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A machine for conics and oblique trajectories

Pietro Milici, Frédérique Plantevin, Massimo Salvi

Abstract

In his 1637 Géométrie Descartes introduced a general method to adopt
algebra in geometrical problem solving. Such a method was still based on
geometric constructions, and curves were introduced as traces of ideal ma-
chines. Differently from Descartes’ idea of limiting geometry to algebraic
curves, in the second half of the 17th century, mathematicians looked for
an appropriate geometrical legitimation to introduce non-algebraic curves.
A general problem that originated a wide class of transcendental curves
was the inverse tangent problem: new curves were introduced given the
properties that their tangents have to satisfy. Suitable ideal and also real
machines have been designed and realized to solve this class of problems.

The aim of this paper is to propose an original machine that, by the
solution of inverse tangent problems, traces both conics and some tran-
scendental curves obtained as oblique trajectories of confocal conics. For
such a machine we also provide the 3D printable model: in this way we
wish to allow a widespread of this kind of machines between mathematical
enthusiasts but also for laboratory activities in teaching mathematics.

1 Introduction

In his 1637 Géométrie Descartes introduced a general method to adopt poly-
nomial algebra in order to solve geometrical problems. We have to keep in
mind that Cartesian method was still based on geometric constructions, and
curves were accepted when continuously traced by ideal machines (exactness
problem), as highlighted in [5]. However, although the French philosopher gave
some examples, the Géométrie did not provide a well-defined class of machines
for algebraic constructions. A general theory for such constructions can be con-
sidered that of linkages, considered as fixed-length rods jointed each other: the
main result, the so-called “universality theorem” (proved in [12] even though
with some flaws), states that any bounded part of a planar algebraic curve
can be traced by a linkage (if we do not consider intersection problems due to
physical rods).

Descartes’ foundation limited geometry to algebraic curves: however, al-
ready in the second half of the 17th century, this boundary has no longer been
widely accepted by mathematicians, who looked for an appropriate geometri-
cal legitimation to introduce non-algebraic curves. Between other less powerful
geometrical methods, a general problem that originated a wide class of transcen-
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Figure 1: Considering a wheel rolling on a curve, the direction of the wheel (in
the image represented by a bar) is the tangent to the curve.

dental curves was the inverse tangent problem (in a modern setting, it is found
in the geometrical solution of differential equations). While the direct tangent
problem, i.e. to find an object tangent to a given curve while satisfying cer-
tain properties, had been present at least since classical Greek geometry, it was
only after Descartes that mathematicians tried to consider new curves given the
properties that their tangents have to satisfy. The first documented appearance
of an inverse tangent problem is attributed to the architect Claude Perrault in
the late 17th century: a new curve, the tractrix, has been introduced as the
trace of a pocket watch on a plane while moving the endpoint of its chain along
a straight line. The role of traction in the first instrumental ways of generating a
curve given its tangent conditions made such constructions termed “tractional:”
these constructions interested many important mathematicians mainly from the
end of the 17th to the first half of the 18th century, from Leibniz to Euler (see
[4], [27] or also, for a brief introduction, [6]).

Physically, the component solving an inverse tangent problem had to avoid
the lateral motion of a point with respect to a given direction. Instead of using
a chain watch, this can be better accomplished by something that, like the blade
of a pizza-cutter or the front wheel of a bike, guides the direction of the motion
(cf. Figure 1).

Specifically, while machines in the Géométrie pose only “position constraints,”
i.e., according to mechanics, holonomic constraints (they pose relations between
the position variables without any reference to the speed or the direction of the
motion), tractional motion also poses “direction constraints” that analytically
involve the derivatives, thus are non-holonomic . The constructive boundaries
of tractional machines (i.e. linkages extended by wheels, firstly introduced in
[17]) appeared only recently in [19] as a differential extension of Kempe’s uni-
versality theorem. In this new setting, the language of polynomial algebra is
extended by differential algebra, and the limit of constructions is no longer
given by curves but by functions: the class of functions generable by tractional
machines coincides with the algebraic differential functions, i.e. solutions of
non-trivial polynomials P (t, x(t), x′(t), . . . , x(n)(t)) = 0.

Tractional machines recently found a new interest not only in foundations
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but also in didactical laboratory activities (see [16]) because such machines allow
constructing curves by the geometrical resolution of differential equations.

The aim of this paper is to propose an original machine (invented by the
corresponding author) that, by the solution of inverse tangent problems, traces
both conics and some transcendental curves obtained as oblique trajectories of
confocal conics. For such a machine we also provide the 3D printable model: in
this way we wish to allow a widespread of this kind of machines between math-
ematical enthusiasts but also for laboratory activities in teaching mathematics.

2 Machines for conic sections

Machines to construct curves were historically relevant in geometry not only for
practical/artistic aims but also for foundational/theoretical purposes (e.g. the
“exactness problem of geometric constructions” of Descartes [5] or Leibniz [3] in
the early modern period). Specifically, we can note that the same curves can be
traced by very different devices, each one physically implementing a geometric
property. Therefore, to find new ways of constructing old curves can be inter-
esting because different machines may recall different mathematical contents: in
education that can be useful to foster a unifying vision of different mathematical
topics converging toward the same constructed geometrical object.

After the straight line and the circle, the conic sections are possibly the
most ordinary shapes that we encounter in our everyday experience: to visual-
ize them, it is sufficient to watch the shadows cast on a wall by tilting a conical
lamp-shade. While already studied in the 4th century B.C. by Greek geome-
ters as Menaechmus, the most influent systematic works on conic sections and
their properties are referred to Apollonius of Perga around 200 B.C. The same
lamp-shade experience embodies the definition of conic sections as the intersec-
tion of a circular cone cut by a plane at different inclinations. A conics-drawing
device embodying such a definition is the perfect compass, known to mathemati-
cians of 17th century but dating back to the 10th-century Arab mathematician
Al Quhi ([23], [8]). As visible in Figure 21, consider a fixed axis OA and a
telescopically-extendable rod OP constrained to keep constant the angle β with
the axis. While OP rotates around its axis OA, OP moves on a circular cone.
Furthermore, the rod OP can telescopically change its length: by keeping the
tracer P in contact with a horizontal plane, the machine plots the intersection
of a plane with a circular cone. The trace can be any conic section: introduc-
ing the angle α as the inclination of the axis OA with respect to the plane, if
α = β the result is a parabola, if α > β an ellipse (a circumference if α = π/2),
otherwise a hyperbola when α < β.

While the perfect compass can be used to trace all conic sections, we have
many machines designed to trace some specific conics: out of the compass for
the circle, there are many tools drawing ellipses, parabolas, and hyperbolas that

1Image taken from the page of the site of the Associazione Macchine Matematiche (AMM)
http://www.macchinematematiche.org/index.php?option=com_content&view=article&id=

136&Itemid=216&lang=en, where an explicative animation is also provided.
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Figure 2: The perfect compass.

have been proposed since antiquity. Examples of these machines can be found
in various museums both as original samples, e.g. the National Museum of
American History2, and as reconstructed machines for didactical pathways, e.g.
the Associazione Macchine Matematiche (shortly: AMM)3 of Modena, Italy.

While certain constructions directly embody the definition of the traced
curve, e.g. in the gardener’s ellipse the thread keeps constant the sum of the
distances from the foci, other machines require more attention to be analyzed.
In particular, we are going to spend a few words on a class of machines that,
adopting straight rods and guides, show the tangent line while tracing the conic.
Such machines have in common the use of a deformable rhombus, whose sides
can rotate while keeping jointed the final edges.

In the left of Figure 3, we can observe the schema of a machine tracing an
ellipse; given the articulated rhombus ABCD, the points O and B fixed on the
plane constitute the foci of the ellipse, then the intersection P of the straight
lines (AC) and (OD) defines an ellipse while D moves along a circle (the director
circle of the ellipse relative to the focus O). To prove that P defines an ellipse,
i.e. OP + PB is constant, note that PD = PB (the triangles APB and APD
are congruent) hence OP + PB = OP + PD = OD. Note also that the line
(AC), the external bisector of the rays [PB) and [PO), is tangent to the ellipse
in P . Indeed, no point Q on (AC) different from P would intersect the ellipse
because OQ + QB > OP + PB: considering the triangle inequality for OQD,
OQ+QB = OQ+QD > OD = OP + PB.

Similar reasoning can be applied to all the machines of Figure 3: for hyper-
bolas, PA = PC because the triangles CPD and APD are congruent, hence
PO−PA = CO is constant; for parabolas, PC = PA and (PC) is perpendicu-
lar to r. Note that, for the ellipse and the hyperbola, the construction involves
the director circle relative to a focus; in the case of the parabola such a circle
degenerates in a line, the directrix r (cf. [13]).

These machines not only trace the sought conic, but a rod gives also the
direction of the tangent line in the tracing point. Considering the angle limited
by the rays linking the point of the curve with its foci, the tangent in the case of

2https://americanhistory.si.edu/collections/object-groups/ellipsographs
3http://www.macchinematematiche.org/
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Figure 3: Machines tracing conics by “articulated rhombi:” ellipse (left), hy-
perbola (centre), parabola (right). Images taken from the AMM’s site.

an ellipse is its external bisector, while for the hyperbola is its internal bisector.
The parabola has only a finite focus and the other one, according to projective
geometry, is a point at infinity that defines the direction of the symmetry axis:
in this case the tangent bisects the ray connecting the finite focus and the line
passing through the focus at infinity. In Figure 3, the tangent is the external
bisector of [PA) and [Pa).

3 Machines for dynamic slope fields

Graphical representations of slope fields involve the simultaneous drawing of
directions at many points in the plane. This representation is a static one: by
machines we can extend this idea to dynamic slope fields. Indeed, considering
a rod r with a point P marked on it, P freely moving on the plane, we could
generate a slope field by a mechanism which links the inclination of r to the
position of P . Such a variable inclination can be considered to define a slope
field over the plane.

This setting is not a static representation of the direction, it is a dynamic
instrumental construction of a rod that we can consider as tangent line to the
sought curve, thus defining an inverse tangent problem. However, note that we
are not yet giving any physical constraint to find orbits starting from an initial
value: at the moment we have a dynamic slope field but no means to solve it.
One can consider that there are two main classical methods to solve inverse
tangent problems, the approximate approach and the analytical one.

The former constructs approximate solution for the integration of an ordi-
nary differential equation by numerical (finite precision numbers with arithmetic
operations) or geometrical (planar constructions with ruler and compass con-
structions) tools. The Euler method is an example of this approach, the simplest
of the Runge-Kutta methods in numerical analysis.

With the analytical approach, one formulates the problem with differential
equations and tries to solve them rigorously, thereby manipulating it with tools
conceptually involving infinite processes, such as limits or series. This approach
is the one of classical analysis, from both the more geometrical Newton’s idea
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of “fluxions and fluents” and Leibniz’s more algebraic idea of “infinitesimals.”
We are interested in a third way: an instrumental approach, the one sug-

gested by the tractional constructions. It allows on the one hand to introduce
only finite tools, and on the other hand to obtain an ideally exact solution (not
an approximated one, even though subject to physical errors). That can be
solved by the introduction of a wheel in P with direction r.

Considering slope fields as the mathematical objects generated by tractional
machines (that happens if the analytical counterpart is a first-order ODE),
in the following sections 4 and 5 we are going to prove some properties about
geometrically generated slope fields (mainly: existence and unicity of solutions).
That is necessary to ensure that the machine of section 6 properly works.

4 Two finite foci

4.1 Ellipses

Assuming that we are able to physically pose tangent conditions for a certain
conic section, how can we be sure that, fixed an initial point, no other curves
share with our sought conic the same tangents? I.e., how can we ensure that the
machine solving the generated slope field does not go along any other possible
path? An example of a tractional machine with a non-unique path is visible
in [19, section 4.1]. In this section we focus on the uniqueness of ellipses: con-
cerning hyperbolas, as well as other isogonal trajectories of confocal ellipses, the
uniqueness follows from the results recalled in section 4.2.

Consider two fixed points F1 and F2, and let P be a general point in the
plane distinct from them. The bisector of the rays [PF1) and [PF2) is well
defined and so is the exterior bisector, that we assume as tangent direction in
P . Considering such tangents for any point on the plane defines a slope field:
given these tangent properties, ellipses of foci F1 and F2 are solutions of this
slope field. We have to prove their uniqueness given an initial point.

Even though it is not strictly necessary, let us introduce a coordinate system
such that F1(−1, 0) and F2(1, 0). This will simplify notations and allow us to
specify easily some points. Calling D = R2\{(−1, 0), (1, 0)}, for any point P
in D we consider the anti-clockwise angles θ1(P ), θ2(P ) formed by the x-axis
and respectively [F1P ) and [F2P ). We are interested in the inclination θ of
the external bisector of the rays [PF1) and [PF2) with any line parallel to the

x-axis. The three angles verify θ(P ) = θ1(P )+θ2(P )+π
2 .

Note that, while angles can be considered as values in the quotient space
R/2πZ, the inclination fits more properly in R/πZ. In these quotient spaces, it
is natural to respectively introduce the norms ‖x‖R/2πZ = mink∈Z |x− 2kπ| and
‖x‖R/πZ = mink∈Z |x− kπ|.

Let us introduce the following subsets of the plane for a point P in D and
an ε > 0: we call

Si(P, ε) = {Q : ‖θi(Q)− θi(P )‖R/2πZ < ε} (for i ∈ {1, 2})
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Figure 4: The anti-clockwise angles θ1, θ2 and θ are defined by the x-axis (or any
parallel line) and, respectively, the rays [F1P ), [F2P ), and the external bisector
of [PF1) and [PF2) (the dashed line). Given a positive value ε, S1(P, ε) and
S2(P, ε) are respectively the red and the blue area. Considering θ as a direction
(i.e. in R/πZ), for all the points Q in S(P, ε) = S1(P, ε) ∩ S2(P, ε), represented
in violet, θ(Q) has to differ from θ(P ) of less than ε. The disk with center P and
radius δ = sin ε ·min{F1P, F2P} is a neighbourhood of P included in S(P, ε).

the set of points Q such that the non oriented angle between the rays [FiP ) and
[FiQ) is less than ε; consider also S(P, ε) = S1(P, ε) ∩ S2(P, ε), as represented
in Figure 3. To prove the existence and unicity of the solution of a curve of
inclination θ let us introduce the following lemma.

Lemma 1. For any P ∈ D, ε > 0 and Q ∈ S(P, ε), ‖θ(Q)− θ(P )‖R/πZ < ε.

Proof. To prove that the difference of inclination of θ in Q and in P is less than
ε, we have to start from the definition S(P, ε) = S1(P, ε)∩S2(P, ε). Q ∈ Si(P, ε)
(with i ∈ {1, 2}) implies that ‖θi(Q) − θi(P )‖R/2πZ = mink∈Z |θi(Q) − θi(P ) −
2kπ| < ε. Let ki be the minimizing integer, therefore |θi(Q)−θi(P )−2kiπ| < ε.

Since θ(Q)−θ(P ) = θ1(Q)+θ2(Q)+π
2 − θ1(P )+θ2(P )+π

2 = θ1(Q)−θ1(P )
2 + θ2(Q)−θ2(P )

2 ,
it follows that |θ(Q)− θ(P )− (k1 + k2)π| < ε, i.e. ‖θ(Q)− θ(P )‖R/πZ < ε.

We can use Lemma 1 to show that [θ]R/πZ, considered as a function from D
to R/πZ, is continuous. For any P in D and any ε > 0, by elementary geometric
considerations we can observe that, as visible in Figure 4, the open disk centered
in P with radius δ = sin ε ·min{F1P, F2P} is included in S(P, ε). Therefore, for
every point Q in this disk, ‖θ(Q) − θ(P )‖R/πZ < ε: that justify the continuity
of [θ]R/πZ.

Now we want to provide two intersecting subsets covering D. Lx is meant
to be a set in which θ is quite horizontal, while in Ly θ is quite vertical.

Specifically, fixed any ε ∈]π/3, π/2[, we can consider the points P1(0,
√

(3))

and P2(0,−
√

(3)). Since P1 and P2 are on the y-axis, the bisector of their rays is
the y-axis and their exterior bisector is parallel to the x-axis, i.e. [θ(P1)]R/πZ =
[θ(P2)]R/πZ = [0]R/πZ. Let Lx be S(P1, ε)∪S(P2, ε). By construction, any point
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Figure 5: Construction step by step of Lx = S(P1, ε) ∪ S(P2, ε) and
of Ly = S(P3, ε) ∪ S(P4, ε) given an angle ε ∈]π/3, π/2[. Top strip:
S1(P1, ε), S2(P1, ε), S(P1, ε), S1(P2, ε), S2(P2, ε), S(P2, ε), Lx. Bottom strip:
S1(P3, ε), S2(P3, ε), S(P3, ε), S1(P4, ε), S2(P4, ε), S(P4, ε), Ly.

Figure 6: Lx = S(P1, ε) ∪ S(P2, ε) is the green area (light and dark) and Ly =
S(P3, ε)∪S(P4, ε) is the grey and dark green area, given an angle ε ∈]π/3, π/2[.
Note that Lx ∪ Ly covers the whole plane but the foci, and Lx ∩ Ly, the dark
green area, surrounds the rays starting from the foci with an inclination of ±π/3.

P in Lx satisfies ‖θ(P )‖R/πZ < ε, thus the inclination is granted not to be
vertical (ε < π/2).

We consider now the points P3(−2, 0) and P4(2, 0). Since P3 and P4 are
on the x-axis externally to F1F2, the exterior bisector of their rays has to stay
parallel to the y-axis; hence [θ(P3)]R/πZ = [θ(P4)]R/πZ = [π/2]R/πZ. Let Ly
be S(P3, ε) ∪ S(P4, ε). By construction, any point P in Ly satisfies ‖θ(P ) −
π/2‖R/πZ < ε, thus the inclination is granted not to be horizontal. The step-
by-step construction of Lx and Ly is visible in Figure 5.

Also observing Figure 6, we can easily note that Lx ∪ Ly covers D, and
that Lx ∩Ly contains a neighbourhood of any point (but the foci) lying on the
external rays passing through the foci with a slope of angle ±π/3 (these rays
are oriented to avoid the strip of the plane with abscissa comprised in [−1, 1]).

Hence, the slope field generated by the exterior bisector of [PF1) and [PF2)
is defined by dy/dx = tan θ in Lx and by dx/dy = cot θ in Ly. In both Lx and
Ly the differential equations are granted to have a unique solution: in these
respective domains tan θ and cot θ are well defined and continuous ([θ]R/πZ is
continuous). Furthermore, considering the definition of the domains, these func-
tions also have limited slope respectively in Lx and Ly, thus they are Lipshitz
continuous (sufficient condition for existence and uniqueness in each domain).
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Given an initial point in Lx∩Ly, the unicity on each Lx and Ly ensures unicity
on D; given an initial point outside Lx ∩ Ly, this point belongs necessarily to
either Lx or Ly and the unicity of the curve solution there allows to extend it
to Lx ∩ Ly and finally to the whole D.

Thus the defined slope field has granted the uniqueness of its solutions; since
in each point the solution has a tangent orthogonal to the bisector of the rays,
which is a characteristic property of ellipses, the only possible traces are ellipses
with foci F1 and F2.

4.2 Isogonal trajectories of ellipses

Fixed two points F1 and F2, the slope field defined by the external bisector
of the rays connecting a general point to F1 and F2 is solved by all and only
confocal ellipses according to the choice of the initial point. To trace the hy-
perbolas with foci F1 and F2, we should consider the internal bisectors instead
of the external ones: as already recalled in the tangent properties of section 2,
confocal ellipses and hyperbolas intersect orthogonally (however, note that by
constructing hyperbolas as slope field trajectories, we can trace only one of the
two branches of the curve, the one which goes through the starting point). As a
generalization, in 1850 the Italian Gaspare Mainardi [14] posed and solved the
problem of determining the oblique trajectories of a system of confocal ellipses
(in that sense, the hyperbolas are the orthogonal trajectories of the family of
confocal ellipses): some examples of such curves are shown in Figure 74. To
find out the curves intersecting every member of a given pencil of curves at
a constant angle is the problem of isogonal trajectories, a typical problem of
differential geometry. Later on, the Indian Sir Asutosh Mukherjee (sometimes
anglicized to Mookerjee) remarkably simplified Mainardi’s solution by introduc-
ing hyperbolic functions [20] (see also [25, pp. 589ff]): the system of curves,
cutting a system of confocal ellipses at a constant angle α other than right, is
given by

x = c cos(φ) cosh(n(λ+ φ)), y = c sin(φ) sinh(n(λ+ φ)),

where 2c is the distance between the foci, n is tanα and λ is an integrating
constant. These symmetrical forms have been included by A. R. Forsyth in his
very widespread textbook on differential equations [11, p. 146] as an exercise.

Considering the angle α, by Mukherjee form we can easily evince that isog-
onal trajectories are transcendental if and only if α is not a multiple of π/2,
i.e. when n is a non-zero real number. Being λ related to the initial value,
every trajectory has to be considered while keeping λ constant and varying φ.
Hence, out of the cases of ellipses and hyperbolas, for φ = 2kπ (for any integer
k), we can consider the points (c cosh(n(λ+ φ)), 0). Therefore, we have infinite
intersections between the curve (that does not contain a straight line) and the

4Images obtained using https://bluffton.edu/homepages/facstaff/nesterd/java/

slopefields.html.
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Figure 7: Isogonal trajectories of confocal ellipses (the foci are in (±1, 0)) with
the angles 0 (ellipses, top left), π/6 (top right), π/3 (bottom left), π/2 (hyper-
bolas, bottom right).
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Figure 8: Parabola defined given a finite focus F , an oriented direction λ and
passing through a point P . The external bisector h of [PF ) and [Pλ) is tangent
to the parabola.

y-axis. For Bézout’s theorem, that implies that the solution curves other than
ellipses and hyperbolas are transcendental.

To conclude this section let us consider the case F1 = F2. First of all, the
conic degenerate cases are circles (external bisector) or lines (internal bisector).
If the two foci coincide, an oblique trajectory has to keep constant the angle
between the tangent and the radial direction: therefore the sought curve is a
logarithmic spiral, and a machine drawing it behaves as an equiangular compass
[18]. From an asymptotic standpoint, far away from the foci, the behaviour of
the oblique trajectories is somehow similar to logarithmic spirals even when the
two foci do not coincide.

5 One focus at infinity

5.1 Parabolas

In the early 17th century, while conceiving some machines for conical sections,
Kepler imagined a machine for the parabola as a machine for the ellipse with a
focus at an infinite distance (cf. [10]). We intend to keep this idea and consider
parabolas as bifocal conics with one focus at infinity in an oriented direction λ
(oriented to define the side in which the parabola opens). Let us underline that,
as visible in Figure 8, the tangent at any point P of a parabola with (finite)
focus F and oriented direction λ is the exterior bisector of the angle formed by
the rays [PF ) and [Pλ), where the latter ray is parallel to and with the same
orientation of λ.

Given a fixed point F and an oriented direction λ, parabolas are trajectories
of the slope field generated considering as tangent in P the external bisector of
[PF ) and [Pλ) but, like for the ellipse in section 4.1, we want to highlight that
for every initial point (out of F ) the solution is unique. Let us introduce a system
of perpendicular coordinates with origin in F and an y-axis s.t. [Fy) = [Fλ).
Consider P and the anti-clockwise angle θ1(P ) defined by the half-line [Fx)
and [FP ) (also in this case the angle is defined in the whole plane but F ).
Note that in this case it is not necessary to consider θ2(P ) because [Pλ) is
the vertical ray passing through P , thus its slope is constant. Let θ(P ) be the
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Figure 9: Visualization of Ly = S1(P5, ε) [left], Lx = S1(P6, ε) [center] and both
[right], given an angle ε ∈]π/2, π[.

inclination of the external bisector of [PF ) and [Pλ) with any line parallel to
the x-axis, hence θ(P ) = θ1(P )/2 + π/4. Let us also introduce S1(P, ε) = {Q :
‖θ1(P )− θ1(Q)‖R/2πZ < ε}. Also in this case we introduce a lemma.

Lemma 2. For any P 6= F, ε > 0 and Q ∈ S1(P, ε), ‖θ(Q)− θ(P )‖R/πZ < ε/2 .

Proof. Q ∈ S1(P, ε) implies that exists k1 ∈ Z s.t. ‖θ1(Q) − θ1(P )‖R/2πZ =

|θ1(Q) − θ1(P ) − 2k1π| < ε. Since θ(Q) − θ(P ) = θ1(Q)−θ1(P )
2 , it follows that

|θ(Q)− θ(P )− k1π| < ε/2

Therefore, for any ε > 0, if Q lies in the disk centered in P with radius
δ = sin(2ε) · F1P , ‖θ(Q) − θ(P )‖R/πZ < ε; thus [θ]R/πZ is continuous in the
whole plane but F . To find two intersecting sets covering the domain, fixed any
angle ε ∈]π/2, π[, consider P5(0, 1) and P6(0,−1). As visible in Figure 9, we
can introduce Ly = S1(P5, ε): [θ(P )]R/πZ = [π/2]R/πZ for any point P on the
y-axis with positive ordinates and, by Lemma 2, in Ly the inclination θ differs
from θ(P5) of less then ε/2 < π/2. Similarly we can consider Lx = S1(P6, ε) :
[θ(P )]R/πZ = [0]R/πZ for any P on the y-axis with negative ordinates and in Lx
the inclination θ differs from θ(P6) of less then π/2.

Thus, for continuity and lipshitzianity in intersecting covering sets, we have
that the existence and uniqueness of the solution is granted in every point but
F . As a degenerate case, the solution starting from a point on the y-axis with
positive ordinates coincides with the positive ordinates of the y-axis.

5.2 Isogonal trajectories of parabolas

Given the family of parabolas with the same focus and axis, it is natural to ask
ourselves what are the curves intersecting such a family at a constant angle α.
Differently from section 4.2, in this case the isogonal curves obtained rotating
the exterior bisector of any fixed angle are still parabolas, as we are going to
show.

As visible in Figure 10, let us consider the fixed point F and the oriented
direction λ. For any point P different from F , by adding an angle α to the
exterior bisector h of [PF ) and [Pλ), we obtain the line hα: that defines a
slope field whose solutions are the sought isogonal trajectories. Introducing the
direction λ2α as λ rotated by an angle 2α, we can prove the following lemma.
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Figure 10: The parabola with focus F and direction λ2α, i. e. λ rotated of the
angle 2α (represented in red) solves the slope field generated by adding an angle
α to the exterior bisector h of [PF ) and [Pλ). This curve intersects at an angle
α the family of parabolas of focus F and direction λ (in blue we can see such a
parabola passing through P ).

Lemma 3. The line hα is the exterior bisector of [PF ) and [Pλ2α).

Proof. First of all, given a line s passing through a point O, consider its opposite
directions s+ and s−. Such a line s is the external bisector of [OA) and [OB)

if and only if the angle ŝ+OA is equal to ŝ−OB. Orient h and hα such that

ĥ+αPF = ĥ+PF − α, as in Figure 10. Since h is the external bisector of [PF )

and [Pλ), it holds ĥ+PF = ĥ−Pλ. For construction ̂h−αPλ2α = ̂h−Pλ2α + α =

(ĥ−Pλ− 2α) +α = ĥ−Pλ−α = ĥ+PF −α = ĥ+αPF , hence ̂h−αPλ2α = ĥ+αPF ,
i.e. hα is the exterior bisector of [PF ) and [Pλ2α).

By this lemma, it follows that the slope field defined by hα is solved by
the parabolas of focus F and direction λ2α. That means that the isogonal
trajectories of the family of confocal parabolas (with finite focus F and oriented
direction λ) are yet parabolas.

6 The new machine

6.1 The bisector mechanism

The main aim of this work is to introduce a new machine that draws conics
thanks to their tangent properties. Specifically, we need a mechanism for the
bisector of the rays connecting the tracing point and the foci (finite or at in-
finity). A simple mechanism to bisect is shown in Figure 11 (exploded view
of the model realized with Autodesk Fusion 360) and in Figure 12 (3D-printed
sample). The files necessary to print such a machine are available online at the
link https://www.thingiverse.com/thing:4006566.

Adopting the notation of Figure 11, the little gear transmits the motion
between the top and the bottom gears. Hence, any rotation of the top gear
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Figure 11: Components of the machine with gears. On the left we can note the
wheel (2) that has to be inserted (and constrained to roll) in the central cylinder
(1). On the right there is an expanded view of the geared components: the two
gears with the rods will stay on the top (3) and on the bottom (4) of the central
cylinder (1), and the little gear (5) (fixed on the hole of the central cylinder)
will transmit the motion between the top (3) and the bottom (4) gears.

Figure 12: Main mechanism: the bisector (eventually added by a constant angle)
is obtained thanks to three conical gears. The position of the little conical gear
gives the direction of the wheel that touches the plane.
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Figure 13: Components of the bisector mechanism with tyres. The rods (not
shown in the image) have to be inserted in the holes of the top (1) and bottom
(2) components. Note that a click mechanism allow them to rotate (the top will
be external to the bottom component) while keeping the wheeled-axis (3) inside.
Furthermore, two little pieces (4) are necessary to hold the O-rings (5): while
the top and the bottom components are kept together by the click mechanism,
the pressure grants (with a certain degree of precision) that the O-rings roll
without slipping on the horizontal parts of (1) and (2).

around the central cylinder causes a symmetric rotation of the bottom one
with respect to the plane of the wheel. To deepen this behavior, we name the
mechanism to be in the “0-position” when the rods are parallel, one above the
other (like lancets of a clock at noon).

If in the 0-position the rods lie on the plane of the wheel, also when they
turn around the central cylinder the wheel direction is always constrained to be
the bisector of the rods. Similarly, if in the 0-position the plane of the wheel
defines an angle α with the rods, also when the rods rotate the direction of the
wheel is the bisector rotated by α . Trivially, for the external bisector we can
consider α = π/2.

Note that, differently from machines as the spirograph, in our machine the
number of teeth is not important: the bisector can also be implemented by
two flat cylinders whose rotation is transmitted by rubber wheels, as visible in
Figure 13 and Figure 14 (however, that implies problems related to possible
slipping). Such a 3D model is available at https://www.thingiverse.com/

thing:4006702.
Fixed the passage of the rods through the foci (aim of the next section),

the wheel gives the direction of the tangent that the curve-to-be has to satisfy.
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Figure 14: A bisector machine using rubber wheels to avoid gears. The two
rubber wheels share the same axis, but they can rotate independently.

Hence, suitably adopted, our mechanism can be part of a machine drawing con-
ics and oblique trajectories. Actually, taking into account the huge difference
between machines posing direction-properties and position-properties (recall-
ing section 1, non-holonomic vs holonomic constraints), differently from the
machines of section 2 the practical use of our mechanism requires a certain at-
tention to the composition of the substrate. Indeed, to improve the resistance
to lateral forces and, in the meanwhile, to make the wheel easily mark its path,
we suggest the adoption of a foam sheet. On it, the curve appears as a furrow
carved out by the wheel.

6.2 Passage through the foci

We introduced the bisector mechanism to pose the tangent condition, but to
trace our sought curves we still need to constrain a rod to pass through a focus
(both finite and at infinity). To make a rod projection pass through a finite
focus we could use a vertical peg with a horizontal hole. If the peg can rotate
around its center (e.g. by a pin) in a point F of the plane, the passage of the rod
through the hole ensures that the projection of the rod on the plane has to pass
through F. To pin the physical peg on the plane, we should put a base in cork,
softwood or thick cardboard below the foam sheet. However, even to trace an
ellipse, to constrain foci by cylinders with holes would imply problems (assuming
the rods moving at different heights, while rotating the lowest rod can collide
with the peg of the other rod). Thus, to trace conics without rod/peg collisions,
we propose a solution allowing rods to switch foci when they are superimposed.
This solution is possible by the pegs visible in Figure 15.

The peg has two carvings: each of them allows the rod at its height to enter
and exit only from one side. Seen from above, the upper carving opens in the
opposite direction of the lower one. To allow a simple visualization, we indicate
the direction in which the rod can come in the carving by an arrow. To distin-
guish between the uppest and the lowest level (both for rods and carvings), we
color the first by blue and the latter by red. Figure 16 shows how the switching
works out, allowing to trace whole ellipses (in this case the switch repeats every
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Figure 15: Left: model of a peg for a finite focus. Center: a 3D printed peg,
including inside a drawing pin (glued in the bottom hollow). Right: bisector
mechanism with two pegs constraining the passage of the rods.

time the tracing point is aligned with the foci). While such pegs permit to
continually trace conics, such an idea does not solve in general the problem of
rod/peg collision for general isogonal curves, as visible in Figure 17.

Recalling section 5, to draw parabolas the “focus at infinity” condition im-
plies that one of the two rods has to translate. That can be easily implemented
by a hollowed cylinder that rotates without slipping on the plane while rotating
and sliding along the section of a rod. The Figure 18 shows how to use a 3D
printed cylinder around the rod that has to pass through a focus at infinity.

We can note that even the drawing of the parabola can be afflicted by prob-
lems due to the collision between the translating rod and the peg. That can be
avoided if we adopt as direction of the wheel the internal bisector: according to
the notation of section 5, in this case the ray [Pλ) will meet the focus F in no
configuration.

As a final remark, we can note that, if we have as foci two points at infinity,
it is like having two cylinders keeping the rods moving in a parallel way. In this
case, untreatable by our components because we provide a cylinder only for the
lowest rod, the angle of the wheel would be constant and the traced curve would
be a straight line.

Once introduced how to set the passage through the foci, we can finally
consider how to use the machine to trace a trajectory.

6.3 Operating instructions

Before using the machine to trace a curve, we have to suitably set some param-
eters to make the machine solve a specific slope field. Curves traceable by our
machine are defined by three settings:

1. the angle between the bisector of the rods and the direction of the wheel;

2. the foci;

3. the starting point.
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Figure 16: If properly set, with such pegs it is possible to trace continuously an
ellipse. In this sequence of images (top: simulations, bottom: photos): while
the wheel moves upward, rods switch their foci. In the first step the uppest
blue rod passes through F1 and the lowest red one through F2: in the third
step the rods inverted their foci. The switching is possible because the rods of a
certain color (i.e. at a certain height) arrive/depart from the foci according to
the direction of the arrow of the same color (i.e. with the right direction of the
carving at their own height). That can be summarized by the condition that

carvings have to be external to F̂1PF2 (both the blue arrow on the blue rod

and the red arrow on the red rod have to be external to the angle F̂1PF2).

Figure 17: Even though such pegs permit the continuous drawing of conics,
some paths cannot be continuously traced. Following the shown motion along
an isogonal to confocal ellipses (curve obtained by posing the parameters c =
1, λ = π/2, n = −1.2 in Mukherjee’s formula of section 4.2), rods can switch
the first time they overlap (second step), but not the second time (last step).
Indeed, in the last image, the red rod meets the blue arrow in F2 and vice-versa
for the blue rod on F1, thus rods can no longer change their foci and collide
with the pegs. According to the end of the caption of Figure 16, in this case the
problem arises when P passes between the foci (steps 4, 5), when the carvings

pass from external to internal to F̂1PF2.
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Figure 18: A cylinder that rotates without sliding on the plane can impose the
translation of a rod to trace parabolas. To avoid sliding, the external part of
the cylinder isn’t smooth but has many long thin teeth.

The first parameter can be easily set by superimposing the rods, i.e. putting
them in 0-position (cf. section 6.1). More precisely, we can follow the following
steps:

• the little gear is taken away, leaving the two geared rods free to rotate
around the central cylinder;

• the rods are brought to the 0-position by rotating top and bottom gears;

• the cylinder is rotated up to defining the desired angle between the super-
posed rods and the wheel direction;

• the little gear is put back on the cylinder lateral hole to keep constant the
angle between the bisector of the rods and the direction of the wheel.

To set foci we have to distinguish two cases. For a finite focus we pin a peg
of Figure 15 on the plane, while for a focus at infinity we put the cylinder of
Figure 18 around the lowest rod. If the two foci are both finite, we have to take
care of putting the rods in the carving at their heights and, according to the
caption of Figure 16, carvings have to be external to the angle defined by the
two rods to allow them to switch pegs. If a focus is at infinity, we have to put
the cylinder on the plane in the desired direction.

Let us summarize all the possibilities: with two pegs, when the wheel and
the bisector of the rods are aligned up, the upcoming curve is a hyperbola;
when wheel and bisector are perpendicular, it is an ellipse; with any other
angle between wheel and bisector, the curve is one of the isogonal trajectories
of ellipses (section 4.2). With one peg and the hollowed cylinder, the curve is
always a parabola.

Finally, to choose the initial point, we simply put the wheel on a specific
point of the foam sheet. This selects one trajectory in the slope field defined by
the first two settings (angle and foci).

Once set the machine, to produce the plot we still have to take care of several
things. Without preventing the rotation of the top gear, the user must push
the top of the cylinder both vertically (to press the wheel on the foam sheet)
and horizontally (to make the wheel move forward). While moving, the rods
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must be kept inside the pegs (or, in the case of a focus at infinity, we have to
rotate the teethed cylinder on the plane avoiding its slipping). These conditions
ensure the uniqueness of the motion. Finally, the expected curve appears as a
furrow in the foam sheet.

7 Educational fallouts

Out of introducing a new machine for conics and their isogonal curves, the aim
of this paper is to give the chance to everyone to easily (and cheaply) get its
own machine: that seems particularly interesting for educational purposes. The
use of tractional machines in education is new in today mathematical education,
even though we can imagine that it was already adopted in Italy by Giovanni
Poleni in Padua (first half of the 18th century) and Ernesto Pascal in Naples
(beginning of the 20th century). About Poleni, he was the first who proposed
the machines for the tractrix and the logarithmic curve [21] that were also built
and used in his cabinet of experimental philosophy for exhibitions and probably
in teaching.

Today, many (non-tractional) curve-drawing machines have been transposed
in the classroom for laboratory activities (e.g. [1], [15]), with also interests from
a historical and epistemological perspective. Indeed, since motion and manip-
ulation are not so widely adopted in classroom teaching, the exploration of
curve-tracing machines can offer interesting unusual standpoints to the curricu-
lar mathematical contents. According to the framework of the theory of semiotic
mediation [2], a fruitful exploration of a machine should start from a physical
manipulation and then move to a conceptual and mathematical understanding
of the artefact. The underlying cognitive theory is the embodiment, i.e. the
idea that the human understanding is shaped by aspects of the whole body and
not solely by the use of language and formalism [26], [22]. The didactical use
of mathematical machines also overcomes the boundaries of pure mathematics,
and interests intersections with fields as art or architecture [9].

About our machine, we think that it could be proposed with different pur-
poses at different levels: to high-school and university students, to math teach-
ers, to professional mathematicians. According to the level, the exploration
of the machine can also naturally lead to deepening other related topics. For
example, in physics the properties of tangents to conics [7] offers a rich con-
nection to light reflection on parabolic or elliptical mirrors, parabolic antennas
and concentrator mirrors. In projective geometry one could deepen the role of
the passage from finite foci to points at infinity, passing from the affine to the
projective plane.

As evinced by the only (at our knowledge) experimental paper on tractional
machines [16], with a complex machine it is not so spontaneous to focus on the
role played by the wheel to trace a curve given its tangent properties. Therefore,
to foster the attention on the main components, we think that for some activities
it could be more appropriate to start from a simplified tractional machine tracing
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Figure 19: Simplified machine tracing a hyperbola (left) and an ellipse (right).

Figure 20: The simplified machine seen from below. Left: the mechanism for
the bisector without the wheel (the little rods are not straight to permit a larger
opening). In the other pictures, the wheel is put to trace a hyperbola (center)
and an ellipse (right).

only ellipses and hyperbolas (see Figure 19 for the traced curves and Figure 20 to
deepen the mechanism: downloadable files are available online at https://www.
thingiverse.com/thing:4012950). Specifically, by constructing the bisector
by linkages (without gears), this machine embodies the beautiful property of
constructing curved lines starting only from straight components, in the same
spirit as the articulated-rhombus machines of section 2. Differently from the
other proposed machine, this one requires also hardware out of 3D printed
components (a metal base, magnets for the pins, sandpaper for the base of the
pins, screws and nuts, a toy-car wheel, a steel pin as axis, a spring and a chalk
to put the white pigments on the rubber of the wheel). The reader interested
in the details of the construction can contact us for further information.

8 Conclusions

In this paper, we introduced a new device to trace all the conics using the prop-
erty of their tangents according to the position of the foci (on the plane or at
infinity). Furthermore, the device can also trace transcendental curves (isogonal
trajectories of confocal conics): such a property should have been considered
really weird by 17th-century mathematicians soon after the spread of Cartesian
geometry and the related dualism between algebraic and transcendental curves.
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However, such behaviour is not new: the more recent example is probably a
tractional machine introduced in [24] and explored in [16] which, by the change
of direction of a right angle, traces a parabola or an exponential. However,
the first and more extraordinary example of a problem in which a variation
in parameters cause algebraic or transcendental curves is the late 17th-century
“Bernoulli’s problem” [4, pp. 32-43]. This is a generalization of the tractrix:
on the x-axis consider the endpoint of a cord (t, 0) whose length varies propor-
tionally to t, let’s say pt (where p is a constant). If the other endpoint of the
cord imposes the tangent condition pointing to (t, 0), we have that for rational
values of p the curve is algebraic (if p = 1 we construct circular arcs), otherwise
the solution is transcendental. A machine for such a problem was sketched by
Jakob Bernoulli.

To conclude, we hope that this work could provide a technical basis for the
widespread of tractional machines (the 3D printable files are freely available on
the site https://www.thingiverse.com/) in order to make students perceive
more concretely some mathematical contents usually considered useful but ab-
stract. As a motto, the aim is to touch the transcendence.
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