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We study a transition to hyperchaos in the two-dimensional incompressible Navier-Stokes equations with periodic boundary 
conditions and an external forcing term. Bifurcation diagrams are constructed by varying the Reynolds number, and a 
transition to hyperchaos (HC) is identified. Before the onset of HC, there is coexistence of two chaotic attractors and a 
hyperchaotic saddle. After the transition to HC, the two chaotic attractors merge with the hyperchaotic saddle, generating 
random switching between chaos and hyperchaos, which is responsible for intermittent bursts in ts of the flow are characterized 
by detecting Lagrangian coherent structures. After the transition to HC, the flow displays complex Lagrangian patterns and an 
increase in the level of Lagrangian chaoticity during the bursty periods that can be predicted statistically by the hyperchaotic 
saddle prior to HC transition. 

The Lagrangian approach to the characterization of the
transport and mixing properties of fluids in terms of
coherent structures has attracted much attention in recent
years. In this paper, we focus on the chaotic mixing prop-
erties of a two-dimensional (2D) incompressible flow in a
crisis-like transition to hyperchaos (HCs). First, we con-
struct bifurcation diagrams and detect chaotic saddles at
the onset of hyperchaos, using a fixed frame of reference
in Fourier space (i.e., an Eulerian approach). Next, we
characterize the chaotic mixing properties of the fluid by
detecting Lagrangian coherent structures (LCSs). We
show that, prior to the transition, chaotic saddles can be
used to predict the enhanced complexity of the spatiotem-
poral patterns observed in the hyperchaotic regime.

I. INTRODUCTION

Numerical studies of nonlinear systems modelled by

partial differential equations show that they may exhibit a

crisis like transition involving random switches between

periods of transient temporal chaos (TC) and spatiotemporal

chaos (STC). TC refers to the regime in which the patterns

of the numerical solution are chaotic in time and regular in

space, and is characterized by a low fractal dimension,1,2

narrow band power spectrum,3 and one positive Lyapunov

exponent.2 STC refers to the regime in which the patterns

are chaotic in time and disordered in space, and is character

ized by a high fractal dimension,1,2 broad band power spec

trum,3 and the presence of hyperchaos (i.e., two or more

positive Lyapunov exponents).2 The coupling between two

chaotic saddles was shown to be responsible for the TC STC

intermittency.1,4 Chaotic saddles are nonattracting chaotic

sets responsible for transient chaos.5–8 A thorough overview

on the subject of transient chaos and its applications can be

found in the recent monograph by Lai and T�el.9

In this paper, we study the dynamics of two dimensional

incompressible flows modelled by the 2D Navier Stokes

equations (2D NSE) with an external forcing term and peri

odic boundary conditions. These equations can be solved

numerically with the spectral method by transforming the

equations to Fourier space, and truncating the Fourier series

to a finite number of modes for the numerical implementa

tion. This method has been used in a series of works to study

the transition from a laminar state to a chaotic regime.

Boldrighini and Franceschini10 first showed that the numeri

cal solutions of a 5 mode truncation of the 2D NSE can ex

hibit chaotic behavior arising from a series of bifurcations

observed with increasing values of the Reynolds number.

Lee11 presented a detailed work on the complex route from

laminar to chaotic behavior by varying the Reynolds number

and strength of the forcing term, and compared the effect of

the external force acting on a single mode and on multiple

modes in Fourier space. A systematic study of the transition

to chaos in the 2D NSE was presented by Feudel and

Seehafer.12,13 They characterized a wealth of regimes witha)Electronic mail: rmiracer@unb.br
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increasing amplitude of the forcing term, including steady

states with broken symmetries, travelling waves, modulated

travelling waves, torus and chaos, and compared the influ

ence of these regimes on the trajectory of a test particle in

real space. The transition to chaos and the mixing properties

of the 2D NSE were also examined by Braun et al.14 They

analyzed the evolution of a set of tracer particles in the pres

ence of an external forcing consisting of an array of vortices,

and demonstrated that the rate of stretching of the initial

patch of tracers is stronger in the chaotic and quasiperiodic

regimes and is weaker in the periodic and laminar regimes.

Braun et al.15 compared numerical simulations of the 2D

NSE using stress free and no slip boundary conditions in the

vertical direction, and periodic boundary conditions in the

horizontal direction. They found that the bifurcation scenario

is relatively robust to changes of the boundary conditions,

and that the final route to chaos in the 2D NSE with stress

free boundary conditions occurs by a period doubling cas

cade, whereas the destruction of a two frequency torus may

be responsible for the onset of chaos in the no slip case. The

transition to chaos of a two dimensional flow confined on a

square domain with no slip walls was explored by Molenaar

et al.16 They found that the route to chaos corresponds to the

Ruelle Takens Newhouse scenario17,18 and the flow is domi

nated by a large circulation cell in real space.

The Lagrangian description of fluids has attracted much

attention during the past decade because it can provide a con

sistent definition of coherent structures in turbulent flows,19

and as a result, several concepts and new techniques have

been developed to detect them. In this paper, we use chaotic

saddles to explain the spatiotemporal patterns observed in nu

merical simulations of the 2D NSE at the onset of hyperchaos,

and their role on the chaotic advection of tracer particles by

computing the maximum finite time Lyapunov exponent

(FTLE) which is a popular tool for detecting LCSs,21,22 and a

mathematical theory recently developed23,24 to obtain hyper

bolic LCSs as smooth, parametrized curves in 2D flows.

This paper is organized as follows. The derivation of the

spectral form of the 2D NSE and the details of the numerical

implementation are presented in Sec. II. The Lagrangian

techniques used to characterize the transport of particles are

briefly reviewed in Sec. III. Our numerical analysis begins in

Sec. IV, where we identify a crisis like transition to hyper

chaos and detect chaotic saddles in a fixed frame of reference

in Fourier space (i.e., the Eulerian approach). In Sec. V, we

combine the Eulerian bifurcation scenario with the phenome

nology of chaotic advection using the Lagrangian approach.

Finally, we present our conclusion and discuss the applica

tion of our results for the understanding of chaotic mixing

observed in the atmosphere and the oceans in Sec. VI.

II. THE 2D NAVIER-STOKES EQUATIONS

The dynamics of two dimensional incompressible fluids

are governed by the Navier Stokes equations, which in non

dimensional form are12

@tuþ ðu � rÞu ¼ �rpþ 1

Re
r2uþ f; (1)

r � u ¼ 0; (2)

where u ¼ uðx; tÞ ¼ ðuxðx; tÞ; uyðx; tÞÞ denotes the fluid ve

locity, x¼ (x, y) is the position vector in the fixed frame of

reference, and p¼ p(x, t) is the pressure, Re represents the

Reynolds number, and f ¼ ðfxðx; tÞ; fyðx; tÞÞ represents an

external force. In the Fourier representation, we can write u,
p, and f as

uðx; tÞ ¼
X

k 2 Z
2;

k 6 0

ûkðtÞeik�x; (3)

pðx; tÞ ¼
X

k 2 Z
2;

k 6 0

p̂kðtÞeik�x; (4)

fðx; tÞ ¼
X

k 2 Z
2;

k 6 0

f̂ kðtÞeik�x; (5)

where the hat indicates the complex Fourier coefficient of

the corresponding quantity, k ¼ ðkx; kyÞ is the wavevector,

kx ¼ 2pnx=Lx; ky ¼ 2pny=Ly; nx; ny 2 Z, and i ¼ �1
p

. In

this paper, we assume Lx ¼ Ly ¼ 2p and periodic boundary

conditions in the x and y directions, hence k 2 Z
2. The

restriction k 6¼ 0 arises from the fact that û0 is decoupled

from the evolution equations, which is demonstrated in

Appendix A. Inserting Eqs. (3) (5) into Eq. (1), we obtain

dûk

dt
¼ �ikp̂k �

1

Re
k2ûk þ f̂ k � i

X

p 2 Z
2;

p 6 0; k

ðûp � kÞûk p: (6)

Inserting Eq. (3) into Eq. (2), the incompressibility require

ment takes the form:

ûkðtÞ � k ¼ 0: (7)

Note from Eq. (7) that the incompressibility in Fourier space

restricts the dynamics of the Fourier modes ûk to the direction

perpendicular to the wavevector k. To impose this restriction,

we define a real unit vector ek perpendicular to k
11–13

ek � k ¼ 0; e2k ¼ ek � ek ¼ 1; e k ¼ ek; (8)

and project the velocity in Fourier space along the vector ek

ûk ¼ ûkek; (9)

where ûk ¼ uRk þ iuIk is a complex scalar quantity. As a

result, the complex two dimensional vector ûk is reduced to

a complex one dimensional (i.e., scalar) quantity ûk because

ûk vanishes in the direction parallel to k.12,13 Substituting

Eq. (9) into Eq. (6) and projecting the resulting equation into

ek, we obtain

dûk

dt
¼ � 1

Re
k2ûk þ f̂ k � i

X

p 2 Z
2;

p 6 0; k

ðep � kÞðek p � ekÞûpûk p;

(10)
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where f̂ k ¼ f̂ k � ek. Note that the pressure term vanishes.

Since u(x, t) in Eq. (1) is a real variable,

ûk ¼ û� k;

where the asterisk indicates the complex conjugate, we

restrict the wavevectors to a subset of Z2 defined by

K
2 � fk 2 Z

2
: kx > 0g [ fk 2 Z

2
: kx ¼ 0� ky > 0g:

In addition, we define

�k � k : k 2 K
2

�k : k 62 K
2

�

(11)

and

sgnðkÞ � k � �k
k2

: (12)

Introducing Eqs. (11) and (12) into Eq. (10), and separating

into real and imaginary parts, we obtain the following set of

ordinary differential equations (ODEs)12

duRk
dt

¼ � 1

Re
k2uRk þ f Rk þ

X

p 2 K
2;

p 6 k

ðep � kÞfðek p � ekÞ½sgnðk� pÞuRpuIk p
þ uIpu

R

k p
� þ ðekþp � ekÞ½uRpuIkþp � uIpu

R
kþp�g;

(13)

duIk
dt

¼ � 1

Re
k2uIk þ f Ik �

X

p 2 K
2;

p 6 k

ðep � kÞfðek p � ekÞ½uRpuRk p
� sgnðk� pÞuIpuIk p

� þ ðekþp � ekÞ½uRpuRkþp þ uIpu
I
kþp�g;

(14)

where f̂ k ¼ f Rk þ if Ik. Following Refs. 12 and 13, we apply

the external forcing to the wavevector k¼ (4, 1)

f̂ k ¼ f Rð4;1Þ þ if Ið4;1Þ : k ¼ ð4; 1Þ
0 : k 6¼ ð4; 1Þ

�

(15)

and set f Rð4;1Þ ¼ f Ið4;1Þ ¼ 0:13666. For this type of external forc
ing, Eqs. (1) and (2) remain invariant with respect to the lines

parallel to the external force, and can lead to the coexistence

of symmetrical attractors in phase space. We solve Eqs. (13)

and (14) using an isotropic truncation of wavenumbers in

Fourier space, which means that the Fourier space is seg

mented into successive rings n2 � n < k2 � n2 þ n, n¼ 1,

2,…. The rings up to n¼ 8 are considered, which gives a set

of 112 complex Fourier coefficients, and 224 ODEs after sep

arating into real and imaginary parts. Numerical integration is

performed using a fourth order Runge Kutta method.

III. LAGRANGIAN COHERENT STRUCTURES

The transport and mixing properties of a fluid can be

studied following the trajectories of tracer particles advected

by the fluid velocity field.20 Neglecting molecular diffusion

and assuming passive tracers (i.e., the effect of particles on

the flow is negligible), the trajectory xi of a particle labelled

i, starting at xi0 at time t0 is given by

_xiðxi0; t0; tÞ ¼ uðxiðxi0; t0; tÞ; tÞ; (16)

where

xi0 ¼ xiðxi0; t0; t0Þ: (17)

A common approach to understand chaotic mixing of

particles and transport processes in unsteady flows is through

the computation of the maximum finite time Lyapunov

exponent.21–23 A brief review of this technique follows. The

solution of Eq. (16) can be viewed as a mapping process that

takes points from their position xi0 at time t0 to a new posi

tion xi at time t ¼ t0 þ s, where s > 0. This process is

referred to as the flow map /t
t0
, and satisfies22,23

/t
t0
: D ! D

xi0 ! /t
t0
ðxi0Þ ¼ xiðxi0; t0; tÞ; (18)

where D � R
2 is the domain of the fluid in real space.

Consider the evolution of a perturbed particle trajectory,

x0i ¼ xi þ dx0; (19)

where dx0 is infinitesimal and arbitrarily oriented. At t, the

perturbation becomes

dxti ¼ /t
t0
ðx0iÞ � /t

t0
ðxiÞ: (20)

Expanding /t
t0
into a Taylor series in the neighborhood of xi,

and neglecting the higher order terms, we obtain

dxti ¼
d/t

t0
ðxiÞ

dx
dx0: (21)

The growth of the infinitesimal perturbation will be given by

jjdxtijj ¼ dx0 �
d/t

t0
ðxiÞ

dx

� �T
d/t

t0
ðxiÞ

dx

� �

dx0

 !

v

u

u

t

; (22)

where the superscript T denotes the matrix transpose. Let us

define a finite time version of the right Cauchy Green defor

mation tensor as
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Ct
t0
¼

d/t
t0
ðxiÞ

dx

� �T
d/t

t0
ðxiÞ

dx

� �

: (23)

The tensor Ct
t0
is symmetric and positive definite, hence it

admits two real positive eigenvalues and orthogonal eigen

vectors. Denote the eigenvectors of Ct
t0
as n1ðxi0; t0; tÞ and

n2ðxi0; t0; tÞ with corresponding eigenvalues k1ðxi0; t0; tÞ
< k2ðxi0; t0; tÞ, satisfying

Ct
t0
ni ¼ kini; i ¼ 1; 2: (24)

If we assume that the perturbation is aligned with the direc

tion of maximum stretching, then the growth of the infinitesi

mal perturbation is given by

jjdxtijj ¼ e
rtt0

ðxiÞsjjdx0jj; (25)

where

rtt0ðxiÞ ¼
1

2s
ln k2 (26)

is the maximum FTLE. In the following, we will refer to

the maximum FTLE as the FTLE. The computation of the

FTLE is a common technique to detect hyperbolic LCSs,

which are defined as the locally strongest repelling or

attracting material surfaces over a finite time interval, act

ing as barriers of particle transport. Taking t ¼ t0 þ s in the

flow map (Eq. (18)), repelling LCSs are identified as ridges

in the forward time FTLE, associated with finite time stable

manifolds.22 One can also take t ¼ t0 � s in Eq. (18), in

which case attracting LCSs are identified as ridges in the

backward time FTLE, associated with finite time stable

manifolds.

We compute rtt0 by first covering the ½0; 2p� 	 ½0; 2p� do
main with an equally spaced grid of size 512	 512. At each

point of the grid, we place four particles perturbed in the x

and y directions following Eq. (19) where the perturbation

dx0 is given by

dx0 ¼ fðD; 0Þ; ð�D; 0Þ; ð0;DÞ; ð0;�DÞg: (27)

In our case, D ¼ 2p=1024. The trajectory of each perturbed

particle is followed by solving Eq. (16). After that, we use

the resulting trajectories to solve Eq. (23) using a finite

differences method.

The FTLE is a relatively simple technique frequently

used to identify hyperbolic LCSs as ridges of the for

ward and backward FTLE. However, simple counterex

amples demonstrate that not all ridges of the FTLE field

are hyperbolic LCSs, and LCSs need not be ridges of

the FTLE field.23 As a result, FTLE ridges can yield

both false negatives and false positives in the detection

of LCS.23,25

A mathematical theory of hyperbolic LCSs was devel

oped by Haller23 and Farazmand and Haller.24 A numerical

implementation of this theory was presented by Farazmand

and Haller,26 which allows to extract LCS as smooth, para

metrized curves in two dimensional flows, and is briefly

described as follows. Hyperbolic LCSs can be extracted

from trajectories of the ODE defined by the first eigenvector

of the Cauchy Green deformation tensor

r0 ¼ n1ðrÞ; (28)

Trajectories of Eq. (28) are referred as strainlines.26 A com

pact segment c0 of a strainline qualifies as a LCS if the fol

lowing is satisfied for all x0 2 c0

1. k1ðx0Þ 6¼ k2ðx0Þ > 1.

2. hn2ðx0Þ;r2k2n2ðx0Þi � 0.

3. n1ðx0Þ k c0.

4. The averaged repulsion rate �k2ðcÞ, which is the average of

k2 over a strainline segment c0, must be maximal among

the averaged repulsion rates of all nearby curves c satisfy

ing c k n1ðx0Þ.
These conditions can be summarized as follows.

Condition 1 ensures that the segment c0 of a strainline has a

FIG. 1. Bifurcation diagram of uRð0;1Þ
(upper panel) and uRð4;1Þ (lower panel)

as a function of the Reynolds number

Re, for two pre crisis attractors A1

(black) and A2 (red). After crisis, A1

and A2 merge to form an enlarged

attractor (black).
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repulsion rate normal to c0 (i.e., in the direction of n2ðx0Þ)
larger than the repulsion rate in the direction tangent to c0
(i.e., in the direction of n1ðx0Þ). This condition guarantees

that the detected LCSs are hyperbolic (repelling material

lines) and not elliptic or parabolic (e.g., due to shear).

Conditions 3 and 4 ensure that the repulsion rate normal to

c0 has a local extremum along the LCS relative to all nearby

material lines, and condition 2 ensures that this extremum is

a strict local maximum.26

In this paper, we follow the numerical implementation

presented by Farazmand and Haller26 to detect hyperbolic

LCS. We solve Eq. (28) using a fourth order Runge Kutta

method with a step of 0.01. Since small scale LCSs are

expected to have a negligible effect on the resulting pattern

of the flow, we discard LCSs with length smaller than a suit

able threshold following Farazmand and Haller.26

IV. EULERIAN CHAOS

A. Bifurcation diagram and attractors

We begin our nonlinear analysis by constructing a bifurca

tion diagram for the solution of Eqs. (13) and (14) as a function

of the Reynolds number Re. This diagram was constructed by

defining a Poincar�e hyperplane as uRð8;2Þ ¼ �0:0002, and

FIG. 2. Upper panel: bifurcation dia

gram of uRð4;1Þ as a function of the

Reynolds number Re for A1. Lower

panel: the two largest Lyapunov expo

nents as a function of Re.

FIG. 3. Poincar�e points of the quasi

periodic attractors QPA1 (black) and

QPA2 (red) for Re 51.4 (left side

panels) and chaotic attractors CA1 and

CA2 for Re 51.52 (right side panels)

projected using Fourier modes ûð0;1Þ
and ûð4;1Þ.
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plotting the intersections between the trajectory and the

Poincar�e hyperplane where duRð8;2Þ=dt > 0. In the following, we

will refer to these intersections as the “Poincar�e points.”

Figure 1 shows the bifurcation diagram using two different pro

jections, the real part of ûð0;1Þ (upper panel) and the real part of

the forced mode ûð4;1Þ (lower panel). Starting from Re¼ 51.40,

there is a coexistence of two attractors, denoted A1 (black) and

A2 (red). Depending on the initial condition, the dynamics of

Eqs. (13) and (14) can converge to A1 or A2. From the upper

panel of Fig. 1, it seems that the two attractors occupy the

same region, and that the two attractors maintain the same

dynamics with increasing Re, up to the critical value

Re ¼ Rec 
 51:5216, where they merge and form an enlarged

chaotic attractor. However, several hidden features of the bifur

cation diagram are unveiled by the projection onto the forced

mode, shown in the lower panel of Fig. 1, in which the two

coexisting attractors can be clearly distinguished. At

Re¼ 51.40, the computation of the two largest Lyapunov expo

nents k1 and k2 using the method described by Benettin et al.27

gives k1 ¼ k2 ¼ 0 for A1 and A2, which indicates that the dy

namics of the two coexisting attractors is quasiperiodic. At

Re 
 51:41, a quasiperiodic doubling bifurcation occurs for A1

and A2. This bifurcation occurs when a quasiperiodic attractor

loses stability, and a new quasiperiodic attractor is created with

one fundamental frequency which is half the fundamental

frequency of the previous quasiperiodic attractor.28–30 Quasi

periodic doubling bifurcations have also been observed in

numerical studies of low dimensional models of the 2D Navier

Stokes equations31 and in simulations of three dimensional

highly symmetric flows.30 As the Reynolds number is

increased, the two attractors undergo a cascade of quasiperiodic

doubling bifurcations until Re 
 51:49 where A1 and A2

become chaotic. At Re 
 51:5216, the two attractors merge

and form an enlarged chaotic attractor in a crisis like transition.

Note that the scale of the vertical axis in the bottom panel of

Fig. 1 is smaller than the size of the enlarged chaotic attractor.

This scale was chosen to show clearly the coexistence of A1

and A2 before Rec, and the quasiperiodic doubling bifurcations.

We compute the two largest Lyapunov exponents k1 and

k2 to characterize the different flow regimes shown in the

bifurcation diagram as a function of Re. Since for Re < Rec
the evolution of the bifurcation diagram of the two attractors

is identical we choose to display the Lyapunov exponents of

A1. The upper panel of Figure 2 shows the projection of the

bifurcation diagram of A1 onto uRð4;1Þ, and the lower panel

shows the computed values of k1 and k2. From this figure, it

is clear that k1 ¼ k2 ¼ 0 for Re < 51:48, demonstrating that

the dynamics in this regime are in fact quasiperiodic, and

that the doubling bifurcations of A1 and A2 observed in the

lower panel of Fig. 1 must be quasiperiodic doubling bifurca

tions. For 5:48 < Re < 51:525, we observe that k1 > 0 and

k2 ¼ 0, which is indicative of chaotic dynamics. For

Re > 51:525, we have k1 > 0 and k2 > 0, which indicates

that the dynamics is hyperchaotic.

Next, we inspect the projections of the phase space on the

Poincar�e section for different values of Re. Figure 3 shows the

Poincar�e points of A1 and A2 projected on the real and imagi

nary parts of the complex Fourier modes ûð0;1Þ and ûð4;1Þ. For
Re¼ 51.4 (left hand side panels), the Poincar�e points of A1

(black) and A2 (red) projected onto ûð0;1Þ form a closed curve,

which is a typical feature of a quasiperiodic attractor. Note

that, in this projection, it is apparent that A1 and A2 occupy the

same region of phase space, and as a result, only the Poincar�e

points of A2 become visible. The projection onto the Fourier

mode ûð4;1Þ clearly shows that A1 and A2 occupy different

regions of phase space, and that each quasiperiodic attractor is

represented by a single point. This indicates that the quasiperi

odic attractor can be classified as a nongeneric torus in which

the trajectory of the attractor projected on the forcing mode dis

plays a periodic orbit, whereas the other modes display quasi

periodic orbits with two frequencies, namely, one lower

frequency related to a travelling wave, and one higher fre

quency related to the frequency of the forcing mode12,13 (see

Appendix B). The nongeneric torus in Fourier space generates

a modulated travelling wave in real space.12,13 The right hand

side panels of Fig. 3 shows the Poincar�e points of A1 and A2

for Re¼ 51.52, in the chaotic regime, hereafter denoted by

CA1 and CA2, respectively. The two coexisting chaotic

FIG. 4. Poincar�e points of the HCA in the hyperchaotic regime projected

using Fourier modes ûð0;1Þ (upper panel) and ûð4;1Þ (middle panel). The lower

panel shows an enlargement of the hyperchaotic attractor projected using

Fourier mode ûð4;1Þ.
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attractors can be clearly distinguished in the lower panel. Note

that the two attractors are symmetric with respect to the line

uIð4;1Þ ¼ uRð4;1Þ. This is due to a reflection symmetry of the 2D

NSE with respect to the lines parallel to the external force (Eq.

(15)) where the modulus of the force is maximal.13 Symmetric

solutions have been previously reported in numerical studies of

the 2D NSE with periodical boundary conditions and constant

single mode forcing12–14 and in numerical simulations of the

three dimensional Rayleigh Bènard convection.32

The bifurcation diagrams shown in Figs. 1 and 2 indi

cate that at Re ¼ Rec 
 51:5216 the attractors CA1 and CA2

merge to form a HC attractor (HCA). The Poincar�e points of

the enlarged attractor at Re ¼ 51:525 > Rec projected on the

Fourier modes ûð0;1Þ and ûð4;1Þ are shown in the upper and

middle panels of Figure 4, respectively. Evidently, the HCA

occupies a larger region of phase space. A detailed view of

the projection on mode ûð4;1Þ is shown in the lower panel

of Fig. 4. Comparing with the lower, right hand side panel of

Fig. 3, it becomes clear that A1 and A2 are merged into the

HCA.

B. Chaotic saddles

The left side panels of Figure 5 show that, prior to the

transition to hyperchaos, the time series of the kinetic energy

EðtÞ ¼ 1

ð2pÞ2
ð2p

0

ð2p

0

u2ðx; tÞdxdy; (29)

and the enstrophy

XðtÞ ¼ 1

ð2pÞ2
ð2p

0

ð2p

0

x2ðx; tÞdxdy; (30)

where x ¼ r	 u is the vorticity, display chaotic transients

before the trajectory converges to either CA1 or CA2. The

dynamics of the chaotic transient shows higher variability

than the regular dynamics of the asymptotic state, and sud

den decreases of kinetic energy associated with strong

“bursts” of enstrophy occur intermittently. This behavior

strongly resembles the dynamics of the hyperchaotic attrac

tor (right side panels of Fig. 5), in which the time series ran

domly alternates between dynamics resembling the

“laminar” behavior prior to Rec, and dynamics with higher

variability and intermittent “bursts.”

The chaotic transients shown in the left side panels of

Figure 5 are due to the presence of a chaotic saddle in phase

space. We use the sprinkler method to find chaotic saddles.5,6

This method works by defining a restraining region in the

Poincar�e section which contains a chaotic saddle and no

attractor. The trajectory of any initial condition arbitrarily

close to the chaotic saddle will eventually leave the restrain

ing region, except for initial conditions located exactly in the

chaotic saddle or its stable manifold. Define the escape time

as the time it takes for a trajectory to leave this region. The

restraining region is covered by a grid of initial conditions,

and the trajectory of each initial condition is followed until

some time tc which should be larger than the average escape

time from the restraining region, and must be adjusted after

some trial and error. We define the restraining region by cov

ering the Poincar�e points of CA1, projected using the real

and imaginary parts of the forced mode ûð4;1Þ, with two nar

row boxes superposing the upper and the lower part of the

attractor. A similar region was defined for the CA2 attractor.

We select those trajectories that remain in the restraining

region after tc ¼ 16585 time units, and plot the Poincar�e

points obtained at t ¼ 0:5tc ¼ 8292:5 which approximate the

FIG. 5. Time series of the kinetic

energy E (upper panels) and the enstro

phy X (lower panels) in the chaotic re

gime (Re 51.52) and the hyperchaotic

regime (Re 51.525). The arrows indi

cate the selected values of t used to

detect Lagrangian coherent structures

(Figs. 8 and 9).
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chaotic saddle.5,6 The left side panels of Fig. 6 show the

Poincar�e points of a chaotic saddle (gray) superposed by the

Poincar�e points of the chaotic attractors CA1 (black) and

CA2 (red), for Re ¼ 51:52 < Rec, and projected onto

Fourier modes ûð0;1Þ (upper panel) and ûð4;1Þ (middle panel).

The bottom panel shows an enlarged view of the ûð4;1Þ pro
jection, clearly showing the coexistence of CA1; CA2, and

the chaotic saddle. We used the stagger and step algorithm33

to compute the two largest Lyapunov exponents of this cha

otic saddle, and obtained the values k1 ¼ 0:026 and

k2 ¼ 0:008. Hence, we call this chaotic saddle a HC saddle

(HCS). The HCS governs the dynamics of chaotic transients

in the time series of the kinetic energy and enstrophy before

converging to either CA1 or CA2, as exemplified in the left

side panels of Fig. 5. A comparison between the HCS and

the HCA shown in Fig. 4 indicates that, after the crisis, the

two chaotic attractors merge with the HCS, which explains

the sudden creation of an enlarged attractor.

The right side panels of Fig. 6 show the Poincar�e points

of the HCS and two chaotic saddles found after applying the

sprinkler method for Re ¼ 51:525 > Rec. These two chaotic

saddles are located within the same region in phase space

previously occupied by CA1 and CA2 prior to the transition.

For this reason, the chaotic saddles are properly referenced

as CS1 and CS2. They are the continuation of CA1 and CA2

in the hyperchaotic regime, after losing stability and becom

ing nonattracting chaotic sets. This change of stability (i.e.,

the transition from an attracting chaotic set with a corre

sponding basin of attraction to a nonattracting chaotic set

with an associated fractal stable manifold) explains the small

“gaps” or empty spaces which appear in the Poincar�e projec

tions of both CS1 and CS2. From the right side panels of Fig.

6, it becomes clear that the HCA shown in Fig. 4 is com

posed by the HCS, CS1, and CS2. In this regime, the CS1 and

the CS2 are responsible for the laminar intervals shown in

the time series of the right side panels of Fig. 5, while the

HCS governs the dynamics with higher variability and occa

sional “bursts” which appear intermittently in the time series

of the enstrophy of Fig. 5 for Re ¼ 51:525 > Rec. This sce

nario is the same described by Szab�o and T�el34 for temporal

FIG. 6. Left side panels: Poincar�e

points of the HCS (gray) and chaotic

attractors CA1 (black) and CA2 (red) in

the chaotic regime (Re 51.52) pro

jected using Fourier modes ûð0;1Þ
(upper panels) and ûð4;1Þ (middle pan

els). The lower panel shows an

enlargement of the middle panel.

Right side panels: Poincar�e points of

the HCS (gray), and chaotic saddles

CS1 (black) and CS2 (red), in the

hyperchaotic regime (Re 51.525).
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chaos and by Rempel and Chian1 for one dimensional spatio

temporal chaos.

V. LAGRANGIAN CHAOS

The Lagrangian techniques discussed in Sec. III require

the integration of particle trajectories backwards in time

when t ¼ t0 � s. To avoid numerical instabilities, we choose

to interpolate recorded datasets of our numerical results. The

datasets consist of snapshots of the velocity field in real

space recorded every 0.1 time units. Following Mendoza and

Mancho,35 we use third order Lagrange polynomials for

interpolation in time. We interpolate in space using Hermite

polynomials which is a third order interpolation scheme

commonly used for the integration of particle trajecto

ries.21,22,36 We plot the resulting values of Eq. (26) against

the initial condition of the respective particle, resulting in a

scalar field. The “FTLE field” is obtained by representing the

numerical values of the backward time FTLE using a colour

scale varying from black (smaller values) to red (larger val

ues), and the forward time FTLE is represented using a col

our scale from black (smaller values) to green (large values).

After that, the forward and backward time FTLE are merged

to form a three vector red green blue image for

visualization.

Choosing an optimal value of s will depend on the sys

tem being studied. A small value of s will not allow the for

mation of patterns in the FTLE field and LCSs, whereas a

large value of s implies a higher computational effort and

larger amount of recorded datasets. Also, one of the prob

lems with large s is that the FTLE plots may become increas

ingly complex, with material lines “growing” and filling the

entire phase space, rendering difficulty in the distinction

between regimes. Basically, smaller values of s enable the

detection of the main (most attracting/repelling) LCSs,

which organize transport between different regions of the

flow, and larger s reveals the structures which will affect the

system only at later times. Figure 7 shows the forward time

FTLE field superposed by hyperbolic LCSs obtained by solv

ing Eq. (28) and checking conditions 1 4 indicated in Sec.

III, for Re¼ 51.52, t¼ 15 000, and two different values of s.

The upper panel shows the resulting pattern for s ¼ 5 and

the lower panel displays the pattern for s ¼ 10. The spatio

temporal patterns can be clearly distinguished in the lower

panel. Note that the intermittent bursts in Fig. 5 are short

time events with a typical duration of 20 23 time units.

Therefore, we avoid the overlapping of intervals with differ

ent dynamics by setting s ¼ 10, which allows us to identify

the main LCSs.

Figure 8 shows the FTLE field computed from the HCA

after transition, corresponding to the time series of kinetic

energy and enstrophy shown in the right side of Fig. 5. The

upper panel corresponds to an interval ½t0 � s; t0 þ s� at

t0 ¼ 4500, the middle panel corresponds to t0 ¼ 7000, and

the lower panel corresponds to t0 ¼ 8005. The selected val

ues of t0 are indicated by arrows in Fig. 5. On each panel, the

FTLE field is superposed by hyperbolic LCSs obtained by

solving Eq. (28) and checking conditions 1 4 indicated in

Sec. III. The backward time LCSs are represented by white

lines, whereas the forward time LCSs are indicated by yel

low lines. The upper panel represents a laminar period, in

which the spatiotemporal patterns of the FTLE field are

organized by several large scale vortices surrounded by

hyperbolic LCS. The middle panel represents a period of

higher variability than the laminar period in the time series

of Fig. 5. The spatiotemporal patterns displayed by the

FTLE field and highlighted by the hyperbolic LCSs are simi

lar to the laminar period. The difference between the upper

and the middle panels of Fig. 8 becomes clear in the statistics

of the FTLE field, which will be discussed later. The lower

panel depicts the FTLE field during a burst, showing a sud

den increase in the complexity of the entanglement of mate

rial lines, accounting for a higher degree of disorder in space

and time. From Fig. 8, we can conclude that the intermittent

bursts observed in the time series of Fig. 5 after the transition

FIG. 7. The forward time FTLE field of Re 51.52 at t 15 000 for s 5

(upper panel), and s 10 (lower panel), superposed by forward time hyper

bolic LCSs (yellow lines).
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FIG. 8. The FTLE field of the hyperchaotic attractor (Re 51.525) at

t 4500 (upper panel), t 7000 (middle panel), and t 8500 (bottom

panel), superposed by forward time LCSs (yellow) and backward time

LCSs (white).

FIG. 9. The FTLE field for Re 51.52, at t 3960 (upper panel), t 6316

(middle panel), and t 15 000 (bottom panel), superposed by forward time

LCSs (yellow) and backward time LCSs (white).
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to hyperchaos are responsible for episodic enhancements of

the fluid complexity.

Recall that, before the transition to hyperchaos, the chaotic

transients are governed by a hyperchaotic saddle. Figure 9

shows the FTLE field and hyperbolic LCSs for

Re ¼ 51:52 < Rec, at three different values of t0 indicated by

arrows in the time series shown in the left side panels of Fig. 5.

The upper panel corresponds to the middle of a burst at

t0 ¼ 3960, the middle panel corresponds to t0 ¼ 6316, and the

lower panel represents the dynamics after converging to the

CA1 at t0 ¼ 15 000. The upper panel indicates that the bursty

behavior of the HCS is characterized by irregular patterns of

the FTLE field and hyperbolic LCSs, similarly to the burst of

the HCA shown in the lower panel of Fig. 8. The spatiotempo

ral patterns of the middle and bottom panels resemble the pat

terns of the middle and upper panels of Fig. 8, respectively.

The spatiotemporal patterns of Figs. 8 and 9 can be com

pared quantitatively by constructing the probability distribu

tion function (PDF) of the FTLE field.37,38 The left side panel

of Fig. 10 shows the PDF of the backward time FTLE field

rtt0 computed from chaotic saddles for Re ¼ 51:52 < Rec.

The dashed line represents the strong burst during the chaotic

transient around t0 ¼ 3960 (see Fig. 6), the dotted line corre

sponds to t0 ¼ 6316, and the continuous line corresponds to

the laminar period after convergence to CA1 ðt0 ¼ 15 000Þ.
All PDFs exhibit an asymmetric shape with a fat tail towards

large values of rtt0 . A similar shape was observed by Ref. 37

for the backward time FTLE computed from velocity fields of

surface ocean currents inferred using satellite data. Clearly,

the PDF is narrower during the laminar period, and becomes

broader during the burst period. This figure allows for a clear

differentiation between the laminar state at t0 ¼ 15 000 and

the high variability state at t0 ¼ 6316 with a slightly broader

PDF compared to the laminar PDF.

The right side panels of Fig. 10 show the PDFs of the

backward time rtt0 for Re ¼ 51:525 > Rec. The laminar state

at t¼ 4500 is represented by a continuous line, the higher var

iability state at t¼ 7000 is represented by a dotted line, and

the strong burst observed at t¼ 8005 is represented by a

dashed line. The shape and width of the PDF of each state are

very similar to the corresponding PDF prior to the transition

to HCA. From this figure, we conclude that the spatiotemporal

patterns of the flow after transition to hyperchaos can be pre

dicted by the hyperchaotic transient observed before the

transition, in agreement with the conclusion of Rempel and

Chian1 for a one dimensional regularized long wave equation.

VI. CONCLUSION

In this paper, we performed numerical simulations of

the two dimensional incompressible Navier Stokes equations

with external forcing and periodic boundary conditions. By

constructing bifurcation diagrams, we showed the transition

from a quasiperiodic regime to a chaotic regime, and then to

a hyperchaotic regime with increasing Reynolds number.

Prior to the transition to hyperchaos, we show that the cha

otic transient observed in the time series of the kinetic

energy and enstrophy is due to the presence of a hyper

chaotic saddle. After transition, there is chaos hyperchaos

intermittency due to the coupling between the hyperchaotic

saddle and two chaotic saddles, which are the continuation

of the two symmetric chaotic attractors CA1 and CA2. The

Lagrangian mixing properties of the fluid were characterized

using the FTLE field and a mathematical theory recently

developed to detect LCSs as parametrized curves in 2D

flows. The laminar periods associated with the chaotic sad

dles CS1 and CS2 display smoother patterns of the FTLE

field, and are organized by several large scale vortices sur

rounded by hyperbolic LCSs. In contrast, during the bursty

periods there is a sudden increase on the fluid complexity

associated with the hyperchaotic saddle. The PDFs of the

backward time FTLE field demonstrate that the enhanced

complexity of the spatiotemporal patterns during the inter

mittent bursts after transition can be predicted by the hyper

chaotic saddle prior to the transition, in agreement with the

conclusion of Rempel and Chian.1 To our knowledge, this is

the first time that chaotic saddles at the onset of hyperchaos

are related to the phenomenology of chaotic advection, with

emphasis on hyperbolic LCSs.

In this paper, we focused on the transition to hyperchaos

by varying the Reynolds number and fixing the size of the

physical domain. As stated in Sec. II, by choosing Lx ¼ Ly ¼
2p the wavevector k 2 Z

2, which simplifies the numerical

implementation. Several studies have investigated the scal

ing properties of transient chaos with the size of the system

in partial differential equations.9,39,40 Although this type of

investigation is outside the scope of the present paper, it is

an interesting topic of research for future work. In addition,

FIG. 10. Probability distribution func

tion of the FTLE field for Re 51.52

<Rec (left side panels) and Re

51.525> Rec (right side panels).

The continuous line represents laminar

periods, the dotted line corresponds to

the high variability periods, and the

dashed line represents strong bursts.
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we have restricted our Lagrangian analysis to hyperbolic

LCSs detected using the computational framework presented

by Farazmand and Haller.26 A unified theory of LCSs that

allows the identification of hyperbolic, parabolic, and elliptic

barriers of flows was developed recently by Haller and

Ber�on Vera.41 A complete Lagrangian characterization at

the onset of hyperchaos using this theory, and a quantifica

tion of the degree of Lagrangian chaos before and after tran

sition using the concept of LCS cores developed by

Olascoaga and Haller42 will be the topic of a future paper.

The transition to hyperchaos described in this paper has

a strong similarity with the onset of spatiotemporal chaos

reported in a number of numerical simulations of nonlinear

partial differential equations.1,3,4,7 However, we were unable

to observe a transition from narrow band to broad band

power spectrum in the wavenumber domain, which is a char

acteristic of STC, due to the regime of low Reynolds number

studied in this paper. Nonetheless, the Lagrangian techniques

studied in this paper are applicable to high Reynolds number

fluid turbulence where spatiotemporal chaos is expected.
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APPENDIX A: DECOUPLING OF k50

In Sec. II, we made the restriction k 6¼ 0 in the Fourier

series because û0 is decoupled from the evolution equa

tions. This can be elucidated after substituting Eqs. (3) (5)

into Eq. (1)

X

k 2 Z
2;

k 6 0

dûk

dt

� �

eik�x ¼ �i
X

k 2 Z
2;

k 6 0

kp̂ke
ik�x � 1

Re

X

k 2 Z
2;

k 6 0

k2ûke
ik�x þ

X

k 2 Z
2;

k 6 0

f̂ ke
ik�x � i

X

p 2 Z
2;

p 6 0

X

q 2 Z
2;

q 6 0

ðûp � kÞûqe
iðpþqÞ�x: (A1)

If k¼ 0, the nonlinear term vanishes, and as a result the evo

lution equation for û0 is in fact decoupled from other Fourier

modes. Moreover, our choice of the forcing term given by

Eq. (15) indicates that the Fourier coefficient û0 is constant

in time. We set û0 ¼ ð0; 0Þ which is equivalent to assume a

vanishing mean flow.32

The last term in the right hand side of Eq. (A1) will cou

ple with the other terms only if pþq¼ k. By inserting this

constraint into Eq. (A1), one obtains Eq. (6).

APPENDIX B: NONGENERIC TORUS AT Re5 51.4

In Sec. IV, we refer to the quasiperiodic attractor at

Re¼ 51.4 as a nongeneric torus in which the forcing mode

displays a periodic orbit, whereas the other modes display

quasiperiodic orbits with a low frequency component related

to a travelling wave, and a high frequency component

related to the frequency of the forcing mode.12,13 This is

illustrated in Fig. 11. The upper panel shows the power spec

trum computed from the time series of the real part of the

Fourier mode ûð0;1Þ as a function of the frequency f, and the

lower panel shows the power spectrum of the real part of the

forced mode ûð4;1Þ. Clearly, the dynamics of the forced mode

is periodic with frequency f2 ¼ 0:012938208, followed by a

sequence of peaks resulting from harmonic oscillations given

by nf2, where n¼ 2, 3,…. The fundamental frequency of

uRð0;1Þ in the upper panel of Fig. 11 is f1 ¼ 0:000217463, fol
lowed by a sequence of double peaks. The first pair of peaks

corresponds to the frequencies f3 ¼ 0:012715873 ¼ f2 � f1
and f4 ¼ 0:013150800 ¼ f2 þ f1, which are clearly related to

the frequency of the forced mode f2. The subsequent pairs of

peaks in the upper panel of Fig. 11 correspond to oscillations

with frequencies nf2 � f1 and nf2 þ f1, where n¼ 2, 3, ….

1E. L. Rempel and A. C. L. Chian, “Origin of transient and intermittent dy

namics in spatiotemporal chaotic systems,” Phys. Rev. Lett. 98, 014101
(2007).

FIG. 11. Power spectra of the time series of uRð0;1Þ (upper panel) and uRð4;1Þ
(lower panel) at Re 51.4. The frequencies indicated in the figure are f1
0:000217463 and f2 0:012938208.
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