0]
≥ E [Zu(t)]

ct
.

6. From steps 4 and 5,

P (ZT (t) > 0) ≥
t−mT ct −O

(
t1−

α−3
2

)
(
32(1 + δ)t log2 t−mT

)
ct
,

for any t = Ω
(
`2
)

(see Corollary 6 for details). We show that the same holds for the Pareto
walk with the same α trough a coupling result (Lemma 26). Substituting t = Θ

(
`2 log2 `

)
,

we get Proposition 7.

8.2.2 Full analysis

We start estimating the average number of visits to the origin until time t (Step 1 in the scheme).

Lemma 22. For any t ≥ 0, E [Zo(t)] = ct = O(log2 t).

Proof of Lemma 22. First, we show the following. Let Pf
t′ be the two dimensional random variable

representing the coordinates of the agent performing the Pareto flight at time t′. Consider the
projection of the Pareto flight on the x-axis, namely the random variable Xt′ such that Pf

t′ =
(Xt′ , Yt′). The random variable Xt′ can be expressed as the sum of t′ random variables Sxj , j =
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1, . . . , t′, representing the jumps (with sign) the projection of the walk takes at each of the t′ rounds.
The partial distribution of the jumps along the x-axis is given by the following. For any d ≥ 0,

P
(
Sxj = ±d

)
=

cα
4d(1 + d)α

1d6=0 +
cα
2α
1d=0 +

∞∑
k=1+d

cα
2k(1 + k)α

, (14)

where 1d∈A yields 1 if d ∈ A and 0 otherwise, the term

cα
4d(1 + d)α

1d6=0 +
cα
2α
1d=0

is the probability that the original jump lies along the horizontal axis and has “length” exactly d
(or −d), and the terms cα

2k(1+k)α are the probability that the original jump has “length” exactly k

and its projection on the horizontal axis has “length” d (or −d). Quantity (14) is at least

cα
4

(
1

(1 + d)α
+

∞∑
k=1+d

1

k(1 + k)α

)
,

and at most

cα

(
1

(1 + d)α
+

∞∑
k=1+d

1

k(1 + k)α

)
.

By the integral test (Fact 1 in Appendix A) we know that this probability is

P
(
Sxj = ±d

)
= Θ

(
1

(1 + d)α

)
.

Since E [Zo(t)] =
∑t

k=1 po,k, it suffices to accurately bound the probability po,k for each k =
1, . . . , t. Let partition the natural numbers in the following way

N =
∞⋃
t′=0

[
N ∩

[
2t′ log t′, 2(t′ + 1) log(t′ + 1)

) ]
.

For each k ∈ N, there exists t′ such that k ∈ [2t′ log t′, 2(t′ + 1) log(t′ + 1)). Then, within 2t′ log t′

steps the walk has moved to distance Θ
(√

t′
)

at least once, with probability Ω
(

1
(t′)2

)
. Indeed,

the sequence {Sxj }1≤j≤t′ consists of i.i.d. r.v.s with zero mean and constant variance (which comes
from the fact that α > 3). Thus, the central limit theorem (Theorem 8 in Appendix A) says to us
that, for t′ large enough, the variable

Sx1 + · · ·+ Sxt′

σ
√
t′

converges in distribution to a standard normal random variable Z. Let ε > 0 be a small enough
constant, then there exists a t′ large enough, such that for all t′ ≥ t′ it holds that

P
(
Sx1 + · · ·+ Sxt′

σ
√
t′

≥ σ
√
t

)
≥ P (Z ≥ 1)− ε,

which is a constant since P (Z ≥ 1) is a constant. The symmetrical results in which the normalized

sum is less than −σ
√
t holds analogously. Thus, for all t′ ≥ t′, we have that

∑t′

j=1

∣∣∣Sxj ∣∣∣ ≥ σ√t′ with

constant probability c > 0. In 2t′ log t′ jumps, we have 2 log t′ sets of t′ consequent i.i.d. such jumps.
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For independence, the probability that at least in one round before round 2t′ log t′ the Pareto flight
has displacement Θ

(√
t
)

from the origin is at least

1− (1− c)2 log t′ = 1−O
(

1

(t′)2

)
.

Once reached such a distance, there are at least λ2 = Θ (t′) different nodes that are at least as
equally likely as o to be visited at any given future time (from Lemma 21 in Subsection 7.1). Thus,
the probability to reach the origin at any future time is at most O (1/t′), in particular the bounds
holds for po,k. Observe that in an interval [2t′ log t′, 2(t′ + 1) log(t′ + 1)) there are

2(t′ + 1) log(t′ + 1)− 2t′ log t′ = 2t′
[
log

(
1 +

1

t′

)]
+ 2 log(t′ + 1) = O

(
log t′

)
integers. Let Pf

t be the two-dimensional random variable denoting the node a Pareto flight which
has started in the origin visits at time t, and let Ht′ be the event that in any time before 2t′ log t′

the Pareto flight has displacement at least Θ
(√
t
)
. Observe that

po,k = P
(
Pf
t = o | Ht′

)
P (Ht′) + P

(
Pf
t = o | HC

t′

)
P
(
HC
t′
)
,

by the law of total probability. Thus, if It′ = [2t′ log t′, 2(t′ + 1) log(t′ + 1)), we have

t∑
k=1

po,k ≤
t∑

t′=0

∑
k∈It′

po,k

≤
t∑

t′=0

[
P
(
Pf
t = o | Ht′

)
P (Ht′) + P

(
Pf
t = o | HC

t′

)
P
(
HC
t′
)]
O(log t′)

≤
t∑

t′=0

[
O
(

1

t′

)
+O

(
1

(t′)2

)]
O(log t′) = O(log2 t).

Then, the following easily holds (steps 1 and 5 in the scheme).

Lemma 23. Let u ∈ Z2 be any node. It holds that

(i) E [Zu(t)] ≤ ct

(ii) 1 ≤ E [Zu(t) | Zu(t) > 0] ≤ ct;

(iii) E [Zu(t)] /ct ≤ P (Zu(t) > 0) ≤ E [Zu(t)].

Proof of Lemma 23. The proof is exactly the same as that of Lemma 16 in Section 5.

Furthermore, from Lemma 21 in Subsection 7.1, the following holds (Step 2 in the scheme).

Corollary 5. For any u in Z2, we have E [Zu(t)] ≥ E [Zv(t)] for all v /∈ Q(du) (see Figure 10 for
geometrical details).

Namely, almost all the nodes that are “further” than u from the origin are less likely to be
visited at any given future time. We also give a bound to the average number of visits to nodes
that are further roughly

√
t · log t from the origin (Step 3 in the scheme).
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Lemma 24. There exists a constant δ > 0 such that∑
v∈Z2 : 4

√
2(1+δ)t log t

E [Zv(t)] = O
(
t1−

α−3
2

)
.

Proof of Step 3. Consider a single agent moving according the Pareto walk with parameter α ∈
(3,+∞). Then, by Equations (1) and (2) in the Preliminaries (Section 3), the expectation and
the variance of a single jump-length is finite and the variance is finite. By Equation (3) in the

Preliminaries (Section 3), the probability a jump length is at least
√
t is Θ

(
1/t

α−1
2

)
. Let us call

Aj the event that the j-th jump-length is less than
√
t. Let us also define Pf

j the random variable
denoting the coordinates of the nodes the corresponding Pareto flight visits at the j-th jump. We
can see this random variable as a couple (Xj , Yj), where Xj is x-coordinate of the ballistic Pareto

walk after the j-th jump, and Yj is the y-coordinate. Then, Xj can be seen as the sum
∑j

i=1 S
′
i of

j random variables representing the projections of the jumps along the x-axis. Trivially, E [Xj ] = 0
for each j, while Var (Xj) = jVar (S′1) = Θ(j) since S′1 has finite variance. This comes by observing
that S′1 ≤ S1. Then, conditioning on A = ∩ti=1Ai, we can apply the Chernoff bound (Lemma 31 in
Appendix A) on the sum of the first j jumps, for j ≤ t. We have

P
(
|Xt| ≥ 2

√
2(1 + δ)t log t

∣∣ A) ≤ 2 exp

− 8(1 + δ)t · log2 t

Θ(t) + Θ
(√

(1 + δ)t · log t
)√

t


= 2 exp

(
−Θ

(√
1 + δ · log t

))
≤ 2

tΘ(
√

1+δ)
,

which is less than 1/t
α−1
2 if we choose δ big enough. The same result holds for the random variable

Xj for each j < t, since the variance of Xj is smaller than the variance of Xt. Notice that

P
(
∩tj=1{|Xj | < 2

√
2(1 + δ)t log t} | A

)
= 1− P

(
∪tj=1{|Xt| ≥ 2

√
2(1 + δ)t log t} | A

)
≥ 1− t

t
α−1
2

= 1− 1

t
α−3
2

,

and that

P (A) = 1− P
(
AC
)

= 1− P
(
∪tj=1A

C
j

)
≥ 1−O

(
t

t
α−1
2

)
= 1−O

(
1

t
α−3
2

)
.

An analogous argument holds for the random variable Yt conditioned to the event A. Then,

P
(
∩tj=1{|Xj |1 < 2

√
2(1 + δ)t · log t},∩tj=1{|Yj |1 < 2

√
2(1 + δ)t · log t}

)
≥ P

(
∩tj=1{|Xj |1 < 2

√
2(1 + δ)t · log t},∩tj=1{|Yj |1 < 2

√
2(1 + δ)t · log t} | A

)
P (A)

≥
(

2P
(
∩tj=1{|Xj |1 < 2

√
2(1 + δ)t · log t} | A

)
− 1
)
P (A)

(a)

≥
[
2

(
1− 1

t
α−3
2

)
− 1

](
1−O

(
1

t
α−3
2

))
≥
(

1− 1

t
α−3
2

)(
1−O

(
1

t
α−3
2

))
≥ 1−O

(
1

t
α−3
2

)
,
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where (a) holds for symmetry (the distribution of Yt is the same as the one of Xt) and for the
union bound. Thus, in t jumps (which take at least time t), the walk has never reached distance
4
√

2(1 + δ)t · log t, w.h.p. We denote this event as E. The average number of visits until time t to

nodes at distance at least 4
√

2(1 + δ)t · log t is then less than t · O
(

1/t
α−3
2

)
= O

(
t1−

α−3
2

)
.

The following puts together the previous estimations in order to get a lower bound on the
average number of visits to some node u (Step 4 in the scheme).

Lemma 25. Let T be the node in which the treasure is located. For any t = Ω
(
`2
)
, the following

holds:
mT ct + E [ZT (t)] · 32(1 + δ)(t log2 t) +O

(
t1−

α−3
2

)
≥ t.

Proof of Lemma 25. Suppose the agent has made t jumps, thus visiting t nodes. Then,

E

∑
v∈Z2

Zv(t)

 = t.

We divide the plane in different zones, and we bound the number of visits over each zone in
expectation. First, we focus on item (1). From Lemma 23, the number of visits inside A1 = Q(`)
until time t is at most mT ct, where mT = |Q(`)| = 4`2. From Lemma 24, the number of visits

A3 is at most O
(
t1−

α−3
2

)
. Each of the remaining nodes, i.e. the nodes in A2, which are at most

32(1 + δ)(t log2 t) in total, is visited by the agent at most E [Zu(t)] times, for Corollary 5. Then,
we have that

mT ct + E [ZT (t)] · 32(1 + δ)(t log2 t) +O
(
t1−

α−3
2

)
≥ t.

Finally, we prove (Step 6 in the scheme) the following.

Corollary 6. For any t = Ω
(
`2
)
, the probability to have visited T within time t is

P (ZT (t) > 0) ≥
t−mT ct −O

(
t1−

α−3
2

)
(t log t−mT )ct

.

Proof of Corollary 6. The proof follows from the combination of Lemma 25 and Lemma 23.

We just have to show a coupling result in the following subsection (Step 6 in the scheme).

8.2.3 Coupling result

Here we show the link between the Pareto flight and the Pareto walk, showing that, essentially, the
Pareto walk is at least as efficient as the Pareto flight. Indeed, and agent who performs t jumps of
the Pareto walk (thus it has moved t steps according to the Pareto flight) with α ∈ (3,+∞), has
walked for time Θ(t), w.h.p.

Lemma 26. Consider an agent performing the Pareto flight with α ∈ (3,+∞), making t jumps.
Then, the sum of all jump lengths is Θ(t), w.h.p.

Proof of Lemma 26. The proof is easy. If Si is the random variable yielding the i-th jump length,
then it has finite expectation and variance. This means that the sum S̄t =

∑t
i=1 Si has expectation

Θ(t) and variance Θ(t). Then, by Chebyshev’s inequality

P
(
S̄t ≥ Θ(t) + t

)
≤

Var
(
S̄t
)

t2
= O

(
1

t

)
.

Thus, w.h.p., the sum of all jump lengths is Θ(t), w.h.p.
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8.2.4 Wrap-up: proof of Proposition 7

The proof is now easy. Let T be the node in which the treasure is located (dT = `). For t being
some function in Θ

(
`2 log2 `

)
, by Corollary 6 we have that the probability the Pareto flight visits

the treasure is

Ω

(
1

log3 `

)
.

For Lemma 26, and considering also the jumps in which the agent keeps still (which are at most
Θ(t)), the same holds for an agent performing the Pareto walk.

8.3 Analysis of the case α ∈ (3,+∞): proof of propositions 8 and 9

In this subsection, we aim at proving the two results giving lower bounds on the hitting time of
the treasure. First, we prove a result saying that Θ (`ε) agents need time at least Ω̃

(
`2
)

to find the

treasure, w.h.p., for ε ∈ [0, 3α), letting the work to be Ω̃
(
`2+ε

)
.

Proposition 8. Let k be any integer such that k = O (`ε) for some constant ε ∈ [0, α − 3).
Then, k agents performing the Pareto walk with parameter α > 3 find the treasure in time at least
Ω(`2/(log `)), w.h.p.

Proof of Proposition 8. Consider a single agent moving according the Pareto walk with parameter
α ∈ (3,+∞). Then, by eqs. (1) and (2) in the Preliminaries (Section 3), the expectation and the
variance of a single jump-length is finite and the variance is finite. By Equation (3) in the Prelim-
inaries (Section 3), the probability a jump length is less than `/(log `) is 1 − Θ

(
(log `)α−1/`α−1

)
.

Let us call Aj the event that the j-th jump-length is less than `/(log `). Let us also define Pf
t

the random variable denoting the coordinates of the nodes the corresponding Pareto flight visits at
the t-th jump. We can see this random variable as a couple (Xt, Yt), where Xt is x-coordinate of
the ballistic Pareto walk after the t-th jump, and Yt is the y-coordinate. Then, Xt can be seen as
the sum

∑t
j=1 S

′
j of t random variables representing the projections of the jumps along the x-axis.

Trivially, E [Xt] = 0 for each t, while Var (Xt) = tVar (S′1) = Θ(t) since S′1 has finite variance.

This comes by observing that S′1 ≤ S1. Then, conditioning on A = ∩δ`
2/(log `)

j=1 Aj , we can apply the

Chernoff bound (Lemma 31 in A) on the sum of the first δ`2/(log `) jumps, for some δ accurately
chosen. We have

P
(∣∣Xδ`2/(log `)

∣∣ ≥ ` ∣∣ A) ≤ 2 exp

(
− `2

Θ(δ`2/(log `)) + (`/(log `))`

)
= 2 exp

(
−Θ

(
log `

δ

))
≤ 2

`Θ(1/δ)
,

which is less than 1/`α−1 if we choose δ small enough. The same result holds for the random variable
Xt for each t < δ`2/(log `), since the variance of Xt is smaller than the variance of Xδ`2/(log `). Notice
that

P
(
∩δ`

2/(log `)
t=1 {|Xt| < `} | A

)
= 1− P

(
∪δ`

2/(log `)
t=1 {|Xt| ≥ `}

)
≥ 1− δ`2/(log `)

`α−1
= 1− δ

`α−3 log `
,

and that

P (A) = 1− P
(
AC
)

= 1− P
(
∪δ`

2/(log `)
j=1 ACj

)
≥ 1− δ`2(log `)α−1

`α−1 log `
= 1− δ(log `)α−2

`α−3
.

An analogous argument holds for the random variable Yt conditioned to the event A. Then,

P
(
∩δ`

2/(log `)
t=1 {Xt < `},∩δ`

2/(log `)
t=1 {Yt < `}

)
≥ P

(
∩δ`

2/(log `)
t=1 {Xt < `},∩δ`

2/(log `)
t=1 {Yt < `} | A

)
P (A)
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≥
(

2P
(
∩δ`

2/(log `)
t=1 {Xt < `} | A

)
− 1
)
P (A)

(a)

≥
[
2

(
1− δ

`α−3 log `

)
− 1

](
1− δ(log `)α−2

`α−3

)
≥
(

1− δ

`α−3 log `

)(
1− δ(log `)α−2

`α−3

)
≥ 1−

δ
(
1 + (log `)α−1

)
`α−3 log `

,

where (a) holds for symmetry (the distribution of Yt is the same as the one of Xt) and for the union
bound. Thus, in δ`2/(log `) jumps (which take at least time δ`2/(log `)), the walk has never reached
distance `, w.h.p. If the number of agents is O (`ε) for some ε ∈ [0, 3 − α), there is probability
1− Õ

(
1/`α−3−ε) that the treasure is not found within time δ`2/(log `).

The lower bound estimates the probability to find the treasure within time t = Θ(`2−ε), for any
ε > 0.

Proposition 9. Consider a single agent performing a Pareto walk for α > 3. Let ε ≥ 0 be any
arbitrary small constant, and let t = Θ(`2−ε). Then, the probability to find the treasure within time
t is O(1/`α−3+min(2ε,1+ε)).

Proof of Proposition 9. First consider an agent performing the Pareto run for the same α. Let
Xi be the x-coordinate of the agent at the end of the i-th jump. For any i ≤ t, we bound the
probability that Xi > `/4. The probability that there is a jump whose length is at least ` among
the first i jumps is O(i/`α−1). Conditioning on the event that the first i jump-length are all smaller
than ` (event Ci), the expectation of Xi is zero and its variance is

i ·
`/4∑
d=0

Θ
(
d2/(1 + d)α

)
= Θ

(
i`3−α

)
,

for the integral test (Fact 1 in Appendix A). Chebyshev’s inequality implies that

P (|Xi| ≥ `/4 | Ci) ≤
Θ
(
i`3−α

)
Θ(`2)

= Θ
(
i/`α−1

)
.

Since the conditioning event has probability 1 − O(i/`α−1), then the “unconditional” probability
that of the event |Xi| ≤ `/4 is[

1−O(i/`α−1)
]2

= 1−O
(
1/`α−3+ε

)
,

since i ≤ t = Θ(`2−ε). The same result holds analogously for Yi (the y-coordinate of the agent
after the i-th jump), obtaining that |Xi|+ |Yi| ≤ `/2 with probability 1−O(1/`α−3+ε) by the union
bound.

Consider the first jump. The probability it leads the agent to visit the treasure is O(1/`α) for
Lemma 20 in Subsection 7.1. Now, let 2 ≤ i ≤ t and consider the i-th jump. We want to estimate
the probability the jump leads the agent to visit the treasure. We call u the node in which the
treasure is located, and we consider the rhombus centered in u that contains the nodes at distance
at most `

4 from u, namely
R∗`/4(u) = {w ∈ Z2 : d(w, v) ≤ `/4}.
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We call Ji the event that the i-th jump leads the agent to visit the treasure, Ri−1 the event that the
the (i− 1)-th jump ends in R∗`/4(u), and Fi−1 the event that the (i− 1)-th jump ends at distance

farther than `/2 from the origin. Then, by the law of total probabilities, we have

P (Ji) = P (Ji | Fi−1)P (Fi−1) + P
(
Ji | FCi−1

)
P
(
FCi−1

)
=
[
P (Ji | Fi−1, Ri−1)P (Ri−1 | Fi−1) + P

(
Ji | Fi−1, R

C
i−1

)
P
(
RCi−1 | Fi−1

)]
P (Fi−1)

+ P
(
Ji | FCi−1

)
P
(
FCi−1

)
(a)

≤
[
P (Ji | Ri−1)P (Ri−1 | Fi−1) + P

(
Ji | Fi−1, R

C
i−1

)]
P (Fi−1) + P

(
Ji | FCi−1

)
P
(
FCi−1

)
(b)

≤
[
O
(

1

`2

)
+O

(
1

`α

)]
O
(

1

`α−3+ε

)
+O

(
1

`α

)[
1−O

(
1

`α−3+ε

)]
= O

(
1

`α−1+ε
+

1

`α

)
(15)

where in (a) we used that Ri−1 ⊂ Fi−1 and that P
(
RCi−1 | Fi−1

)
≤ 1, while in (b) we used that

P (Ji | Ri−1)P (Ri−1 | Fi−1) = O
(

1

`2

)
, (the proof is below)

that P
(
Ji | Fi−1, R

C
i−1

)
= O (1/`α) because the jump starts in a node whose distance form the trea-

sure is Ω(`), and that P
(
Ji | FCi−1

)
= O (1/`α) for the same reason. As for the term P (Ji | Ri−1)P (Ri−1 | Fi−1)

we observe the following. Let Pr
i be the two-dimensional random variable denoting the coordinates

of nodes the agent is located on after the i-th jump. Then

P (Ji | Ri−1)P (Ri−1 | Fi−1) =
∑

v∈R∗
`/4

(u)

P (Ji | Pr
i = v)P (Pr

i = v | Fi−1)

≤ O
(

1

`2

) ∑
v∈R∗

`/4
(u)

P (Ji | Pr
i = v) ,

since Lemma 21 (Subsection 7.1) holds in a consequent way conditioning on Fi−1, and since, for
each v ∈ R∗`/4(u), there are at least Θ

(
`2
)

nodes at distance at least `/2 from the origin which are

more probable to be visited than v. Then, we proceed like in the proof of Lemma 10 (Subsection 4.3)
showing that

∑
v∈R∗

`/4
(u) P (Ji | Pr

i = v) = O(1) and we obtain P (Ji | Ri−1)P (Ri−1 | Fi−1) = O
(
1/`2

)
.

Thus, by the union bound and by the inequality (15), the probability that at least one between
the t jumps leads the agent to find the treasure is

1

`α
+ (t− 1)O

(
1

`α−1+ε
+

1

`α

)
= O(`2−ε)O

(
1

`α−1+ε
+

1

`α

)
= O

(
1

`α−3+2ε
+

1

`α−2+ε

)
= O

(
1

`α−3+min(2ε,1+ε)

)
.

We conclude observing that the Pareto run is at least as efficient as the Pareto walk, since the
first takes just one time unit to perform a jump, while the latter takes a time equal to the jump
length.

9 Pareto Walk Model: Case α ∈ (1, 2]

In this section, we prove our main result on the performance of Pareto walks with parameter
α ∈ (1, 2], showing that this model is “equivalent” to the ballistic walk model in terms of hitting
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time and work efficiency. Indeed, the reader may compare the following result with that for the
ballistic walk model (Theorem 5 in Section 6).

Theorem 7 (Ballistic regime). Assume that the treasure is located in some node of the infinite grid
at distance ` > 0. Let k agents move performing mutually independent Pareto walks with α ∈ (1, 2].
If k = Θ̃ (`), then k agents find the treasure in time Θ(`), making a total work of Θ̃

(
`2
)
, w.h.p. 25

Furthermore, the result is almost-tight in a two-fold sense:

(i) for all k = Θ̃
(
`1−ε

)
for any arbitrary constant ε ∈ (0, 1], then the agents never find the

treasure w.h.p., thus making an infinite work, w.h.p.;

(ii) for all k = Θ̃
(
`1+ε

)
for any arbitrary constant ε > 0, then the agents need time Θ(`) to find

the treasure and total work k = Θ̃
(
`2+ε

)
, w.h.p.

Interesting enough, the average jump-length in this case is infinite, thus, in average, we have
that the Pareto walk has moved to distance Θ(t) from the origin in time Θ(t), exactly as the
ballistic walk. Next subsection is devoted to the proof of Theorem 7.

9.1 Analysis of the case α ∈ (1, 2]: proof of Theorem 7

We need three lemmas. The first gives an upper bound on the hitting time of the Pareto walk.

Lemma 27. Let k ∈ N be any integer such that k = Θ
(
` log2 `

)
. Then, k agents performing

independent Pareto walks with parameter α ∈ (1, 2] find the treasure in time Θ(`), w.h.p., letting
the work to be Θ

(
`2 log2 `

)
, w.h.p.

Proof of Lemma 27. Consider a single agent moving according the Pareto walk with parameter
α ∈ (1, 2] . By Equation (3) in the Preliminaries (Section 3), the probability the agent chooses a
jump of length at least d is of the order of Θ

(
1/(1 + d)α−1

)
. Thus, for some constant c > 0, we

look at the probability of choosing a jump of length no less than c`, which is Θ
(
1/(1 + c`)α−1

)
=

Θ(1/`α−1). This means that an agent chooses such a distance at least once in `α−1/ log(c`) jumps
with probability

1−
(

1−Θ

(
1

`α−1

)) `α−1

log(c`)

= o(1).

Let Ei be the event that the all the jumps until the i-th one (included) have length less than c`.
By what we have said before, it is true that

P (Ei) = 1− o(1) for all i ≤ `α−1/ log(c`).

Then, we show that, conditional on the event Ei, the sum of the first i jumps is at most `/2 with
constant probability. Indeed, if j < i, the expected value of Sj is

E [Sj | Ei] =

c`−1∑
d=0

cαd

(1 + d)α
= O

(
c`2−α log(c`)

)
for the integral test (Fact 1 in Appendix A), where the log(c`) factor takes care of the case α = 2.
Thus,

E

 i∑
j=1

Sj | Ei

 ≤
`α−1

log(c`)∑
j=1

E [Sj | Ei] = O (c`) .

25For a formal comprehension of this statement, we refer to Remark 1 in the Preliminaries (Section 3).
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We choose c small enough so that this expression is less than `/2. Conditional on Ei, the {Sj}j≤i
random variables are non negative and bounded from above since all jump indexes are less than
`α−1/ log(c`). Then, we can use the Chernoff bound on their sum (normalized dividing by c`) to
concentrate the probability around its normalized expectation (Lemma 30 in Appendix A). We
have that

P

 i∑
j=1

Sj
c`
≥ `

2
· 1 + 1/2

c`

∣∣ Ei
 ≤ exp

(
− 1

3 · 4
1

c

)
,

which is a constant. Then it is guaranteed that there is at least constant probability the agent
has displacement at most 3`/4 from the origin in time O(`) (since the sum of all jumps is at most
linear in `), without any conditional event. Indeed,

P

∑
j≤i

Sj ≤ 3`/4

 ≥ P

∑
j≤i

Sj ≤ 3`/4 | Ei

P (Ei)

≥ Θ(1) (1− o(1)) = Θ(1),

for each i ≤ `α−1/ log(c`).
Let Fi = {

∑
j≤i Sj ≤ 3`/4}. We now want to compute the probability that, given i ≤

`α−1/ log(c`), the i-th jump leads the agent finding the treasure. Let Ji be such an event. Then,
since

P (Ji, Fi−1) = P (Ji | Fi−1)P (Fi−1)

we estimate P (Ji | Fi−1). If ti is the time the agent starts the i-th jump, we have

P (Ji | Fi−1) ≥
∑

v∈Q(`/4)

P (Ji | Pti = v, Fi−1)P (Pti = v | Fi−1) .

By Lemma 20 in Subsection 7.1, the term P (Ji | Pti = v, Fi−1) is Θ(1/`α). At the same time, by
Lemma 21 in Subsection 7.1, we have that P (Pti = v | Fi−1) = Ω(1/`2) since v ∈ Q(`/4). Then∑

v∈Q(`/4)

P (Ji | Pti = v, Fi−1)P (Pti = v | Fi−1) ≥ Θ

(
1

`α

)
·
∑

v∈Q(`/4)

Ω

(
1

`2

)
= Ω

(
1

`α

)
,

implying P (Ji) = Ω
(

1
`α

)
for all i ≤ `α−1/ log(c`). Then, for the chain rule, the probability that

none of the events Fi ∩ Fi−1 holds for each i ≤ `α−1/ log(c`) is

P

 ⋃
i≤ `α−1

log(c`)

(Ji ∩ Fi−1)

 = 1− P

 ⋂
i≤ `α−1

log(c`)

(JCi ∪ FCi−1)


= 1−

∏
i≤ `α−1

log(c`)

P

JCi ∪ FCi−1

∣∣ ⋂
j≤i−1

(JCj ∪ FCj−1)



= 1−
∏

i≤ `α−1

log(c`)

1− P

Ji ∩ Fi−1

∣∣ ⋂
j≤i−1

(JCj ∪ FCj−1)



= 1−
∏

i≤ `α−1

log(c`)

1− P

Ji ∩ Fi−1

∣∣ ⋂
j≤i−1

(JCj ∪ FCj−1)


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(a)

≥ 1−
∏

i≤ `α−1

log(c`)

1− P

Ji ∩ Fi−1,
⋂

j≤i−1

(JCj ∪ FCj−1)


(b)
= 1−

∏
i≤ `α−1

log(c`)

(1− P (Ji ∩ Fi−1))

= 1−
(

1− Ω

(
1

`α

)) `α−1

log(c`)

= e
−Ω

(
1

` log `

)
= 1−O

(
1

` log `

)
,

where, (a) holds since P (A | B) ≥ P (A,B), (b) holds since Fi−1 ⊆ (FCj−1 ∪ JCj ) for j ≤ i− 1, and
last equality holds for the Taylor decomposition of f(x) = ex. Then, there is probability at least
Ω (1/(` log `)) to find the treasure within time O(`). On the other hand, it is trivial that the process
needs at least time t to get to the target. Thus, if k = Θ(` log2 `), then k agents finds the treasure
within time Θ(`), w.h.p., letting the work to be Θ(`2 log2 `).

The next two lemmas aim at giving a lower bound on the hitting time of the treasure.

Lemma 28. Let i = 1, . . . t , denote the t jumps an agent performing a Pareto walk with α ∈ (1, 2]
which starts at the origin takes. The probability that during the i-th jump the agent finds the treasure
is O(log `/`α).

Proof of Lemma 28. Consider the starting point v of the i-th jump. We want to give probabilities
to the distance at which v is from the origin. Call u the node in which the treasure is located, and
consider the rhombus centered in u of nodes that are distant at most `

4 from u, namely

R∗`/4(u) = {w ∈ Z2 : d(w, v) ≤ `/4}.

For any v ∈ R∗`/4(u), the probability that the i-th jump starts in v is at most O(1/`2) due to

Lemma 21 in Subsection 7.1. At the same time, for any distance 1 ≤ d ≤ `/4, there are at most
4d nodes in R∗`/4(u) at distance d from u. Then, for the expression of conditional probability and

Lemma 20 in Subsection 7.1, the probability that the i-th jump starts from R∗`/4(u) and the agent
visits the treasure during the jump is

O
(

1

`2

) `/4∑
d=1

4d · O
(

1

dα

)
+O

(
1

`2

)
= O

(
log `

`α

)
,

where, in the first expression, the last term O(1/`2) is the contribution of u itself. If v is outside
R∗`/4(u), then the probability that a jump that starts from v leads the agent to visit the treasure is

at most O (1/`α).
Let Ji be the event that the i-th jump (which starts in v) leads the agent to visit the treasure,

and Vi be the event that the starting point of the i-th jump is in R∗`/4(u). Then

P (Ji) ≤ P (Ji | Vi)P (Vi) + P
(
Ji | V C

i

)
≤ O

(
log `

`α

)
+O

(
1

`α

)
= O

(
log `

`α

)
,

which is the thesis.

Next lemma give us the probability an agent never finds the treasure.

60



Lemma 29. Consider a single agent performing a Pareto walk with α ∈ (1, 2]. The probability that
the agent never finds the treasure is 1−O

(
log2(`)/`

)
.

Proof of Lemma 29. Consider the first time ti the agent is at distance at least λi = 2i` from the
origin, for each i ≥ 1. Define, for i ≥ 1, τi = 2λα−1

i log λi. Then,

P (ti ≤ τi) ≥ 1−
[
1−O

(
1

λα−1
i

)]2λα−1
i log λi

= 1−O
(

1

λ2
i

)
= 1−O

(
1

22i`2

)
.

Then, the expected number of visits to the treasure from time ti until time ti+1 is thenO(τi+1 log(`)/λαi ) =
O(τi log(`)/λαi ) by Lemma 28, since the agent starts at distance Θ (λi) from the target. At the same
time, the average number of visits to the treasure until time t1 is O (t1 log(`)/`α) = O (τ1 log(`)/`α).
Combining the above, we have that the expected total number of visits to the treasure is

O
(
τ1 log `

`α

)
+
∑
i≥1

O
(
τi log `

λαi

)
= O

(
log2 `

`

)
+
∑
i≥1

O
(

log(2i) log2 `

2i`

)
= O

(
log2 `

`

)
.

Thus, for the Markov property, the probability that the agent visits the treasure at least once is
O
(
log2(`)/`

)
.

We are ready to prove our main result.

9.1.1 Wrap-up: proof of Theorem 7

Proof of Theorem 7. As for the main result, Lemma 27 tells us that k = Θ
(
` log2 `

)
agents find

the treasure in time Θ(`), making a total work of Θ
(
`2 log2 `

)
, w.h.p. Furthermore, if we increase

the number of agents by multiplying by any polylogarithmic factor, the same upper bound on the
hitting time holds, w.h.p., while if we decrease it by dividing by any polylogarithmic factor, the
upper bound on the hitting time holds with non-negligible probability.

At the same time, for all k in the family Θ̃ (`), we have that it is needed at least time Ω (`) to
find the treasure, making a total work of Ω̃

(
`2
)
, almost surely.

Item (i) is a direct consequence of Lemma 29. Indeed, Θ̃
(
`1−ε

)
agents eventually find the

treasure with probability Õ
(
log2(`)/`ε

)
for the union bound. Thus, w.h.p., the work is infinite.

Item (ii) comes from the fact that the minimum time needed to find the treasure is ` almost
surely.

A Tools

Fact 1. Let α > 0 be a constant, d > 0 a positive integer, and let dmax > d be another integer. The
followings hold

1

(α− 1)(d)α−1
≤
∑
k≥d

1

kα
≤ 1

(α− 1)(d)α−1
+

1

dα
and (16)

1

(α− 1)

(
1

dα−1
− 1

dα−1
max

)
≤

dmax∑
k=d

1

kα
≤ 1

(α− 1)

(
1

dα−1
− 1

dα−1
max

)
+

1

dα
for α > 1, (17)

and, at the same time,

log

(
dmax

d

)
≤

dmax∑
k=d

1

k
≤ log

(
dmax

d

)
+

1

d
(case α = 1), and (18)
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(dmax)
1−α − d1−α

1− α
≤

dmax∑
k=d

1

kα
≤ (dmax)

1−α − d1−α

1− α
+

1

dα
for α < 1. (19)

Proof. By the integral test, it holds that∫ dmax

d

1

kα
dk ≤

dmax∑
k=d

1

kα
≤
∫ dmax

d

1

kα
dk +

1

dα
.

Straightforward calculations give the result for eqs. (17) to (19). As for eq. (16), it comes from the
integral test letting dmax →∞.

Fact 2. Let n ≥ 0 be any integer, and let a, b ∈ [0, n−2] such that n−a−b is even and non-negative,
and a ≥ b. Then, it holds that(

n
n+a+b

2

)
≥
(

n
n+a+b

2 + 1

)
, and (20)(

n
n+a+b

2

)(
n

n+a−b
2

)
≥
(

n
n+a+b

2 + 1

)(
n

n+a−b
2 − 1

)
. (21)

Proof of Fact 2. We first prove eq. (20). Expressing the binomial coefficients, we have(
n

n+a+b
2

)
≥
(

n
n+a+b

2 + 1

)
iff

n!(
n+a+b

2

)
!
(
n−a−b

2

)
!
≥ n!(

n+a+b
2 + 1

)
!
(
n−a−b

2 − 1
)
!

iff

1(
n−a−b

2

) ≥ 1(
n+a+b

2 + 1
) iff

n+ a+ b

2
+ 1 ≥ n− a− b

2
,

which is true. As for eq. (21), we have(
n

n+a+b
2

)(
n

n+a−b
2

)
≥
(

n
n+a+b

2 + 1

)(
n

n+a−b
2 − 1

)
iff

n!(
n+a+b

2

)
!
(
n−a−b

2

)
!
· n!(

n+a−b
2

)
!
(
n−a+b

2

)
!
≥ n!(

n+a+b
2 + 1

)
!
(
n−a−b

2 − 1
)
!
· n!(

n+a−b
2 − 1

)
!
(
n−a+b

2 + 1
)
!

iff

1(
n−a−b

2

) · 1(
n+a−b

2

) ≥ 1(
n+a+b

2 + 1
) · 1(

n−a+b
2 + 1

) iff(
n+ a+ b

2
+ 1

)(
n− a+ b

2
+ 1

)
≥
(
n− a− b

2

)(
n+ a− b

2

)
,

which is true (compare the second factor on the left with the first factor on the right, and the first
factor on the left with the second factor on the right).

As for the probabilistic tools, first we state the well-known central limit theorem, which can be
found in [Fel68] (Chapter X).

Theorem 8 (Central Limit Theorem). Let {Xk}k≥1 be a sequence of i.i.d. random variables. Let
µ = E [X1], σ2 = Var (X1), and Sn =

∑n
k=1Xk for any n ≥ 1. Let Φ : R→ [0, 1] be the cumulative

distribution function of a standard normal distribution. Then, for any β ∈ R, it holds that

lim
n→∞

P
(
Sn − nµ
σ
√
n

< β

)
= Φ(β).
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Figure 11: Mapping from R̃d(u) to R̃1(u)

Furthermore, we give some forms of the Chernoff bounds. The first form can be found in the
appendix of [DP09], and can be stated as follow.

Lemma 30 (Multiplicative forms of Chernoff bounds). Let X1, X2, . . . , Xn be independent random
variables taking values in [0, 1]. Let X =

∑n
i=1Xi and µ = E[X]. Then:

(i) for any δ > 0 and µ ≤ µ+ ≤ n, it holds that

P
(
X ≥ (1 + δ)µ+

)
≤ e−

1
3
δ2µ+ , (22)

(ii) for any δ ∈ (0, 1) and 0 ≤ µ− ≤ µ, it holds that

P
(
X ≤ (1− δ)µ−

)
≤ e−

1
2
δ2µ− . (23)

We also use the following form of Chernoff bound, which can be found in [CL06] (Theorem 3.4).

Lemma 31 (Additive form of Chernoff bound using variance). Let X1, . . . , Xn be independent
random variables satisfying Xi ≤ E [Xi] + M for some M ≥ 0, for all i = 1, . . . , n. Let X =∑n

i=1Xi, µ = E [X], and σ2 = Var (X). Then, for any λ > 0, it holds that

P (X ≥ µ+ λ) ≤ exp

(
− λ2

σ2 + Mλ
3

)
. (24)

B Proofs: Preliminaries

We first recall what a direction-approximating path is and what we mean by an agent that chooses
a direction.
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Definition 1 (r-approximating path). Let r be the unique ray identified by some unit vector ~v
applied to some node u. Consider, for d ≥ 0, the sequence of rhombus centered at u

Rd(u) = {v ∈ Z2 : |u− v|1 = d}.

For each d ≥ 0, consider the “natural immersion” of the rhombus in the continuous plane, namely

R̃d(u) = {(x, y) ∈ R2 : (y + x+ 1)(y + x− 1)(y − x+ 1)(y − x− 1) = 0, |x| ≤ d, |y| ≤ d},

as in Figure 1. Let vd the intersection between r and R̃d(u). An r-approximating path is a
simple path starting at u, whose d-th node is the node wd ∈ Rd(u) that minimize the distance
minw∈Rd(u) |w − vd|2. Ties are broken uniformly at random.

Definition 2 (Direction choice procedure). An agent at some node u chooses a direction r in the
following way: it samples uniformly at random one node v of R̃1(u) and takes r as the unique ray
starting in u and crossing v.

Consider an agent starting at some node u and a direction r which itself starts at u chosen
according to Definition 2. We first argue that there is probability equal to zero that Definition 1
leads to an ambiguity. Indeed,for any d ≥ 0, consider the mapping fd : R̃d(u) → R̃1(u) such that
f(w) = w/d. This clearly is a homothetic transformation, which is a similarity and a bijection. For
each d ≥ 0, define

Ad = {v ∈ R̃d(u) : ∃ w1 6= w2 ∈ Rd(u) such that |v − w1|2 = |v − w2|2}.

The probability that there is an ambiguity in the determination of the r-approximating path is
equal to the probability that the ray r crosses one point of Ad for some d ≥ 0. But the set
∪d≥0Ad is countable (each Ad has cardinality equal to 4d) and so is the set

⋃
d≥0 fd(Ad), thus there

is probability equal to zero that a point chosen u.a.r. in R1(u) lies in
⋃
d≥0 fd(Ad) (i.e., it leads

to ambiguity). Since we look at the mobility models for a countable amount of time and for a
countable number of agents, during the whole process there is probability zero that the procedure
to choose a direction leads to ambiguity.

Thus, Definition 1 is well-posed with probability one, and we are ready to prove Lemma 1.

Lemma 1. Let u be any node of Z2, d ≥ 1, and v ∈ Rd(u). Suppose an agent is on u and chooses
a direction according to the procedure in Definition 2. Then, there is probability 1/(4d) that the
corresponding direction-approximating path crosses v.

Proof of Lemma 1. Consider an agent starting at some node u and a direction r which itself starts
at u chosen according to the procedure in Definition 2. We argue that there is probability exactly
1/(4d) that a given node v ∈ Rd(u) belongs to a corresponding r-approximating path. Indeed, for
d ≥ 0, consider the same mapping fd : R̃d(u) → R̃1(u) such that f(w) = w/d. As we said, this is
a homothetic transformation, which is a similarity, and the probability that the r-approximating
path crosses v is the probability that a point chosen u.a.r. in R̃1(u) lies in the segment BC in
Figure 11 (the boundaries have probability zero to be chosen). Since the rhombuses R̃1(u) and
R̃d(u) are similar with a dilatation factor of d, and so are the triangles ABC and ADE, then the
probability that a point chosen u.a.r. in R̃1(u) lies in BC is the same as the probability that a
point chosen u.a.r. in R̃d(u) lies in DE, which is DE/(4d

√
2) = 1/(4d).

C Monotonicity property

In this part of the appendix we show a really interesting monotonicity property which holds for
any mobility model such that the step-length distribution is non-increasing and does not depend
on direction. Namely, mobility models that fulfill the following definition.
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Definition 9. Given two nodes u and v, the probability to jump in just one step from u to v is
p(u, v) = ρ(|u− v|1), where ρ : N→ R is a non-increasing distribution function.

This monotonicity is characterized by a useful geometric shape that can be “roughly” charac-
terized as follows. For any node u = (ux, uy), let du = |ux|+ |uy|, and define the square

Q(du) = {(x′, y′) ∈ Z2 : max(
∣∣x′∣∣ , ∣∣y′∣∣) ≤ du}

(See Figure 12 in the proof of Lemma 32). Furthermore, for any node u ∈ Z2, let pu,t be the
probability that the agent is located in u at time t. Then, the following geometric property holds.

u

D(u)

Q(du)

Figure 12: The set D(u), consisting in all inner nodes of the “star”, and the square Q(du).

v2u

v1

D(u)

u

Figure 13: The “area” in which we take u, and the possible choices of v.

Lemma 32 (Monotonicity property). Let u ∈ Z2 be an arbitrary node, and consider an agent
performing any mobility model as in Definition 9 who starts at the origin. Then, for each node
v /∈ Q(du) and each time t, it holds that pu,t ≥ pv,t.
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Figure 14: Two “path” examples.

Proof of Lemma 3. For a given distance d ≥ 0, consider the rhombus R∗d(o) = {(x, y) ∈ Z2 :
|x|+|y| ≤ d}. For any point (x, y) we also define a square T (x, y) = {(x′, y′) ∈ Z2 : max(|x′| , |y′|) ≤
max(|x| , |y|)}.

Let u = (ux, uy) be any point in Z2, du = |ux| + |uy| its distance from the origin, and t ≥ 1
any time step. Let Xt be a the random variable representing the coordinate of the node the agent
is located on at time t. We are now going to prove a stronger result which will imply the thesis.
In particular, we show that, for any v ∈ Z2 which is outside the set D(u) = R∗du(o) ∪ T (u), or, at
most, on its “border”26, it holds that

P (Xt = u) ≥ P (Xt = v) , (25)

for any t ≥ 1. Let Q(du) = {(x′, y′) : max(|x′| , |y′|)‘ ≤ du}, and note that D(u) ⊆ Q(du). In
Figure 12 such sets are plotted.

Without loss of generality, suppose u is in the first quadrant and not below the main bisector,
namely in the set {(x, y) ∈ Z2 : y ≥ 0, x ≥ y} (Figure 13). First, we argue that it is sufficient to
show the statement for

v ∈ {v1 = (ux − 1, uy + 1), v2 = (ux + 1, uy)},

as in Figure 13. Indeed, for any v /∈ D(u) that “lives” in the highlighted area in Figure 13, there
exists a sequence of nodes u = w0, w1, . . . , wk = v from u to v such that wi+1 belongs to the set

{(xwi − 1, ywi + 1), (xwi + 1, ywi)},

where wi = (xwi , ywi), as Figure 14 shows. Thus, if the thesis is true for v ∈ {v1, v2}, then it is
true also for all v /∈ D(u) in the highlighted area in Figure 13. At the same time, for any other
v /∈ D(u), outside the highlighted area in Figure 13, there exists a symmetrical argument explained
in Figure 15. Thus, if the thesis is true for all v /∈ D(u) in the highlighted area in Figure 13, then
it is also true for any v /∈ D(u). We now consider some geometric constructions which will be used
in the proof, one for each choice of v. The following description is showed in Figure 16 .

(i) v = (ux − 1, uy + 1): consider the strict line defined by r : y = x+ (uy − ux) + 1 (i.e. the line
in R2 which is the set of points that are equidistant from u and v according to the Euclidean
distance). Call V ⊂ Z2 the set of nodes that are “above” this line, namely the ones that are

26By “border” of D(u) we mean the set Rdu(o) ∪ T ′(u), where Rdu(o) = {(x, y) ∈ Z2 : |x| + |y| = du} and
T ′(u) = {(x, y) ∈ Z2 : max(|x| , |y|) = max(|ux| , |uy|)}.

66



u

D(u)
w

v
u′

Figure 15: Symmetrical argument.

closer to v than u. Define U = Z2\(V ∪r) the complementary set without line r. Consider the
injective function f : V → U such that f(x, y) = (y− (uy−ux)−1, x+(uy−ux)+1), which is
the symmetry with respect to r. It trivially holds that for any w ∈ V , |w − v|1 = |f(w)− u|1
and |w − u|1 = |f(w)− v|1. Furthermore, it holds that for each w ∈ V , either w /∈ D (f(w)),
or w lies on the “border” of D (f(w)). All these properties are well-shown in Figure 17.

(ii) v = (ux + 1, uy): the same construction can be done in this case. Indeed, the strict line will
be x = ux + 1

2 , and the injective function f(x, y) = (2ux + 1− x, y). The same properties we
have seen in the previous case hold here too.

Now we go for the proof. For any time i, and any two nodes u′, v′ ∈ Z2, define

pi(u′, v′) = P
(
Xi = v′ | X0 = u′

)
.

D(u)
u

v

rw

f(w)

f

V U

u v

wf(w)

VU

f

Case (i) Case (ii)

r

Figure 16: Geometric constructions in the three cases.
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Figure 17: First, equivalence between distances. Second, w /∈ D(f(w)).

Let o be the origin, u be any node, and v ∈ {v1, v2}. We show that pt(o, u) ≥ pt(o, v) by induction
on t. The base case is t = 1. From the hypothesis on the mobility model, we know that

p1(o, u)− p1(o, v) ≥ 0

for any u and v in Z2 such that |u|1 ≤ |v|1. We now suppose t ≥ 2 and the thesis true for t − 1.
Fix u and v as in Figure 13; then, for the geometric construction we made above, it holds that

pt(o, u)− pt(o, v) =
∑
w∈Z2

pt−1(o, w)
(
p1(w, u)− p1(w, v)

)
≥
∑
w∈U

pt−1(o, w)
(
p1(w, u)− p1(w, v)

)
+
∑
w∈V

pt−1(o, w)
(
p1(w, u)− p1(w, v)

)
where last inequality is immediate for case (ii), indeed the line r does not contain elements of Z2,
while in case (i) the sum over nodes in line r is zero. Then, the previous value is equal to∑

w∈V
pt−1(o, f(w))

(
p1(f(w), u)− p1(f(w), v)

)
+
∑
w∈V

pt−1(o, w)
(
p1(w, u)− p1(w, v)

)
because of the definition of f : V → U , and, changing the sign of the second sum, we obtain∑

w∈V
pt−1(o, f(w))

(
p1(f(w), u)− p1(f(w), v)

)
−
∑
w∈V

pt−1(o, w)
(
p1(w, v)− p1(w, u)

)
.

Now, observe that the definition of f implies that for each w ∈ V , |w − v|1 = |f(w)− u|1 and
|f(w)− v|1 = |w − u|1 (Figure 17). Thus we can group out the term p1(f(w), u) − p1(f(w), v) =
p1(w, v)− p1(w, u), and we have∑

w∈V

(
pt−1(o, f(w))− pt−1(o, w)

) (
p1(f(w), u)− p1(f(w), v)

)
. (26)

We observe that pt−1(o, f(w)) − pt−1(o, w) ≥ 0 by the inductive hypothesis, since either w /∈
D(f(w)) or w lies on the “border” of D (f(w)) (Figure 17), and p1(f(w), u) − p1(f(w), v) ≥ 0 by
definition of f , since the distance between f(w) and u is no more than the distance between f(w)
and v. It follows that (26) is non-negative, and, thus, the thesis.
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in the context of biological encounters and random searches. Physics of Life Reviews,
5(3):133–150, September 2008. 2.3

73


	Introduction
	Overview of Our Results

	Comparison with Related Work
	The Ants Nearby Treasure Search (ANTS) Problem
	Significance of our contribution
	Harmonic search algorithm

	Related work on finite graphs
	Mobility models
	Other related works in computer science

	Overview of literature on Lévy walks
	Biological relevance of our analysis
	Power laws and stable distributions
	Relation with the continuous setting and stable distributions


	Preliminaries
	Pareto Walk Model: Case a in (2,3]
	Proofs of thm:hittinglevywalk and prop:alpha=3-result: main tools and general scheme
	Wrap-up I: proof of thm:hittinglevywalk
	Wrap-up II: proof of prop:alpha=3-result

	Pareto flight model - case a in (2,3]: proof of thm:hittinglevyflight
	Road-map of the analysis
	Full analysis
	Wrap-up: proof of thm:hittinglevyflight

	Pareto run model - case a in (2,3]: proof of thm:hittinglevyrun
	Wrap-up: proof of thm:hittinglevyrun

	Coupling results

	Simple Random Walk Model
	Proof of thm:hittingrandomwalk: main tools and general scheme
	Wrap-up: proof of thm:hittingrandomwalk

	Analysis of the simple random walk model: proof of prop:hittingrandwalks
	Road-map of the analysis
	Full analysis
	Wrap-up: proof of prop:hittingrandwalks
	Analysis of the simple random walk model: proof of prop:lowboundhittingrandwalks


	Ballistic Walk Model
	Pareto Walk Model: Equivalences
	Main tools

	Pareto Walk Model: Case a in (3,infty)
	Main tools and general scheme
	Wrap-up: proof of thm:equivalencepwrw

	Analysis of the case a in (3,infty): proof of prop:pfrwhittingtime
	Road-map of the analysis
	Full analysis
	Coupling result
	Wrap-up: proof of prop:pfrwhittingtime

	Analysis of the case a in (3,infty): proof of lemma:pwrwlowerb1,lemma:pwrwlowerb2

	Pareto Walk Model: Case a in (1,2]
	Analysis of the case a in (1,2]: proof of thm:equivalencepwbw
	Wrap-up: proof of thm:equivalencepwbw


	Tools
	Proofs: Preliminaries
	Monotonicity property
	List of the Main Statements and Definitions
	List of Figures

