CHRISTIAN MAUDUIT Bruno Martin 
  
Christian Mauduit 
  
Joel Ël Rivat 
  
PROPRIÉTÉS LOCALES DES CHIFFRES DES NOMBRES PREMIERS

Keywords: Mathematics Subject Classification. 11A63, 11J71, 11K65, 11L20, 11N05 prime numbers, exponential sums, b-additive functions, uniform distribution modulo 1. Ce travail

come   L'archive ouverte pluridisciplinaire

Il résulte du mémoire [START_REF] Vinogradov | The method of trigonometrical sums in the theory of numbers[END_REF] de Vinogradov de 1947 (voir notes du chapitre XI de [START_REF] Vinogradov | The method of Trigonometrical Sums in the Theory of Numbers[END_REF] p.180) que pour tout β ∈ R \ Q la suite (βp) p∈P est équirépartie modulo 1. On en trouvera une preuve complète par exemple dans [START_REF] Iwaniec | Analytic number theory[END_REF] (théorème 21.3 p. 489). Le critère de Weyl (cf. [START_REF] Kuipers | Uniform distribution of sequences[END_REF] théorème 2.1 par exemple) donne la formulation équivalente suivante : pour tout

β ∈ R \ Q, x → +∞, on a (1) 
p x e(βp) = o π(x) .

Nous désignons par x , x et {x} respectivement la partie entière inférieure, supérieure et la partie fractionnaire de x. On note également x = min({x}, 1 -{x}) autrement dit, x est la distance de x au nombre entier le plus proche. Nous employons la notation e(x) = e 2iπx pour x ∈ R. Si A est un sous-ensemble d'un ensemble E, 1l A est la fonction indicatrice de A. Si f est une fonction à valeurs complexes et g une fonction à valeurs réelles strictement positives, la notation f g signifie que le rapport |f |/g est borné.

Fonctions fortement b-additives.

Rappelons que tout nombre entier n 1 possède un unique développement en base b de la forme n = j 0 ε j (n)b j , où ε j (n) ∈ C b pour tout j 0.

On dit qu'une fonction g : N → R est b-additive si pour tout (u, v, j) ∈ N 3 tel que v < b j , on a g(ub j + v) = g(ub j ) + g(v).

Si de plus pour tout (u, j) ∈ N 2 , g(ub j ) = g(u), la fonction g est dite fortement b-additive. On constate ainsi qu'une fonction g est fortement b-additive si et seulement si g(0) = 0, et pour tout n ∈ N * , g

j 0 ε j (n)b j = j 0 g(ε j (n)).
En particulier, si l'on pose pour tout k ∈ {0, . . . , b -1} et tout n ∈ N * ,

|n| k = card{0 j log b n | ε j (n) = k},
on a,

g(n) = b-1 k=1 g(k)|n| k .
Les quantités

µ g := 1 b q-1 k=0 g(k) et σ 2 g := 1 b q-1 k=0 (g(k) -µ g ) 2
interviennent dans plusieurs résultats relatifs à la distribution de la fonction g. Dans l'article [START_REF] Martin | Fonctions digitales le long des nombres premiers[END_REF] qui fait suite à [START_REF] Martin | Théorème des nombres premiers pour les fonctions digitales[END_REF] et qui généralise [START_REF] Mauduit | Sur un problème de Gelfond : la somme des chiffres des nombres premiers[END_REF], nous nous intéressons aux fonctions fortement additives de l'ensemble F + des fonctions g : N → Z fortement b-additives vérifiant la condition additionnelle

(2) pgcd g(1), . . . , g(b -1) = 1.

Pour g ∈ F + , on définit le nombre

(3) d g = pgcd (g(2) -2g(1), . . . , g(b -1) -(b -1)g [START_REF] Bassily | Distribution of the values of q-additive functions on polynomial sequences[END_REF], b -1) , appelé entier caractéristique de g. Avec cette définition, (d g , g(1)) = 1 et on a pour tout n 1, (4) g(n) ≡ g(1)n mod d g .

Exemples. 1) La fonction somme des chiffres en base b définie par

s b (n) = j 0 ε j (n),
est fortement b-additive. On a

µ s b = b -1 2 , σ 2 s b = b 2 -1 12 et d s b = q -1.
2) Pour chaque k ∈ {1, . . . , b -1}, la fonction g k : n → |n| k est fortement b-additive. On a

µ g k = 1 b , σ 2 g k = 1 b 1 - 1 b et d g k = 2 si b = 3 et k = 1, 1 sinon. 
Nous avons obtenu le résultat suivant (théorème 1 de [START_REF] Martin | Fonctions digitales le long des nombres premiers[END_REF]).

Théorème A. Soit g ∈ F + , alors il existe c g > 0 tel que pour tous x 2, (α, β) ∈ R 2 , on a p x e αg(p) + βp (log x) 3 x 1-cg dgα 2 .

La constante implicite ne dépend que de b.

1.3. Résultat principal. Soit β ∈ R et g une fonction fortement b-additive appartenant à F + . L'objet de cet article est d'estimer la somme d'exponentielles [START_REF] Drmota | Analysis of digital functions and applications[END_REF] p x g(p)=k e(βp), lorsque k est un nombre entier proche de µ g log b x. Dans [START_REF] Drmota | Primes with an Average Sum of Digits[END_REF], Drmota, Mauduit et Rivat ont évalué la somme [START_REF] Drmota | Analysis of digital functions and applications[END_REF] dans le cas particulier β = 0 et g = s b , qui correspond au cardinal de l'ensemble {p

x | s b (p) = k}. En combinant le théorème A et leur approche, il est possible d'obtenir une formule asymptotique pour la somme [START_REF] Drmota | Analysis of digital functions and applications[END_REF] dans le cas β ∈ Q et g ∈ F + avec un terme d'erreur dépendant de q si β = a/q avec (a, q) = 1. Mais leur méthode ne permet ni de traiter le cas β ∈ R \ Q, ni d'obtenir une formule uniforme en β, ce qui constitue l'objectif principal de notre travail. Nous obtenons le résultat suivant. + O π(x) (log x) 1-ε , où d g est l'entier caractéristique de g défini en [START_REF] Bourgain | Prescribing the binary digits of primes[END_REF]. La constante implicite ne dépend que de ε, b et g.

Théorème 1. Soit ε ∈]0, 1/2[, g ∈ F + . Pour tous x 2, β ∈ R, k ∈ Z, on a (6) 
Remarque 1. le théorème 1 n'est intéressant que si (k, d g ) = 1 puisque d'après [START_REF] Bourgain | Prescribing the binary digits of primes, II[END_REF], on a [START_REF] Drmota | Primes with an Average Sum of Digits[END_REF] {p x | g(p) = k} ⊆ {p x | g(1)p ≡ k mod d g }.

Remarque 2. Le fait de traiter le cas où g ∈ F + ne restreint pas la généralité. En effet, si k ∈ Z, et si g : N → Z est fortement b-additive et non nulle, l'équation g(p) = k n'admet des solutions que si D = pgcd g(1), . . . , g(b -1) divise k. Et dans ce cas cette équation est équivalente à g (p) = k avec g = g/D et k = k/D, g étant de fait un élément de F + .

1.4. Une application. En s'appuyant sur des résultats obtenus par Mauduit et Sárközy dans [START_REF] Mauduit | On the arithmetic structure of the integers whose sum of digits is fixed[END_REF], Fouvry et Mauduit étudient dans [START_REF] Fouvry | Sur les entiers dont la somme des chiffres est moyenne[END_REF] la répartition statistique des nombres entiers dont la somme des chiffres est proche de la moyenne : ils considèrent l'ensemble

E = n ∈ N * | s b (n) = µ s b log b n + B( log b n ) , où B : N → R est une fonction telle que pour tout j ∈ N, q-1 2 j + B(j) ∈ N et telle que (8) il existe K > 0 tel que pour tout n ∈ N * , |B(n)| Kn 1/4 .
Le théorème 1.1 de [START_REF] Fouvry | Sur les entiers dont la somme des chiffres est moyenne[END_REF] stipule que pour tout x 2, on a

(9) card{n x | n ∈ E} = 6 π(b 2 -1) x log b x + O x log b x ,
où la constante implicite ne dépend que de K et b. Ils établissent également le résultat suivant.

Théorème B. Pour tout β ∈ R \ Q, la suite (nβ) n∈E est équirépartie modulo 1.
Des généralisations de ces résultats sont obtenues par Mauduit [START_REF] Mauduit | Propriétés arithmétiques des substitutions et automates infinis[END_REF] et Drmota-Mauduit [START_REF] Drmota | Weyl sums over integers with affine digit restrictions[END_REF]. Le théorème 2 de [START_REF] Drmota | Weyl sums over integers with affine digit restrictions[END_REF] permet par exemple de montrer qu'étant donné g ∈ F + , pour tout β ∈ R \ Q, la suite (βn) indexée par les nombres entiers n tels que g(n) = µ g log b n est équirépartie modulo 1, ce qui découle d'ailleurs directement du théorème B dans les cas particuliers où g = s 2 et g = s 3 . Le théorème 1 permet d'établir un résultat similaire pour les nombres premiers. Fixons r ∈ N * , ( 1 , . . . , r ) ∈ C r b et j 1 < . . . < j r des nombres entiers. Lors de la démonstration du théorème 1, l'évaluation de la quantité [START_REF] Harman | Primes with preassigned digits[END_REF] F 1 ,..., r j 1 ,...,jr (x; β) :=

Corollaire 1. Soit g ∈ F + et M = {n ∈ N * | g(n) = µ g log b n }. Pour tout β ∈ R \ Q, la suite (βp) p∈M est équirépartie modulo 1.
p x ε j 1 (p)= 1 ,...,ε jr (p)= r e(βp)
joue un rôle déterminant. Lorsque β = 0, F 1 ,..., r j 1 ,...,jr (x; β) est égal au cardinal des nombres premiers n'excédant pas x dont r chiffres sont fixés. Dans [START_REF] Harman | Primes with preassigned digits. II[END_REF], Harman et Kátai ont estimé ce cardinal lorsque r = O( √ ν/ log ν) avec ν = log b x (voir également [START_REF] Wolke | Primes with preassigned digits[END_REF], [START_REF] Harman | Primes with preassigned digits[END_REF]). Bourgain a récemment obtenu un résultat quasiment optimal en montrant dans [START_REF] Bourgain | Prescribing the binary digits of primes[END_REF] et [START_REF] Bourgain | Prescribing the binary digits of primes, II[END_REF] le théorème suivant qui concerne la base 2.

Théorème C. Pour b = 2, il existe c > 0, tel que pour x = 2 ν , ν → +∞, tous nombres entiers 1 r cν, 1 j 1 < . . . < j r < ν, ( 1 , . . . , r ) ∈ {0, 1} r , on a F 1 ,..., r j 1 ,...,jr (x; 0) ∼ π(x) 2 r .

Il est naturel de conjecturer que sous les mêmes conditions, et pour β ∈ R \ Q, on a F 1 ,..., r j 1 ,...,jr (x; β) = o π(x) 2 r . Notre méthode ne permet pas de montrer un tel résultat, mais en revanche, le résultat plus faible suivant découle de nos travaux.

Théorème 2. Soit 0 < κ < ν < 1 des nombres réels, β ∈ R\Q. Pour x → +∞, on a uniformément pour tous nombres entiers r, j 1 , . . . , j r tels que 1 r

(log b x) κ , (log b x) ν j 1 < . . . < j r log b x -(log b x) ν et ( 1 , . . . , r ) ∈ C r b , (11) 
F 1 ,..., r j 1 ,...,jr (x;

β) = o π(x) b r .
Remarque 4. Nous n'avons pas cherché dans cet article à étendre la relation [START_REF] Harman | Primes with preassigned digits. II[END_REF] à toutes les valeurs admissibles de j 1 , . . . , j r ou à optimiser la valeur de r. Nous signalons par ailleurs que le théorème 1 n'est pas une conséquence du théorème 2 qui ne concerne que le cas β ∈ R \ Q : nous renvoyons au paragraphe 2 pour plus de précisions. En revanche les théorèmes 1 et 2 découlent tous deux d'une même formule asymptotique pour la quantité [START_REF] Harman | Primes with preassigned digits[END_REF], obtenue à la proposition 3.

Description de la preuve du théorème 1

L'identité [START_REF] Iwaniec | Analytic number theory[END_REF] p x g(p)=k e(βp) = R\Z p x e(αg(p) + βp) e(-kα)dα, montre que pour établir le théorème 1, il suffit de disposer d'estimations suffisamment précises de la somme [START_REF] Kàtai | On the sum of digits of primes[END_REF] p x e(αg(p) + βp).

Posons

I = dg-1 n=0 n d g -(log x) η-1/2 , n d g + (log x) η-1/2
où 0 < η < 1/2 est un nombre réel à fixer ultérieurement. La contribution à l'intégrale figurant dans [START_REF] Iwaniec | Analytic number theory[END_REF] du domaine (R/Z) \ I pourra être estimée grâce au théorème A et fournira un terme d'erreur. Pour évaluer la contribution de I et aboutir au théorème 1, il suffit d'obtenir une formule asymptotique pour la quantité (13) dans un voisinage de α = 0. C'est l'objet de la proposition suivante qui généralise la proposition 2.2 de [START_REF] Drmota | Primes with an Average Sum of Digits[END_REF]. 

Proposition 1. Soit g ∈ F + , 0 < ν < 1/3, 0 < η < ν/2. Pour tous x 2, |α| (log x) η-1/2 , β ∈ R, on a (14) 

Nous omettons les détails.

La démonstration de la proposition 1 est difficile et fait l'objet des paragraphes 3 à 10. Elle repose sur la modélisation de la suite de fonctions (n → ε j (n)) j 0 par une suite (Z j ) j 0 de variables aléatoires indépendantes suivant une loi uniforme sur {0, . . . , b -1}. Dans [START_REF] Kàtai | On the sum of digits of primes[END_REF], Kátai exploite cette idée dans le but d'étudier les moments de la fonction s b le long de la suite des nombres premiers. Dans [START_REF] Bassily | Distribution of the values of q-additive functions on polynomial sequences[END_REF], Bassily et Kátai poursuivent cette approche probabiliste et appliquent la méthode dite des moments (cf. par exemple [START_REF] Billingsley | Probability and measure[END_REF] théorème 30.2 p. 390) à une version tronquée de la fonction s b pour établir plusieurs phénomènes de convergence en loi vers une loi normale centrée réduite : ils obtiennent par exemple que pour tout y ∈ R,

lim x→+∞ 1 x card p x | s b (p) -µ s b log b x σ 2 s b log b x y = y -∞ e -t 2 √ 2π dt.
Cette approche fructueuse, maintenant connue sous le nom de méthode de Bassily-Kátai, a été approfondie au fil des ans. Dans le paragraphe §4 de [START_REF] Drmota | Primes with an Average Sum of Digits[END_REF], Drmota, Mauduit et Rivat en développent une variante qui permet d'établir le cas β = 0 de la proposition 1. La généralisation au cas β = 0 induit une difficulté nouvelle que nous décrivons plus bas et que nous traitons en introduisant de nouveaux arguments de nature probabiliste. Pour un survol détaillé des liens entre l'étude des fonctions b-additives et la théorie des probabilités, ainsi que de nombreuses références, on pourra consulter le chapitre 8.3 de [START_REF] Drmota | Analysis of digital functions and applications[END_REF]. Dans le souci d'alléger notre démonstration, nous adoptons des notations et normalisations similaires à celles de [START_REF] Drmota | Primes with an Average Sum of Digits[END_REF], ce qui nous permettra d'en extraire rapidement certaines estimations essentielles à nos calculs. En particulier nous posons maintenant et dans la suite Fixons des nombres réels η et ν tels que 0 < 2η < ν < 1/3 et commençons par remarquer que pour obtenir [START_REF] Kàtai | Distribution of digits of primes in q-ary canonical form[END_REF], il suffit d'établir la formule T (x; t, β) := p x e(βp)e it(g(p)-µgL)/(σg

√ L) = S(x; β) e -t 2 /2 1 + O |t| 3 √ L + O π(x)|t| L 1/2-ν + xe -c 1 L ν (17) uniformément pour tous x 2 et |t| 2πσ g L η .
En effet la formule ( 14) se déduit de [START_REF] Martin | Fonctions digitales le long des nombres premiers[END_REF] en effectuant le changement de variables t = 2πασ g L 1/2 . À présent, posons pour tout nombre entier n x, [START_REF] Mauduit | Propriétés arithmétiques des substitutions et automates infinis[END_REF] g ν (n) =

L ν j L-L ν g(ε j (n)) et notons (19) L = card{j ∈ N | L ν j L -L ν } = L -2L ν + O(1).
En utilisant la majoration |e is -e it | |s -t| valable pour tout (s, t) ∈ R 2 , on peut facilement obtenir (cf. démonstration du lemme 4.1 de [START_REF] Drmota | Primes with an Average Sum of Digits[END_REF] pour les détails)

T (x; t, β) = T ν (x; t, β) + O π(x)|t| (log x) 1/2-ν , avec T ν (x; t, β) = p x e(βp)e it(gν (p)-µgL )/(σg √ L ) .
De sorte qu'il nous suffit d'établir la formule asymptotique :

(20) T ν (x; t, β) = S(x; β) e -t 2 /2 1 + O |t| 3 √ L + O π(x)|t| L 1/2-ν + xe -c 1 L ν .
Dans le cas β = 0, cette formule peut être comprise et démontrée dans le cadre de la théorie des probabilités : la fonction ϕ 1 : t → T ν (x; t, 0)/π(x) correspond à la fonction caractéristique de la variable aléatoire X x : p → (g ν (p) -µ g L )/(σ g √ L ) définie sur l'espace {p x} muni de la mesure uniforme. Or, on s'attend à ce que la distribution de g ν soit bien approchée par celle de la variable aléatoire 

g ν = L ν j L-L ν g(Z j ), où (Z j ) L ν j L-L ν est
E(X d x ) = E(Y d x ) + o(1)
, afin d'en déduire la convergence en loi de X x vers une loi normale centrée réduite : c'est l'approche développée par Bassily-Kátai dans [START_REF] Bassily | Distribution of the values of q-additive functions on polynomial sequences[END_REF]. Mais cette estimation est insuffisante pour établir la formule [START_REF] Mauduit | On the arithmetic structure of the integers whose sum of digits is fixed[END_REF] dans le cas β = 0. Drmota, Mauduit et Rivat établissent ainsi une version uniforme de (21) lorsque g = s b (cf. lemme 4.6 de [START_REF] Drmota | Primes with an Average Sum of Digits[END_REF]) : il existe c > 0 tel que l'on a uniformément pour tous x 2,

1 d L , E(X d x ) = E(Y d x ) + O (4bσ -1 s b ) d L ( 1 2 +ν)d e -cL ν .
Cette version uniforme permet d'obtenir grâce à la formule de Taylor la majoration de |ϕ 1 (t)-ϕ 2 (t)| recherchée (cf. proposition 4.1 de [START_REF] Drmota | Primes with an Average Sum of Digits[END_REF]).

Dans le cas plus général où β ∈ R, l'interprétation probabiliste qui précède n'est plus valable mais sert de fil conducteur pour les calculs. Dans les lignes qui suivent, qui n'ont qu'une valeur heuristique, les quantités R j avec j ∈ {1, 2, . . .} sont à concevoir comme des termes d'erreur. Le développement de Taylor de u → e iu en 0 à un ordre D = D(x) fournit la formule

(22) T ν (x; t, β) = 0 d<D (it) d d! M d (x; β) + R 1 (x, D) où (23) M d (x; β) = p x e(βp) g ν (p) -µ g L σ g √ L d = p x
e(βp)

L ν j L-L ν g(ε j (p)) -µ g σ g √ L d .
La quantité M d (x; β)/π(x) peut être vue comme un moment pondéré de la variable aléatoire X x . En développant nous obtenons

(24) M d (x; β) = L ν j 1 ,...,j d L-L ν 1 ,..., d ∈C b w 1 . . . w d F 1 ,..., d j 1 ,...,j d (x; β), où l'on a posé w = ( -µ g )/σ g √ L et où F 1 ,.
.., r j 1 ,...,jr (x; β) est défini en [START_REF] Harman | Primes with preassigned digits[END_REF]. Quitte à réarranger la multi-somme sur j 1 , . . . , j d dans [START_REF] Vinogradov | The method of Trigonometrical Sums in the Theory of Numbers[END_REF], on peut supposer dans la suite de ce paragraphe que les uplets (j 1 , . . . , j d ) considérés satisfont à j 1 < . . . < j d . Nous approchons ensuite chaque fonction indicatrice 1l {n∈N | ε j (n)= } par une fonction lipschitzienne f ,∆ affine par morceaux et telle que 0 f ,∆ 1 , où ∆ = ∆(x) est un paramètre mesurant la précision de cette approximation et qui est choisi de manière à ce que D∆ → x→∞ 0. Il s'avère que la fonction f ,∆ admet un développement en série de Fourier absolument convergent

f ,∆ (x) = h∈Z f ,∆ (h)e(hx) où la fonction h → f ,∆ (h) est à support dans (Z \ bZ) ∪ {0} et où f ,∆ (0) = 1/b. Nous parvenons ainsi à la formule F 1 ,..., d j 1 ,...,j d (x; β) = h 1 ,...,h d ∈(Z\bZ)∪{0} f 1 ,∆ (h 1 ) . . . f d ,∆ (h d ) S x; β + h 1 b j 1 +1 + . . . + h d b j d +1 + R 2 (x, ∆, D). ( 25 
)
Lorsque β = 0, le terme correspondant à h 1 = . . . = h d = 0 dans la somme figurant dans [START_REF] Wolke | Primes with preassigned digits[END_REF] fournit un terme principal (qui vaut π

(x)/b d ). En effet, si θ = h 1 b j 1 +1 + . . . + h d b j d +1 avec l'un des h j non divisible par b, on a θ = a/q avec a ∈ Z, (a, q) = 1 et b cL ν q b L-L ν où c > 0 dépend de b.
Signalons au passage que cet encadrement de q est ce qui motive initialement le choix de g ν . La majoration (41) montre alors que la quantité S(x; θ) est négligeable. Il reste ensuite à évaluer soigneusement la contribution du terme principal à T ν (x; t, 0). Nous venons de décrire l'argument central utilisé dans [START_REF] Drmota | Primes with an Average Sum of Digits[END_REF] pour parvenir à la proposition 1 dans le cas

β = 0 et g = s b . Il pourrait être étendu au cas β ∈ Q et g ∈ F + .
Lorsque β ∈ R \ Q, ce raisonnement n'est plus valide, car on ne dispose pas de suffisamment d'informations sur les approximations diophantiennes de β

+ h 1 b j 1 +1 + . . . + h d b j d +1 .
Rien ne garantit par exemple que le terme correspondant à h 1 = . . . = h d = 0 dominera la somme figurant dans [START_REF] Wolke | Primes with preassigned digits[END_REF]. Nous procédons de la manière suivante. Pour commencer nous remarquons que nous pouvons sans dommage tronquer la série figurant dans [START_REF] Wolke | Primes with preassigned digits[END_REF] : en choisissant H = H(x) 1 tel que ∆H tende vers l'infini avec x, on parvient à

F 1 ,..., d j 1 ,...,j d (x; β) = h 1 ,...,h d ∈(Z\bZ)∪{0} -H h 1 ,...,h d H f 1 ,∆ (h 1 ) . . . f r ,∆ (h d ) S x; β + h 1 b j 1 +1 + . . . + h d b j d +1 + R 3 (x, ∆, H, D).
Il est possible de choisir H de manière à ce que HL -ν tende vers 0 lorsque x → +∞. De la sorte, pour 1

d D, L ν j 1 < . . . < j d L -L ν et h 1 , . . . , h d ∈ ((Z \ bZ) ∪ {0}) ∩ [-H, H], les nombres de la forme β + h 1 b j 1 +1 + . . . + h d b j d +1
décrivent un ensemble que nous notons Γ β , dont le diamètre tend vers 0 lorsque x tend vers l'infini. On peut montrer alors que pour x suffisamment grand, il y a au plus un de ces nombres, que l'on note β, qui est bien approché par un nombre rationnel à dénominateur « petit » et dont la contribution S(x; β) à F 1 ,..., d j 1 ,...,j d (x; β) peut être substantielle. En traitant à part la contribution de ce terme éventuel, on peut aboutir assez rapidement au théorème 2, soit pour

β ∈ R \ Q et x → +∞, (26) F 1 ,..., d j 1 ,...,j d (x; β) = o π(x) 2 d .
La proposition 1 ne résulte pas directement de la relation (26

) et la contribution à F 1 ,..., d j 1 ,...,j d (x; β) de S(x; β) doit être traitée plus finement. Introduisant m ∈ (Z \ bZ) ∪ {0} et L ν  L -L ν des nombres entiers tels que β = β + m/2 +1 , nous parvenons à F 1 ,..., d j 1 ,...,j d (x; β) = S(x; β) -H h 1 ,...,h d H β+ h 1 b j 1 +1 +...+ h d b j d +1 = β f 1 ,∆ (h 1 ) . . . f d ,∆ (h d ) + R 4 (x, H, ∆, D, ν) = S(x; β)ρ 1 ,..., d j 1 ,...,j d ( m/2 +1 , ∆) + R 5 (x, H, ∆, D, ν) où l'on a posé ρ 1 ,..., d j 1 ,...,j d ( m/2 +1 , ∆) = h 1 ,...,h d ∈(Z\bZ)∪{0} h 1 b j 1 +1 +...+ h d b j d +1 = m 2 +1 f 1 ,∆ (h 1 ) . . . f d ,∆ (h d ).
Lorsque β = β, le coefficient ρ 1 ,..., d j 1 ,...,j d ( m/2 +1 , ∆) vaut tout simplement b -d et la suite de la démonstration est essentiellement similaire au cas β = 0 traité dans [START_REF] Drmota | Primes with an Average Sum of Digits[END_REF]. Lorsque β = β, nous obtenons une représentation intégrale du coefficient ρ 1 ,..., d j 1 ,...,j d ( m/2 +1 , ∆), et cela permet, après calculs, d'approcher la contribution de β à T (x; t, β) par la quantité 

β = β + h 1 b j 1 +1 + . . . + h d b j d +1
ont toutes en commun un nombre entier s ∈ {1, . . . , d} pour lesquel j s =  (cf. deuxième assertion du lemme 7). On s'attend donc à un gain de l'ordre de log x puisque la multi-somme dans (24) sur j 1 , . . . , j d comportera une somme en moins lorsqu'il s'agira d'estimer la contribution de β. Néanmoins une majoration brutale, basée sur cette seule observation, ne conduit qu'à une estimation pire que triviale de T ν (x; t, β).

Lissage des conditions digitales

Dans ce paragraphe, nous approchons la fonction indicatrice 1l {n∈N | ε j (n)= } par une fonction continue et affine par morceaux. Nous employons la même fonction que celle employée dans [START_REF] Drmota | Primes with an Average Sum of Digits[END_REF], et déjà utilisée dans [START_REF] Kàtai | Distribution of digits of primes in q-ary canonical form[END_REF]. Pour ∆ > 0 et ∈ C b , nous posons

f ,∆ (x) = 1 ∆ ∆/2 -∆/2
1l [ /b,( +1)/b[ ({x + y})dy.

D'après la définition de f ,∆ , qui est le produit de convolution de deux fonctions indicatrices, nous avons pour tous

x ∈ R, ∈ C b , (28) 0 f ,∆ (x) 1 et b-1 =0 f ,∆ (x) = 1.
De plus on a

(29) f ,∆ (x) =    1 si x ∈ b + ∆, +1 b -∆ , 0 si x ∈ [0; 1] \ b -∆, +1 b + ∆ .
Remarque 6. Les relations (28) montrent qu'à x fixé, la suite (f ,∆ (x)) ∈C b engendre une probabilité sur C b . Ce fait s'avèrera capital dans la suite de nos calculs (cf. formule (63)).

Comme f ,∆ est lipschitzienne, elle admet un développement en série de Fourier absolument convergent. Il est donné par

(30) f ,∆ (x) = h∈Z f ,∆ (h)e(hx) avec f ,∆ (0) = 1 b et pour h = 0, f ,∆ (h) = e(-h /b) -e(-h( + 1)/b) 2iπh • sin(πh∆) πh∆ .
En particulier, (31) f ,∆ (h) = 0 pour tout nombre entier h non nul et divisible par b,

et pour tout h ∈ Z * , on a (32) | f ,∆ (h)| min 1 b , 1 π|h| , 1 ∆π 2 h 2 .
Il résulte notamment de (32) la majoration uniforme pour

∈ Z et 0 < ∆ 1, ( 33 
) h∈Z | f ,∆ (h)| 1 + log(1/∆).
Rappelons la notation L en [START_REF] Kuipers | Uniform distribution of sequences[END_REF]. Dans la suite, on se donne quatre nombres réels κ, κ 1 , ν 1 , ν tels que 0 

< κ < κ 1 < ν 1 < ν, et nous posons (34) H = H(x) = b L ν 1 et ∆ = ∆(x) = e -L κ 1 . Lemme 1. Il existe x 0 = x 0 (b, κ, κ 1 , ν 1 ) 1 tel que uniformément pour tous x x 0 , 1 r L κ , (y 1 , . . . , y r ) ∈ R r , ( 1 , . . . , r ) ∈ C r b , V une partie de Z r , on a (h 1 ,...,hr)∈V f 1 ,∆ (h 1 ) . . . f r ,∆ (h r )e(h 1 y 1 + . . . h r y r ) (35) = -H h 1 ,...,hr H (h 1 ,...,hr)∈V f 1 ,∆ (h 1 ) . . . f r ,∆ (h r )e(h 1 y 1 + . . . h r y r ) + O e -c 2 L ν 1 , avec c 2 = log(b)/2.
i |>H | f 1 ,∆ (h 1 ) . . . f r ,∆ (h r )| r(1 + log(1/∆)) r-1 h>H 1 ∆h 2 L κ (L κ 1 ) L κ (∆H) -1 e κ log L+κ 1 L κ log L+L κ 1 -L ν 1 log b , ce qui donne l'estimation attendue pour L = log b x suffisamment grand puisque ν 1 > κ 1 > κ.
La proposition suivante exprime, à un terme d'erreur près, la quantité F 1 ,..., r j 1 ,...,jr (x; β) définie en (10) comme une combinaison linéaire de sommes du type S(x; θ) définies en [START_REF] Martin | Théorème des nombres premiers pour les fonctions digitales[END_REF].

Proposition 2. Soit 0 < κ < κ 1 < ν 1 < ν < 1. Il existe x 0 = x 0 (b, κ, κ 1 , ν 1 , ν) 1 tel que uniformément pour tous x x 0 , 1 r L κ , L ν j 1 < . . . < j r L -L ν , ( 1 , . . . , r ) ∈ C r b , β ∈ R, on a (36) F 1 ,..., r j 1 ,...,jr (x; β) = -H h 1 ,...,hr H f 1 ,∆ (h 1 ) . . . f r ,∆ (h r ) S x; β + h 1 b j 1 +1 + . . . + h r b jr+1 + O xe -1 2 L κ 1 ,
où H et ∆ sont définis en (34). La constante implicite est absolue.

Démonstration. On a la décomposition F 1 ,..., r j 1 ,...,jr (x; β) -

-H h 1 ,...,hr H f 1 ,∆ (h 1 ) . . . f r ,∆ (h r ) S x; β + h 1 b j 1 +1 + . . . + h r b jr+1 = T 1 + T 2 avec T 1 = p x e(βp) 1l {n∈N | ε j 1 (n)= 1 ,...,ε jr (n)= r } (p) -f 1 ,∆ p b j 1 +1 . . . f r ,∆ p b jr+1 et T 2 = p x e(βp) f 1 ,∆ p b j 1 +1 . . . f r ,∆ p b jr+1 - -H h 1 ,...,hr H f 1 ,∆ (h 1 ) . . . f r ,∆ (h r ) e p h 1 b j 1 +1 + . . . + h r b jr+1
.

Posons

U ∆ = [0, ∆] ∪ b-1 =1 b -∆, b + ∆ ∪ [1 -∆, 1]. Comme ε j (p) = ⇔ {p/b j+1 } ∈ [ /b, ( + 1)/b[ pour tous j ∈ N et ∈ C b , on a d'après (29), T 1 p x 1l {n∈N | ε j 1 (n)= 1 ,...,ε jr (n)= r } (p) -f 1 ,∆ p b j 1 +1 . . . f r ,∆ p b jr+1 r max L ν j L-L ν card p x p b j+1 ∈ U ∆ .
Or le lemme 4.4 de [START_REF] Drmota | Primes with an Average Sum of Digits[END_REF] fournit l'estimation suivante : étant donné un nombre réel 0 < c < log(b)/3, il existe

x 1 = x 1 (c, ν) 1 tel que uniformément pour x x 1 , 0 < ∆ < 1/(2b), L ν j L -L ν , on a card p x p b j+1 ∈ U ∆ π(x) ∆ + e -cL ν .
Cela fournit la majoration

T 1 π(x)L κ e -L κ 1 + e -cL ν π(x)e -1 2 L κ 1 ,
valable pour x suffisamment grand puisque κ 1 < ν. Par ailleurs, le développement (30) et le lemme 1 appliqué avec V = Z r et y s = p/b js+1 pour tout s ∈ {1, . . . , r} entraînent directement que

T 2 π(x)e -c 2 L ν 1 .
Comme κ 1 < ν 1 , nous obtenons bien la majoration

T 1 + T 2 xe -1 2 L κ 1 souhaitée.

L'ensemble Γ β

Au vu de la proposition 2, nous sommes amenés à étudier la quantité

-H h 1 ,...,hr H f 1 ,∆ (h 1 ) . . . f r ,∆ (h r ) S x; β + h 1 b j 1 +1 + . . . + h r b jr+1 .
Comme f ,∆ (h) = 0 dès que h est non nul et divisible par b, nous en venons à considérer l'ensemble Γ β = Γ β (x, β, κ, ν 1 , ν) de tous les nombres réels de la forme

(37) β + h 1 b j 1 +1 + . . . + h r b jr+1 où 1 r
L κ est un nombre entier, h 1 , . . . , h r appartiennent à (Z \ bZ) ∪ {0} ∩ [-H, H], et j 1 , . . . , j r sont des nombres entiers tels que L ν j 1 < . . . < j r L -L ν . Notons que des nombres entiers 1 r L κ et L ν j 1 < . . . < j r L -L ν étant fixés, un élément de Γ β peut avoir une, plusieurs ou aucune représentations de la forme (37).

Lemme 2. (1) Le diamètre de l'ensemble Γ β n'excède pas 4H/b L ν +1 et, en particulier, tend vers 0 lorsque x tend vers +∞.

(2) Tout élément γ de Γ β \ {β} possède une unique écriture de la forme β

+ m b j+1 avec L ν j L -L ν et m ≡ 0 mod b. (3) Pour tous γ 1 , γ 2 ∈ Γ β , (38) γ 1 = γ 2 ⇒ |γ 1 -γ 2 | b L ν -1 x .
Démonstration.

(1) On a

h 1 b j 1 +1 + . . . + h r b jr+1 H b L ν +1 r-1 j=0 1 b j H b L ν (b -1) 2H b L ν +1 .
La deuxième partie de l'assertion vient du fait que H = b L ν 1 avec ν 1 < ν.

(2) On peut supposer que

γ = β + h 1 b j 1 +1 +. . .+ hr b jr +1 avec 1 r L κ , L ν j 1 < . . . < j r L-L ν et h r ≡ 0 mod b et cela permet d'écrire h 1 b j 1 +1 +. . .+ hr b jr +1 = (bk+h r )/b jr+1 avec k ∈ Z. L'unicité est immédiate. (3) Soient γ 1 , γ 2 ∈ Γ β tels que γ 1 = γ 2 . Si γ 1 = β ou γ 2 = β, alors |γ 1 -γ 2 | = |m|/b j+1 avec m = 0, L ν j L -L ν , et donc |γ 1 -γ 2 | b L ν -1 /x. Sinon γ 1 = β + m 1 b j 1 +1 et γ 2 = β + m 2 b j 2 +1 avec m 1 et m 2 non divisibles par b, disons L ν j 1 j 2 L -L ν , et m 1 b j 1 +1 = m 2 b j 2 +1 . Si j 1 = j 2 , alors |m 2 -m 1 | 1 et donc |γ 1 -γ 2 | 1/b j 1 +1 1/b L-L ν +1 . Si j 1 < j 2 , alors |γ 1 -γ 2 | = 1 b j 2 +1 |b j 2 -j 1 m 1 -m 2 | 1 b j 2 +1 1 b L-L ν +1 .
Nous effectuons à présent une approximation diophantienne de chaque nombre γ de Γ β . Posons

Q = 3xb -L ν +1 .
Pour x suffisamment grand, on a Q > 2 ce que nous supposerons dans la suite. D'après le théorème de Dirichlet, pour tout

γ ∈ Γ β , il existe a ∈ Z et q ∈ N * tels que q Q et |γ -a/q| 1/(qQ). Étant donné γ ∈ Γ β , nous posons (39) q γ = min{q ∈ N * | ∃a ∈ Z, |γ -a/q| 1/(qQ)}.
Le nombre entier a γ tel que |γ -

a γ /q γ | 1/(q γ Q) est unique : si a ∈ Z est tel que a = a γ et |γ -a/q γ | 1/(q γ Q), on a 1 q γ a -a γ q γ 2 q γ Q ,
ce qui entraîne Q 2, une contradiction. L'application γ → a γ /q γ est donc bien définie.

Lemme 3. Supposons Q > 2. L'application γ → a γ /q γ est injective sur Γ β .

Démonstration. D'après l'inégalité triangulaire, l'assertion (38) et le choix de Q, on a pour γ 1 = γ 2 ,

a γ 1 q γ 1 - a γ 2 q γ 2 |γ 1 -γ 2 | -γ 1 - a γ 1 q γ 1 -γ 2 - a γ 2 q γ 2 b L ν -1 x - 2 Q > 0.
Nous introduisons maintenant le paramètre réel

(40) z = z(x, ν 1 , ν) = b L ν 4H = 1 2 b (L ν -L ν 1 )/2 . Lemme 4. Supposons Q > b L ν 2.
Pour tous γ, γ ∈ Γ β tels que γ = γ , on a q γ q γ z 2 .

Démonstration. D'après le lemme 3 et la première assertion du lemme 2, on a 1

q γ q γ a γ q γ - a γ q γ γ -γ + γ - a γ q γ + γ - a γ q γ 4H b L ν +1 + 2 Q z -2 .
5. Formule asymptotique pour F 1 ,..., r j 1 ,...,jr (x; β) La suite de notre démonstration requiert une estimation classique de la somme S(x; θ), définie en [START_REF] Martin | Théorème des nombres premiers pour les fonctions digitales[END_REF], faisant intervenir les bonnes approximations diophantiennes de θ.

Lemme 5. On a uniformément pour tous

x 2, θ ∈ R, (a, q) ∈ Z × N * tels que (a, q) = 1 et |θ -a/q| 1/q 2 , (41) S(x; θ) x √ q + √ xq + x 4/5 (log x) 2 .
Démonstration. Sous les mêmes hypothèses, le théorème 13.6 de [START_REF] Iwaniec | Analytic number theory[END_REF] fournit une majoration pour la somme n x Λ(n)e(nθ) où Λ est la fonction de von Mangoldt. Une intégration par parties standard permet d'en déduire l'estimation souhaitée.

Appliquons le lemme 5 à un élément quelconque γ ∈ Γ β et à son approximation diophantienne a γ /q γ . Compte-tenu de la majoration q γ Q et du choix de Q, on a

(42) S(x; γ) x √ q γ + xQ + x 4/5 (log x) 2 x(log x) 2 1 √ q γ + e -1 2 L ν log b .
Nous introduisons en conséquence le nombre entier

(43) q = q(x, β, κ, ν 1 , ν) = min γ∈Γ β q γ .
Rappelons que l'on a posé c 1 = log(b)/8. Lemme 6. Soit 0 < κ < ν 1 < ν < 1 des nombres réels. Il existe x 0 = x 0 (b, κ, ν 1 , ν) tel que, uniformément pour tout x x 0 , on a (avec les notations (40) et (43))

• si q z, alors pour tout γ ∈ Γ β , (44) S(x; γ) xe -c 1 L ν ;

• si q < z, alors il existe un unique élément β = β(x, β, κ, ν 1 , ν) de Γ β tel que (45)

q β = q, et pour tout γ ∈ Γ β \ { β}, (46) 
S(x; γ) xe -c 1 L ν .
Les constantes implicites dans (44) et (46) sont absolues.

Remarque 7. Si β = 0, on a q = 1 et β = β.

Démonstration. On peut supposer x 0 suffisamment grand de manière à ce que pour x x 0 , on ait Q > b L ν 2. D'après (42), on a pour tout γ ∈ Γ β tel que q γ z,

(47) S(x; γ) x(log x) 2 e -1 4 (L ν -L ν 1 ) log b + e -1 2 L ν log b xe -c 1 L ν .
Cela règle le cas q z. Supposons à présent q < z et considérons γ ∈ Γ β tel que q γ = q. Si γ ∈ Γ β est tel que γ = γ, le lemme 4 montre que q γ z 2 /q γ > z > q. Cela prouve d'un part l'unicité de γ et d'autre part, compte tenu de (47), que pour tout γ = γ on a S(x; γ) xe -c 1 L ν .

Avant de poursuivre, nous introduisons quelques notations. Dans le cas où q < z et β = β, il existe, d'après la deuxième assertion du lemme 2, un unique couple de nombres entiers m = m(x, β, κ, ν

1 , ν) et  = (x, β, κ, ν 1 , ν) tels que (48) m ∈ Z \ bZ, L ν  L -L ν et β = β + m 2 +1 .
Lorsque β = β, nous posons m = 0 et  = 0. De plus, pour r ∈ N * , 0 j 1 < . . . < j r des nombres entiers, ( 1 , . . . , r ) ∈ C r b , t ∈ Q, ∆ > 0, nous introduisons la quantité (49) ρ 1 ,..., r j 1 ,...,jr (t, ∆) = Nous sommes maintenant en mesure de fournir une formule asymptotique pour F 1 ,..., r j 1 ,...,jr (x; β).

Proposition 3. Soit 0 < κ < κ 1 < ν 1 < ν < 1 des nombres réels. Il existe x 0 = x 0 (b, κ, κ 1 , ν 1 , ν) 1 tel que uniformément pour tous x x 0 , 1 r L κ , L ν j 1 < . . . < j r L -L ν , ( 1 , . . . , r ) ∈ C r b , on a (avec les notations (40) et (43)) • si q z, alors (50) F 1 ,..., r j 1 ,...,jr (x; β) xe -1 2 L κ 1 ;

• si q < z, alors (51) F 1 ,..., r j 1 ,...,jr (x; β) = S(x; β)ρ 1 ,..., r j 1 ,. 

| f ,∆ (h)| min(1/2, 1/π|h|) donnent -H h 1 ,...,hr H f 1 ,∆ (h 1 ) . . . f r ,∆ (h r )S x; β + h 1 b j 1 +1 + . . . + h r b jr+1 (52) max γ∈Γ β |S(x; γ)| -H h 1 ,...,hr H | f 1 ,∆ (h 1 ) . . . f r ,∆ (h r )| x(log H) r e -c 1 L ν x(log H) L κ e -c 1 L ν xe L κ (ν 1 log L+log log b)-c 1 L ν xe -c 1 2 L ν ,
puisque κ < ν. Pour obtenir (50), il suffit d'insérer la majoration (52) dans la formule (36) et d'invoquer le fait que κ 1 < ν.

Traitons à présent le cas q < z. Compte-tenu de (36), il suffit de prouver que l'on a 

-H h 1 ,...,hr H f 1 ,∆ (h 1 ) . . . f r ,∆ (h r ) S x; β + h 1 b j 1 +1 + . . . + h r b jr+1 = S(x; β)ρ 1 ,..., r j 1 ,...,jr ( m/2 +1 , ∆) + O(e -cL ε ), (53) avec c > 0 et ε > κ 1 . En isolant la contribution du terme β, on a -H h 1 ,...,hr H f 1 ,∆ (h 1 ) . . . f r ,∆ (h r ) S x; β + h 1 b j 1 +1 + . . . + h r b jr+1 = -H h 1 ,..

.,hr H β+

= m 2 +1 f 1 ,∆ (h 1 ) . . . f r ,∆ (h r ) + O xe -c 1 2 L ν ,
où la dernière égalité résulte de (46). Le lemme 1 appliqué avec y s = 0 pour tout s ∈ {1, . . . , r}, et V l'ensemble des r-uplets (h 1 , . . . , h r ) ∈ Z r tels que

h 1 b j 1 +1 + . . . + hr b jr +1 = m 2 +1 , fournit alors l'estimation -H h 1 ,...,hr H h 1 b j 1 +1 +...+ hr b jr +1 = m 2 +1 f 1 ,∆ (h 1 ) . . . f r ,∆ (h r ) = ρ 1 ,..., r j 1 ,...,jr ( m/2 +1 , ∆) + O(e -c 2 L ν 1 ), avec c 2 = log(b)/2.
Compte-tenu des inégalités κ 1 < ν 1 < ν, nous obtenons bien (53).

6. Formule pour ρ 1 ,..., r j 1 ,...,jr (m/2 j+1 , ∆) L'objet de ce paragraphe est de fournir une estimation pour la quantité ρ 1 ,..., r j 1 ,...,jr (m/2 j+1 , ∆) défini en (49). Pour cela, nous commençons par étudier l'équation h 1 b j 1 +1 + . . . + hr b jr +1 = m b j+1 .

Lemme 7. Soient r ∈ N * , h 1 , . . . , h r ∈ (Z \ bZ) ∪ {0}, et 0 j 1 < j 2 < . . . < j r des nombres entiers.

(1) Si

(54) h 1 b j 1 +1 + . . . + h r b jr+1 = 0, alors h 1 = . . . = h r = 0. (2) Soit m ∈ Z \ bZ, j ∈ N. Si l'on a (55) h 1 b j 1 +1 + . . . + h r b jr+1 = m b j+1
, alors il existe un unique s ∈ {1, . . . , r} tel que j s = j, et on a pour tout t > s, h t = 0.

Démonstration. (1) Il suffit de raisonner par l'absurde, de considérer le plus grand entier s tel que h s est non nul et donc non divisible par b, puis de multiplier (54) par b js+1 . On aboutit à h s ∈ bZ, une contradiction.

(2) Comme m = 0, l'ensemble {t ∈ N | 1 t r et h t = 0} est non vide, notons s son plus grand élément. Supposons par l'absurde que j < j s . On multiplie alors (55) par b js+1 et on aboutit à h s ∈ bZ et h s = 0, une contradiction. Donc j j s . On montre de même que j j s en multipliant (55) par b j+1 . Ainsi j = j s , et on a bien h t = 0 pour tout t > s.

Lemme 8. Soit ∆ > 0, r ∈ N * , 0 j 1 < j 2 < . . . < j r des nombres entiers, ( 1 , . . . , r ) ∈ C r b , m ∈ Z et j ∈ N tel que j j r . On a l'identité (56) ρ 1 ,..., r j 1 ,...,jr (m/2 j+1 , ∆) = 1 0 f 1 ,∆ (ub j-j 1 ) . . . f r-1 ,∆ (ub j-j r-1 )f r ,∆ (u)e(-mu)du.

Démonstration. D'après (49), on a ρ 1 ,..., r j 1 ,...,jr (m/2 j+1 , ∆)

= h 1 ,...,hr∈Z f 1 ,∆ (h 1 ) . . . f r ,∆ (h r ) 1 0 e u h 1 b j-j 1 + h 2 b j-j 2 + . . . + h r b j-jr -m du = 1 0 h 1 ∈Z f 1 ,∆ (h 1 )e(uh 1 b j-j 1 ) . . . hr∈Z f r ,∆ (h r )e(h r u) e(-mu)du.
L'interversion des signes et est licite puisque la série

h 1 ,...,hr∈Z f 1 ,∆ (h 1 ) . . . f r ,∆ (h r )
est absolument convergente. La relation (30) permet de conclure.

Nous sommes maintenant en mesure de fournir plusieurs formules ainsi qu'une majoration pour ρ 1 ,..., r j 1 ,...,jr (m/2 j+1 , ∆) lorsque m ∈ (Z \ bZ) ∪ {0}. Proposition 4. Soit ∆ > 0 un nombre réel, r ∈ N * , 0 j 1 < j 2 < . . . < j r des nombres entiers,

( 1 , . . . , r ) ∈ C r b , m ∈ (Z \ bZ) ∪ {0} et j ∈ N. • si m = 0, on a (57)
ρ 1 ,..., r j 1 ,...,jr (m/2 j+1 , ∆) = ρ 1 ,..., r j 1 ,...,jr (0, ∆) = 1 b r ,

• si m = 0 et j ∈ {j 1 , . . . , j r }, on a ρ 1 ,..., r j 1 ,...,jr (m/2 j+1 , ∆) = 0,

• si m = 0 et j = j s avec s ∈ {1, . . . , r}, on a (58) ρ 1 ,..., r j 1 ,...,jr (m/2 j+1 , ∆) = 1 b r-s 1 0 f 1 ,∆ (ub j-j 1 ) . . . f s-1 ,∆ (ub j-j s-1 )f s,∆ (u)e(-mu)du.

Dans tous les cas, on a (59) ρ 1 ,..., r j 1 ,...,jr (m/2 j+1 , ∆)

1 b r .
Démonstration. En vertu de la première assertion du lemme 7 et de l'identité f ,∆ (0) = 1/b, on a ρ 1 ,..., r j 1 ,...,jr (0, ∆) =

h 1 ,...,hr∈Z h 1 b j 1 +1 +...+ hr b jr +1 =0 f 1 ,∆ (h 1 ) . . . f r ,∆ (h r ) = f 1 ,∆ (0) . . . f r ,∆ (0) = 1 b r .
Traitons maintenant le cas où m = 0. Le cas j ∈ {j 1 , . . . , j r } est une conséquence directe de la deuxième assertion du lemme 7. Supposons à présent que j s = j avec s ∈ {1, . . . , r}, et considérons h 1 , . . . , h r des éléments de (Z \ bZ) ∪ {0} tels que

h 1 b j 1 +1 + . . . + h s b js+1 + . . . + h r b jr+1 = m b j+1 .
Toujours d'après la deuxième assertion du lemme 7, on a h s+1 = . . . = h r = 0 et donc

h 1 b j 1 +1 + . . . + h s b js+1 = m b j+1 . Cela conduit directement à ρ 1 ,..., r j 1 ,...,jr (m/2 j+1 , ∆) = h 1 ,...,hr∈Z h 1 b j 1 +1 +...+ hr b jr +1 = m b j+1 f 1 ,∆ (h 1 ) . . . f r ,∆ (h r ) = f s+1 ,∆ (0) . . . f r ,∆ (0) h 1 ,...,hs∈Z h 1 b j 1 +1 +...+ hs b js+1 = m b js+1 f 1 ,∆ (h 1 ) . . . f s,∆ (h s ) = 1 b r-s ρ 1 ,..., s j 1 ,...,js (m/2 js+1 , ∆).
La formule (58) découle donc de (56) apppliqué avec r = s, j = j s . En ce qui concerne la majoration (59), seul le cas m = 0 et j ∈ {j 1 , . . . , j r } n'est pas immédiat. D'après l'identité (58), nous avons ρ 1 ,..., r j 1 ,...,jr (m/2 j+1 , ∆)

1 b r-s 1 0 f 1 ,∆ (ub j-j 1 ) . . . f s-1 ,∆ (ub j-j s-1 )f s,∆ (u)du = 1 b r-s ρ 1 ,..., s j 1 ,.
..,js (0, ∆) = 1 b r , où l'on a successivement utilisé le fait que f ,∆ 0, l'identité (56) avec r = s et m = 0, puis l'identité (57).

Intermède : démonstration du théorème 2

Soit 0 < κ < ν < 1. Nous voulons montrer que lorsque x → +∞, on a uniformément pour

1 r L κ , L ν j 1 < . . . < j r L -L ν , ( 1 , . . . , r ) ∈ C r b , β ∈ R \ Q, (60) F 1 ,..., r j 1 ,...,jr (x; β) = o π(x) 2 r .
Soit κ 1 et ν 1 des nombres réels tels que 0 < κ < κ 1 < ν 1 < ν < 1. Remarquons que l'on a pour tout c > 0,

xe -cL κ 1 b r π(x) b L κ (log x)e -cL κ 1 e L κ log b+log log x-cL κ 1 e -c 2 L κ 1 , puisque κ 1 > κ, de sorte que (61) xe -cL κ 1 = o π(x) b r .
Nous appliquons à présent la proposition 3. Dans le cas où q z, la relation (61) suffit à établir (60). Dans le cas q < z, on a F 1 ,..., r j 1 ,...,jr (x; β) S(x; β)ρ 1 ,..., r j 1 ,...,jr ( m/2 +1 , ∆) + o π(x) b r . La majoration (59) fournit alors Comme le diamètre de Γ β tend vers 0 lorsque x tend vers +∞ (cf. première assertion du lemme 2), il suffit d'employer le résultat suivant qui est un raffinement de [START_REF] Bassily | Distribution of the values of q-additive functions on polynomial sequences[END_REF].

Lemme 9. Soit β ∈ R \ Q, v : [2, +∞[→ R une application telle que lim x→+∞ v(x) = β. On a pour x → +∞, p x e(pv(x)) = o(π(x)).
Démonstration. Pour x 2, et un certain B > 0, posons Q x = x/(log x) B . D'après le théorème de Dirichlet, il existe (a x , q x ) ∈ Z 2 tels que (a x , q x ) = 1, 1 q x Q x et |v(x) -a x /q x | 1/q x Q x . En reprenant la démonstration du théorème 21.3 p. 489 de [START_REF] Iwaniec | Analytic number theory[END_REF], on peut établir l'existence de C > 2 tel que

p x e(pv(x)) π(x) ϕ(q x ) + x (log x) C .
Comme lim x→+∞ a x /q x = β et que β est irrationnel, on a lim x→+∞ q x = +∞. On en déduit le résultat.

Évaluation de

M d (x; β) Soit x 2 et 0 < κ < κ 1 < ν 1 < ν < 1 des nombres réels.
Rappelons les définitions de g ν et L respectivement en [START_REF] Mauduit | Propriétés arithmétiques des substitutions et automates infinis[END_REF] et [START_REF] Mauduit | Sur un problème de Gelfond : la somme des chiffres des nombres premiers[END_REF]. Dans ce paragraphe nous établissons pour tout nombre entier 1 d L κ et tout β ∈ R une formule asymptotique pour la quantité

M d (x; β) = p x e(βp) g ν (p) -µ g L σ g √ L d .
Dans le paragraphe 4, nous avons introduit un paramètre z = z(x, ν 1 , ν) et un nombre entier q = q(x, β, κ, ν 1 , ν), puis distingué les cas q < z et q z afin d'évaluer F 1 ,..., r j 1 ,...,jr (x; β). Dans le cas q < z, cette évaluation fait intervenir le nombre β ∈ Γ β défini en (45).

Lorsque β = β, nous évaluons M d (x; β) comme dans [START_REF] Drmota | Primes with an Average Sum of Digits[END_REF] en faisant intervenir le moment d'ordre d d'une variable aléatoire Y modélisant (g ν -µ g L )/σ g √ L et définie de la manière suivante. Il existe un espace de probabilité (Ω, A, P) sur lequel est définie une suite de variables aléatoires indépendantes (Z j ) L ν j L-L ν , à valeurs dans C b et toutes de loi uniforme sur

C b = {0, . . . , b -1}. Nous posons alors (62) Y = L ν j L-L ν g(Z j ) -µ g σ g √ L .
Nous procédons différemment lorsque β = β. Dans ce cas, nous avons introduit en (48) les nombres entiers m et  tels que β = β + m/2 +1 . Fixons u ∈ [0, 1]. Rappelons qu'en vertu de (28), pour tout y ∈ R, la suite (f ,∆ (y)) ∈C b engendre une mesure de probabilité sur C b . Il existe donc un espace de probabilité (Ω u , A u , P u ) et une suite de variables aléatoires indépendantes (Z

(u) j ) L ν j L-L ν définie sur Ω u et à valeurs dans C b et dont la loi est donnée par (63) pour tous nombres entiers L ν j , ∈ C b , P u (Z (u) j = ) = f ,∆ (ub -j ), et (64) 
pour tous nombres entiers

 < j L -L ν , ∈ C b , P u (Z (u) j = ) = 1 b .

Nous introduisons alors les variables aléatoires

(65)

Y u = L ν j L-L ν g(Z (u) j ) -µ g σ g √ L et Y u = Y u - g(Z (u)  ) -µ g σ g √ L .
Dans la suite, si une variable aléatoire X définie sur Ω u (resp. sur Ω) admet un moment d'ordre 1, nous désignons par E u (X) (resp. E(X)) son espérance.

Proposition 5. Soit g ∈ F + et 0 < κ < κ 1 < ν 1 < ν < 1 des nombres réels. Il existe x 0 = x 0 (g, κ, κ 1 , ν 1 , ν) 1 tel que uniformément pour tous x x 0 , β ∈ R, 1 d L κ , on a (avec les notations définies en (43), (40) et (45))

(66) 

M d (x; β) = K d (x; β) + O xe -1 4 L κ 1 , avec (67) 
K d (x; β) =      0 si q z, S(x, β)E(Y d ) si q < z et β = β, S(x; β) 1 0 e(-mu) E u Y d u -E u Y u d du si q < z et β = β,
L ν j L-L ν g(ε j (p)) -µ g σ g √ L d = p x e(βp) d r=1 L ν j 1 <...<jr L-L ν d 1 ,...,dr 1 d 1 +...+dr=d d d 1 , . . . , d r g(ε j 1 (p)) -µ g σ g √ L d 1 . . . g(ε jr (p)) -µ g σ g √ L dr .
En intervertissant les sommations puis en sommant sur les différentes valeurs prises par les chiffres ε j (p), nous aboutissons à l'expression

M d (x; β) = d r=1 L ν j 1 <...<jr L-L ν d 1 ,...,dr 1 d 1 +...+dr=d d d 1 , . . . , d r 1 ,..., r ∈C b g( 1 ) -µ g σ g √ L d 1 . . . g( r ) -µ g σ g √ L dr F 1 ,.
.., r j 1 ,...,jr (x; β), où F 1 ,..., r j 1 ,...,jr (x; β) est défini en [START_REF] Harman | Primes with preassigned digits[END_REF]. Nous appliquons la proposition 3. Dans le calcul qui suit nous utilisons la notation

(69) |||g||| = max ∈C b |g( )|.
La contribution à M d (x; β) du majorant de (50) et du terme d'erreur de (51) est

x 2|||g||| σ g d e -1 2 L κ 1 (L ) -d/2 d r=1 L ν j 1 <...<jr L-L ν d 1 ,...,dr 1 d 1 +...+dr=d d d 1 , . . . , d r b r x 2b|||g||| σ g d e -1 2 L κ 1 (L ) -d/2 L ν j L-L ν 1 d x 2b|||g||| σ g d L d/2 e -1 2 L κ 1 xe -1 2 L κ 1 + 1 2 L κ (log(L)+2 log(2b|||g|||/σg)) xe -1 4 L κ 1 , puisque κ < κ 1 .
Cela règle le cas q z, et dans le cas q < z, on a ainsi

M d (x; β) = S(x; β)N d + O xe -1 4 L κ 1 avec N d = d r=1 L ν j 1 <...<jr L-L ν d 1 ,...,dr 1 d 1 +...+dr=d d d 1 , . . . , d r ( 1 ,..., r )∈C r b g( 1 ) -µ g σ g √ L d 1 . . . g( r ) -µ g σ g √ L dr ρ 1 ,..., r j 1 ,...,jr ( m/2 +1 , ∆).
Commençons par traiter le cas β = β. Dans ce cas m = 0, et d'après la proposition 4, on a ρ 1 ,..., r j 1 ,...,jr ( m/2 +1 , ∆) = b -r . On remarque alors que

N d = d r=1 L ν j 1 <...<jr L-L ν d 1 ,...,dr 1 d 1 +...+dr=d d d 1 , . . . , d r r k=1 E g(Z j k ) -µ g σ g √ L d k = E d r=1 L ν j 1 <...<jr L-L ν d 1 ,...,dr 1 d 1 +...+dr=d d d 1 , . . . , d r r k=1 g(Z j k ) -µ g σ g √ L d k = E(Y d ),
où l'on a utilisé l'indépendance mutuelle des variables (Z j ) L ν j L-L ν . Traitons pour finir le cas β = β. D'après la proposition 4 appliquée avec m = m et j = , on a

N d = 1 0 e(-mu) d r=1 r s=1 L ν j 1 <...<jr L-L ν js=  d 1 ,...,dr 1 d 1 +...+dr=d d d 1 , . . . , d r s k=1 ∈C b f ,∆ (ub -j k ) g( ) -µ g σ g √ L d k • r k=s+1 ∈C b 1 b g( ) -µ g σ g √ L d k du.
Compte-tenu de la loi des variables aléatoires

Z (u) j (cf. (63) et (64)) et de leur indépendance mutuelle à u ∈ [0, 1] fixé, nous remarquons que s k=1 ∈C b f ,∆ (ub -j k ) g( ) -µ g σ g √ L d k • r k=s+1 ∈C b 1 b g( ) -µ g σ g √ L d k = r k=1 E u g(Z (u) j k ) -µ g σ g √ L d k = E u r k=1 g(Z (u) j k ) -µ g σ g √ L d k .
Nous invoquons ensuite l'identité [START_REF] Mauduit | Sur un problème de Gelfond : la somme des chiffres des nombres premiers[END_REF]. Les variables aléatoires Z j sont indépendantes et suivent une loi uniforme sur C b , on a donc

j k ) -µ g σ g √ L d k du = 1 0 e(-mu)E u L ν j L-L ν g(Z (u) j ) -µ g σ g √ L d - L ν j L-L ν j =  g(Z (u) j ) -µ g σ g √ L d du = 1 0 e(-mu) E u Y d u -E u Y u d du.
Démonstration. On a Y = L ν j L-L ν (Z j -µ g )/(σ 2 g √ L ) où L = card{j ∈ N | L ν j L -L ν } a été défini en
E exp v L ν j L-L ν Z j = E(e vZ L ν ) L = 1 + 1 k<b e vg(k) q L .
Un calcul asymptotique standard montre qu'avec la notation (69), on a uniformément pour |v||||g||| 1, 

(71) E exp v L ν j L-L ν Z j = exp L vµ g + v 2 σ 2 g /2 + O(|v| 3 |||g||| 3 ) . Soit w ∈ C tel que |w| L 1/6 et posons v = w/(σ g √ L ).
Y = L ν j L-L ν j =  g(Z j ) -µ g σ g √ L .
Lemme 11. Soit (X j ) 1 j n une famille de variables aléatoires définies sur un espace de probabilité (Ω, A, P), à valeurs dans un ensemble au plus dénombrable K inclus dans R et admettant des moments de tout ordre. On se donne pour tout u 1, une famille (X (u) j ) 1 j n une famille de variables aléatoires définies sur un espace de probabilité (Ω u , A u , P u ), à valeurs dans K et admettant des moments de tout ordre. On pose

X = 1 j n X j et X (u) = 1 j n X (u) j .
Si pour tous d 1, (j 1 , . . . , j d ) ∈ {1, . . . , n} d , (k 1 , . . . , k d ) ∈ K d , on a (72)

1 0 P u (X (u) j 1 = k 1 , . . . , X (u) j d = k d )du = P(X j 1 = k 1 , . . . , X j d = k d ) alors on a pour tout d 1 1 0 E u (X (u) ) d du = E(X d ).
Démonstration. En développant (X (u) ) d et X d , on constate qu'il suffit de montrer que pour tous d 1, (j 1 , . . . , j d ) ∈ {1, . . . , n} d , on a

1 0 E u X (u) j 1 . . . X (u) j d du = E X j 1 . . . X j d ,
ce qui est une conséquence immédiate de (72).

Lemme 12. Pour tout d 1, on a (73)

1 0 E u (Y d u )du = E(Y d ) et 1 0 E u ( Y u d )du = E( Y d ).
Démonstration. Pour démontrer la première identité, nous appliquons le lemme 11 avec n = L ,

X j = Z j+ L ν -1 -µgL σg √ L et X (u) j = Z (u) j+ L ν -1 -µgL σg √ L
. Comme les variables Z j sont indépendantes ainsi que les variables Z (u) j pour tout u 1, il suffit pour établir (72) de montrer que pour tous d 1,

L ν j 1 < . . . < j d L -L ν et (k 1 , . . . , k d ) ∈ C d b , on a 1 0 P u (Z (u) 
j 1 = k 1 ) . . . P u (Z (u) 
j d = k d )du = 1 b d .
Soit s le plus grand nombre entier de {1, . . . , d} tel que j s . On a On a donc pour |t| 2πσ g L η ,

t D D! E(Y D ) |t|e (η-κ/2)D log(L)+D/2+(D-1) log(2πσg) |t|e -c 3 L κ log L . Pour obtenir la majoration t D D! E( Y D ) |t|e -c 3 L κ log L , il suffit d'utiliser l'inégalité de Minkowski E( Y D ) 1/D E((Y -Y ) D ) 1/D + E(Y D ) 1/D , puis d'appliquer (75) et la majoration |Y -Y | 2|||g|||L -1/2 σ -1
g , où |||g||| est défini en (69). La formule de Stirling donne alors

t D D! E((Y -Y ) D ) 1/D |t|e -κ-η 2 L κ log L |t|e -c 3 L κ log L .

Preuve de la proposition 1

Nous établissons dans ce paragraphe la formule [START_REF] Kàtai | Distribution of digits of primes in q-ary canonical form[END_REF]. Nous fixons donc des nombres η et ν tels que 0 < 2η < ν < 1/3, Rappelons les définitions de g ν et L respectivement en [START_REF] Mauduit | Propriétés arithmétiques des substitutions et automates infinis[END_REF] et [START_REF] Mauduit | Sur un problème de Gelfond : la somme des chiffres des nombres premiers[END_REF]. Nous avons remarqué au début du paragraphe 2 que pour obtenir [START_REF] Kàtai | Distribution of digits of primes in q-ary canonical form[END_REF], il est suffisant d'établir la formule T ν (x; t, β) := p x e(βp)e it(gν (p)-µgL )/(σg

√ L ) = S(x; β) e -t 2 /2 1 + O |t| 3 √ L + O π(x)|t| L 1/2-ν + xe -c 1 L ν , uniformément pour x 2 et |t| 2πσ g L η . Les majorations |T ν (x; t, β)| π(x) et |S(x; β)| π(x)
montrent que quitte à augmenter la valeur des constantes implicites, nous pouvons supposer dans la suite x suffisamment grand. Nous posons κ = (2η + ν)/2, κ 1 = (3κ + ν)/4 et ν 1 = (κ + 3ν)/4 de sorte que 0 < 2η < κ < κ 1 < ν 1 < ν.

1. Signalons qu'un calcul plus approfondi donne la formule

E(Y D ) D! = D -D/2 e D/2 (πD) -1/2 1 + O D 3 √ L ,
dont la précision n'est ici pas requise. [START_REF] Vinogradov | The method of trigonometrical sums in the theory of numbers[END_REF]. Pour estimer t D M D (x; 0)/D! nous pouvons utiliser la proposition 5 en remarquant que lorsque β = 0, on a q = 1 et β = β = 0 2 . Cela donne

(it) d d! M d (x; β) + O   t D D! p x g ν (p) -µ g L σ g √ L D   = S(x; β) + 1 d<D (it) d d! M d (x; β) + O t D D! M D (x; 0) , où M d (x; β) est défini en
t D D! M D (x; 0) π(x) t D D! E(Y D ) + t D D! xe -1 4 L κ 1 |t|xe -c 3 L κ log L + |t|xe -1 8 L κ 1 |t|xe -c 3 L κ log L ,
où la deuxième majoration vient du lemme 13. Nous avons par conséquent

T (x; t, β) = S(x; β) + 1 d<D (it) d d! M d (x; β) + O π(x)|t| (log x) 1/2-ν .
Appliquons la proposition 5. La contribution à 1 d<D 

(it) d d! M d (x; β) du terme d'erreur de (66) est xe -1 4 L κ 1 1 d<D |t| d |t|xL ηD e -1 4 L κ 1 |t|xe -1 4 L κ 1 +ηL κ log L+κ log L |t|xe -1 8 L κ 1 , puisque |t| L η et κ 1 > κ. Nous avons donc T (x; t, β) = S(x; β) + 1 d<D (it) d d! K d (x; β) + O π(x)|t| (log x)
(it) d d! K d (x; β) (77) = S(x; β) e -t 2 /2 1 + O |t| 3 √ L + O π(x)|t| (log x) 1/2-ν + xe -c 1 L ν .
Au vu de la définition de K d (x; β) nous distinguons trois cas.

Premier cas : q z

On a alors K d (x; β) = 0 pour tout 1 d L κ . On a donc, d'après l'inégalité triangulaire,

S(x; β) + 1 d<D (it) d d! K d (x; β) -S(x; β) e -t 2 /2 1 + O |t| 3 √ L |S(x; β)| xe -c 1 L ν ,
où la deuxième majoration est fournie par (44). L'estimation (77) est bien vérifiée.

2. Une autre possibilité est d'employer le lemme 4.6 de [START_REF] Drmota | Primes with an Average Sum of Digits[END_REF].

Deuxième cas

: q < z et β = β Dans ce cas on a K d (x; β) = S(x; β)E(Y d ) et donc S(x; β) + 1 d<D (it) d d! K d (x; β) = S(x; β) 0 d<D (it) d d! E(Y d ) = S(x; β)E 0 d<D (it) d d! Y d = S(x; β)E(e itY ) + O π(x) t D Y D D! ,
où nous avons utilisé le développement de Taylor (76). Nous utilisons alors le lemme 10 avec w = it (notons que |t| 2πσ g L η L 1/6 pour x suffisamment grand puisque η < ν/2 < 1/6) ainsi que le lemme 13. Nous obtenons

S(x; β) + 1 d<D (it) d d! K d (x; β) = S(x; β) e -t 2 /2 1 + O |t| 3 √ L + O π(x)|t|e -c 3 L κ .
Cela donne bien la formule (77).

Troisième cas : q < z et β = β

Dans ce cas on a K d (x; β) = S(x; β)

1 0 e(-mu) E u Y d u -E u Y u d du, et donc 1 d<D (it) d d! K d (x; β) = S(x; β) 1 d<D (it) d d! 1 0 e(-mu) E u (Y d u ) -E u ( Y u d ) du = S(x; β) 1 0 e(-mu)E u 1 d<D (it) d d! Y d u - 1 d<D (it) d d! Y u d du = S(x; β) 1 0 e(-mu)E u e itYu -e it Yu + O t D D! Y D u + Y u D du = S(x; β) 1 0 e(-mu)E u e itYu -e it Yu du + O π(x) t D D! 1 0 E u (Y D u ) + E u ( Y u D ) du .
Le lemme 12 puis le lemme 13 fournissent alors

1 d<D (it) d d! K d (x; β) = S(x; β) 1 0 e(-mu)E u e itYu -e it Yu du + O π(x) t D D! E(Y D ) + E( Y D ) = S(x; β) 1 0 e(-mu)E u e itYu -e it Yu du + O |t|π(x)e -c 3 L κ .
En vertu de l'inégalité |e ix -e iy | |x -y| pour (x, y) ∈ R 2 , on a pour tout u ∈ [0, 1],

E u e itYu -e it Yu |t|E u (|Y u -Y u |) = |t|E u |g(Z (u)  ) -µ g | σ g √ L 2|t| • |||g||| σ g √ L . (it) d d! K d (x; β) |t|π(x) √ L + |t|π(x)e -c 3 L κ |t|π(x) √ L .
De plus, d'après (46), comme β = β, on a S(x; β) xe -c 1 L ν . L'inégalité triangulaire donne ainsi trivialement pour |t| 2πσ g L η L 1/6 : S(x; β) + Les calculs qui suivent sont similaires à ceux menés pp. 287-288 dans [START_REF] Drmota | Primes with an Average Sum of Digits[END_REF]. Nous rappelons la définition de l'entier caractéristique d g en (3). On a d'après (4), 

Démonstration.

Il suffit de reprendre les calculs menés dans la démonstration du théorème 1.2 de [START_REF] Drmota | Primes with an Average Sum of Digits[END_REF] et d'appliquer le théorème 1 avec β = 0. Nous omettons les détails.

Remarque 8. La démonstration du théorème 1.2 de [START_REF] Drmota | Primes with an Average Sum of Digits[END_REF] comporte deux coquilles : -p. 290, l. 12, la sommation sur 0 j < {(µ q log q x)/(q -1)}(q -1) doit être remplacée par une sommation sur 0 j < {(µ q log q x)/(q -1)}(q -1) ; -p. 290, l. 17, la sommation sur 0 j < (q -1){t} doit être remplacée par une sommation sur 0 j < (q -1){t} . 

1 . Introduction 1 . 1 .

 111 Rappels et notations. Dans cet article b est un nombre entier supérieur ou égal à 2 et p désigne systématiquement un nombre premier tandis que P désigne l'ensemble des nombres premiers. On note C b = {0, . . . , b -1} et log b la fonction logarithme en base b. Pour x ∈ R, π(x) désigne le nombre de nombres premiers n'excédant pas x. Le théorème des nombres premiers stipule que l'on a pour x → +∞, π(x) ∼ x log x .

  p≡k mod dg e(βp) exp -(k -µ g log b x) 2 2σ 2 g log b x

Remarque 3 .

 3 Les nombres premiers étant trivialement mal répartis dans les progressions arithmétiques, le théorème B ne peut pas être directement transposé à la suite des nombres premiers. Par exemple, si l'on considère la fonction g = s 3 et la fonction B : N → R définie par B(2j) = 0 et B(2j + 1) = 1 pour tout j ∈ N, l'ensemble des nombres premiers p tels que s 3 (p) = µ s 3 log 3 p + B( log 3 p ) = log 3 p + B( log 3 p ) est vide car s 3 (p) ≡ p mod 2. 1.5. Nombres premiers dont certains chiffres sont fixés.

  (p) + βp) = p x e(βp) e(αµ g log b x) e -2π 2 α 2 σ 2 g log b x 1 + O(|α| 3 log x + O π(x)|α|(log x) ν + xe -c 1 (log b x) ν , avec c 1 = (log b)/8. Les constantes implicites ne dépendent que de ν, η et g. Remarque 5. Le théorème A et à la proposition 1, combinés à l'estimation (1), permettent d'établir rapidement que pour g ∈ F + , β ∈ R \ Q, x → +∞, on a la relation asymptotique sup α∈R/Z p x e(αg(p) + βp) = o π(x) .

( 15 )

 15 L = L(x) = log b x.De plus, nous utiliserons de manière systématique la notation suivante : pour θ ∈ R,

E

  u (e it(Yu-Yu) )e(-mu)du où, pour tout u 1, Y u et Y u sont des variables aléatoires définies sur un espace Ω u , et dont les lois sont fonctions de u et seront explicitées ultérieurement. Une majoration simple de la variable Y u -Y u permet alors de montrer que la quantité (27) est uniformément |t|π(x)/ √ log x ce qui est suffisant pour conclure. Sans rentrer ici dans le détail des définitions de Y u et Y u , disons que l'on peut interpréter cette majoration de Y u -Y u comme le reflet du fait suivant : lorsque β = β, pour d fixé, les différentes représentations de β sous la forme

h 1 ,...,hr∈Z h 1 b j 1

 111 +1 +...+ hr b jr +1 =t f 1 ,∆ (h 1 ) . . . f r ,∆ (h r ), qui est la somme d'une série absolument convergente d'après (32).

h 1 b j 1 1 b j 1 1 b j 1 1 b j 1

 11111111 +1 +...+ hr b jr +1 = β + -H h 1 ,...,hr H β+ h +1 +...+ hr b jr +1 = β = S(x; β) -H h 1 ,...,hr H β+ h +1 +...+ hr b jr +1 = β f 1 ,∆ (h 1 ) . . . f r ,∆ (h r ) + O (log H) r max γ∈Γ β \{ β} |S(x; γ)| = S(x; β) -H h 1 ,...,hr H h +1 +...+ hr b jr +1

F 1 ,

 1 ..., r j 1 ,...,jr (x; β) S(x; β) b r + o π(x) b r . Pour conclure, il suffit donc de montrer que pour x → +∞, S(x; β) = o π(x) .

1

 1 où les variables aléatoires Y , Y u et Y u ont été définies en (62) et (65). La constante implicite dans (66) est absolue. Démonstration. Nous commençons par appliquer la formule du multinôme de Newton sous la forme suivante : pour n ∈ N * , (z 1 , . . . , z n ) ∈ C n et d ∈ N * , on a (68) j 1 <...<jr n d 1 ,...,dr 1 d 1 +...+dr=d d d 1 , . . . , d r z d 1 j 1 . . . z dr jr , où d d 1 ,...,dr = d! d 1 !...dr! est le coefficient binomial généralisé. Nous obtenons ainsi que pour tout d 1, M d (x; β) = p x e(βp)

,

  ν j 1 <...<jr L-L ν js=i d 1 ,...,dr 1 d 1 +...+dr=d d d 1 , . . . , d r x d 1 j 1 . . . x dr jr = L ν j L-L ν valable pour tout nombre entier i ∈ [L ν , L -L ν ] et tout (x 1 , . . . , x n ) ∈ C n . Nous obtenons ainsi

9 .

 9 Estimations concernant les variables aléatoires Y , Y u , Y u Dans ce paragraphe, nous donnons plusieurs estimations concernant la loi et les moments des variables aléatoires Y , Y u et Y u définies en (62) et (65). Pour commencer, nous donnons un développement asymptotique de E(e wY ) pour w ∈ C au voisinage de w = 0. Le cas particulier où g = s b fait l'objet du lemme 4.2 de [7]. Lemme 10. Soit g ∈ F + et 0 < ν < 1 un nombre réel. Il existe x 0 = x 0 (ν, g) tel que uniformément pour x x 0 , w ∈ C tel que |w| L 1/6 , on a (70) E e wY = e w 2 /2 1 + O |w| 3 √ L , où la constante implicite ne dépend que de b et g.

  Pour x suffisamment grand, on a |v||||g||| 1, et (71) donne E(e wY ) = exp bien (70). Les deux lemmes qui suivent montrent qu'en moyenne sur u ∈ [0, 1], pour tout d 1, le moment d'ordre d de Y u coïncide avec celui de Y , tandis que le moment d'ordre d de Y u coïncide avec celui de la variable aléatoire Y définie sur Ω par

j 1 = k 1 )f 1 Lemme 13 .ED 2

 111132 . . . P u (Z ,∆ (ub -j 1 ) . . . f s,∆ (ub -js )du = 1 b d-s ρ 1 ,..., s j 1 ,...,js (0, ∆)= 1 b d ,où l'on a utilisé les identités (56) et (57). La deuxième identité de (73) se démontre de même.Dans la suite, étant donné κ > 0, nous introduisons le nombre entier pair(74) D = D(x, κ) = max{n ∈ 2N * | n L κ }.Pour conclure ce paragraphe, nous donnons une majoration des moments d'ordre D de Y et Y . Soit g ∈ F + et η, κ des nombres réels tels que 0 < 2η < κ < 1/3. Il existe x 0 = x 0 (η, κ, g) tel que uniformément pour x x 0 , |t| 2πσ g L η , on a (avec la notation (74D ) |t|e -c 3 L κ log L , avec c 3 = 1 2 (κ/2 -η) > 0.La constante implicite ne dépend que de b et g. Démonstration. L'estimation (75) t D D! E(Y D ) |t|e -c 3 L κ log L peut se déduire de la formule de Cauchy et de l'estimation (70) : puisque D L κ avec κ > 1/3, on a cos(2θ) dθ D -D/2 e D/2 .

11 .

 11 d (x; β) -S(x; β) e -t 2 /2 1 + O |t| 3 Démonstration du théorème 1

1 = 2 e-µ g log b x) 2 2σ 2 g 12 .Proposition 6 .

 122126 Soit n ∈ {0, . . . , d g -1} et 0 < η < 1/2. Nous avons (79) J(β, n, d g ) = J 1 + J 2 , avec J |α| (log x) η-1/le théorème A, on a (80) J 2 (log x)3 xe -cgd 2 g (log x) 2η π(x) log x .La proposition 1 appliqué avec β = β+ng(1)/d g fournit une formule asymptotique pour J 1 uniforme en n et d g . On ax) η-1/2 e α(µ g log b x -k) e -2π 2 α 2 σ 2 g log b x dα (81) + O π(x)(log x) |α| (log x) η-1/2 |α| 3 dα + π(x)(log x) ν |α| (log x) η-1/2 |α|dα + xe -c 1 (log b x) ν (log x) η-1/2 .L'intégrale en (81) se calcule en effectuant le changement de variablesu = 2πσ g α(log b x) 1/2 puis en utilisant la formule classique R e iau-u 2 /2 du = √ 2πe -a 2 /2 , valable pour tout a ∈ R. Nous obtenons (82) J 1 = p x e (β + ng(1)/d g )p 2πσ 2 g log b x exp -(k -µ g log b x) 2 2σ 2 g log b x + O π(x) (log x) 1-4η + π(x) (log x) 1-2η-ν .Nous posons alors ν = 2ε/3 et η = ε/6 pour 0 < ε < 1/2 donné. Nous obtenons, compte-tenu de (79), (80) et (82), l'estimation uniforme pour n ∈ {0, . . . , d g -1},J(β, n, d g ) log b x + O π(x) (log x) 1-ε .En insérant cette identité dans (78), et en remarquant que l'on a dg-1 n=0 e g(1)p -k d g n = d g si g(1)p ≡ k mod d g , 0 sinon, nous parvenons bien à (6). Démonstration du corollaire 1 Le théorème 1.2 de [7] fournit une formule asymptotique pour card{p x | s b (p) = µ b log b p }. Nous commençons ce paragraphe en généralisant ce résultat à toute fonction g∈ F + . Soit ε ∈]0; 1/2[ et g ∈ F + . On a pour tout x suffisamment grand, (83) card{p x | g(p) = µ g log b p } = Q µ g d g log b x x (log b x) 3/2 1 + O((log x) -1 2 +ε ) ,où d g est l'entier caractéristique de g défini en (3), et où Q est la fonction 1-périodique et strictement positive définie sur R par Q(t) = c si µ g = 0, et parQ(t) = c C b -{t}dg/|µg| b dg/|µg| -1 + q -{t}dg/|µg| 0 j< dg{t} (j,dg)=1 b j/|µg| (b 1/|µg| -1) + 1 -b -{dgt}/|µg|si µ g = 0, avec c = d g ϕ(d g ) log b 2πσ 2 g et C = 0 j<dg (j,dg)=1 b j/|µg| (b 1/|µg| -1), où ϕ est la fonction indicatrice d'Euler. La constante implicite dans (83) ne dépend que de ε, b et g.

  Notons que la fonction Q admet un minimum strictement positif. Par conséquent, pour démontrer le corollaire 1, il suffit, d'après le critère de Weyl, d'établir que pour tout β ∈ R \ Q et x → +∞, on a (84) p x g(p)= µg log b p e(pβ) = o x (log x) 3/2 . Fixons β ∈ R \ Q et rappelons la notation S(x; β) en (16). Remarquons que pour u ∈ Z, on a Donc d'après la relation (1), on a uniformément pour u ∈ Z et x → +∞, p x p≡u mod dg e(βp) = o(π(x)). Le théorème 1 permet alors de montrer que l'on a uniformément pour y → +∞, k ∈ Z tel que |k -µ g log b y| 1 et (k, d g ) = 1, (85) V k (y) := p<y g(p)=k e(pβ) = o y (log y) 3/2 .Cette relation subsiste trivialement lorsque (k, d g ) > 1 (cf. (7)). Nous sommes maintenant en mesure d'établir (84). Si µ g = 0, cela découle directement de (85). Si µ g > 0, nous avons pour tout x 2, p<x g(p)= µg log b p e(pβ) = 0 m< µg log b x V m (b (m+1)/µg ) -V m (b m/µg ) + V µg log b x (x) -V µg log b x (b µg log b x /µg ). Nous déduisons directement de (85) la majoration p x g(p)= µg log b p e(pβ) 1 m µg log b x +1 o b m/µg m 3/2 = o m µg log b x +1 b m/µg m 3/2 ,

  une suite de variables aléatoires indépendantes définies sur un espace de probabilité (Ω, A, P), à valeurs dans C b et de loi uniforme sur C b . Posons alors Y x = (g ν -µ g L )/(σ g √ L ) et notons ϕ 2 sa fonction caractéristique. En comparant les moments de X x et Y x , on peut établir que ϕ 1 est bien approchée par ϕ 2 sous réserve que |t| L η . On utilise enfin le fait classique que ϕ 2 est bien approchée par la fonction caractéristique de la loi normale centrée réduite t → e -t 2 /2 . Plus précisément, la méthode des moments préconise stricto sensu d'établir que pour chaque nombre entier d 1 fixé, on a, lorsque x → +∞,

	(21)

  Nous introduisons également le nombre entier pair D = D(x, κ) défini en (74). Pour évaluer T ν (x; t, β), nous employons le développement de Taylor

	(76)	e iu =	0 d<D	(iu) d d!	+ O	|u| D D!	,
	valable uniformément pour u ∈ R. Nous obtenons, puisque D est pair,
	T ν (x; t, β) = S(x; β) +						
		1 d<D				

  1/2-ν , où K d (x; β) est défini en (67). Pour conclure, il suffit donc d'établir la formule asymptotique

	S(x; β)+
	1 d<D

où la dernière égalité découle du théorème de Cesàro (cf. par exemple [START_REF] Pólya | Problems and theorems in analysis. I[END_REF], problem 70 p. 16). L'estimation standard (voir lemme 2.3 de [START_REF] Fouvry | Sur les entiers dont la somme des chiffres est moyenne[END_REF] par exemple)

donne alors bien (84). La démonstration est identique lorsque µ g < 0 en partant cette fois de l'identité 
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