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Abstract:

Taking into account uncertainties is a key issue in nuclear power plant safety analysis using best estimate
plus uncertainty methodologies. It involves two main types of treatment depending on the variables of
interest: input parameters or system response quantity. The OECD/NEA PREMIUM project devoted to
the first type of variables has shown that inverse methods for input uncertainty quantification can exhibit
strong user-effect. One of the main reasons was the lack of a clear guidance to perform a reliable
analysis. This work is precisely devoted to the development of a first good practice guidance document
for quantification of thermal-hydraulic code model input uncertainty. The developments have been done
in the framework of the OECD/NEA SAPIUM project (January 2017-September 2019). This paper
provides a summary of the main project outcome. Recommendations and open issues for future
developments are also given.
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1. Introduction

Assessment of uncertainties associated with Best-Estimate (BE) calculations has become a key issue in the
so-called Best-Estimate Plus Uncertainty (BEPU) nuclear safety analyses. The question of input uncertainty
forward propagation (i.e. the uncertainties on input parameters previously determined are propagated
through the simulation model (SM) to estimate uncertainties on System Response Quantities (SRQs)) has
been already addressed by several OECD/NEA projects (OECD/NEA, 1998; OECD/NEA, 2011). While it
appeared that associated output uncertainty quantification methods have now become mature for industrial
applications, it was also emphasized that a special attention should be devoted to the input uncertainty
quantification (IUQ) on the physical models.

This paper is related to this last topic and more precisely to model input uncertainty quantification based on
inverse propagation (IP) of the information associated to the discrepancy between simulation results and
experimental data, using verified and validated simulation models. It concerns the development of a new
systematic step by step approach for transparent and rigorous model IUQ. The construction has been
performed in the framework of the SAPIUM project (Baccou et al., 2018) exploiting the lesson learned from
the PREMIUM activity (Mendizabal et al., 2017) (a previous OECD/NEA benchmark devoted to TUQ) and
a first investigation (Baccou et al., 2017) that led to the identification of five key generic elements that
should structure the systematic approach.

This type of development has been proposed in order to minimize (or at least allow to understand) the user
effect identified in previous projects. Moreover, by clearly compiling the different approaches as well as
the methodological tools to handle each step, the SAPIUM framework offers a shared understanding about
"appropriate" practices for model input uncertainty quantification in order to improve the reliability of the
BEPU analysis and to progress on the validity of extrapolation of its results to the NPP case. Therefore,
the main outcome of this work is a first good practice guidance document that can be exploited for safety
study to increase the agreement among experts on recommended practices as well as on remaining open
issues for further developments. The field of applications mainly concerns thermal-hydraulic model but
the generic procedure as well as some of the described tools can be used for other types of models.

The paper is organized as follows. Section 2 is devoted to a summary of the good practice guidance

document. Recommendations are then formulated in Section 3 to ensure a reliable model IUQ. Finally, we
identify in Section 4 remaining key open issues that can be tackled in future developments.

2. Description of the systematic approach

2.1. Elements and major steps of the systematic approach

The good practice guidance is structured following 5 elements (Figure 1).
Figure 1. Elements of the SAPIUM approach.
In this systematic approach, Element 1 (specification) is common to any kinds of nuclear safety analysis

studies. Elements 2 (experimental database) and 3 (simulation model) provide the information for the
model input uncertainty quantification and validation. Interactions between them (depicted by the two-sided



arrow on Figure 1) are required for their construction. Element 1 might also require using simulation model
and sensitivity analysis tools (to confirm a PIRT (Phenomena Identification and Ranking Table) for
example) addressed in Element 3. Since model IUQ methods are based on the comparison between
simulation model results and experimental values, Elements 2 and 3 are crucial for their development. They
will control the reliability of the final model input uncertainties and the capability of the method to
extrapolate the results to real situations. Element 4 consists in inferring, from the comparison between
simulation model calculations and experimental values, the information related to model input
uncertainties. Finally, the validation performed in Element 5 is based on the propagation of all input
uncertainties (integrating the quantified model input uncertainties obtained in Element 4) through the
simulation model. It also exploits the experimental database identified in Element 2. This last element is
interacting with Element 4 (depicted by the two-sided arrow on Figure 1) and might be used in a iteration
process with Elements 2 to 4 (as indicated by the blue arrow) in case of non-acceptable validation results.

For efficient applications, each element is further split in different steps that are summarized in the
following sections.

2.2. Element 1 - specification of the problem and requirements

As part of the BEPU methodology, the quantification of model input uncertainty should start with a clear
and concise specification of the problem. It consists in the identification and definition of the SRQs and
important (or key) physical phenomena for the intended applications, which are the first steps of the
BEPU methodology for transient and accident analyses (IAEA, 2009; USNRC, 1989; USNRC, 2005),
such as those included in the final safety analysis report (FSAR) (USNRC, 1978). This element provides
recommendations and good practices for specifying the model input uncertainty quantification and
validation problem in the following three steps (Figure 2).

Figure 2. Steps of Element 1.

2.2.1. Step 1 - Specification of the model IUQ purpose

In this Step, the type of nuclear power plant (NPP) and the transient or accident scenario of interest are
first specified. Specification of the model IUQ objective is important because any given NPP type or
transient scenario may be analyzed for different reasons. The specification influences the whole process of
simulation model development, assessment, and specific analysis for each specific transient scenario.

The application domain or the applicability of the model IUQ is transient scenario-dependent because the
dominant safety parameters and acceptance criteria differ from one scenario to another. Therefore, the
transient scenario determines also the key phenomena and input uncertainties that must be quantified and
validated. However, a complete scenario definition is NPP type (e.g., PWRs, BWRs, or CANDU) specific
or sometimes even plant specific, because the dominant physical phenomena and their interactions differ
in various reactor design or specific plant configuration.

It is thus recommended to start the specifications according to the transient classification as documented in
the FSAR of the targeted NPP (USNRC, 1978), or in case of new plant design, to specify the application
domain for the newly identified transient scenarios. In order to reduce the model TUQ efforts for a
simulation model for a specific application, it is recommended to group different transient scenarios into a
category of transients with common SRQs, and to make a generic model IUQ and validation for that class
of transients.



2.2.2. Step 2 - Selection of system responses quantities

The selection of the SRQs should be made according to the objective of the model IUQ study. For model
IUQ purpose, the chosen SRQs should be the parameters that are directly and accurately measured in the
experiments. In most cases, this selection is straightforward, as they are directly related to the safety or
design parameters in the acceptance criteria as specified in the applicable rules, guides, design codes or
standards for the transient scenario of interest.

In nuclear power plant FSAR (USNRC, 1978), the acceptance criteria for the events of interest are defined
in terms of quantitative fuel and reactor system design limits, such as reactor coolant system pressure or
temperature limits, departure from nucleate boiling ratio limits, cladding or fuel temperature limits, etc.
(ANSI, 1973, 1988). Thus, for FSAR accident analysis, SRQs are generally synonymous with criteria
directly associated with the regulations, and their selection is usually a simple matter.

During simulation model development and assessment, a surrogate variable (i.e. a replacement of the SRQ
by another measurable or predictable variable) may be of values in evaluating the importance of
phenomena and processes. In such a case, justification for using a surrogate SRQ should be provided. In
line with the surrogate SRQ, it is also important to consider other related performance measures in
conjunction with the principle objectives. Because compensating errors in the simulation model can
unintentionally lead to correct answers, additional performance measures serve as physical tracking points
and additional proof of accuracy.

2.2.3. Step 3 - Identification of important phenomena (PIRT)

The involved physical phenomena for the concerned reactor components and systems and the transient or
accident scenario of interest are then identified. Since many physical phenomena and input parameters
may be involved in any thermal hydraulic analysis, and they are not modelled in a simulation model (or
computer code) at the same level of fidelity, it may be impractical to quantify the uncertainty for each
phenomenon and each input parameter. Therefore, it is essential to rank the importance of the involved
physical phenomena or input parameters.

The behavior of a specific plant and scenario is not equally influenced by all the processes and phenomena
that occur during a transient period. The most cost-effective but sufficient analysis reduces all potential
phenomena to a manageable set by identifying and prioritizing phenomena according to their influence on
the SRQs (Aksan et al., 2018). Each phase of the transient scenario and the system components are
investigated separately. The processes and phenomena associated with each component are examined. The
cause and the effect are differentiated. Once the processes and phenomena are identified, they are ranked
according to their impact on the relevant SRQs, mostly based on the expert judgement. The main product
of the process described above is the so-called Phenomena Identification and Ranking Table (PIRT)
(Diamond, 2006; Wilson and Boyack, 1998). The formality and complexity of this process should be
coherent with the complexity and importance of the scenario and component under consideration. In order
to avoid the subjectivity of the expert judgement, some quantitative PIRT techniques (Luo et al., 2010;
Martin, 2011; Yurko and Jacopo, 2012) could be used to confirm the importance of the identified
phenomena, based on Global Sensitivity Analysis (GSA).

The development and assessment of a simulation model, including the model IUQ activities, should be
based on a credible PIRT. The PIRT should be used to determine requirements for physical model or
methodology development, scalability, validation, and sensitivity studies. In the end, the PIRT is used to
guide any uncertainty analysis or to assess the overall adequacy of the evaluation model.



2.3. Element 2 - development and assessment of the experimental database

The objective of Element 2 is the construction of an adequate experimental database for the problem
specified in Element 1. The construction of the experimental database relies on an efficient selection
procedure of suitable experiments and associated tests from a large available database that can come from
the test matrices used for thermal-hydraulic codes verification and validation. In order to answer these
issues, the three following steps (4-6) are identified in the SAPIUM approach (Figure 3).

Figure 3. Steps of Element 2.

2.3.1. Step 4 - Establishment of a list of the available experiments and standardized description of each
experiment

The experiments in nuclear thermal-hydraulics are usually split into several categories: basic tests,
Separate-Effect Tests (SETs), Combined Effect Tests (CETs), and Integral-Effect Tests (IETs). SETs deal
usually with one phenomenon whereas IETs are designed to investigate the overall system behaviors and
the related phenomena and processes. Combined Effect Tests (CETs) are also identified with several
interacted phenomena. These tests usually represent several components of a reactor but not the whole
system, as the IETs. It may have a lower capability to give information on models than SETs and a lower
capability to simulate all system effects but it may address coupled (combined) phenomena in a
prototypical geometry (Mascari et al., 2015).

One possible strategy is to perform the quantification of the input uncertainty of physical models
independently from the reactor transient scenario,. However, such strategy is practically impossible to
address all possible situations with a unique set of model uncertainties without being systematically over-
conservative. In practice, a scenario-dependent experimental database should be built according to the
important phenomena from a PIRT, as suggested in Element 1. It has to be specified at the very beginning
how detailed the subdivision of the experimental data base is necessary: parts of transient, different
geometry or locations in the facility, presence of specific phenomena. It has to be checked if there are
enough experimental data and if variations in the code of each uncertain parameter can be easily realized.

In order to help at selecting an experiment, a proposal of the standardized description of a test is given in
the SAPIUM guide. It provides information on the type of the test: covered phenomena, experimental
conditions, instrumentation, available measurements, and so on, which can be used as criteria for the
selection. Experimental uncertainties, due for example to inherent limitations of the measurement
technique or space and time resolution of the measurement, are one of the criteria to retain in a database.
The experimental uncertainties of relevant measurements should be evaluated and provided.

2.3.2. Step 5 - Assessment of the adequacy of the database

The adequacy of the chosen experiment database must be assessed for the intended application. The
adequacy of an experimental database includes two main properties that should be checked in the analysis.
The first one is related to the ability of an experiment to provide relevant information for model input
uncertainty quantification and validation. It is called representativeness. The second one concerns the
ability of a set of experiments to fulfill the whole specifications of the problem under study e.g. cover the
physical space of interest. It is referred as completeness.

The CSNI Code Validation Matrix (CCVM) of SETs and IETs for LOCA application and transients in
LWRs gives a part of methodologies for the assessment of representativeness of an experiment and of
completeness of an experimental database (Aksan et al., 1994; Annuziato et al., 1996).



The representativeness assessment first relies on the introduction of objective criteria to characterize the
different tests of an experiment from the detailed description and with respect to the scenario. In the
framework of model IUQ, priority for representativeness characterization should be given to: the
phenomena-separable nature of the experiment, the quality of the experimental data, the agreement
between experimental and case study conditions with a focus on the geometry and the Boundary and
Initial Conditions, the capability of the experiment to address different simulation scales (CFD,
component-scale, system scale). In practice, all the previous priorities are not always reachable. It is the
case when there are only combined effect tests in the experimental database and no separated effect tests
available. This problem was investigated within PREMIUM project and the answer comes from the
development and application methodologies suitable for quantification of model input uncertainties on the
basis of CETs (Skorek, 2017). Once criteria have been defined, representativeness evaluation can then be
handled by exploiting Multi-Criteria Decision Making (MCDM) outranking approaches (see (Baccou et
al., 2018) for an illustration) or Analytical Hierarchical Process (AHP) (Saaty, 1982) in order to
objectively and automatically rank experiments.

Regarding the estimation of the completeness of the experimental database, criteria for assessing the
maturity level of various issues within the V&V UQ procedure for nuclear licensing have been already
proposed under the terminology Predictive Maturity Indexes (PMI) (Hemez et al., 2010). What emerges is
that high level of maturity could contribute to prove the completeness of a database. However, since this
SAPIUM element is restricted to the experimental database and not to the whole quantification process,
the existing works on PMI need to be adapted. The ratio between the convex hull areas of the validation
and application domains as well as the spatial distribution of the experiments within the validation
domain can be relevant criteria to be taken into account in the construction of this index. Further
discussions are provided in the SAPIUM report.

2.3.3.  Step 6 - Selection of the experimental database for the model input uncertainty quantification and
validation

The last step of Element 2 concerns the selection of the experimental database for the model input
uncertainty quantification and the validation taking into account the adequacy assessment (Element 2, step
5). A classical strategy is application of SETs for quantification of model input uncertainties and
validation of quantified model input uncertainties on the basis of IETs. The CETs were used in the past
rather for validation than for quantification of model input uncertainties. This was mainly due to the fact
that quantification of model input uncertainties on the basis of CETs, when several phenomena occurs
simultaneously and several models input uncertainties have to be quantified in the same procedure, is a
difficult task. However, with increasing accuracy of uncertainty analysis and improving methodologies,
CETs are more and more used also for model input uncertainties quantification (Skorek, 2017). For some
particular phenomena there are many tests (e.g. critical discharge), so the SETs can be applied for
quantification as well as for validation. The usual situation is that for validation only IETs are applied. In
the case of limited number of available experiments, the splitting of experimental data base is not useful.
All the available experiments (including CETs and IETs) should be considered by quantification. The
validation step can be performed by application of cross-validation procedure.

2.4. Element 3 - selection and assessment of the simulation model

The simulation model (SM) should be developed such as to adequately predict the SRQs for the transients
or accidents of interest for the test facility (or the plant) from Element 2, and the key input parameters
should be identified based on their importance to the modelling of the scenario and their impact on the
SRQs for the simulation model calculation. The physical models included in the simulation model and



their degree of fidelity in predicting physical phenomena must be consistent with the results of the PIRT
process in Element 1. This Element 3 consists in the following 3 steps (Figure 4).

Figure 4. Steps of Element 3.

2.4.1. Step 7 - Selection of code based on capability assessment

The code for safety analysis should be chosen based on the investigated transient after a PIRT has
identified the important phenomena for the given scenario and plant (see Element 1). The code
applicability is determined based on the code user manuals,: the code’s formulation, model, and
correlations are reviewed to assess if the code has the model/correlations needed to simulate the important
phenomena, and if the code has scale-up capability. It is recognized that while the formulation may be
general, the correlations or constitutive relationships are empirical. The code’s scalability will depend on
these correlations and the underlying tests. If the tests scale the plant for the phenomena of interest, then
correlation is applicable. However, if correlation was derived from tests that do not scale the plant, the
code may not scale up the plant. Code validation with scaled tests or counterpart tests is another way of
assessing code’s ability for up-scaling and applicability to power plant (full) scale The analyses in
following steps are addressed mainly to the system thermal-hydraulics codes such as RELAPS, TRACE,
CATHARE2 (Petruzzi and D’ Auria, 2008).

2.4.2. Step 8 - Development and assessment of applicability of the simulation model
2.4.2.1. Development of simulation model for all the tests of the experimental database

While the computer code and the uncertainty analysis methodology are the key elements of a BEPU
approach, the nodalization strategy and model options used to simulate the test facility or plant, i.e., the
simulation model, is also very important, as they connect the code with the physical system to be
simulated. It is acknowledged as similar to any physical models or correlations in the code: i.e. system
nodalization presents an inherent code uncertainty and like code models and correlations, quantification of
nodalization-based code uncertainty is deemed to be equally important to quantify model accuracy and
uncertainty.

For application to nuclear reactor safety relevant issues, i.e. FSAR Chapter 15 transient analyses, two
broad groups of nodalizations shall be distinguished when applying a BE code-nodalization to the analysis
of nuclear reactor safety relevant issues. They are briefly recalled in the sequel and fully described in the
SAPIUM report:

a) The code focus is a component or a ‘simple’ system having parameters directly recognized by the
code structure (no, or limited user interpretation is needed): in this case the effort requested to the code
user is to implement the system or the component properties (typically geometric and thermodynamic)
into the nodalization with limited or no need for engineering judgment;

b) The code has a modular nature and the system to be modeled is complex. In this case, expertise is
requested to the user ‘to make readable’ the system peculiarities to the code. This is achieved throughout
the nodalization whose development does require engineering judgment.

The distinction between categories a) and b) is relevant to the present framework. In the first category, the
nodalization can be presumed as embedded into the code architecture and the code validation implies also
the validation of the nodalization approach. In the second category, the system nodalization is developed
by dividing the real plant/facility component volumes into a set of control volumes that are essentially
stream-tubes having inlet and outlet flow path connections. Subdivision of such a complex system can be



done in a number of ways but for a successful solution in the case of the analysis, a number of factors
must be satisfied: numerical stability, run time, and spatial convergence. In addition, engineering
judgment is normally used to a wide extent to develop the system nodalization.

Experience with code assessment case studies and International Standard Problems have shown that the
nodalization structure is subjected to the ‘code user-effect’ to quite a large extent and the nodalization
itself constitutes an “independent” computational tool which shall undergo through an assessment of
applicability. The importance of establishing a procedure for the nodalization set-up and the assessment of
its applicability as part of the Evaluation Model (EM) (Petruzzi et al., 2019) is a consequence of the above
mentioned complexity and subjectivity of the process.

2.4.2.2. Assessment of Applicability of the Simulation Model

The process for assessing the applicability of the SM has the goal to demonstrate that the SM calculation
results - obtained by the application of the best estimate code with the nodalization developed following
the standard nodalization rules and techniques - constitute a realistic approximation of the reference
behavior of a test facility (Petruzzi et al., 2019; Petruzzi and D’Auria, 2016; D’Auria et al., 1995) . The
process should take into account the effect of many different sources of approximations:
e The data of the reference test facility available to the code-user are typically non exhaustive to
reproduce a perfect nodalization of the reference test facility;
e The code-user derives, from the available data, an approximated nodalization-schematization of
the facility reducing the level of details of the simulated hardware;
e The code capability to reproduce the hardware, the systems (test facility or plant) and the
actuation logic of the systems further reduce the level of detail of the nodalization-schematization.

The development of the process for assessing the applicability of the SM should include:
e the establishment of necessary requirements for the different aspects above mentioned, and
e the determination of whether or not those requirements are met by the SM for all selected
experiments in the database.

The goal is to develop and obtain a qualified SM considering the comparison with the hardware data, the
BIC and the time trends of relevant quantities. The process should distinguish at least between three main
sub-steps:

1) demonstration of the geometrical fidelity of the nodalization,

2) demonstration of the achievement of the steady state, qualitative transient analysis and

3) quantitative accuracy evaluation.

Criteria for selecting relevant quantities in each of the above three sub-steps should be defined as well as
the definition of the assessment applicability requirements. If any requirement in any of the three sub-
steps is not fulfilled, the process of assessment of applicability of the SM is not passed and the main
elements of the SM should be improved. A new process should be then applied in full, i.e. all three sub-
steps, to the modified SM. It should be also emphasized that the three-steps process for assessing the
applicability of the SM apply to all tests of the experimental database used for the input uncertainty
quantification and validation and if the process fails for any of the test, the SM should be modified and
improved and a new process should be applied to the modified SM for all tests of the experimental
database.

2.4.2.3. Construction and verification of consistency indicators (accuracy code/experiment) and definition
of a scale of accuracy for qualification of the simulation model



A consistency indicator is the basis for comparing responses from experimental data with simulation
model predictions. The primary consideration for establishing a consistency indicator should be what the
model must predict in conjunction with what types of data available from the experiment. Additionally,
the indicators should provide a measure of agreement that also includes estimates of the numerical and
experimental errors (Leonardi et al., 1994; Cacuci, 2019).

The SAPIUM report provides the description of different types of indicators as well as the requirements
for their construction. The values of these indicators are then compared to selected thresholds-values
requirements.

In carrying-out the assessment of adequacy of the SM, a range of tests (with different boundary and initial
conditions and at different scale) should be employed to demonstrate that the SM has not been tuned to a
single test. For integral behavior assessment, counterpart tests (similar scenarios and transient conditions)
in different experimental facilities at different scales should be selected. Assessments using such tests lead
to information concerning scale effects on the models used for a particular SM.

2.4.3. Step 9 - Selection of important uncertain input parameters by sensitivity analysis

The models of complex physical systems, like the BE SM for conducting the safety analysis of NPP, are
law-driven models characterized by the presence of balance equations and several correlations. As a
consequence, those models are customarily over-parametrized (e.g. thousands of input parameters are
needed to build a typical SM for NPP), as they may include more relevant laws than the amount of
available data would support for the validation. For the same reason, those models may have also a greater
capacity to describe the system under unobserved circumstances (outside the ranges of derivation of the
correlations — see the list of ‘sources of uncertainty’ — i.e. outside the validation domain), even though the
crucial question stays on the uncertainty of those predictions respect to the reality.

When focusing on the selection of input parameters, it is important to make a clear distinction between
'important' parameters as those whose uncertainty contributes substantially to the uncertainty of the output
results, and 'sensitive' parameters as those which have a significant influence on the output results. This
distinction is in the type of analysis being conducted: global (that addresses parameter importance) and
local (that addresses the parameter sensitivity) sensitivity analysis.

In practice, the sensitivity analysis (SA) process is an invaluable tool (Sobol, 1993; Saltelli et al., 2000). At
the end of a sensitivity analysis, the analysts will hold a 'sensitivity ranking' of the input parameters sorted
by the amount of influence each has on the model output. Disagreement among rankings by the various
SA methods for parameters less sensitive is not of practical concern since these variables have little or no
influence on model output. This last statement - ‘little or no influence on model output’ - might be false or
completing misleading when an importance analysis has to be considered: in this situation given the
practical difficulties/impossibilities to identify input uncertainties, the conclusions that can be drawn from
the actual ranking might not be appropriate to estimate the uncertainty of the output model responses (it is
for instance the case of a very low sensitive input parameter with a large range of uncertainty).

2.5. Element 4 - model input uncertainty quantification

Exploiting the experimental database and the simulation model fully characterized in the previous
sections, this fourth element is devoted to the uncertainty quantification of model input parameters, which
is the so-called inverse propagation problem (IP). This has been treated in the previous PREMIUM project
(Mendizébal et al., 2017). The four following steps (Figure 5) are identified in this element.



2.5.1. Step 10 - Aggregation of the information coming from experiments and simulation model to be
used in the “inverse propagation”

This step consists in aggregating the information coming from Elements 2 and 3 before performing the
IUQ. In practice, it appears that different pairs of simulated/experimental value can have different degrees
of importance for the intended use. This degree of importance depends on the representativeness of each
experiment of the database (and a clear analysis is needed in Element 2) as well as on the type of SRQs
considered. This should be integrated in the development of the quantification method to avoid under or
overweighting the influence of a given pair.

Figure 5. Steps of Element 4.
2.5.2. Step 11 - Quantification of model input uncertainties by “Inverse propagation”

Many inverse propagation (IP) methods (both for calibration and uncertainty quantification of models)
already exist in the nuclear safety field, and more are presently under development. The OECD/NEA
PREMIUM project was devoted to application and comparison of inverse methods for quantification of
model uncertainties on the basis of CETs. The benchmark was performed using reflood experiments
(Mendizébal et al., 2017) . A review and comparison of the available IP methods used in PREMIUM is
given in (Reventos et al., 2016) .

The simplest and the most widespread method of invers quantification of model uncertainties is the
quantification on the basis of SETs, where singular measurement representing the phenomenon can be
compared with associated calculated parameter (Skorek, 2004), e.g. measured void fraction in the channel
is associated with phase relative velocity, only. The population of point values (multipliers) obtained from
the comparison can be approximated as Probability Density Function (PDF) representing model
uncertainty, in this care relative velocity model. Among the advanced methods addressed particularly for
CETs, the most usual modelling of uncertainty is the probabilistic one. To solve a probabilistic IP is an
exercise of statistical inference, and two basic approaches exist: frequentist and Bayesian (Mendizabal,
2018). The first one is based on Maximum Likelihood inference (Kuhn, 2003). The second one exploits
the Bayes theorem (Gosh et al., 2006), which is a procedure of updating information. There exist also in
the literature alternative approaches combining the use of design of experiments and forward uncertainty
propagation though they are much less prevalent than probabilistic ones (see (Kovtonyuk et al., 2015) for
an example in the nuclear field, and (Freixa et al., 2016) for a comparison exercise with a methods based
on Maximum Likelihood inference). The SAPIUM report provides a full description of available methods.

The choice of an inverse method depends on the problem under study, and should be made according to
the following criteria:
e Solidity: rigorous mathematical framework.
o Flexibility: different situations associated to the problem can be taken into account. E.g.
experimental uncertainty, model bias estimation...
e Transparency and reproducibility: clear documentation available, including list of assumptions
and user guidelines. Uncertainty associated to the method is an important information.
e Reduction of user effect / expert judgment.
Relevance of method assumptions for the problem under study. E.g. checking if the nature of
uncertainties (aleatory and epistemic) and the lack of information on them are properly taken into
account.
e Tractability: e.g. limitations due to high computational cost can be circumvented through the use
of surrogate models or efficient design of experiments.



2.5.3. Step 12 - Combination of model input uncertainties if several quantifications are performed

This step concerns the development of procedures for combining the results of different quantifications .
This is not always required in practice, since a first aggregation is achieved in Step 10. But in Step 10 the
aggregation of information is previous to the uncertainty quantification, while in Step 12 it is posterior to
it. The different quantifications can arise from different studies, or to the different groupings of
experiments (e.g. according to their scale).

Synthesizing the information implies also evaluating possible conflicts (i.e. disagreement) among the
different quantifications. A strong conflict would require some iteration of the SAPIUM steps-elements.
Diverse techniques of information synthesis can be applied in this step. For instance, weighted averages of
probability distributions can be constructed. Bayesian techniques can be applied (requiring specification of
prior distributions). There are also techniques based on possibility theory (Dubois et al., 2016), defining
different types of “fusion operators” (conjunctive, disjunctive, arithmetic mean), and allowing also the
definition of conflict or disagreement indicators.

2.5.4. Step 13 - Confirmation by counterpart tests

Once the model input uncertainty quantification has been performed, a confirmation step is needed,
consisting of making the forward propagation of the obtained model input uncertainty for counterpart
tests, and checking if the response data used in the quantification are adequately enveloped.

From a technical point of view, confirmation is similar to validation. It especially requires the use of
mathematical indicators to quantify the agreement between simulation and experimental results. This topic
is addressed in the next element of the SAPIUM process.

2.6. Element 5 - model input uncertainty validation

Following the VVUQ formal procedure (Ferson et al., 2008; Oberkampf and Barone, 2006), the technical
treatment of the validation process encompasses firstly a comparison between the simulation model output
uncertainty and experimental data not used in the quantification and secondly a predictive capability or
adequacy assessment outside the experimental domain. This last task is discussed in the conclusion of this
paper and the following 4 steps (Figure 6) are introduced to perform the first task.

Figure 6. Steps of Element 5.

2.6.1. Step 14 - Determination of numerical approximation and other input data uncertainties for each
validation case

In the case of input uncertainties, the validation cannot be done in the input space since the comparison of
the results with experimental data is not possible. It is performed in the SRQ space after input uncertainty
propagation through the simulation model. Therefore, it is mandatory to combine the quantified model
input uncertainties with other sources of input uncertainties (e.g. due to model form and numerical
approximation) because the validation result is also affected by them. The SAPIUM activity is focused on
model input uncertainty, therefore, the quantification of the other types of uncertainties are assumed to
have been performed in another part of the VVUQ process.

2.6.2. Step 15 - Propagation of all input uncertainties through the simulation model

Among all the available uncertainty analysis methods, the input uncertainty propagation approach is very
popular in industrial applications. It has been used in the framework of nuclear safety analysis in
(OECD/NEA, 2011) for example. It combines mathematical modeling of input uncertainties and Monte



Carlo techniques to estimate statistical quantity of interest. The simulation model is treated as a “black
box”, and the input uncertainties are propagated to the SRQ uncertainties via several simulation model
runs.

2.6.3. Step 16 - Computation of validation indicators

The comparison between simulation (after input propagation) and experimental results then exploits
validation indicators. A straightforward comparison can consist in checking if the experimental value falls
inside the SRQ uncertainty interval. In this case, a very large uncertainty band can be considered as
acceptable since it is more likely to encompass the experimental value. Therefore, a fully transparent
construction of validation indicators should rely on an appropriate definition of the target quantity of
validation (interval, cumulative distribution function,...) and of the important characteristics of the SRQ
uncertainty to capture for validation. This involves the use of more complex validation indicators to have a
better qualitative insight on the results.

Most of the classical validation indicators in the literature (Liu et al., 2011; Oberkampf and Barone, 2006)
are referred as calibration ones i.e. they focus on a consistency checking between the information obtained
after propagation of quantified input uncertainties and experimental values. Among them, one can mention
the so-called hypothesis testing approach or area metric (Ferson et al., 2008). In some situations, it can
happen that a satisfactory calibration is reached thanks to a very wide uncertainty band that is more likely
to encompass an experimental value. However, an artificially large uncertainty could be difficult to
analyze. The characteristics (and especially the width) of the uncertainty band should therefore be
considered. Distinguishing concentration of the information associated to the SRQ uncertainty and
calibration has been already addressed in many scientific fields (Cooke, 1991; Destercke and Chojnacki,
2008; Gneiting et al., 2007; JCGM, 2012).

2.6.4. Step 17 - Analysis of the validation results

Finally, the validation results are analyzed. For each SRQ, the evaluation of the agreement between
simulation and experimental results requires the definition of a scale of acceptability. This scale obviously
depends on the type of validation indicator. If this indicator only consists in checking if each experimental
value falls inside each corresponding uncertainty band, it should be based on the percentage of
experiments for which this previous agreement check is satisfied. When considering a more complex
indicators such as hypothesis testing, significance thresholds are available but they rely on assumptions
(e.g. independence of experiments) and a careful check of their fulfillment has to be performed.

Moreover, keeping in mind that the objective is application to NPPs, the analysis of the results provided
by the computation of the validation indicators is not sufficient. Adapting the works of (Hemez et al.,
2010) or (Oberkampf et al., 2007) to the IUQ framework, this analysis in the validation domain should be
combined with the adequacy of the experimental database. It leads to the evaluation of the maturity of the
IUQ for the intended use. This evaluation should be carried out in a loop approach. If the maturity is
proved as not sufficient, an iteration step is performed. It means the maturity is improved according to
findings during quantification and validation and the whole procedure is repeated. A lack of maturity can
be due to different choices adopted in each SAPIUM element. One reason could be the lack of adequacy
of the experimental database. In this case, it is preferable to consider integral experiments in the
quantification (and not only in the validation) and to iteratively revise the quantified model input
uncertainties from these new data.

2.7. Scaling issues and predictive capability assessment



The main concern of the predictive capability of uncertainty analyses is geometrical and thermal-hydraulic
scaling. It means, if the identification and quantification of model uncertainties on the basis of selected
experiments are valid for large scale geometry and range of thermal-hydraulic parameters characteristic
for nuclear reactors. The problem of the up-scaling in the best estimate thermal-hydraulic simulations is a
central problem in the nuclear reactor safety. This is a general problem and affect all activities in this field:
experimental work as well as numerical analyses (Roy and Oberkampf, 2011). This topic was a subject of
intensive investigations and review of the activities and findings in this field was analysed in the frame of
OECD/NEA projects (Bestion et al., 2017).

The dependency of interesting phenomena according to change of thermal-hydraulic conditions like
pressure or temperature are usually known. It is a common practice to investigate the dependency of
phenomena on thermal-hydraulic parameters for the full range of possible applications. The geometry of
the experiments is mostly small-scale (or medium-scale) and rather only exceptionally equivalent to full-
scale nuclear reactors. So, the problem of the up-scaling appears to be the main concern of the uncertainty
analysis. Investigations performed in the past showed that the findings obtained on the basis of small-scale
experiments are applicable only partially for large scales.

The conclusion was that the scale-up effects are to be considered by the development of a qualified input
data set for each reference (best estimate) calculation and by selection and quantification of uncertain
input parameters. In particular, differences in uncertainties of physical models according to their
application to different scale objects have to be taken into account.

Other possibility to consider scaling effects is selection of different correlations according to their field of
application. If there is such option in the physical model of the thermal-hydraulic code, different
correlations/constitutive equations may be applied for small and large scale facilities according to the
recommendation in the code documentation. Such recommendations result from code development and
validation and as such express the state of knowledge concerning also the scaling effect.

The ranges variation of physical model uncertainties is the main way of scale-up effect consideration in
uncertainty analyses. Since the quantification of model uncertainties takes place by comparison with
experimental data, an appropriate selection of the adequate experiments is of importance. The preferable
model uncertainties quantification is comparison of code predictions with experimental data from SETs.
The experimental data selected for quantification have to be representative for the considered application.
In particular they have to reflect the scale of the analysed facility. The optimal situation is, when there are
available SETs for the whole spectrum of scales where the model will be applied. The experiments
considered by evaluation of scale effect underlay the same general requirements regarding adequacy to
investigated phenomena and geometry and accuracy of experimental measurements, applied for selection
of tests for experimental data base as described in the Section 2.3.

The condition for a correct consideration of scale-up effects is to carry out carefully complete uncertainty
and sensitivity analyses for each application. The results of uncertainty analyses for small scale facilities
are important source of information and experience but cannot be directly transformed to large scale
application. The most important step by consideration of the scale-up effects is the identification and
quantification of input uncertainties, in particular model uncertainties for large scale applications. Since
some large scale separate effect experiments exist, the quantification can be performed in the best way on
the basis of comparison with available experimental data. Once the model uncertainties have been
quantified the propagation of the input uncertainties through the mechanistic codes enables carrying out of
the best estimate plus uncertainty analyses for any transient or accident in the field of the code application;
also for events for which integral tests do not exist. This capability is a clear advantage of the uncertainty
estimation method based on input uncertainties propagation (e.g. using Wilks’ formula (Wilks, 1941)).



However, it requires a proper quantification of input uncertainties and sufficient experimental basis of
SETs or CETs for model input uncertainties quantification.

In the case of lack of suitable experiments, the new trend is using CFD simulations as basis for evaluation
of system codes models, e.g. (Lewis et al., 2016). Application of CFD simulations instead of experimental
data for uncertainties evaluation of 1-D system code models is a relatively new option but of increasing
importance. However, this approach first requires performing a VVUQ analysis of the CFD simulation
model.

Another aspect of the prediction capability is related to limitation of IUQ performed for a particular
transient (specific approach contrary to generic approach). It can happen that in the course of uncertainty
analysis the range of varied calculations extends the assumed range of parameters considered for
development of experimental data base and following model input uncertainties quantification. In such a
case the frequently recommended best solution is performing of iteration step. Beginning with extension
of the experimental data base, quantification and finally validation of model uncertainties have to be
performed once more.

The predictive capability and more general safety of nuclear reactors relay on quality of extrapolation the
existing information to the full-scale application of nuclear reactors. As an ultimate measure of ensuring
security of the safety analysis of nuclear power reactors, lack of exact information on uncertainty of the
upscaling to the full-scale NPP applications in nuclear reactor safety is compensated by application of
safety margins.

3. Main recommendations

This section summarizes the main lesson learned from the analysis of the SAPIUM elements.
3.1. Element 1- specification of the problem and requirements

It is recommended to clearly specify the model IUQ problem for the developed or selected simulation
model, according to the transient classification as documented in the FSAR of the targeted NPP (Wilson
and Boyack, 1998), or in case of new plant design, to specify the application domain for the newly
identified transient scenarios. It is recommended to choose the SRQs based on parameters that are directly
and accurately measured in the experiments, which are used for verification of the design limits or
surrogates in the NPP accident analysis (ANSI, 1973, 1988). It is recommended to group different
accident scenarios (e.g., RCS heatup or cooldown accidents, reactivity initiated accidents) (USNRC, 1978)
into a single IUQ problem with common SRQs of interest, and make a generic model input uncertainty
quantification and validation for the developed or selected simulation model.

The NPP accident scenario identification and IUQ definition process can rely heavily on expert opinion
and can be subjective. Therefore, iteration of the process, based on experimentation and analysis, is
important. It is recommended to use the phenomenon identification and raking table (PIRT) technique
(Diamond, 2006; Wilson and Boyack, 1998) to first identify and rank the physical phenomena, and use the
sampling-based global sensitivity analysis (GSA) technique to confirm the PIRT (also called Q-PIRT)
(Luo et al., 2010; Martin, 2011; Yurko and Jacopo, 2012).

It is important to keep in mind the phenomena ranking could be subject to the limitations of the
knowledge of the expert, the experimental databases or simulation models. An iteration with other
elements may be necessary if such limitations are identified during the SAPIUM process.



3.2. Element 2 - development and assessment of the experimental database

It is recommended to follow a structured and transparent approach to perform the construction of a
scenario-dependent experimental database.

It first requires describing in a standard format (including information on covered phenomena, geometry,
scaling effect, experimental uncertainties) all available experiments coming from SETs, IETs and CETs.
Various scales IETs are mandatory for the application to the reactor case. Extra experiments might be also
required if the adequacy of the database is not sufficient.

For a transparent and reproducible adequacy assessment, it is recommended to use mathematical tools to
quantitatively perform the analysis. Multi-Criteria Decision Making approach can be exploited in order to
objectively and automatically evaluate the representativeness leading to a ranking of experiments. The
evaluation of the completeness of the experimental database is based on a completeness index. This index
should be restricted to the database and not be applied to the whole quantification/validation process as it
is classically done in VVUQ.

Finally, a special attention should be devoted to the splitting of the experimental database for input
uncertainty quantification and validation. If the number of available experiments is too limited to perform
this splitting, all available experiments should be considered for the quantification step and the validation
step should be adapted.

The SAPIUM approach is proposed to improve the IUQ by expert judgement. However, in some
situations the expert judgement could still be used. A typical situation is when available measured
parameters are not sufficient to determine separate uncertainties. This is usually the case by integral
experiments. This problem has to be treated by quantification and validation step. Moreover, expert
judgement might be also required in case of indirect link between measures and input parameters. In such
situations, the problem needs to be solved by quantification procedure.

3.3. Element 3 - selection and assessment of the simulation model

The assessment of the applicability of the SM is an iterative process that applies to all experimental tests
of the validation database. The possible failure of the process for one test implies the improvement of the
SM (either code or nodalization or both) and the repetition of the assessment of the applicability of an SM
for all tests of the validation database.

The validity of a simulation model is defined over the domain of model form, inputs, parameters, and
responses. This fact effectively limits use of the model to the particular application for which it was
validated; use for any other purpose would require the assessment of the applicability of the SM to be
performed again. In other words, the assessment of the applicability process cannot prove that an SM is
correct and accurate for all possible conditions and applications, but, rather, it can provide evidence that a
SM is sufficiently accurate. Therefore, the assessment of the applicability process is completed when
sufficiency is reached.

The SM shall not be tuned to a particular data set and the data used to assess the SM have not been
deliberately selected to make the SM appear to be more accurate than it truly is.

An important aspect of the simulation model assessment is the nodalization strategy and model option
selection. They should be consistent between the experiment and the nuclear power plant.

In the assessment process, a special attention should be devoted to the construction of consistency
indicators to evaluate the accuracy between simulation and experiment.



The selection of important uncertain input parameters (including nature of uncertainties e.g. aleatory,
epistemic) should be confirmed by sensitivity analysis methods, in order to reduce the subjectivity by
expert judgement.

3.4. Element 4 - model input uncertainty quantification

Inverse methods can also be used to calibrate a model (simultaneously or not with quantification). The
experience in PREMIUM indicates that the ITUQ should be performed without recalibration. This is
especially advisable in case of lack of adequacy of the available experimental database.

Inverse methods should allow assigning different weights to different pairs of simulated/experimental
value in order to avoid under or overweighting the influence of a given one. It is the case for example for
probabilistic ones that use the so-called likelihood function in their inferences, and a possibility is to
construct a weighted likelihood. The least-square technique, used in the solution of inverse problems, can
also assign different weights in the construction of the sum of squares to be minimized. In any cases, it is
compulsory to perform sensitivity analysis to the assigned weights in order to ensure the reliability of the
quantification.

The assumptions associated to the inverse problem mathematical methods (type of method, uncertainty
modeling to handle aleatory and epistemic uncertainties, etc) should be clearly taken into account to
evaluate the impact of the analyst’s choices on the results. Moreover, depending on the problem to solve,
users may choose between probabilistic or non-probabilistic modeling (i.e. based on alternative
uncertainty theories). For instance, an inverse problem where the noise has a known probability
distribution (e.g. Gaussian) can benefit from probabilistic methods. In presence of incomplete knowledge
on input uncertainties, it is advisable to combine different methods to avoid formulating extra
assumptions.

More generally, the choice of an inverse method depends on the problem under study, and should be made
according to the main criteria introduced in Section 2.5.2.

Influence of additional uncertainty sources (e.g. related to the numerical approximation and especially to
the choice of the nodalization) is of prime importance to derive reliable input uncertainties. The
development of inverse methods allowing the combination of different uncertainty sources is therefore
advisable.

It is important to remember that inverse problems, in general, do not have unique solutions, and additional
information must be added in order to select one of the possible solutions. For example, different users can
differ in the way of introducing a given prior information, thus obtaining different results.

3.5. Element 5 - model input uncertainty validation
The main recommendations can be split with respect to 4 different topics.

The first one concerns the validation experiments. If the experimental database is large enough, they
should correspond to experiments which are not used for the uncertainty quantification. When the number
of experiments is not sufficient to split the database, a leave-one-out cross-validation which is a classical
technique in statistics, e.g. (Wackernagel, 1998), can be exploited. Another option could be to enforce the
connections between experimentalists and developers to design new validation experiments following
specific requirements (Oberkampf and Trucano, 2007).



It is also important to control (or evaluate) the impact of the methodological assumptions on the validation
result. These assumptions are first related to the input uncertainty modelling that should integrate the state
of knowledge on uncertainties (e.g. aleatory/epistemic uncertainties). They also concern the construction
of wvalidation indicators that can rely on strong assumptions on experiments (e.g. independence of
experimental conditions) that are not always satisfied in practice. This should be taken into account when
the acceptability of uncertainty results is checked for the intended use by comparison to acceptability
thresholds.

The third topic is related to the selection of a validation indicator. It is recommended to clearly state the
choice of the target quantity to validate defining the SRQ uncertainty and the important characteristics of
this uncertainty to capture for validation before starting the study. Besides a consistency checking, it is
advisable to take into account extra features such as the concentration of the information provided by the
uncertainty analysis by combining informativeness and calibration type indicators.

Finally, the last topic is focused on the analysis of the validation results. The computation of the validation
indicators is not sufficient if the objective is application to NPPs. It is recommended to construct a
maturity model combining the acceptability of the validation results in the validation domain with the
adequacy of the experimental database. The evaluation of the predictive maturity should be carried out in
a loop approach. If the lack of maturity can be explained by a lack of adequacy of the experimental
database, it is preferable to extend the database by considering integral experiments for the quantification
and to iteratively revise the quantified model input uncertainties from these new data.

3.6. Scaling issues and predictive capability assessment

Since some large scale separate effect experiments exist, the quantification should be performed in the
best way on the basis of comparison with available experimental data, as far as possible.

Concerning the quantification of model input uncertainties on the basis of SETs, the methodology is
matured and widely used. In the last time a number of methods for simultaneous quantification of several
model input uncertainties on the basis of CETs have been developed, e. g. (Wu et al., 2018), (Liu et al.,
2018) and successfully applied. The main problems are the semi-empirical closure relations and their
uncertainty prediction for the small and large scale geometry. The results of uncertainty analyses for small
scale facilities are important source of information and experience but cannot be directly transformed to
large scale application. In the case of lack of experimental evidence for large scales, the extrapolation of
quantified model uncertainties has to be performed carefully and increase of the uncertainty ranges has to
be taken into account.

An optimal way of obtaining reliable model input uncertainties would be evaluation of the physical model
uncertainties by the code/model developers exploiting advanced validation (Unal et al., 2011) or extended
validation (Skorek, 2017). However, complete quantification of all relevant models in the code application
field is a difficult issue which requires a lot of resources. Even, if there is an obvious interest of
performing systematic evaluation of code models uncertainties, it would require still a lot of work and a
long time to complete the process.

Once the model input uncertainties have been quantified the propagation of the input uncertainties (e.g.
using Wilks’ formula) through the simulation model enables carrying out of the best estimate plus
uncertainty analyses for any transient or accident in the field of the code application; also, for events for
which integral tests do not exist. However, it requires a proper quantification of input uncertainties and
sufficient experimental basis of separate effect tests for model input uncertainties quantification.



A clear deficiency of performing uncertainty analyses for reactor scale geometries is lack of large scale
experiments. CFD calculations can be used in some cases, mainly for single phase flows, as reference for
system code simulations. However, in the case of two-phase flow the accuracy of CFD predictions is still
limited. Therefore, additional large-scale experiments are of importance and would be a great help for
quantification as well as validation of model uncertainties.

4. Open issues for future development

The work of the SAPIUM group has revealed several remaining open issues for a complete application of
the proposed IUQ approach. They concern:

4.1. Adequacy of the experimental database

IUQ process is based on the comparison between simulation and experimental results. Therefore, the
quantified model input uncertainties strongly depend on the adequacy of the experimental database. Two
main aspects of this topic should be further investigated.

The first one is related to the quantitative analysis of a database and to the construction of
representativeness and completeness indices. Several generic tools are already developed but their
extension to the framework of IUQ still remains an open issue.

The second one concerns the lack of experiments. In the case of a poor validation, the SAPIUM approach
provides some tools and recommendations to evaluate if the experimental database should be enlarged
(e.g. computation of adequacy indicator, loop approach, cross-validation). However, in practice, it is not
always affordable when the number of available experiments is too limited and that the few available
experiments do not define an adequate experimental database. There is no clear strategy to deal with this
last situation and to measure the impact on the acceptability of the quantified model input uncertainties.

4.2. Integration of the state of knowledge in the construction of inverse methods

There is a large literature related to the construction of inverse methods. However, the degree of reliability
(for the problem under study) of the information provided by each pair experimental/simulation value
coming from Elements 2 and 3 of the SAPIUM approach is hardly taken into account. It requires the
construction of procedures to combine information with different degrees of importance.

Moreover, most of the available inverse methods are constructed in the probabilistic framework and
requires the choice of unique pdfs to model uncertainties. In case of incomplete knowledge, the use of
alternative uncertainty model could be an interesting strategy. If several works have been already
proposed to treat the direct problem, adaption of probabilistic inverse methods to alternative theory
remains a challenging problem in the framework of nuclear applications. In particular, further
investigations are required to tackle the problem of treatment of epistemic uncertainty by alternative
theories for IUQ (possibility, Dempster-Shafer,...).

4.3. Acceptability of the validation results

Important efforts should be also devoted to the analysis of the validation results in the validation domain
with the objective of extrapolation to the application one. It first involves the construction of a reliable
model for the evaluation of the predictive maturity of the whole process. A general guideline has been
provided in the VVUQ framework as well as a scale of maturity but adaption to IUQ and combination
with adequacy indices still remain open questions.



The acceptability of the validation results strongly depends on the quantification of other uncertainty
sources (numerical approximation error and model form) in the validation process. The contributions of
the SAPIUM document are restricted to quantification of model input uncertainties. However, the
validation, since it operates in the SRQ space, will be affected by all the types of uncertainty sources. A
poor validation that would require iterating the SAPIUM process can therefore be due to other uncertainty
sources than model input uncertainties. To avoid any misinterpretation, further works are necessary to
understand and evaluate the impact of each category of uncertainty sources on the validation results.

4.4. Predictive assessment and extrapolation to the application domain

The main weakness of the predictive capability of application inverted uncertainties quantification in the
field of Reactor BEPU analyses is lack of suitable large-scale experiments. As long as there is available an
adequate experimental basis and quantification of the input uncertainties can be proved by validation
procedure, the predictive capability for large scales applications is ensured.

But frequently it is not the case, available are only small-scale experiments, and the quantified
uncertainties needed to be extrapolated for the analyses in the reactor scale. There were performed some
efforts to solve this problem by development of integral methods for estimation of scale effects in BEPU
analyses, e.g. EMDAP methodology (Dzodzo, 2018). A possible way is, basing on scaled integral test,
extrapolation of behaviour of reactor systems from test facilities to the reactor safety analyses using
system codes as extrapolation tools (Mascari, 2015). But there is no matured extrapolation method, which
could be recommended without a doubt for such applications.

This is the main issue to be solved. May be an option for the farther investigation in this field could be
combination of input uncertainties propagation method with methods based on output uncertainties
extrapolation.

5. Conclusions

This paper was devoted to the description of the different elements and steps of a good practice guidance
for a transparent and rigorous model IUQ. The main developments have been performed by the SAPIUM
group that included contributors from 10 organizations including Technical Support Organization (TSO),
industry and university. The starting point was the available state of knowledge coming from previous
related OECD/NEA projects as well as current practices in regulation, industries and research. The main
outcome is an original structured approach that offers a general framework to develop or analyze IUQ.

This work clearly emphasized that [UQ shouldn’t be reduced to the application of inverse methods as it
was the case during the PREMIUM activity. It is a more general process that involves a clear specification
of the problem and efficient strategies to construct adequate experimental database and to combine the
information coming from different experiments. It also requires assessing the simulation model before
quantifying input uncertainties. Finally, the validation of the quantified model input uncertainties has to be
taken into account in the whole process in order to check the acceptability of the results for the intended
use. The description of the different elements revealed the need to use mathematical tools integrating the
physical knowledge in order to be fully rigorous, transparent and reproducible.

Even if part of the material to perform model IUQ is available, several remaining open issues should be
tackled. This paper includes some development axes for future works. They concern
e the adequacy analysis of the experimental database: construction of quantitative indices to
evaluate the adequacy, development of a strategy for a limited number of experiments,
e the construction of inverse propagation methods: integration of a reliability degree of the
information to back-propagate, treatment of aleatory and epistemic uncertainties by uncertainty
theories,



e the evaluation of the acceptability of the results: construction of predictive maturity indices
devoted to IUQ, evaluation of the impact of other uncertainty sources on the validation,
construction of a matured extrapolation process to exploit the quantified input uncertainties in the
application domain.

For industrial application, it is important to focus on the practicability of the proposed tools. This can be
achieved by exercises of comparison and benchmark of IUQ constructed in the SAPIUM framework. As a
SAPIUM follow-on activity, demonstration cases could be conducted, with the objectives to verify (i) the
applicability of the best-practices, (ii) that whatever the problematic, the best-practices allow to deal with,
and (iii) the issues identified during PREMIUM can be avoided by following the SAPIUM best-practices.
For that, these demonstration cases could be split into the following three steps:

e Ist step: The experimental database contains enough data and there are few influential
phenomena: the problem is well posed and seems easy to treat.

e 2nd step: In this case, several influential phenomena are involved, but the experimental database
provides enough data of different types. An example of this case is the critical flow at the break,
which is of significant relevance during a LOCA.

o 3rd step: In the last case, several influential phenomena are present, but the experimental database
does not contain enough varied data (such as in PREMIUM benchmark).

This progressive approach could help to treat the key issues identified and to use gradually the
recommendations developed in SAPIUM, and give a feedback on the proposed methodology.

NOMENCLATURE

AHP Analytical Hierarchical Process

BIC Boundary and Initial Conditions

BE Best-Estimate

BEPU Best-Estimate Plus Uncertainty

BWR Boiling Water Reactor

CANDU CANada Deuterium Uranium (reactor)

CCVM CSNI Code Validation Matrix

CET Combined Effect Tests

CFD Computational Fluid Dynamics

CSNI Committee on the Safety of Nuclear Installations

EM Evaluation Model

EMDAP Evaluation Model Development and Assessment Process
FSAR Final Safety Analysis Report

GSA Global Sensitivity Analysis

IET Integral effects Test

1P Inverse Propagation

1uQ Input Uncertainty Quantification

LOCA Loss Of Coolant Accident

LWR Light-Water Reactor

MCDM Multi-Criteria Decision Making

NEA Nuclear Energy Agency

NPP Nuclear Power Plant

OECD Organization for Economic Co-operation and Development
PDF Probability Density Function

PIRT Phenomena Identification and Ranking Table

PMI Predictive Maturity Indexes

PREMIUM Post-BEMUSE Reflood Models Input Uncertainty Methods



PWR Pressurized Water Reactor

Q-PIRT Quantitative Phenomena Identification and Ranking Table

RCS Reactor Coolant System

SA Sensitivity Analysis

SAPIUM Systematic APproach for model Input Uncertainty quantification Methodology
SET Separate Effects Test

SM Simulation Model

SRQ System Responses Quantity

TSO Technical Support Organization

USNRC United States Nuclear Regulatory Commission

VVvVuQ Validation and Verification, Uncertainty Quantification
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